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I Einleitung 

Im Zuge der Deregulierung des US-amerikanischen Markts für Passagierluftfahrt Ende 

der Siebzigerjahre drängten zahlreiche neue Wettbewerber mit attraktiven Preisen auf 

den Markt. Diese konnten ihre vergleichsweise günstigen Preise vor allem aufgrund 

geringerer Kosten anbieten, bspw. in Folge eines weitgehenden Verzichts auf Service-

leistungen. Die etablierten Fluggesellschaften standen vor der Herausforderung, eine 

Abwanderung insbesondere von preissensitiven Privatreisenden zur Konkurrenz zu ver-

hindern. Jedoch konnten sie ihre Preise aufgrund der strukturell bedingt höheren Kosten 

nicht generell auf das Niveau der Konkurrenz absenken. So griff American Airlines auf 

das Instrument der Preisdifferenzierung zurück und führte den speziell an Privatreisende 

gerichteten, wettbewerbsfähigen Tarif „Ultimate Super Saver Fare“ ein, der an die Be-

dingung einer Vorausbuchungsfrist geknüpft war. Nun konkurrierten unterschiedlich 

bepreiste Produkte um dieselbe Ressource. Damit stand American Airlines vor der Fra-

gestellung, wie viele der günstigen Tickets höchstens verkauft werden durften, ohne die 

meist später eintreffende, aber lukrativere Nachfrage von Geschäftsreisenden zu ver-

drängen. Diese offene Fragestellung gilt als Geburtsstunde des Revenue Managements, 

das heute neben der Passagierluftfahrt in den verschiedensten Industriezweigen erfolg-

reich angewendet wird, bspw. in der Automobilvermietung (vgl. Steinhardt and Gönsch 

(2012)), der Medienwirtschaft (vgl. Kimms und Müller-Bungart (2007)) oder dem At-

tended Home Delivery (vgl. Agatz et al. (2013) und Yang et al. (2016)).  

Im Allgemeinen befasst sich Revenue Management mit der optimalen Gestaltung zeit-

lich begrenzter Verkaufsprozesse kapazitätsbeschränkter Ressourcen. Die resultierenden 

Entscheidungsprobleme werden üblicherweise als stochastische, dynamische Optimie-

rungsprobleme (engl. Dynamic Program, DP) mit endlichem Zeithorizont modelliert. 

Da praxisrelevante Instanzen dieser Art von Problemstellung meist nicht exakt gelöst 

werden können, muss auf approximative Lösungsmethoden zurückgegriffen werden. 

Diese sind üblicherweise auf das vorliegende Entscheidungsproblem angepasste Wei-

terentwicklungen existierender Methoden. 
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Im vergangenen Jahrzehnt waren im Revenue Management zwei wegweisende Trends 

beobachtbar: die Berücksichtigung nachfrageseitiger Substitution durch Kundenwahl-

verhalten sowie anbieterseitiger Substitution, bspw. durch flexible Produkte und Upgra-

des. Ein dritter Aspekt, der vor allem aus dem Transfer von Revenue Management in 

andere Anwendungsfelder motiviert ist, besteht in der Betrachtung eines risikoaversen 

Entscheiders.  

Gegenstand der vorliegenden kumulativen Dissertationsschrift ist die (approximative) 

Lösung von Entscheidungsproblemen diese drei Trends betreffend. Vor diesem Hinter-

grund erfolgt in Kapitel I.1 zunächst eine Einführung in das Forschungsgebiet des klas-

sischen Revenue Managements inklusive entsprechender (approximativer) Lösungsme-

thoden. In den Kapitel I.2 bis I.4 werden die Trends näher vorgestellt und die in dieser 

Dissertationsschrift vorgestellten Beiträge inhaltlich verortet.  

I.1 Einführung in Revenue Management und (approximative) dynami-

sche Optimierung 

Die vorliegende Dissertationsschrift versteht den Begriff des Revenue Managements im 

engeren Sinne einer klassischen Kapazitätssteuerung, wie es bspw. der folgenden Defi-

nition von Klein (2001) entspricht: 

„Revenue Management umfasst eine Reihe von quantitativen Methoden zur Entschei-

dung über Annahme oder Ablehnung unsicherer, zeitlich verteilt eintreffender Nachfra-

ge unterschiedlicher Wertigkeit. Dabei wird das Ziel verfolgt, die in einem begrenzten 

Zeitraum verfügbare, unflexible Kapazität möglichst effizient zu nutzen.“ 

Aus Anbietersicht lassen sich die meisten Problemstellungen im Revenue Management 

im Wesentlichen wie folgt charakterisieren (vgl. Talluri und van Ryzin (2004b), Kap. 

1.3.3 oder Klein und Steinhardt (2008), Kap. 1.2.2): 

 Die abzusetzenden Produkte entstehen ihm Rahmen einer segmentorientierten 

Preisdifferenzierung zweiten oder dritten Grades (vgl. Phillips (2005), Kap. 4 sowie 

Klein und Steinhardt (2008), Kap. 2 zum Begriff und zu Ausprägungen der Preis-
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differenzierung). Die Produkte sind somit in ihrer Kernleistung identisch, aber un-

terschiedlich bepreist. 

 Die potentiellen Kunden besitzen heterogene Präferenzen bzgl. des Erwerbs der 

Produkte und unterschiedliche Zahlungsbereitschaften.  

 Der Absatz der Produkte erfolgt über einen zeitlich begrenzten Verkaufszeitraum, 

der meist als Buchungshorizont bezeichnet wird. Die eigentliche Leistungserstel-

lung hingegen findet nach dem Buchungshorizont statt.  

 Die Leistungserstellung erfordert von den Produkten gemeinsam genutzte Ressour-

cen. Die Ressourcen sind kapazitätsbeschränkt und nicht lagerfähig. Betrachtet man 

lediglich eine Ressource, bspw. in der Passagierluftfahrt einen Flugabschnitt (engl. 

Leg), spricht man vom Single-Leg-Fall, andernfalls vom Netzwerk-Fall. 

In einem derartigen Umfeld ist es nun die Aufgabe des Revenue Managements im Sinne 

einer Kapazitätssteuerung, dynamisch über die Verfügbarkeit der Produkte im Bu-

chungshorizont zu entscheiden, so dass ein zuvor festgelegtes Zielkriterium optimiert 

wird. Für gewöhnlich handelt es sich dabei um den Erwartungswert des über den Bu-

chungshorizont erzielten Erlöses. Das Ziel der Erlösmaximierung ist dabei aufgrund der 

Kostenstruktur in traditionellen Anwendungsfeldern wie der Passagierluftfahrt gerecht-

fertigt, die durch hohe Fix- und geringe variablen Kosten geprägt ist. Die Optimierung 

des Erwartungswerts basiert auf der Annahme eines risikoneutralen Entscheiders, wie es 

in vielen Anwendungsfeldern aufgrund einer großen Anzahl ähnlicher Buchungsprozes-

se angebracht ist. 

Die Modellierung dieser Entscheidungsprobleme als DP hat sich mittlerweile als Stan-

dardansatz etabliert. Da im Rahmen dieser Einführung nur die Grundprinzipien der dy-

namischen Optimierung erläutert werden können, seien für einen ausführlicheren Ein-

stieg in die Thematik Domschke et al. (2015), Kap. 7 und Nickel et al. (2011), Kap. 8 

empfohlen. Allgemein besteht ein DP aus einer Menge von Perioden, Systemzuständen, 

Aktionen, einperiodigen Zielfunktionsbeiträgen und Übergangswahrscheinlichkeiten 

(vgl. Puterman (2005), Kap. 2.1). In jeder Periode ist im gegenwärtigen Zustand des 

Systems eine Entscheidung zu treffen, d. h. eine Aktion aus der Menge der zulässigen 
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Aktionen zu wählen. Eine gewählte Aktion führt in Abhängigkeit des gegenwärtigen 

Zustands und der Übergangswahrscheinlichkeiten zu einem Zielfunktionsbeitrag sowie 

in einen Folgezustand. Die Wahrscheinlichkeit, in einen bestimmten Folgezustand zu 

gelangen, hängt dabei nicht von vergangenen Zuständen oder Entscheidungen ab – eine 

Eigenschaft, die häufig als Markov-Eigenschaft bezeichnet wird (vgl. Hillier und Lie-

berman (2010), Kap. 16.2). Eine Abfolge von Aktionen bzw. eine Regel zur Bestim-

mung einer solchen Abfolge wird als Politik bezeichnet (vgl. Puterman (2005), Kap. 

2.1.5). Ziel ist die Bestimmung einer optimalen Politik, d. h. einer Politik, die für jeden 

Zustand in jeder Periode eine optimale Aktion hinsichtlich des zuvor festgelegten Ziel-

kriteriums angibt. Die Markov-Eigenschaft ermöglicht die Modellierung des Entschei-

dungsproblems nur in Abhängigkeit von gegenwärtigem Zustand und gegenwärtiger 

Periode. Dazu wird eine sog. Wertfunktion formuliert, die den optimalen Zielfunkti-

onswert in diesem Zustand ab dieser Periode angibt. Die Lösung erfolgt mittels Rück-

wärtsrechnung, indem für jeden Zustand jeder Periode die Wertfunktion berechnet wird.  

Zur Modellierung von Entscheidungsproblemen des Revenue Managements als DP wird 

zunächst der Buchungshorizont in eine endliche Anzahl hinreichend kleiner Perioden 

diskretisiert, so dass in jeder Periode maximal ein Kunde eintrifft (vgl. Subramanian et 

al. (1999) zur Diskretisierung des Buchungshorizonts). Die Nachfrage wird somit dis-

aggregiert, d. h. auf kundenindividueller Ebene, modelliert. Der Anbieter entscheidet in 

jeder Periode über die anzubietenden Produkte. Die Entscheidung, ob ein bestimmtes 

Produkt angeboten werden soll, hängt dabei maßgeblich von den Opportunitätskosten 

des Produkts ab, d. h. dem entgangenen erwarteten Erlös im Falle eines Verkaufs des 

Produkts (vgl. Klein und Steinhardt (2008), Kap. 3.1.2 zum Begriff der Opportunitäts-

kosten im Revenue Management). Von den angebotenen Produkten fragt ein Kunde 

maximal eines nach. Der in einer Periode erzielte Erlös sowie der Zustandsübergang 

von einer Periode zur Folgeperiode erfolgt folglich in Abhängigkeit der angebotenen 

Produkte sowie der Kaufwahrscheinlichkeiten. Dabei wird – zumindest im Standardfall 

– der Zustand des Systems durch die verfügbare Restkapazität der zur Leistungserstel-

lung erforderlichen Ressourcen beschrieben. Bei Verkauf eines bestimmten Produkts 
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verringert sich die Restkapazität um den entsprechenden Kapazitätsbedarf. Die Oppor-

tunitätskosten eines Produkts spiegeln exakt den Wert dieses Kapazitätsverbrauchs wi-

der.  

Wie eingangs beschrieben, ist die exakte Lösung derartiger DPs allerdings nur für klei-

ne Probleminstanzen möglich. Dies liegt vor allem am sog. „curse of dimensionality“, 

der verhindert, dass die Wertfunktion für den vollständigen Zustandsraum, d. h. für 

sämtliche denkbaren Zustände jeder Periode, berechnet werden kann (vgl. Powell 

(2011), Kap. 1.2 zum „curse of dimensionality“). Um dennoch sinnvolle Entscheidun-

gen über die anzubietenden Produkte treffen zu können, existiert eine Vielzahl appro-

ximativer Lösungsmethoden, die sich im Wesentlichen wie folgt klassifizieren lassen: 

 Kapazitätssteuerung mittels Buchungslimits (bzw. Schutzlimits): Die Grundidee 

dieser Revenue Management-exklusiven Methode besagt, dass ein Produkt solange 

angeboten wird, bis eine vorher festgelegte maximale Absatzmenge, das sog. Bu-

chungslimit, erschöpft ist. Die Ermittlung erfolgt in der Regel mit Hilfe eines ein-

fach lösbaren deterministischen Ersatzmodells wie des bekannten Erwartungswert-

modells (engl. Deterministic linear program, DLP) oder den von Belobaba (1987, 

1989, 1992) vorgeschlagenen Expected Marginal Seat Revenue (EMSR) Verfahren 

EMSR-a und EMSR-b. Diese Art der Kapazitätssteuerung kann alternativ über sog. 

Schutzlimits ausgedrückt werden, die die vor dem Zugriff durch ein Produkt zu 

schützenden Kapazitätseinheiten beschreiben. Buchungs- und Schutzlimits können 

einfach ineinander überführt werden. 

 Kapazitätssteuerung mittels Bid-Preisen: Diese Methode basiert auf dem Vergleich 

des Erlöses eines Produkts mit einer Preisuntergrenze. Diese Entscheidungsregel ist 

aus dem DP des klassischen Revenue Managements ohne nachfrageseitige Substitu-

tion abgeleitet. In diesem vergleichsweise einfach zu handhabendem Anwendungs-

fall lohnt es sich, ein Produkt anzubieten, falls der Erlös des Produkts die Opportu-

nitätskosten übersteigt (vgl. Talluri und van Ryzin (2004b), Kap. 3.2.1). Die Preis-

untergrenze stellt folglich eine Approximation der eigentlichen Opportunitätskosten 

des Produkts dar. Die Preisuntergrenze wird mit Hilfe sog. Bid-Preise berechnet. Ein 
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Bid-Preis bezeichnet dabei die monetäre Bewertung einer Kapazitätseinheit einer 

Ressource, so dass sich die Preisuntergrenze aus der Summe der mit dem Kapazi-

tätsbedarf gewichteten Bid-Preise der benötigten Ressourcen ergibt. 

 Approximation der Wertfunktion: Dieses (approximative) Lösungsprinzip für DPs 

basiert auf der Verwendung einer zu lernenden Approximation der ursprünglichen 

Wertfunktion. Es kommt häufig auch in anderen Anwendungsfeldern der dynami-

schen Optimierung zum Einsatz. Der Einsatz von Wertfunktions-Approximationen 

wird dabei oft als approximative dynamische Optimierung (engl. approximate dy-

namic programming, ADP) im engeren Sinne verstanden. Anzumerken ist jedoch, 

dass die Abgrenzung des Begriffs ADP zu anderen approximativen Lösungsmetho-

den oft nicht eindeutig ist (vgl. Powell (2011), Kap. 6). 

Die vorgestellte Klassifizierung der Methoden ist häufig nicht trennscharf. Beispiels-

weise erfolgt die Formulierung der meisten Wertfunktions-Approximationen über Bid-

Preise. Ein guter, allgemeiner Überblick insbesondere über die Kapazitätssteuerung 

mittels Buchungslimits und Bid-Preisen sowie über gängige Ersatzmodelle findet sich 

in Talluri und van Ryzin (2004b), Kap. 2 und 3 sowie in Klein und Steinhardt (2008), 

Kap. 3. Die Eignung von Wertfunktions-Approximationen zur Kapazitätssteuerung wird 

vor allem in neueren Veröffentlichungen untersucht, bspw. in Adelman (2007) oder 

Meissner und Strauss (2012).  

I.2 Revenue Management bei nachfrageseitiger Substitution 

In früheren Anwendungen des Revenue Managements wurde vereinfachend angenom-

men, dass die Nachfrage nach einzelnen Produkten stochastisch unabhängig ist, d. h. die 

Produkte aus Kundensicht keine Substitute darstellen. Diese sog. Independent Demand-

Annahme erleichterte das in jeder Periode des DPs zu lösende Entscheidungsproblem 

erheblich, da für jedes Produkt separat entschieden werden konnte, ob sich ein Anbieten 

lohnt oder nicht (vgl. Kap. I.1). Ausgehend von Gallego et al. (2004) sowie Talluri und 

van Ryzin (2004a) hat sich jedoch mittlerweile die Berücksichtigung von nachfragesei-

tiger Substitution aufgrund von Kundenwahlverhalten etabliert. In diesem Fall resultiert 
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das in jeder Periode zu lösende Entscheidungsproblem in einem (kombinatorischen) 

Sortimentsoptimierungsproblem, dessen Komplexität stark vom unterstellten Kunden-

wahlverhalten abhängt. Nicht nur im Revenue Management am weitesten verbreitet ist 

dabei das multinomiale Logit-Modell (MNL-Modell). Die Entwicklung des Modells 

wurde maßgeblich von Nobelpreisträger Daniel McFadden geprägt (vgl. McFadden 

(2001)). Das MNL-Modell gilt als der am einfachsten zu handhabende Vertreter der 

sog. Discrete Choice Modelle (vgl. Train (2009), Kap. 3). Während Kök et al. (2009) 

einen Überblick über Sortimentsoptimierung geben, analysieren unter anderem Liu und 

van Ryzin (2008) sowie Miranda Bront et al. (2009) Varianten des sich bei Annahme 

eines MNL-Modells ergebenden Sortimentsoptimierungsproblems. 

Beitrag B1 „Least squares approximate policy iteration for learning bid prices in 

choice-based revenue management“ greift eine Forschungslücke im Revenue Manage-

ment bei nachfrageseitiger Substitution auf. Zwar existieren bereits einige Methoden 

zum Lernen von Wertfunktions-Approximationen, diese basieren jedoch fast aus-

schließlich auf analytisch motivierten Optimierungsansätzen. Das in den letzten Jahren 

vor allem in anderen Anwendungsfeldern populär gewordene simulationsbasierte ADP, 

über das Powell (2011) einen guten Überblick gibt, findet bisher hingegen wenig Be-

achtung. Die Grundidee dieser Verfahren ist es, beginnend im Startzustand bis zur letz-

ten Periode abwechselnd eine Aktion auswählen und den Folgezustand des Systems zu 

simulieren. Die Auswahl der Aktion erfolgt dabei unter Berücksichtigung der aktuellen 

Approximation. Einen solchen Durchlauf bezeichnet man als Simulationspfad. Die Ver-

besserung der Approximation geschieht im Nachgang unter Verwendung der auf dem 

Simulationspfad erzielten Erlöse, die Schätzer für die Approximation in den im Simula-

tionspfad besuchten Zuständen sind. Im Beitrag werden lineare Approximationen unter-

sucht, so dass zur Verbesserung der Approximationen lediglich Kleinste-Quadrate-

Probleme gelöst werden müssen (vgl. Brooks (2014), insbesondere Kap. 2, zur Methode 

der kleinsten Quadrate). Um im Gegensatz zu den vorherrschenden analytischen Ansät-

zen kein bestimmtes Kundenwahlverhalten vorauszusetzen, wird zur Sortimentsoptimie-

rung im Rahmen der Simulation ein von Prokopyev (2005) und Miranda Bront et al. 
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(2009) vorgeschlagener Greedy-Algorithmus herangezogen. Umfangreiche Tests auf 

Grundlage von Standard-Probleminstanzen der aktuellen Revenue Management-

Literatur zeigen, dass der resultierende Ansatz mehr als nur kompetitive Ergebnisse im 

Vergleich zu bestehenden Methoden liefert. 

I.3 Revenue Management bei anbieterseitiger Substitution 

Ein zweiter wichtiger Trend in der Literatur zum Revenue Management ist die Berück-

sichtigung anbieterseitiger Substitutionsmöglichkeiten. Dieser Trend wurde maßgeblich 

vorangetrieben durch den Aufstieg des Internets als Verkaufskanal und damit einherge-

hend der Etablierung neuartiger Produkte – so z. B. das Anbieten unvollständig spezifi-

zierter Produkte, deren genaue Ausgestaltung ein Kunde erst nach dem Kauf erfährt. 

Die vorliegende Dissertationsschrift befasst sich in diesem Zusammenhang mit flexib-

len Produkten sowie Upgrades, die als zwei der bekanntesten Beispiele solcher innova-

tiver Produkte gelten. 

Ein flexibles Produkt bezeichnet ein Bündel mehrerer substituierbarer Alternativen, von 

denen der Verkäufer dem Käufer eine Alternative an einem zuvor vereinbarten Zeit-

punkt nach dem Kauf zuweist (vgl. Gallego und Phillips (2004)). Flexible Produkte bie-

ten dem Anbieter zwei entscheidende Vorteile:  

 Nachfrageinduktion: Von Kundenseite wird ein flexibles Produkt aufgrund der Un-

sicherheit der endgültigen Ausgestaltung als inferior im Vergleich zu herkömmli-

chen, regulären Produkten empfunden. Damit ermöglichen flexible Produkte die 

Erschließung neuer Kundengruppen mit geringer Zahlungsbereitschaft, ohne zu viel 

hochwertige Nachfrage nach regulären Produkten zu kannibalisieren (vgl. Jerath et 

al. (2010)). 

 Flexibilität bzgl. der Ressourcenbelegung sowie dem Zeitpunkt der Zuweisung: 

Aus der Sicht des Revenue Managements für den Anbieter besonders interessant ist 

nicht nur die Möglichkeit, mehrere Zuweisungsalternativen zur Auswahl zu haben, 

sondern vor allem, die endgültige Alternative erst zu einem späteren Zeitpunkt als 

dem Verkaufszeitpunkt festzulegen. Die Zuweisung kann bspw. zu einem Zeitpunkt 



 
 
I  Einleitung 

 

 
9 

erfolgen, an dem bereits ein Großteil der Nachfrage eingetroffen ist und die ver-

bleibende Unsicherheit hinsichtlich der noch eintreffenden Nachfrage daher erheb-

lich geringer ist als zum Zeitpunkt des Verkaufs. Flexible Produkte tragen somit 

somit zur Verbesserung der Kapazitätsauslastung bei, insbesondere im Falle einer 

schwer zu prognostizierenden Nachfrage (vgl. Petrick et al. (2012)). Nachfolgend 

wird die Möglichkeit der Verschiebung der Zuweisungsentscheidung zu einem spä-

teren Zeitpunkt als zeitliche Flexibilität bezeichnet. 

Flexible Produkte finden sich in der Praxis vor allem in der Tourismusbranche. Bei-

spielsweise bietet Aida Cruises (www.aida.com) gegenwärtig drei flexible Produkte an: 

„JUST AIDA“, „JUST AIDA First Minute“ und „AIDA VARIO“. Alle drei Produkte 

bieten dem Anbieter den Vorteil der zeitlichen Flexibilität, verbergen zum Verkaufs-

zeitpunkt aber unterschiedliche Eigenschaften vor dem Kunden. Sowohl bei „JUST 

AIDA“ als auch „JUST AIDA First Minute“ wird je nach Kundenpräferenz entweder 

der genaue Reisetermin oder die Reiseroute verschwiegen. Bei „AIDA VARIO“ hat der 

Anbieter lediglich einen gewissen Spielraum bei der Kabinenauswahl. 

Von Upgrades spricht man, wenn ein Kunde zum Zeitpunkt der Leistungserstellung 

unentgeltlich ein höherwertigeres Produkt als das ursprünglich gekaufte erhält. Hierbei 

geht man üblicherweise davon aus, dass ein Kunde ein solches Upgrade immer akzep-

tiert. Die Vergabe von Upgrades ist vor allem in der Passagierluftfahrt (vgl. Gönsch und 

Steinhardt (2015)) und der Automobilvermietung (vgl. Fink und Reiners (2006)) ver-

breitet. So erhalten Kunden bei Kapazitätsengpässen eine höherwertigere Beförde-

rungsklasse (bspw. Business statt Economy) bzw. Fahrzeugkategorie (bspw. Interme-

diate statt Economy). Ähnlich wie flexible Produkte bieten Upgrades dem Anbieter eine 

erweiterte Flexibilität in der Kapazitätssteuerung.  

Über flexible Produkte und Upgrades hinaus gibt es eine Reihe von verwandten Kon-

zepten, bei denen die Substitutionsmöglichkeit implizit vorgesehen und für den Kunden 

nicht sichtbar oder nicht von Bedeutung ist. Beispielhaft zu nennen ist der Transport 

von Luftfracht, bei dem die endgültige Routenführung dem Transportdienstleister über-

lassen ist (vgl. Bartodziej et al. (2007)). Weitere Beispiele finden sich in der Medien-
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wirtschaft (vgl. Müller-Bungart (2007)) sowie der Auftragsfertigung (vgl. Guhlich et al. 

(2015)). In der Literatur zum Revenue Management spricht man oft auch in solchen 

Fällen von flexiblen Produkten, da die Modellierung analog erfolgt und die Betrachtung 

der erweiterten Flexibilität in der Kapazitätssteuerung im Vordergrund steht.  

In der vorliegenden Dissertationsschrift wird der einfacheren Darstellung wegen ange-

nommen, dass die Zuweisungsentscheidung zu einer endgültigen Alternative sowohl bei 

flexiblen Produkten als auch bei Upgrades erst zum Zeitpunkt der Leistungserstellung 

erfolgt.  

Obwohl insbesondere Upgrades in der Praxis seit langem verbreitet sind, werden die 

Auswirkungen von anbieterseitigen Substitutionsmöglichkeiten auf die Methoden des 

Revenue Managements erst seit knapp über einem Jahrzehnt erforscht – beginnend mit 

den richtungsweisenden wissenschaftlichen Artikeln von Gallego und Phillips (2004) 

sowie Gallego et al. (2004). Um flexible Produkte und Upgrades in DPs zu integrieren, 

reicht es nicht mehr aus, dass ein Zustand lediglich durch die verfügbare Restkapazität 

der Ressourcen beschrieben wird. Stattdessen müssen die bereits verkauften Einheiten 

(Reservierungen) der Produkte in den Zustandsraum integriert werden. Die fehlende 

eineindeutige Beziehung zu einer konkreten Alternative und damit zu einem eindeutigen 

Ressourcenverbrauch bringt vor allem zwei Probleme mit sich, die einen Einsatz der 

Standardmethoden (vgl. Kapitel I.1) zunächst verhindern. Zum einen gestaltet sich die 

Bestimmung von approximativen Opportunitätskosten der Produkte schwierig, da dafür 

im Gegensatz zu regulären Produkten keine Bid-Preise verwendet werden können. Zum 

anderen muss zu jedem Zeitpunkt des Buchungshorizonts sichergestellt sein, dass die 

Kapazität zur Erfüllung sämtlicher Reservierungen ausreicht. Im zugehörigen DP ge-

schieht dies über ein inhärentes Zulässigkeitsproblem. In bisherigen (heuristischen) An-

sätzen wurden diese beiden Probleme meistens dadurch gelöst, dass die Reservierungen 

bereits im Verkaufszeitpunkt entweder endgültig oder zumindest temporär bestimmten 

Alternativen zugeordnet werden (vgl. Petrick et al. (2010), Petrick et al. (2012) sowie 

Steinhardt und Gönsch (2012)), was mit einem erheblichen Verlust an Flexibilität ver-

bunden ist.  
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Beitrag B2 „Dynamic programming decomposition for choice-based revenue manage-

ment with flexible products” knüpft an die oben beschriebene Problematik an. Die 

Grundidee ist es, das zugrundeliegende DP so zu reformulieren, dass der Zustandsraum 

anstelle der Reservierungen von flexiblen Produkten die Restkapazität von neu geschaf-

fenen, künstlichen Ressourcen umfasst. Im Beitrag wird ein entsprechendes Vorgehen 

entwickelt und die Äquivalenz der beiden DPs gezeigt. Das Vorgehen basiert auf der 

Anwendung der Fourier-Motzkin-Elimination auf das im DP inhärente Zulässigkeits-

problem (vgl. Schrijver (1998), Kap. 12.2 für eine Einführung in Fourier-Motzkin-

Elimination). Zudem erfolgt für gängige Anwendungsfälle eine Analyse von Struktur 

sowie Größe der resultierenden, künstlichen Ressourcennetzwerke. Der vorgeschlagene 

Ansatz hat den Vorteil, dass Standardmethoden des Revenue Managements ohne An-

passung angewendet werden können. Dabei geht – insbesondere im Gegensatz zu Heu-

ristiken mit sofortiger bzw. temporärer Zuweisung – der Vorteil der zeitlichen Flexibili-

tät nicht verloren. In einer Simulationsstudie werden die damit einhergehenden Er-

lössteigerungen am Beispiel von Dekompositionsansätzen, die sich in die Klasse der 

Wertfunktionsapproximationen einordnen lassen, quantifiziert (vgl. Talluri und van 

Ryzin (2004b), Kap. 3.4, sowie Liu und van Ryzin (2008) für eine Beschreibung der im 

Revenue Management üblichen Dekompositionen von DPs).  

Beitrag B3 “Revenue management with flexible products: The value of flexibility and its 

incorporation into DLP-based approaches” quantifiziert zunächst explizit den Wert der 

zeitlichen Flexibilität. Anschließend wird gezeigt, dass in den bisher üblichen Erweite-

rungen gängiger statischer, linearer Ersatzmodelle dieser sog. Wert der Flexibilität un-

terschätzt wird. Die direkte Verwendung der Ersatzmodelle zur Kapazitätssteuerung 

führt damit tendenziell zu einem zu geringen Absatz von flexiblen Produkten. Im Bei-

trag wird dieses Problem durch eine systematische, künstliche Erhöhung des Verkaufs-

erlöses von flexiblen Produkten „behoben“. Die Kalibrierung der künstlichen Erhöhung 

erfolgt mit Standardmethoden der simulationsbasierten Optimierung. 

Beitrag B4 “An EMSR-based approach for revenue management with integrated up-

grade decisions” betrachtet ausschließlich Upgrades im Single-Leg-Fall. Dies erfordert 
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jedoch – im Gegensatz zum klassischen Revenue Management – die Betrachtung meh-

rerer, gemäß einer Upgrade-Hierarchie geordneter Ressourcentypen. In der Passagier-

luftfahrt bezeichnet man diese Ressourcentypen bspw. als Beförderungsklassen. Für den 

betrachteten Anwendungsfall zeigen Steinhardt und Gönsch (2012), dass die Integration 

der zeitlichen Flexibilität keine Erlössteigerungen ermöglicht. Stattdessen kann eine 

Reservierung immer unmittelbar im Verkaufszeitpunkt dem niedrigsten möglichen Res-

sourcentyp zugewiesen werden. Auf dieser Eigenschaft aufbauend wird einer Erweite-

rung des bekannten EMSR-a Verfahrens, das ursprünglich nur für den Fall einer Res-

source entwickelt wurde, zur Herleitung von Schutzlimits vorgestellt. 

I.4 Revenue Management bei Risikoaversion 

Wie in Kapitel I.1 angesprochen, optimieren Ansätze des Revenue Managements in der 

Regel den Erwartungswert des im Buchungshorizont erzielten Erlöses. Die Annahme 

eines risikoneutralen Entscheiders ist dabei in traditionellen Anwendungsfeldern meist 

gerechtfertigt. Aufgrund der großen Anzahl ähnlicher Entscheidungsprobleme beein-

flusst ein einzelnes Verkaufsereignis bzw. ein einzelner Buchungshorizont den Unter-

nehmenserfolg nur unwesentlich und das Gesetz der großen Zahlen garantiert die Kon-

vergenz des durchschnittlichen Erlöses hin zu dessen Erwartungswert.  

Eine risikoaverse Bewertung hingegen liegt nahe, wenn Buchungsprozesse nur selten 

stattfinden und/oder das Ergebnis eines Buchungsprozesses erfolgskritisch für das Un-

ternehmen ist (vgl. Barz (2007)). Beispielhaft genannt wird meist ein Konzertveranstal-

ter, der nur wenige große Konzerte pro Jahr organisiert (vgl. Levin et al. (2008)). Zu-

dem haben Studien gezeigt, dass menschliche Entscheidungsträger insbesondere bei 

kleineren Unternehmen die risikoneutralen Empfehlungen von Revenue Management-

Systemen als zu riskant wahrnehmen und diese daher häufig verwerfen (vgl. Barz 

(2007) oder Singh (2011)). 

Bisher existieren im Revenue Management vergleichsweise wenige risikoaverse Ansät-

ze. Die Berücksichtigung von Risikoaversion im Rahmen der dynamischen Optimierung 

erfordert dabei häufig eine Erweiterung des Zustandsraums um den im Buchungsverlauf 
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kumulierten Erlös oder ähnliche Erweiterungen, so dass das resultierende DP nicht mehr 

mit Standardmethoden (vgl. Kapitel I.1) gelöst werden kann. Zudem ist die aus risiko-

aversen DPs resultierende Kapazitätssteuerung in der Regel nicht kompatibel mit beste-

henden Revenue Management-Systemen. 

Beitrag B5 „Practical decision rules for risk-averse revenue management using simula-

tion-based optimization“ versucht, diese Forschungslücke zu schließen. Der vorge-

schlagene Ansatz beruht auf kleinen, intuitiven Modifikationen ursprünglich risikoneut-

raler Methoden der Kapazitätssteuerung über kalibrierbare Parameter und ist deshalb 

einfach in bestehende Revenue Management-Systeme zu integrieren. Die Parameter 

können mit Standardmethoden der simulationsbasierten Optimierung gelernt werden, so 

dass der Ansatz weder ein bestimmtes Risikomaß noch ein bestimmten Nachfragemo-

dell voraussetzt. Die Auswirkungen des Ansatzes auf die Ergebnisse einer Kapazitäts-

steuerung werden am Beispiel der Erwartungsnutzentheorie sowie des zur Abschätzung 

von Finanzrisiken bekannten Conditional Value-at-Risk veranschaulicht. 
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Abstract 

We reconsider the stochastic dynamic program of revenue management with flexible 

products and customer choice behavior as proposed by Gallego et al. [Gallego G, 

Iyengar G, Phillips RL, Dubey A (2004) Managing flexible products on a network. 

Working paper, Columbia University, New York]. In the scientific literature on revenue 

management, as well as in practice, the prevailing strategy to operationalize dynamic 

programs is to decompose the network by resources and solve the resulting one-

dimensional problems. However, to date, these dynamic programming decomposition 

approaches have not been applicable to problems with flexible products, because sold 

flexible products must be included in the dynamic program’s state space and do not cor-

respond directly to resources.  

In this paper, we contribute to the existing research by presenting a general approach to 

operationalizing revenue management with flexible products and customer choice in a 

dynamic programming environment. In particular, we reformulate the original dynamic 

program by means of Fourier-Motzkin elimination to obtain an equivalent dynamic pro-

gram with a standard resource-based state space. This reformulation allows the applica-

tion of dynamic programming decomposition approaches. Numerical experiments show 

that the new approach has a superior revenue performance and that its average revenues 

are close to the upper bound on the optimal expected revenue from the choice-based 

deterministic linear program (CDLP). Moreover, our reformulation improves the reve-

nues by up to 8% compared to an extended variant of a standard choice-based approach 

without flexible products that immediately assigns flexible products after their sale. 

Keywords: Revenue Management, Flexible Products, Dynamic Programming Decom-

position, Customer Choice, Fourier-Motzkin Elimination  
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1 Introduction 

While the specification of common, regular products is fixed in advance, a flexible 

product consists of two or more alternative specifications, such that the seller will assign 

the purchaser to one of these alternatives at a later point in time (see, e.g., Gallego et al. 

(2004)). From a revenue management point of view, this supply-side flexibility leads to 

improved capacity utilization and mitigates the negative impact of forecast errors that 

often occur due to demand’s stochastic nature. From a marketing perspective, flexible 

products are an interesting tool for market segmentation. Owing to their inherent uncer-

tainty, and because they are offered at a lower price, they are perceived as inferior by 

the customer and induce additional low value demand, while avoiding excess cannibali-

zation. Flexible products have to be distinguished from opaque products, whose utilized 

resources the firm determines immediately after the sale, thus losing the benefit of post-

poning the products’ assignment. 

In this paper, we reconsider the problem of choice-based revenue management with 

flexible products, which Gallego et al. (2004) introduced. In their paper, these authors 

incorporated flexible products into the dynamic program (DP) for revenue management 

with arbitrary resource networks, while assuming choice-based demand behavior. To 

incorporate flexible products, they extended the state space of the DP from a purely 

resource-based one to a space that contains resources’ remaining capacity as well as 

commitments reflecting sold flexible products that must be assigned to alternatives later 

on. An inherent feasibility problem ensures that the remaining capacity can satisfy the 

commitments. 

In the traditional setting without flexible products, the standard way to make such a 

multidimensional DP operational is through dynamic programming decomposition 

(DPD). Standard DPD can be roughly summarized as follows: At first, a linear approx-

imation of the corresponding DP is solved to obtain dual variables which capture the 

network effects. The dual variables are then used to decompose the network by re-

sources. Doing so provides single-resource DPs that are easily solved to optimality. 

Within the single-resource DPs, only products that use the corresponding resource are 
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considered and the capacity consumption of other resources is captured by reducing the 

products’ revenues according to the dual variables from the linear approximation.  

However, this approach is not applicable to the DP with flexible products, because its 

state space contains commitments that do not correspond directly to resources. In other 

words, if a flexible product is sold, the resources whose capacity is consumed are un-

known, as they are determined later. Thus, an assignment to a single-resource DP and 

the immediate reduction of the remaining capacity are not possible if the flexibility 

should be preserved. 

Our main contribution is that we show how to obtain an equivalent reformulation of the 

original DP whose state space is no longer based on commitments. The central idea is to 

apply Fourier-Motzkin elimination (FME; see, e.g., Schrijver (1998), Chapter 12.2) to 

the feasibility problem inherent in the DP. In doing so, additional “artificial” resources 

are added, allowing the flexible products to directly correspond to the artificial re-

sources. This allows the reformulation as a standard revenue management problem 

without flexible products. We call this the surrogate approach. The key benefit of the 

new state space is that it enables the application of DPD and other standard methods, 

which make dynamic programming-based, large-scale implementations operational.  

The remainder of this paper is structured as follows: In Section 2, we review the rele-

vant scientific literature and position our work. In Section 3, we briefly summarize the 

standard DP of revenue management with flexible products, which Gallego et al. (2004) 

proposed, and restate the relevant notation. On this basis, we derive the surrogate refor-

mulation in Section 4. By using numerical experiments, we evaluate DPD of the surro-

gate reformulation in Section 5. We use the upper bound from the optimal objective 

value of the choice-based deterministic linear program (CDLP), as well as two standard 

methods―the CDLP’s primal solution and an adequate extension of the DPD ad hoc 

approach known from the literature―as benchmarks. In Section 6, we discuss our re-

sults and conclude the paper.  
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2 Related Literature 

Initially, revenue management research assumed that demand was independent of the 

available products and of other customers (the well-known independent demand as-

sumption). A considerable amount of work was done on the solution of single-resource 

problems (see, e.g., Littlewood (1972) for the earliest work; Belobaba (1987, 1989) for 

the expected marginal seat revenue heuristic; Lee and Hersh (1993), as well as Lauten-

bacher and Stidham (1999), for analyses of the exact DP formulation). However, as 

soon as networks of resources are considered, the corresponding DP formulations are 

difficult to solve even for small instances. Consequently, many heuristic approaches 

have been developed to approximate the DP. These approaches are mainly based on the 

idea of decomposing the network problem into a collection of smaller sub-problems. 

Decomposition is usually done by resources, while network effects are considered by 

adequately modifying the revenues of products that use more than one resource. The 

idea is to subsequently apply single-resource methods to the obtained sub-problems. We 

refer to Talluri and van Ryzin (2004b), Chapter 3.4, for an overview. Well-known de-

composition approaches are origin-destination factor methods, fare proration (see, e.g., 

Kemmer et al. (2011) for an extension of the standard approach to large-scale applica-

tions), and DPD, which is most common in practice and literature, and is this paper’s 

focus. The idea of DPD is to use the dual variables of a corresponding deterministic 

linear program (DLP) (see, e.g., Talluri and van Ryzin (1998)) to capture network ef-

fects and modify the products’ revenues in the sub-problems. A further refinement of 

the standard DPD approach is studied in Zhang (2011). In addition, there are a few spe-

cific decomposition ideas (see, e.g., Cooper and Homem-de-Mello (2007), who include 

ideas from mathematical programming, and Birbil et al. (2014), who decompose the 

network by product types that require the same combination of resources). 

Over the past decade, two major trends have emerged, which we will address in the fol-

lowing: first, the incorporation of demand-side substitution, which stems from customer 

choice behavior; second, the integration of supply-side substitution via flexible prod-

ucts. 
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Regarding the first trend, Talluri and van Ryzin (2004a) and Gallego et al. (2004) over-

come the assumption of independent demand by considering customer choice behavior 

in the context of a single resource and a network of resources, respectively. In order to 

have a counterpart to the traditional DLP, Gallego et al. (2004) formulated the now 

well-known CDLP as a linear approximation of the underlying DP. Liu and van Ryzin 

(2008) and Miranda Bront et al. (2009) analyze the CDLP further. They assume that 

customer segments follow a standard multinomial logit model (see, e.g., Train (2009), 

Chapter 3) and that these segments consider buying products from disjoint and overlap-

ping consideration sets, respectively. Gallego et al. (2015) reformulate the CDLP in 

respect of disjoint consideration sets; this reformulation avoids the exponential number 

of variables. Meissner et al. (2013) and Strauss and Talluri (2015) investigate weaker, 

but more efficient, deterministic linear approximations than the CDLP. Recent research 

has also examined many different customer choice models (see, e.g., Davis et al. (2014) 

for the nested logit model; Hosseinalifam (2014), Chapter 3, for a ranking-based cus-

tomer choice model). Analogously to the independent demand setting, the CDLP is then 

used within an appropriate DPD approach. Liu and van Ryzin (2008) were the first to 

adapt the standard DPD to the choice-based setting. A number of subsequent papers 

have investigated this approach further (see Miranda Bront et al. (2009), as well as 

Kunnumkal and Topaloglu (2010), for a refinement of the standard DPD and deriva-

tions of upper bounds, respectively; Zhang and Adelman (2009), as well as Vossen and 

Zhang (2015b), for derivations of upper bounds and connections of DPD and the linear 

programming approach for approximate dynamic programming).  

The second trend, that is, the consideration of flexible products, is also rooted in 

Gallego et al. (2004). These authors present a generalized DP formulation for flexible 

products in arbitrary resource networks that extends the state space by commitments. 

Their formulation, which also incorporates customer choice behavior, is standard for 

revenue management with flexible products today (see Section 3). However, subsequent 

research largely continued to follow the independent demand assumption. Among oth-

ers, flexible products were investigated in the context of passenger aviation (see, e.g., 
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Gallego and Phillips (2004)), air cargo revenue management (see, e.g., Bartodziej et al. 

(2006)), and the broadcasting industry (see, e.g., Kimms and Müller-Bungart (2007)). 

Upgrades can be seen as a special case of flexible products with hierarchically ordered 

alternatives (see, e.g., Gallego and Stefanescu (2009)).  

Overbooking problems with no shows are somehow also related, because there are also 

commitments in the state space of the corresponding DP formulations. At the end of the 

booking horizon, an optimization problem is solved to determine which reservations 

should be denied, which is similar to the feasibility problem inherent in the DP formula-

tion with flexible products. However, in overbooking, commitments correspond directly 

to resources, which is similar to the traditional revenue management setting without 

flexible products. Erdelyi and Topaloglu (2010) are thus able to separate the optimiza-

tion problem at the end of the booking horizon by resources, thus making standard DPD 

applicable. Similarly, Erdelyi and Topaloglu (2009) and Kunnumkal and Topaloglu 

(2008) approximate the optimization problem at the end of the booking horizon with a 

function that is separable by products reflecting the individual overbooking costs. In 

doing so, the authors are able to decompose the DP by products. 

In contrast, in revenue management with flexible products, the standard decomposition 

by resources as in DPD is not possible, because the products do not correspond directly 

to resources. Basically, two literature streams tackling this issue have emerged: 

 In the first stream, the supply-side flexibility is relinquished, allowing a flexible 

product to actually become an opaque product. Technically, the flexible product is 

irrevocably assigned immediately after the sale to one of the alternatives. We refer 

to Talluri (2001) and Chen et al. (2010) for revenue management with opaque prod-

ucts. In doing so, the need to store a commitment for later assignment is eliminated, 

and the solely resource-based state space is retained, which renders DPD possible 

again (see Gönsch and Steinhardt (2013) for DPD with opaque products). Other au-

thors have sought to at least partially retain the flexibility. For example, Petrick et 

al. (2010, 2012) use bid prices from a deterministic linear programming (DLP) for-
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mulation and reassigned the sold flexible products when the DLP is resolved during 

the booking horizon. 

 In the second stream, the supply-side flexibility is preserved at the cost of a re-

striction to special network structures. Often, only parallel resources and just one 

flexible product are considered (see, e.g., Gallego and Phillips (2004) and Oosten 

(2004)). Gönsch and Steinhardt (2015) also considered DPD approaches, but restrict 

themselves to independent demand and airline upgrading, where hierarchical up-

grades can be granted independently on each leg of a multi-leg flight. They use re-

sults from production planning that Leachman and Carmon (1992) obtained earlier.  

This paper overcomes the drawbacks inherent in both literature streams. It enables DPD 

under customer choice behavior with arbitrary network structures, while fully retaining 

the supply-side flexibility. Additionally, in order to obtain a valid benchmark procedure 

for comparison, we adequately adapt an existing approach from choice-based revenue 

management to the flexible products setting. Our benchmark approach follows the idea 

of the first literature stream described above. In particular, it incorporates flexible prod-

ucts into the DPD approach of Liu and van Ryzin (2008) by immediately assigning 

them after sale. 

3 Standard model formulation with flexible products 

In the following, we first summarize the choice-based revenue management problem 

with flexible products (see Gallego et al. (2004)) and repeat the relevant notation (Sec-

tion 3.1). Thereafter, we restate the corresponding DP (Section 3.2). 

3.1 Problem formulation and notation 

We consider a firm that sells regular products ݆ ∈ ࣤ ൌ ሼ1, … , ݊௥௘௚ሽ and flexible prod-

ucts ݇ ∈ ࣥ ൌ ሼ1,… , ݊௙௟௘௫ሽ. These products use resources ݄ ∈ ࣢ ൌ ሼ1,… ,݉ሽ jointly 

and may be linked to sale restrictions or rules in order to segment the market. The cus-

tomers arrive successively and stochastically over time before service provision. The 
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regular products are associated with revenues ࢘௥௘௚ ൌ ൫ݎଵ
௥௘௚, … , ௡ೝ೐೒ݎ

௥௘௚ ൯
்
. Furthermore, 

each regular product ݆ has a capacity consumption ࢇ௝ ൌ ൫ܽଵ௝, … , ܽ௠௝൯
்
, which is ܽ௛௝ ൌ

1 if product ݆ uses resource ݄, and ܽ௛௝ ൌ 0 otherwise. Regarding the flexible products 

with revenues ࢘௙௟௘௫ ൌ ቀݎଵ
௙௟௘௫, … , ݎ

௡೑೗೐ೣ
௙௟௘௫ ቁ

்
, the resources to be utilized can be decided 

just before service provision. More precisely, a customer who buys flexible product ݇ is 

guaranteed the resources ࢇ௝ of one of the alternative regular products ݆ ∈ ௞ࣧ ⊆ ࣤ. The 

obtained revenue ݎ௞
௙௟௘௫ is fixed in advance and independent of this assignment. 

For notational convenience, we use ሺ࡭,गሻ to denote the network structure, where ࡭ ൌ

ൣܽ௛௝൧௠ൈ௡ೝ೐೒
 is the regular products’ capacity consumption matrix and, by slightly abus-

ing notation, गൌ ൫ ଵࣧ, … ,ࣧ௡೑೗೐ೣ൯
்
 is the flexible products’ vector of alternatives. 

The state of the selling process is described by the remaining capacity ࢉ ൌ ሺܿଵ, … , ܿ௠ሻ் 

and the vector of commitments ࢟ ൌ ൫ݕଵ, … , ௡೑೗೐ೣ൯ݕ
்
, which denotes the number of sold 

flexible products. Selling a regular product ݆ reduces the remaining capacity to ࢉ െ  ,௝ࢇ

and selling a flexible product ݇ increases the commitment vector to ࢟ ൅  ௞ࢋ	 ௞, withࢋ

referring to the ݇-th standard basis vector in Թ௡೑೗೐ೣ. 

We discretize the booking horizon into ܶ time periods, such that in each period ݐ there 

is, at most, one customer arrival. The periods are numbered backward in time, and 

w.l.o.g., the probability ߣ of a customer’s arrival is time-homogeneous. Any capacity 

remaining at the end of the booking horizon is worthless and overbooking of the given 

resources’ capacity is not allowed. In each period ݐ, the firm’s decision problem is to 

determine a subset of products to offer, called the offer set. Given an offer set ܵ ⊆ ࣤ ∪

ࣥ, an arriving customer purchases product ݆ with probability ௝ܲ
௥௘௚ሺܵሻ, product ݇ with 

probability ௞ܲ
௙௟௘௫ሺܵሻ, and makes no purchase with probability ଴ܲሺܵሻ. The firm aims to 

maximize its total overall revenue.  
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In what follows, we omit the index sets of the products and resources where possible. 

For example, the notation ∀݇ means ∀݇ ∈ ࣥ, ∑ 	௞ means ∑ ,௞∈ࣥ  and max
ௌ

	 means 

maxௌ⊆ࣤ∪ࣥ.  

3.2 Dynamic programming formulation 

Given the remaining capacity ࢉ and the commitments ࢟, the optimal expected revenue-

to-go with ݐ time periods left is denoted by ௧ܸሺࢉ, ࢟ሻ and satisfies the Bellman equation 

(DP-flex) 

 ௧ܸሺࢉ, ࢟ሻ ൌ max
ௌ

ቄ∑ ߣ ⋅ ௝ܲ
௥௘௚ሺܵሻ ⋅ ቀݎ௝

௥௘௚ ൅ ௧ܸିଵ൫ࢉ െ ,௝ࢇ ࢟൯ቁ௝     

  ൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ ቀݎ௞

௙௟௘௫ ൅ ௧ܸିଵሺࢉ, ࢟ ൅ ௞ሻቁ௞ࢋ     

  ൅ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵሺࢉ, ࢟ሻሽ  (1) 

with the boundary conditions ௧ܸሺࢉ, ࢟ሻ ൌ െ∞ if ሺࢉ, ࢟ሻ ∉ ࣴሺ࡭,गሻ and ଴ܸሺࢉ, ࢟ሻ ൌ 0 if 

ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ. 

The condition ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ describes a feasible state and holds if the capacity is non-

negative and can satisfy all commitments in the given network structure ሺ࡭,गሻ. More 

formally, ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ if and only if there exist (nonnegative and integer) distribution 

variables ݕ௞௝ denoting how many commitments regarding flexible product ݇ will be 

fulfilled with alternative ݆ satisfying the feasibility problem (see Gallego et al. (2004)): 

 ∑ ∑ ܽ௛௝ ⋅ ௞௝௝∈ࣧೖ௞ݕ ൑ ܿ௛  ∀݄  (2) 

 ∑ ௞௝௝∈ࣧೖݕ
ൌ  ௞  ∀݇  (3)ݕ

௞௝ݕ  ∈ Ժା  ∀݇, ݆ ∈ ௞ࣧ  (4) 

To illustrate the problem, we introduce the following running example (expressed in 

airline terminology) that will also be reconsidered in Section 4 to illustrate the reformu-

lation as well as the transformation we propose. 
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Figure 1: Airline network in running example 

Example: Consider an airline that offers transportation from A to B over a hub H at two 

different times of day as depicted in Figure 1, resulting in a small network with ݉ ൌ 4  

legs. There is one flexible product ݇ ൌ 1 that uses either legs ݄ ൌ 1 and ݄ ൌ 2 (alterna-

tive ݕଵଵ) or legs ݄ ൌ 3 and ݄ ൌ 4 (alternative ݕଶଶ). Table 1 represents the correspond-

ing instance of the feasibility problem (constraints (2) and (3)) without integrality con-

straints, where the first column refers to the row number (rows (i)–(iv) are instances of 

constraint (2), row (v) is an instance of constraint (3)): 

Row ݕଵଵ ݕଵଶ  Right-hand side 

(i) 1  ൑ ܿଵ 

(ii) 1  ൑ ܿଶ 

(iii)  1 ൑ ܿଷ 

(iv)  1 ൑ ܿସ 

(v) 1 1 ൌ ݕଵ 

Table 1: Feasibility problem in running example 

4 Surrogate approach 

The commitments in the state space of DP-flex (1) are obviously necessary to solve the 

feasibility problem (2)–(4) throughout the booking horizon. However, because the 

commitments do not correspond directly to resources, they inhibit the use of decomposi-

tion by resources. 

To overcome this problem, we suggest applying FME in order to project the distribution 

variables ݕ௞௝ out of the feasibility problem. In doing so, additional “artificial” resources 

are added, with the flexible products now corresponding directly to the artificial re-

sources (Section 4.1). In Section 4.2, we use the DP formulation to show that this allows 

the reformulation as a standard revenue management problem without flexible products, 

A H

Leg 1 ( ଵܿ; morning)

Leg 3 (ܿଷ; afternoon)

B

Leg 2 (ܿଶ; morning)

Leg 4 (ܿସ; afternoon)
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such that standard solution approaches and heuristics can be used. In Section 4.3, we 

analyze the problem size of several network types in which flexible products occur in 

practice.  

4.1 Transformation of the feasibility problem 

In this subsection, we focus on the feasibility problem (2)–(4) by thinking of it as a stat-

ic problem that must be solved for a given network ሺ࡭,गሻ at some point in time during 

the booking horizon, in order to decide whether a state ሺࢉ, ࢟ሻ is feasible. We show how 

the distribution variables can be eliminated and explain the output of this elimination 

process. 

In the feasibility problem, the integrality of the assignments of customers to alternatives 

is ensured by ݕ௞௝ ∈ Ժା in (4). However, when projecting out the distribution variables 

by means of FME, we cannot keep this constraint and need a formulation that includes 

only ൑ constraints:  

 ∑ ∑ ܽ௛௝ ⋅ ௞௝௝∈ࣧೖ௞ݕ ൑ ܿ௛  ∀݄  (5) 

 ∑ െݕ௞௝௝∈ࣧೖ
൑ െݕ௞  ∀݇  (6) 

 െݕ௞௝ ൑ 0  ∀݇, ݆ ∈ ௞ࣧ  (7) 

Constraints (5)–(7) are the linear relaxation of (2)–(4). Whereas (5) and (7) correspond 

directly to (2) and (the relaxed) (4), constraints (6) may be less obvious. They follow 

from rewriting (3) as ∑ ௞௝௝∈ࣧೖݕ
൒ -∀݇, which is equivalent, because the feasible re	௞ݕ

gion defined by (2) and (the relaxed) (4) with regard to ݕ௞௝ is a convex polytope includ-

ing ૙. In order to ensure that (2)–(4) can technically be replaced with (5)–(7), we claim 

that the following condition needs to hold: 

Condition 1: If the linear relaxation (5)–(7) has an arbitrary solution, there exists also 

an integer solution (i.e., a solution given the same number of commitments which (addi-

tionally) satisfies (4)). 



II  Beiträge  
Beitrag B2: Dynamic programming decomposition for choice-based revenue management with flexible 

products 

 

 
30 

Please note that Condition 1 is satisfied in most applications. For example, it is a suffi-

cient condition for Condition 1 to be valid that the left-hand side coefficient matrix of 

the feasibility problem (2)–(3) (or, equivalently, (5)–(6)) is totally unimodular, since 

adding an identity matrix as in (7) would preserve this property (see, e.g., Martin 

(1999), Chapter 14.2). Total unimodularity is, at least for relevant problem sizes, easy to 

check (see, e.g., Walter and Truemper (2013)). Please note that total unimodularity in 

our case refers to the complete feasibility problem including (3) and thus to a different 

matrix than in the common discussion in the revenue management literature, where it 

refers to the left-hand side matrix of the well-known deterministic linear program (DLP; 

see, e.g., Talluri and van Ryzin (2004b)), that is, (2) without (3) but with an additional 

identity matrix resulting from demand constraints. It is well-known that total unimodu-

larity is satisfied, for example, in problems for which corresponding network flow for-

mulations can be constructed. For our feasibility problem, the construction of such net-

work flow formulations can be performed analogously to the construction for the DLP 

(see, e.g., Glover et al. (1982), as well as Bertsimas and Popescu (2003) for the con-

struction of network flow formulations in origin-destination networks, and Chen (1998) 

for hotel networks). Even more, recall that total unimodularity is only a sufficient condi-

tion, and there are also many other settings without total unimodularity which satisfy 

Condition 1.  

Note that in the case that Condition 1 does not hold, network instances whose capacity 

is slightly overestimated could potentially result from the linear relaxation (see also 

Proposition 1 and the note thereafter).  

Now, we can project the distribution variables ݕ௞௝ out of (5)–(7) by using FME. The 

classical FME idea can be summarized as follows: Consider that we want to project 

variable ݔ out of the inequality system ܤܮ௜ ൑ ܽ௜ ⋅ ௝ܾ ,݅∀	ݔ ⋅ ݔ ൑  ∀݆. This inequality	௝ܤܷ

system has a feasible solution if and only if max
௜

௅஻೔
௔೔
൑ min

௝

௎஻ೕ
௕ೕ

, which is equal to the 

system of linear inequalities ௝ܾ ⋅ ௜ܤܮ ൑ ܽ௜ ⋅ ,݅∀	௝ܤܷ ݆. Therefore, the initial inequality 

system can be replaced equivalently by the latter constraints. 
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We can now apply this idea to our setting, considering one distribution variable after 

another. The important point here is that we also treat the state of the selling process as 

variables. To formalize this approach, let ܁۶ۺ and ܁۶܀ be the left-hand side and right-

hand side coefficient matrices of (5)–(7), respectively. With the ∑ | ௞ࣧ|௞ ൈ 1 vector of 

distribution variables denoted by ࢟௞௝ ൌ ൫ݕ௞௝൯∀௞,௝∈ࣧೖ
, (5)–(7) can be rewritten as:  

܁۶ۺ  ⋅ ࢟௞௝ ൑ ܁۶܀ ⋅ ሺ்ࢉ|்࢟|૙்ሻ்   (8) 

Please note that ܁۶ۺ and ܁۶܀ only depend on the network structure ሺ࡭,गሻ and are the 

coefficients. Now, Algorithm 1 creates a projection of (8) by applying a sequence of 

FMEs to the distribution variables. 

Algorithm 1: Elimination of distribution variables from the feasibility problem 

1 for ݀ ൌ 1 to ∑ | ௞ࣧ|௞  do   consider one distribution variable ݕ௞௝
ݏݓ݋ܴ݊  2 ⟵ number of rows of ܁۶ۺ  

ݏ݋ܲ  3 ⟵ ൛ݓ݋ݎ ∈ ሼ1,… , :ሽݏݓ݋ܴ݊ lhs௥௢௪,ௗ ൐ 0ൟ   partition row indices 

4  ܰ݁݃ ⟵ ൛ݓ݋ݎ ∈ ሼ1,… , :ሽݏݓ݋ܴ݊ lhs௥௢௪,ௗ ൏ 0ൟ  

݈݈ݑܰ  5 ⟵ ൛ݓ݋ݎ ∈ ሼ1,… , :ሽݏݓ݋ܴ݊ lhs௥௢௪,ௗ ൌ 0ൟ  

ݏݓ݋ܴ݊  6 ⟵ ݈݈ݑܰ| ∪ ሺܲݏ݋ ൈ ܰ݁݃ሻ|  

   number of rows after eliminating the current distribution variable 

7  Let ܾ݆݅݁ܿݐ be a bijection that maps ሼ1,… , ሽݏݓ݋ܴ݊ onto ݈݈ݑܰ ∪ ሺܲݏ݋ ൈ ܰ݁݃ሻ  

   ܾ݆݅݁ܿݐ is an arbitrary indexation of the new rows after the elimination

8  for ݓ݋ݎ ൌ 1 to ܴ݊ݏݓ݋ do   construct a new row

9   if ܾ݆݅݁ܿݐሺݓ݋ݎሻ ∈ then   copy row without change ݈݈ݑܰ

௥௢௪௡௘௪܁۶ۺ    10 ⟵ ௥௢௪௡௘௪܁۶܀ ௕௜௝௘௖௧ሺ௥௢௪ሻ and܁۶ۺ ⟵   ௕௜௝௘௖௧ሺ௥௢௪ሻ܁۶܀

11   else   ܾ݆݅݁ܿݐሺݓ݋ݎሻ ∈ ݏ݋ܲ ൈ ܰ݁݃ and add these rows 

12    ሺݏ݋݌, ݊݁݃ሻ ⟵   ሻݓ݋ݎሺݐ݆ܾܿ݁݅

௥௢௪௡௘௪܁۶ۺ    13 ⟵ lhs௡௘௚,ௗ ⋅ ௣௢௦܁۶ۺ ൅ lhs௣௢௦,ௗ ⋅   ௡௘௚܁۶ۺ

௥௢௪௡௘௪܁۶܀    14 ⟵ lhs௡௘௚,ௗ ⋅ ௣௢௦܁۶܀ ൅ lhs௣௢௦,ௗ ⋅   ௡௘௚܁۶܀

15  Set ܁۶ۺ ⟵ ܁۶܀ ௡௘௪ and܁۶ۺ ⟵   ௡௘௪܁۶܀

16 return ܁۶܀  return only ܁۶܀, because ܁۶ۺ ൌ ૙

It can briefly be explained as follows: The distribution variables are projected out step-

wise (line 1), considering one column (i.e., distribution variable) of LHS after another. 

In an iteration, the row indices of the current feasibility problem are partitioned by their 

coefficient of LHS into sets of rows with positive, negative, and null coefficients (lines 

2–5). Based on this, the new number of rows (after eliminating the current distribution 

variable) is determined (line 6), and an arbitrary indexation of these rows is introduced 
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(line 7). Finally, in lines 8–15, the current distribution variable is projected out. Please 

note that ܁۶ۺ௥௢௪ (܁۶܀௥௢௪) refers to the ݓ݋ݎ-th row of (܁۶܀) ܁۶ۺ. 

Additionally, as pointed out by Bertsimas and Tsitsiklis (1997), Chapter 2.8, redundant 

rows should be regularly eliminated while performing FME (see, e.g., Paulraj and Su-

mathi (2010) on finding redundant constraints in linear inequality systems). 

Example (cont’d): Returning to the example from Section 3.2, the algorithm is illustrat-

ed by Table 2. The first set of rows (i)–(vii) refers to the initial feasibility problem, the 

second  (i’)–(vii’) to the feasibility problem after projecting out ݕଵଵ, and the third (i’’)–

(viii’’) to the transformed feasibility problem after projecting out ݕଵଶ. The last column 

refers to the operation performed to obtain the row. 

Row ݕଵଵ ݕଵଶ  Right-hand side Operation 

(i) 1  ൑ ܿଵ  

(ii) 1  ൑ ܿଶ  

(iii)  1 ൑ ܿଷ  

(iv)  1 ൑ ܿସ  

(v) െ1 െ1 ൑ െݕଵ  

(vi) െ1  ൑ 0  

(vii)  െ1 ൑ 0  

(i’)  1 ൑ ܿଷ (iii) 

(ii’)  1 ൑ ܿସ (iv) 

(iii’)  െ1 ൑ 0 (vii) 

(iv’)  െ1 ൑ ܿଵ െ  ଵ (i) + (v)ݕ

(v’)   ൑ ܿଵ (i) + (vi) 

(vi’)  െ1 ൑ ܿଶ െ  ଵ (ii) + (v)ݕ

(vii’)   ൑ ܿଶ (ii) + (vi) 

(i’’)   ൑ ܿଵ (v’) 

(ii’’)   ൑ ܿଶ (vii’) 

(iii’’)   ൑ ܿଷ (i’) + (iii’) 

(iv’’)   ൑ ܿସ (ii’) + (iii’) 

(v’’)   ൑ ܿଵ ൅ ܿଷ െ  ଵ (i’) + (iv’)ݕ

(vi’’)   ൑ ܿଵ ൅ ܿସ െ  ଵ (ii’) + (iv’)ݕ

(vii’’)   ൑ ܿଶ ൅ ܿଷ െ  ଵ (i’) + (vi’)ݕ

(viii’’)   ൑ ܿଶ ൅ ܿସ െ  ଵ (ii’) + (vi’)ݕ

Table 2: Algorithm 1 in running example 

In the first set of rows, there are only ൑	-constraints according to (5)–(7). Now, to pro-

ject out ݕଵଵ, the rows with null coefficient (݈݈ܰݑ ൌ ሼሺiiiሻ,ሺivሻ,ሺviiሻሽ) are copied without 
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change (resulting in rows (i’)–(iii’)). The rows with positive coefficient (ܲݏ݋ ൌ

ሼሺiሻ,ሺiiሻሽ and negative coefficient (ܰ݁݃ ൌ ሼሺvሻ,ሺviሻሽ) are added according to lines 13–

14 of the algorithm (resulting in rows (iv’)–(vii’)). The second iteration is performed 

analogously, finally leading to the transformed feasibility problem given by rows (i’’)–

(viii’’). The transformed feasibility problem obviously consists of non-negativity con-

straints of regular resources’ remaining capacity, i.e., 0 ൑ ܿ௛	∀݄ ൌ 1,… ,4, as well as 

four additional constraints that each time check non-negativity of two regular resources’ 

remaining capacity less the commitments for the flexible product: 

൮

0
0
0
0

൲ ൑ ൮

1
1
0
0

൲ ⋅ ܿଵ ൅ ൮

0
0
1
1

൲ ⋅ ܿଶ ൅ ൮

1
0
1
0

൲ ⋅ ܿଷ ൅ ൮

0
1
0
1

൲ ⋅ ܿସ െ ൮

1
1
1
1

൲ ⋅   ଵݕ

In general, we obtain the following transformed feasibility problem (9) and (10) which 

has the same form as the feasibility check in the traditional setting without flexible 

products, in which only the non-negativity of the remaining capacity is checked (see, 

e.g., Talluri and van Ryzin (2004b), Chapter 3.2): 

 0 ൑ ܿ௛  ∀݄ ∈ ࣢   (9) 

 0 ൑ ∑ ሚ݂
௜௛ ⋅ ܿ௛௛ െ ∑ ෨ܾ

௜௞ ⋅ ௞௞ݕ   ∀݅ ∈ ࣢෩ ൌ ሼ1, … , ෥݉ሽ  (10) 

Constraints (9), in which the non-negativity of the regular resources’ remaining capacity 

ܿ௛ is checked, are in fact identical. Constraints (10) can be interpreted as analogous 

conditions that require the non-negativity of some additional, artificial resources ࣢෩ ൌ

ሼ1,… , ෥݉ሽ. Please note that the number ෥݉  of artificial resources as well as the values of 

ሚ݂
௜௛ and ෨ܾ௜௞ are determined by FME. In Section 4.3, we investigate the number ෥݉  subject 

to different network types.  

Each artificial resource ݅ has a capacity of ܿ̃௜ ൌ ∑ ሚ݂
௜௛ ⋅ ܿ௛௛ െ ∑ ෨ܾ

௜௞ ⋅ ௞௞ݕ  and can be con-

sidered a pool of several regular resources that captures their alternative usage: It pools 

the capacity of some resources (those with ሚ݂௜௛ ൌ 1) and is required by regular products 

needing these resources, as well as by one or more flexible products that use these re-

sources alternatively (those with ෨ܾ௜௞ ൌ 1).  
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To ease notation in the following, we group the coefficients ሚ݂௜௛ and ෨ܾ௜௞ into ࢌ෨௛ ൌ

෩௞࢈ गሻ and,࡭෨௛ሺࢌ ൌ ෩࢈
௞ሺ࡭,गሻ. Furthermore, we group the artificial resources repre-

sented by the right hand side of (10) into ࢉ෤ ൌ ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ ൌ ∑ 	गሻ,࡭෨௛ሺࢌ ⋅ ܿ௛௛ െ

∑ ෩࢈
௞ሺ࡭,गሻ ⋅ ௞௞ݕ . Finally, we define ࢇ෥௝ ൌ गሻ,࡭෥௝ሺࢇ ൌ ∑ गሻ,࡭෨௛ሺࢌ ⋅ ܽ௛௝௛ , which can 

be interpreted as a regular product’s capacity consumption of artificial resources. Given 

these definitions, (9) and (10) can be abbreviated to  

ࢉ  ൒ ૙   (11) 

,ग,࡭෤ሺࢉ  ,ࢉ ࢟ሻ ൒ ૙,   (12) 

and we can state the following result: 

Proposition 1: Given Condition 1 holds, ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ (that is, the feasibility problem 

(2)–(4) has a solution) if and only if ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ ൒ ૙ (that is, (11)–(12) has a so-

lution). 

Proof: See Appendix A. 

Note that if Condition 1 does not hold, the transformed feasibility problem in (11)–(12) 

becomes heuristic, and the artificial resources slightly overestimate capacity for flexible 

product ݇ by, at most, | ௞ࣧ| capacity units.  

Example (cont’d): To illustrate the notation in our example, there are ෥݉ ൌ 4 artificial 

resources. Resource ݄ ൌ 1 is included in artificial resources ݅ ൌ 1 and ݅ ൌ ෨ଵࢌ) ,2 ൌ

ሺ1,1,0,0ሻ்) and so on, that is, ࢌ෨ଶ ൌ ሺ0,0,1,1ሻ், 	ࢌ෨ଷ ൌ ሺ1,0,1,0ሻ், 	ࢌ෨ସ ൌ ሺ0,1,0,1ሻ். The 

flexible product consumes capacity on all artificial resources (࢈෩ଵ ൌ ሺ1,1,1,1ሻ்).  

4.2 Reformulation as a standard revenue management problem 

We next consider the dynamic revenue management problem again and show how 

Proposition 1 allows for managing the sales process of flexible products. A straightfor-

ward application of the transformed feasibility problem would be to replace (2)–(4) re-

peatedly to check which products can be offered for sale. More precisely, consider the 

check whether a regular product ݆ (a flexible product ݇) can be sold given the current 
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state ሺࢉ, ࢟ሻ. One could, of course, reduce the regular resources’ remaining capacity to 

ࢉ െ ࢟ ௝ (increase the commitments toࢇ ൅  ௞), then apply FME, and finally checkࢋ

whether ቀࢉ, ,ग,࡭෤൫ࢉ ࢉ െ ,௝ࢇ ࢟൯ቁ ൒ ૙ (൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ ൅ ௞ሻ൯ࢋ ൒ ૙) has a solution. 

However, it is not necessary to repeat FME so frequently throughout the booking hori-

zon, which we will show in the following. 

Proposition 2: Let ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ be an arbitrary state of DP-flex. Then, we have  

(a) ൫ࢉ െ ,௝ࢇ ࢟൯ ∈ ࣴሺ࡭,गሻ if and only if ቀࢉ െ ,௝ࢇ ,ग,࡭෤൫ࢉ ࢉ െ ,௝ࢇ ࢟൯ቁ ൒ ૙	∀݆  

and  

ሺࢉ, ࢟ ൅ ௞ሻࢋ ∈ ࣴሺ࡭,गሻ if and only if ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ ൅ ௞ሻ൯ࢋ ൒ ૙	∀݇ 

(b) ቀࢉ െ ,௝ࢇ ,ग,࡭෤൫ࢉ ࢉ െ ,௝ࢇ ࢟൯ቁ ൌ 	 ቀࢉ െ ,௝ࢇ ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ   ݆∀	गሻቁ,࡭෥௝ሺࢇ

and   

൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ ൅ ௞ሻ൯ࢋ ൌ ቀࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ ෩࢈
௞ሺ࡭,गሻቁ	∀݇  

Proof: Expression (a) obviously follows from Proposition 1. Appendix B.1 provides the 

proof of expression (b). 

Expression (a) implies that the decision whether a regular product ݆ (a flexible product 

݇) can be offered in state ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ need not be made by the original feasibility 

check (5)–(7), but can be equivalently made by using (11)–(12) instead. Expression (b) 

implies that, after a sale of a regular product ݆ (of a flexible product ݇), FME need not 

be repeated. Instead, the regular and artificial resources capacity ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ can 

simply be reduced by ቀࢇ௝, ,गሻቁ (by ቀ૙,࡭෥௝ሺࢇ -गሻቁ), in order to obtain the trans,࡭෩௞ሺ࢈

formed feasibility problem of the following state. 

By exploiting the previous results, we can derive an alternative DP formulation. Con-

sider an arbitrary instance of the transformed feasibility problem given by regular and 

artificial resources’ remaining capacity ࢉ and ࢉ෤, respectively, as well as by the coeffi-

cients ࢌ෨௛, ࢈෩௞, and ࢇ෥௝. We define the DP’s state space directly as ሺࢉ, ෤ሻ. Let ௧ܸࢉ
௦௨௥௥ሺࢉ,  ෤ሻࢉ

denote the optimal expected revenue-to-go with ݐ periods left, which can be computed 

recursively using the following Bellman equation (DP-surr): 

 ௧ܸ
௦௨௥௥ሺࢉ, ෤ሻࢉ ൌ max

ௌ
ቄ∑ ߣ ⋅ ௝ܲ

௥௘௚ሺܵሻ ⋅ ቀݎ௝
௥௘௚ ൅ ௧ܸିଵ൫ࢉ െ ,௝ࢇ ෤ࢉ െ ෥௝൯ቁ௝ࢇ     
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  ൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ ቀݎ௞

௙௟௘௫ ൅ ௧ܸିଵ൫ࢉ, ෤ࢉ െ ෩࢈
௞൯ቁ௞      

  ൅ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵሺࢉ,  ෤ሻሽ  (13)ࢉ

with the boundary conditions ௧ܸሺࢉ, ෤ሻࢉ ൌ െ∞ if ሺࢉ, ෤ሻࢉ ≱ ૙ and ଴ܸሺࢉ, ෤ሻࢉ ൌ 0	∀ሺࢉ, ෤ሻࢉ ൒ ૙. 

Subsequently, we can formulate the following result: 

Proposition 3: ௧ܸሺࢉ, ࢟ሻ ൌ ௧ܸ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ for all ݐ, ሺࢉ, ࢟ሻ. 

Proof: See Appendix B.2. 

Propositions 2 and 3 imply that DP-flex (1) is indeed fully equivalent to DP-surr (13). 

The optimal expected value from the initial state is identical, and both DP formulations 

can be thought of as being carried out in parallel. More precisely, they allow the same 

decision options (due to Proposition 2 (a)) and virtually make the same decision (due to 

Proposition 2 (b) and Proposition 3). Thus, DP-surr can be used instead of DP-flex, we 

can drop the commitments from the state space, and, instead, track regular and artificial 

resources’ capacity.  

Accordingly, it suffices to apply FME only once to a given network, namely at the be-

ginning of the booking horizon. In doing so, we fully retain the supply-side flexibility 

by postponing the assignment of flexible products. From a technical point of view, flex-

ible products now correspond directly to resources. A flexible product is treated like a 

regular one; that is, the remaining capacity of artificial resources ݅ is immediately re-

duced by ෨ܾ௜௞, and the regular resources are left unchanged. In comparison, a regular 

product ݆ requires—apart from the standard consumption ࢇ௝—one unit of capacity of 

artificial resource ݅ for every resource pooled in ݅ and used by ݆; that is, ෤ܽ௜௝ ൌ

∑ ሚ݂
௛௜ ⋅ ܽ௛௝௛ . Thus, DP-surr (13) has the same form as a standard revenue management 

problem without flexible products. This finally enables the application of standard solu-

tion approaches like DPD.  

We call the network of products and resources underlying DP-surr the surrogate net-

work of the original network underlying DP-flex. The surrogate networks are not only a 

technical output of FME, but are usually quite intuitive.  
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Example (cont’d): In the running example, the artificial resources are interpretable as 

upper limits on the total amount of the flexible product that can be sold. Obviously, the 

number of sales is restricted by the legs out of A (ܿ̃ଵ ൌ ܿଵ ൅ ܿଷ)  and into B (ܿ̃ଷ ൌ ܿଶ ൅

ܿସ). Additionally, remember that passengers travel either in the morning (legs 1 and 2) 

or in the afternoon (legs 3 and 4). If legs 1 and 4 are fully booked, no additional flexible 

product can be sold. This restriction is captured by ܿ̃ଶ ൌ ܿଵ ൅ ܿସ. Similarly, legs 2 and 3 

may be the bottleneck (ܿ̃ସ ൌ ܿଶ ൅ ܿଷ). Together, these four artificial resources consider 

in an meaningful way all four combinations of bottlenecks for the number of sales that 

may occur and restrict sales of the flexible product to minሼܿଵ ൅ ܿଶሽ ൅ minሼܿଷ ൅ ܿସሽ.  

Later, we also give an analogous interpretation of the example networks used in the 

numerical experiments (see Sections 5.2.2 and 5.3.2). 

4.3 Network types and size of the surrogate networks  

In the previous subsection, we have shown how an arbitrary revenue management prob-

lem with flexible products can be reformulated as an equivalent standard revenue man-

agement problem without flexible products. In this subsection, we focus on the size of 

the resulting surrogate network. This is an important issue, since FME can, in general, 

add a large number of constraints and there are examples where the number of added 

constraints is exponential in the problem size. Clearly, such examples also exist in the 

context of revenue management. When formulating the surrogate network, two or more 

of the ݉ regular resources form an artificial resource, which a subset of the flexible 

products then uses. Thus, we have a maximum of ෥݉ ൌ 2௠ artificial resources. Exam-

ples that reach this upper bound can be easily constructed.  

However, the networks (or, often, subnetworks), in which flexible products actually 

occur in practice, usually have a structure in which the number of artificial resources is 

mostly far less and stays polynomially bounded. It is important to observe that the num-

ber of artificial resources only depends on the structure of flexible products; that is, their 

alternatives ௞ࣧ. This number is completely independent of the regular products and 

also independent of flexible products’ prices. That is, it does not increase if, besides an 
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existing flexible product ݇, a second flexible product ݇′ is added with identical alterna-

tives ௞ࣧᇱ ൌ ௞ࣧ, but a different revenue and/or demand. Moreover, if arbitrary flexible 

products are deleted from a network, the number of artificial resources never increases. 

In the following, we thus focus on flexible products’ structure and consider several net-

work types whose flexible products are frequently used along with the resulting number 

of artificial resources.  

Network type 1 (fully flexible parallel resources)  

This network type consists of ݉ parallel resources and a single flexible product that 

may be assigned to each of the ݉ resources: ࡭ ൌ ሾࡱ௠ൈ௠| ⋅ሿ, ଵࣧ ൌ ሼ1,… ,݉ሽ, where 

the columns to the right of ࡱ௠ൈ௠ denote the arbitrary resource consumption of regular 

products. 

In practice, this network type occurs, for example, in the travel industry. Many tour op-

erators offer travel roulette, which assigns customers to one of several similar hotels in 

their destination area. 

In terms of the surrogate network, there is only one artificial resource that pools the ca-

pacity of all regular resources; that is, ܿ̃ଵ ൌ ∑ ܿ௛
௠
௛ୀଵ . This resource is used by all prod-

ucts. 

Proposition 4: In network type 1, the number of artificial resources is ෥݉ ൌ 1 (and thus 

constant in the number of regular resources ݉). 

We show Proposition 4 by induction in Appendix C.1. 

Network type 2 (pairwise flexible parallel resources) 

This network type consists of ݉ parallel resources and ݉െ 1 flexible products. Flexi-

ble product ݇ may be assigned to resource ݇ or ݇ ൅ ࡭ :1 ൌ ሾࡱ௠ൈ௠| ⋅ሿ, ௞ࣧ ൌ

ሼ݇, ݇ ൅ 1ሽ	∀݇. 

This network type arises, for example, in manufacturing. In a chain of factories, each 

factory ݇ might be able to produce products ݇ െ 1 and ݇. When quantifying the benefit 

of flexibility, Jordan and Graves (1995) find that such a chain of factories yields nearly 
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the same output as a set of fully flexible factories, that can each produce every product. 

However, we leave out the last link in the chain here; there is no product that can be 

produced alternatively in factory ݉ or 1. Another example is upgrading to the next 

higher resource in revenue management with parallel resources, for example, single-

resource airline revenue management. Among others, Gallego and Stefanescu (2009) 

consider this upgrading “limited-cascading upgrading,” while Shumsky and Zhang 

(2009) consider it “single-step upgrading.” Moreover, the flexibility can also relate to 

time if, for example, guests’ alternative stays on a cruise ship are considered. 

Regarding the surrogate network, for all ݄ ∈ ሼ1, … ,݉ െ 1ሽ and ݄ ∈ ൛݄ ൅ 1,… ,݉ൟ, 

there is an artificial resource ܿ̃௛௛ ൌ ∑ ܿ௛
௛
௛ୀ௛  that pools the capacity of the adjacent regu-

lar resources ݄ to ݄. Artificial resource ܿ̃௛௛ is jointly used by flexible products ݄ to ݄ െ

1. 

Proposition 5: In network type 2, the number of artificial resources is ෥݉ ൌ
ሺ௠ିଵሻ⋅௠

ଶ
 

(and thus polynomial in the number of regular resources ݉). 

We show Proposition 5 by induction in Appendix C.2. 

Network type 3 (adjacent flexible parallel resources) 

This is a generalization of network type 2 and consists of ݉ parallel resources, but 
ሺ௠ିଵሻ⋅௠

ଶ
 flexible products. More precisely, for all ݄ ∈ ሼ1, … ,݉ െ 1ሽ and ݄ ∈

൛݄ ൅ 1,… ,݉ൟ, there is a flexible product that may be assigned to the adjacent resources 

݄ to ݄. Therefore, the flexible product ݇ may be described in terms of the topologically 

first alternative ݄௞ and last alternative ݄௞, and we have: ࡭ ൌ ሾࡱ௠ൈ௠| ⋅ሿ, ௞ࣧ ൌ

൛݄|	݄௞ ൑ ݄ ൑ ݄௞ൟ	∀݇. 

In practice, this network type arises in generalizations of type 2, where, for example, a 

factory can produce more than two products; that is, some factories ݄ are able to pro-

duce products ݄ െ 2, ݄ െ 1, and ݄. In single-resource revenue management, Gallego and 

Stefanescu (2009) have termed this generalization “full-cascading upgrading,” while 

Shumsky and Zhang (2009) call it “multi-step upgrading.” 
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We obtain the same set of artificial resources as in network type 2. However, the artifi-

cial resource ܿ̃௛௛ that pools capacity from ݄ to ݄ is now shared by all flexible products 

whose first, as well as last alternative, is between ݄ and ݄ ( ௞ࣧ ⊆ ൛݄, ݄ ൅ 1,… , ݄ൟ). 

Proposition 6: In network type 3, the number of artificial resources is ෥݉ ൌ
ሺ௠ିଵሻ⋅௠

ଶ
 

(and thus polynomial in the number of regular resources ݉). 

The structure of the proof is similar to the proof of Proposition 5 and omitted. 

Network type 4 (independent flexible block wise resources) 

This network type has a block structure, which consists of resource blocks ܾ݈ ∈ ࣦࣜ ൌ

ሼ1, … , ݊௕௟௢௖௞ሽ with (w.l.o.g.) an identical number of ݉௕௟௢௖௞ resources in each block, 

such that there are ݉ ൌ ݉௕௟௢௖௞ ⋅ ݊௕௟௢௖௞ resources in total. A flexible product ݇ simulta-

neously uses resources from an arbitrary subset of blocks ࣦࣜ௞ ⊆ ࣦࣜ. If ݇ uses a block 

ܾ݈, the flexibility there is defined according to network type 3 (types 1 and 2 are also 

possible): ࡭௕௟ ൌ ሾࡱ௠್೗೚೎ೖൈ௠್೗೚೎ೖ| ⋅ሿ, ௞ࣧ
௕௟ ൌ ൛݄|݄௞,௕௟ ൑ ݄ ൑ ݄௞,௕௟ൟ	∀݇. The key point 

here is that the blocks are independent in the sense that the final assignment of flexible 

product ݇ to a regular resource in one block is independent of its assignment in other 

blocks; that is, an alternative ݆ ∈ ௞ࣧ combines arbitrary ௞ࣧ
௕௟ for all ܾ݈ ∈ ࣦࣜ௞ and 

| ௞ࣧ| ൌ ∏ ห ௞ࣧ
௕௟ห௕௟∈ࣦࣜೖ . 

In practice, this setting occurs, for example, in multi-stage production processes (see, 

e.g., Leachman and Carmon (1992)), in which the blocks correspond to the stages and 

the resources in a stage correspond to its machines. Another example is upgrading in 

network airline revenue management. Here, the blocks correspond to legs in the net-

work and a ticket (i.e., a flexible product) encompasses one or more legs. On each leg, 

the passenger may be arbitrarily upgraded to a higher compartment (i.e., another re-

source in this block), for example, from economy to business class (see, e.g., Gönsch 

and Steinhardt (2015)). 

In respect of the surrogate network, each resource block can be considered independent-

ly. In each block ܾ݈, we obtain 
൫௠್೗೚೎ೖିଵ൯⋅௠್೗೚೎ೖ

ଶ
 artificial resources. As in network types 
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2 and 3, each resource ܿ̃௛௛ pools the capacity of the adjacent regular resources ݄ to ݄ for 

all ݄ ∈ ሼ1, … ,݉௕௟௢௖௞ െ 1ሽ and ݄ ∈ ൛݄ ൅ 1,… ,݉௕௟௢௖௞ൟ. 

Proposition 7: In network type 4, the total number of artificial resources is ෥݉ ൌ

݊௕௟௢௖௞௦ ⋅
൫௠್೗೚೎ೖିଵ൯⋅௠್೗೚೎ೖ

ଶ
ൌ

௠⋅൫௠್೗೚೎ೖିଵ൯

ଶ
 (and thus polynomial in the number of regular 

resources ݉). 

The proof is similar to the proof of Proposition 5 and omitted. 

Network type 5 (dependent flexible block wise resources) 

Like network type 4, this network type has a block structure, which consists of resource 

blocks ܾ݈ ∈ ࣦࣜ ൌ ሼ1,… , ݊௕௟௢௖௞ሽ. Again, a flexible product ݇ simultaneously uses re-

sources from an arbitrary subset of blocks ࣦࣜ௞ ⊆ ࣦࣜ. 

In contrast to network type 4, we now consider resource types. There are the same re-

source types ݄ ∈ ሼ1, … , ݊௥௧ሽ in each resource block. Let the tuple ሺ݄, ܾ݈ሻ refer to a re-

source of type ݄ from a specific block ܾ݈, and let ܿ௛,௕௟ denote its capacity, such that 

there are ݉ ൌ ݊௕௟௢௖௞ ⋅ ݊௥௧ resources in total. The resource types follow a nested upgrade 

hierarchy. A higher index indicates a higher position in the hierarchy; that is, a more 

versatile resource. 

The flexible product ݇ is associated with resource type ݄௞; that is, it can be assigned to 

݄௞ or upgraded to any ݄ ൐ ݄௞. Regarding block ܾ݈, we have: ࡭௕௟ ൌ ሾࡱ௡ೝ೟ൈ௡ೝ೟| ⋅ሿ, 

௞ࣧ௛
௕௟ ൌ ሼ݄ሽ	∀݇, ݄ ൒ ݄௞. The important point here is that the assignment of product ݇ 

must be the same ݄ ൒ ݄௞ for all blocks; that is, an alternative ݆ ∈ ௞ࣧ combines the 

௞ࣧ௛
௕௟  for all ܾ݈ ∈ ࣦࣜ௞ and one ݄ ൒ ݄௞. Thus, we have | ௞ࣧ| ൌ ݊௥௧ െ ݄௞ ൅ 1. 

The car rental industry is one of the most important users of such upgrades (see, e.g., 

Geraghty and Johnson (1997), Pachon et al. (2003), and Fink and Reiners (2006)). 

There, the blocks correspond to the days of the planning horizon and the resource types 

in a block correspond to different car types following a given upgrade hierarchy (e.g., 

economy, compact, and full-size car types). Another example is upgrading in the hotel 

industry, where the resource types correspond to different room types. 
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Regarding the surrogate network, we cannot consider the resource blocks independently 

anymore, because the assignments must be the same for all blocks. In the following, for 

all ݄ ∈ ሼ1, … , ݊௥௧ െ 1ሽ, we define  ௛ࣱ ൌ ቄሼሺ݄, ܾ݈௛ሻ, ሺ݄ ൅

1, ܾ݈௛ାଵሻ, . . . , ሺ݊௥௧, ܾ݈௡ೝ೟ሻሽ|ܾ݈௛ᇲ ∈ ࣦࣜ	∀݄
ᇱ ∈ ሼ݄,… , ݊௥௧ሽቅ. Each element इ ∈ ௛ࣱ refers 

to a set of resources with exactly one resource ሺ݄ᇱ, ܾ݈௛ᇲሻ of each type ݄ᇱ ൒ ݄ from an 

arbitrary block ܾ݈௛ᇲ. Thus, इ contains ݊௥௧ െ ݄ ൅ 1 resources. As all combinations of 

blocks are considered, ௛ࣱ contains ሺ݊௕௟௢௖௞ሻ௡
ೝ೟ି௛ାଵ sets of resources. Now, there is one 

artificial resource ܿ̃௛इ for each इ ∈ ௛ࣱ and ݄ ∈ ሼ1,… , ݊௥௧ െ 1ሽ that simply adds up 

the capacity of the resources in इ: 

 ܿ̃௛इ ൌ ∑ ܿ௛ᇲ,௕௟ሺ௛ᇲ,௕௟ሻ∈इ 	∀इ ∈ ௛ࣱ, ݄ ∈ ሼ1,… , ݊௥௧ െ 1ሽ   (14) 

Let ࣦࣜइ denote the set of resource blocks from which resources are contained in इ ∈

௛ࣱ. The artificial resource ܿ̃௛इ is shared by all products with ݄௞ ൒ ݄ and ࣦࣜ௞ ⊇ ࣦࣜइ. 

Proposition 8: In network type 5, the total number of artificial resources is ෥݉ ൌ

∑ ሺ݊௕௟௢௖௞ሻ௞௡ೝ೟
௞ୀଶ  (and thus polynomial in the number of blocks and exponential in the 

number of resource types). 

The structure of the proof is similar to the proof of Proposition 5 and is omitted. 

Please note that the number of resource types is relatively small and constant in most 

practical applications. For example, in the car rental industry, there are often three to 

five car types in the upgrade hierarchy. In contrast, the number of resource blocks con-

sidered varies across rental stations and is often subject to the individual decision mak-

er. Thus, also in this setting, the problem stays polynomially bounded in the relevant, 

potentially scalable problem parameters, that is, the resource blocks.  

5 Computational experiments 

In this section, we evaluate the revenue performance of the surrogate approach from 

Section 4. We use two airline networks introduced by Liu and van Ryzin (2008), which 

became de facto standard test instances for choice-based revenue management (see, e.g., 
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Miranda Bront et al. (2009); Meissner and Strauss (2012)). We describe the experi-

mental setup in Section 5.1, and we evaluate the approaches’ revenue performance in 

detail in Sections 5.2 and 5.3, separately for the two networks under consideration.  

5.1 Experimental setup 

We summarize the implemented revenue management methods in Section 5.1.1. Please 

note that the technical details are provided in Appendix D. Furthermore, we describe the 

customer choice behavior in Section 5.1.2 and explain the consideration of forecast un-

certainty in Section 5.1.3. 

5.1.1 Implemented revenue management methods 

Our main method is DPD-surr, which implements the surrogate approach described in 

the previous section. In this method, the surrogate reformulation is solved with the DPD 

approach of Liu and van Ryzin (2008). Details can be found in Appendix D.4. As 

benchmarks, we implemented the two methods DPD-ah and CDLP-surr as well as an 

upper bound (UB) on the optimal expected revenue of DP-flex (1): 

 DPD-ah is a DPD approach that forgoes flexibility and immediately assigns flexible 

products (ad hoc) after sale (see Appendix D.2). Several studies report a good reve-

nue performance of this approach in settings with independent demand (see Section 

2). We incorporated this ad hoc assignment into the DPD approach of Liu and van 

Ryzin (2008). 

 CDLP-surr refers to the optimal primal solution of the corresponding CDLP formu-

lation (D.1.8)–(D.1.12) that gives us the time a set ܵ should be offered during the 

booking horizon (see Appendix D.3). This is in line with a benchmark used by Liu 

and van Ryzin (2008). 

 UB is the upper bound obtained from the optimal objective value of the CDLP (see 

Appendix D.1). This value can be obtained by either solving the CDLP model with 

flexible products (CDLP-flex (D.1.1)–(D.1.6); see Gallego et al. (2004)) or by using 

the surrogate reformulation in the standard CDLP formulation without flexible 
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products (CDLP-surr (D.1.8)–(D.1.12); see, e.g., Liu and van Ryzin (2008) and Mi-

randa Bront et al. (2009)).  

All algorithms were implemented in MATLAB (Version 8, Release R2013a). Linear 

programs were solved by the function linprog from the Optimization Toolbox. We use 

Monte Carlo simulation to evaluate the described methods and report values averaged 

over 200 customer streams for each problem instance.  

5.1.2 Customer choice behavior 

We assume the same choice behavior as Liu and van Ryzin (2008). Therefore, the 

choice model and the notation required to describe our computational experiments are 

only summarized in brief. Each customer belongs to a segment ݈ ∈ ࣦ, and customers 

from ݈ are only interested in a subset of the entire product set, namely their considera-

tion set ܥ௟. Furthermore, the consideration sets are disjoint for customers belonging to 

different segments. With probability ߣ௟, a customer from segment ݈ arrives. Her seg-

ment-specific purchase probabilities, that is, ௟ܲ௝
௥௘௚ሺܵሻ for regular product ݆, ௟ܲ௞

௙௟௘௫ሺܵሻ for 

flexible product ݇, and ௟ܲ଴ሺܵሻ for the no-purchase alternative, are given by the standard 

multinomial logit model. They are computed using her product-specific preference 

weights, denoted by the parameters ݒ௟௝
௥௘௚, ݒ௟௞

௙௟௘௫, and ݒ௟଴ for regular product ݆, flexible 

product ݇, and the no-purchase alternative, respectively. Then, for this choice model, 

the purchase probability is computed by 

 ௟ܲ௝
௥௘௚ሺܵሻ ൌ

௩೗ೕ
ೝ೐೒

∑ ௩೗ೕ
ೝ೐೒

ೕ∈಴೗∩ೄ
ା∑ ௩೗ೖ

೑೗೐ೣ
ೖ∈಴೗∩ೄ ା௩೗బ

  (15) 

for a regular product. For a flexible product and the no-purchase alternative, only the 

numerator changes. Please note that, because of the assumption of a multinomial logit 

model and disjoint consideration sets, the large number of (column generation) sub-

problems arising in DPD-surr, DPD-ah, CDLP-surr, and UB (i.e., the problems deter-

mining the offer set) can be solved efficiently by a simple ranking procedure (see Liu 

and van Ryzin (2008)).  
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Regarding the segment probabilities’ temporal distribution, we consider two arrival pat-

terns. The first one models time-homogenous demand. In the second arrival pattern, 

called mixed, we consider that low-value demand tends to arrive earlier. This pattern is 

obtained by assuming that 50% of demand is time-homogenous, and 50% arrives ac-

cording to the classical low-before-high assumption. We straightforwardly adapt our 

models by introducing time-dependent arrival probabilities in the DPD approaches and 

in the CDLP approximations used therein.  

5.1.3 Forecast uncertainty 

To incorporate forecast uncertainty, we implemented stochastic forecast errors as stud-

ied in Petrick et al. (2012) to disturb the regular products’ preference weights. The fore-

cast errors are itinerary-based. All forecasted preference weights concerning a specific 

itinerary are disturbed by the same factor. Therefore, a uniformly distributed random 

number ߜመ ∈ ࣯ሺെߜ,൅ߜሻ is drawn within every simulation run for each of the regular 

products’ itineraries, and the corresponding preference weights are multiplied by the 

factor ൫1 ൅ ߜ መ൯. The size of the error is controlled by the error boundߜ ∈ ሾ0,1ሿ.  

5.2 Network 1: Parallel flights 

In the following sections, we explain how we modified the first example from Liu and 

van Ryzin (2008) to include flexible products (Section 5.2.1) and interpret the corre-

sponding surrogate reformulation (Section 5.2.2). We then evaluate the approaches’ 

revenue performance in detail (Section 5.2.3). 

5.2.1 Network description 

Network 1 consists of three parallel legs with capacity ࢉ ൌ ሺ30, 50, 40ሻ் that can be 

thought of as flights on the same route at different times of day. On each leg, the firm 

offers a high fare class regular product (products 1–3) and a low fare class regular 

product (products 4–6). The prices are given by ࢘௥௘௚ ൌ

ሺ800, 1000, 600, 400, 500, 300ሻ். In addition, we consider a flexible product (product 
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݂) which can be sold at a price of ݎ௙
௙௟௘௫ ൌ 240. The flexible product guarantees trans-

portation on one of the three legs. 

There is a high fare class customer segment ܪ (consideration set ܥு ൌ ሼ1,2,3ሽ), a low 

fare class segment ܮ (consideration set ܥ௅ ൌ ሼ4,5,6ሽ) and a flexible segment ܨ (consid-

eration set ܥி ൌ ሼ݂ሽ). The preference vectors are given by ݒு ൌ ሺ5,10,1ሻ், ݒ௅ ൌ

ሺ5,1,10ሻ், and ݒி ൌ ሺ10ሻ.  

As usual in revenue management experiments, we tested different network loads. We 

varied the scarcity of capacity using a capacity factor ߙ ∈ ሼ0.4, 0.5, … , 1.2ሽ. Different 

customer attitudes were captured by four no-purchase preference vectors ݒ଴ ൌ

ሺݒு଴, ,௅଴ሻ், that is, ሺ0.01ݒ 0.01ሻ், ሺ1, 5ሻ், 	ሺ5, 10ሻ், and ሺ10, 20ሻ். The flexible cus-

tomer segment’s preference weight for the no-purchase alternative is 0.01, and the 

number of periods is set to 300.  

In the time-homogenous arrival pattern, customers of segments ܮ ,ܪ, and ܨ arrive with 

probabilities ߣு ൌ ௅ߣ ,0.2 ൌ 0.3, and ߣி ൌ 0.1, respectively. Accordingly, in the mixed 

arrival pattern, the probabilities ሺߣு, ,௅ߣ , are ሺ0.1	ிሻ்ߣ 0.15, 0.35ሻ், ሺ0.1, 0.45, 0.05ሻ், 

and ሺ0.4, 0.15, 0.05ሻ் in periods 300–251, 250–101, and 100–1, respectively. 

5.2.2 Surrogate reformulation 

The surrogate network consists of four resources: the three regular resources and one 

artificial resource with capacity ܿଵ ൅ ܿଶ ൅ ܿଷ. It can readily be interpreted. The artificial 

resource pools the capacity of all resources that can potentially be used to fulfill the 

flexible product. More precisely, it represents the maximum amount of flexible and reg-

ular products that can be sold, because they all jointly use the capacity of the three legs. 

Accordingly, if a product is actually sold, the artificial resource’s capacity is reduced. A 

flexible product needs capacity on this artificial resource alone, because the number of 

flexible product sales is constrained only by the joint capacity of the three legs. By con-

trast, a regular product requires one unit of capacity on ‘its’ regular resource and one 

unit of capacity on the artificial resource. The consumption of the regular resource re-
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flects that one seat fewer is now available on this leg. The consumption of the artificial 

resource reflects that the seat can be used neither for a flexible nor a regular product.  

5.2.3 Performance evaluation 

Figure 2 shows the average revenues of DPD-surr, DPD-ah, and CDLP-surr relative to 

UB in all scenarios subject to the capacity factor ߙ. Each column relates to a specific 

no-purchase preference vector, and each row represents one of the two arrival patterns 

(time-homogenous or mixed). Forecast errors are not considered here. 

In general, all three methods’ revenue performance is rather good, as expected from the 

literature on DPD without flexible products (see, e.g., Miranda Bront et al. (2009)). 

There seems to be no major impact of the arrival pattern. DPD-ah usually yields 94%–

98% of UB and CDLP-surr yields 96%–98%. DPD-surr attains even higher revenues of 

97%–99% of UB. As usual, revenue management is relatively easy for extreme network 

load factors. If capacity is very scarce (ߙ ൌ 0.4	 and ሺݒ଴ு, ଴௅ሻ்ݒ ൌ ሺ0.01, 0.01ሻ்), only 

the high fare class products are offered. Similarly, revenue management becomes more 

or less obsolete when all products are offered in case of ample capacity (ߙ ൒ 1.0), and 

all methods yield revenues close to UB. But for intermediate capacity, where revenue 

management is most relevant, considerable differences can be observed. Here, DPD-

surr shows a very stable revenue performance, whereas DPD-ah yields considerably 

lower revenues in many cases. This is most obvious for preference weights of 

ሺݒ଴ு, ଴௅ሻ்ݒ ൌ ሺ0.01, 0.01ሻ். In both the time-homogeneous and the mixed arrival pat-

terns, DPD-ah’s revenue falls to under 90% at ߙ ൌ 0.8, whereas DPD-surr still attains 

about 98% and CDLP-surr remains at 96%.  

Next, we focus on the relative performance of the two DPD methods and consider fore-

cast errors. Figure 3 shows the revenue gain of DPD-surr over DPD-ah, subject to the 

upper error bound ߜ on the forecast uncertainty. To keep the figure simple, we only de-

pict the most relevant capacity factors (ߙ ∈ ሼ0.5, 0.6, 0.7, 0.8ሽ). Furthermore, we tested 

whether these revenue gains are significant at the 99% level of confidence. We calculat-

ed the revenue difference together with the empirical standard deviation on a per-stream 
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basis and conducted a standard paired t-test. If the 99% confidence interval of the reve-

nue difference does not include zero, the gain is significant. For reasons of clarity and 

because all confidence intervals are similar in size, we only included error bars for the 

top and bottom lines in the plots of Figure 3. 

For the original setting without forecast errors (ߜ ൌ 0), we observe revenue gains of 

around 1% and 2% in the majority of cases. In general, the gains increase with higher 

forecast uncertainty. The higher the ߜ, the more important it is to use flexible products 

to mitigate demand uncertainty. Obviously, DPD-surr can benefit considerably from 

retaining full flexibility of the requests already accepted. This is in line with an 

observation from Petrick et al. (2010) who obtained similar results regarding linear 

programming-based heuristics that retained flexibilities to varying degrees. 

At first glance, it seems strange that there is almost no influence of the forecast error in 

network 1 for preference weights of ሺݒ଴ு, ଴௅ሻ்ݒ ൌ ሺ0.01, 0.01ሻ். This is due to the spe-

cial demand structure in this standard setting where the probability for the no-purchase 

alternative is almost zero, as long as a product can be bought ( ௟ܲ଴ሺܵሻ ൎ 0	∀ܵ ∩ ௟ܥ ് ∅). 

The customers’ preference weights, which are disturbed by the forecast error, essential-

ly do not influence whether a customer buys, they only influence which product she 

buys. However, correctly anticipating this decision is not important, because the prod-

ucts in a customer’s consideration set have similar revenues, and if a leg is fully booked, 

only the other legs’ products are offered and bought with probability one. 
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Figure 2: Average revenues of DPD-surr, DPD-ah, and CDLP-surr relative to UB in network 1 

 

 
Figure 3: Revenue gains of DPD-surr over DPD-ah UB in network 1 
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5.3 Network 2: Small hub-and-spoke network 

Again, we first describe the specific product and demand data of the second problem 

instance (Section 5.3.1) and interpret the corresponding surrogate reformulation (Sec-

tion 5.3.2). We then turn to the computational results (Section 5.3.3). 

5.3.1 Network description 

Network 2 consists of seven flight legs connecting the four cities A, B, C, and H (see 

Figure 4). There are 11 itineraries, and on each itinerary, the airline offers a high fare 

class and a low fare class product. Details on prices and capacity consumption of these 

22 regular products are identical to Liu and van Ryzin (2008) and provided in Table E.1 

in Appendix E. In addition, we consider five flexible products (products ݂1–݂5). The 

first one offers transportation from A to B, either on leg 1, legs 2 and 4, or legs 3 and 5. 

The second flexible product is from A to C on either (2, 6) or (3, 7). The last three flexi-

ble products guarantee short-haul transportation on one of the two possible legs from A 

to H, H to B, and H to C. The prices of these five products are given by ࢘௙௟௘௫ ൌ

ሺ240, 280, 160, 120, 200ሻ். We consider 15 customer segments: one high fare class 

and one low fare class segment interested in regular products for each of the origin-

destination pairs AB, AH, HB, HC, and AC, and one segment for each of the five flexi-

ble products. Details on consideration sets, preference vectors, and segment probabili-

ties can be found in Table E.2 in Appendix E. Different customer attitudes are again 

captured by the four values of the no-purchase preference vector already used in net-

work 1. The flexible product segments’ weights for the no-purchase alternative are fixed 

at 0.01. Analogously to network 1, we consider the two arrival patterns time-

homogenous and mixed as well as a capacity factor.  



II  Beiträge  
Beitrag B2: Dynamic programming decomposition for choice-based revenue management with flexible 

products 

 

 
51 

 
Figure 4: Small hub-and-spoke network (Network 2; see Liu and van Ryzin (2008)) 

5.3.2 Surrogate reformulation 

The surrogate network comprises 11 artificial resources. The artificial resources and 

flexible products’ capacity consumption are shown in Table 3. 

Regular products require one unit of capacity of the corresponding regular resource(s) 

(see Table E.1) and one unit of capacity of each artificial resource containing the regular 

resource. 

Again, the artificial resources are interpretable. For example, sales of ݂4 (H to B) are 

limited by the joint capacity of legs 4 and 5. This restriction is captured by the artificial 

resource ܿ̃ହ ൌ ܿସ ൅ ܿହ. Note that the restriction imposed by artificial resource ܿ̃ଽ ൌ ܿଵ ൅

ܿସ ൅ ܿହ is obviously weaker and never limiting for ݂4 sales, but it is necessary to cap-

ture an interaction with ݂1, which will be described later. 

Product ݂1 (A to B) is a bit more tedious. Similar to the running example from Section 

4, the number of sales is restricted by the joint capacity of the legs out of A (ܿ̃ଵଵ ൌ ܿଵ ൅

ܿଶ ൅ ܿଷ) and into B (ܿ̃ଽ ൌ ܿଵ ൅ ܿସ ൅ ܿହ). Furthermore, legs 2 and 5 (ܿ̃ଵ ൌ ܿଵ ൅ ܿଶ ൅ ܿହ) 

or legs 3 and 4 (ܿ̃ଶ ൌ ܿଵ ൅ ܿଷ ൅ ܿସ) may be the bottleneck. Together, these four artificial 

resources restrict sales of ݂1 to ܿଵ ൅ minሼܿଶ ൅ ܿସሽ ൅ minሼܿଷ ൅ ܿହሽ. 

A H

Leg 1 ( ଵܿ ൌ 100; morning)

Leg 2 (ܿଶ ൌ 150; morning)

Leg 3 (ܿଷ ൌ 150; afternoon)

C

B
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Besides the restrictions on sales for individual flexible products, the capacity shared by 

multiple flexible products has to be taken into consideration. Artificial resource 9 is a 

simple example: Capacity on legs 4 and 5 used by ݂4 customers cannot be used by ݂1 

customers. Thus, this artificial resource – which was derived above as an individual 

restriction for ݂1 – is in fact not only used by ݂1 but also by ݂4. Furthermore, there can 

also be additional artificial resources that are only required because of such interactions 

between flexible products. Artificial resource 6 (ܿ̃଺ ൌ ܿଵ ൅ ܿଶ ൅ ܿହ ൅ ܿ଻) is an example 

of this: It restricts joint sales of ݂1 and ݂2, because customers going from A to B (݂1) 

or A to C (݂2) either leave in the morning (legs 1 and 2) or arrive in the afternoon (legs 

5 and 7). Note that this interaction between ݂1 and ݂2 is not captured by artificial re-

sources 1, 2, 9, and 11 described above, because the routing of ݂2 may also be restricted 

by capacity on legs 6 and 7. An analogous example is ܿ̃଻ ൌ ܿଵ ൅ ܿଷ ൅ ܿସ ൅ ܿ଺. 

Artificial resource Flexible product 

Index ݅ Capacity ܿ̃௜ ݂1 ݂2 ݂3 ݂4 ݂5 

1  ܿଵ ൅ ܿଶ ൅ ܿହ  X 

2 ܿଵ ൅ ܿଷ ൅ ܿସ  X 

3 ܿଶ ൅ ܿ଻  X 

4 ܿଷ ൅ ܿ଺  X 

5 ܿସ ൅ ܿହ  X 

6  ܿଵ ൅ ܿଶ ൅ ܿହ ൅ ܿ଻  X X 

7  ܿଵ ൅ ܿଷ ൅ ܿସ ൅ ܿ଺ X X 

8  ܿଶ ൅ ܿଷ  X X 

9  ܿଵ ൅ ܿସ ൅ ܿହ  X X 

10  ܿ଺ ൅ ܿ଻  X X 

11  ܿଵ ൅ ܿଶ ൅ ܿଷ X X X 

Table 3: Artificial resources of small hub-and-spoke network 
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5.3.3 Performance evaluation 

Analogously to network 1, Figure 5 and Figure 6 show the average revenues of DPD-

surr, DPD-ah, and CDLP-surr, as well as the revenue gain of DPD-surr over DPD-ah 

in network 2.  

Compared with network 1, average revenues in the standard setting without forecast 

errors (Figure 5) are slightly higher in network 2 for both DPD-ah (97.5%–99%) and 

DPD-surr (99%–100%). Again, the performance of DPD-surr is more stable without 

any outliers, while DPD-ah’s revenue often falls below 98% of UB for capacity factors 

of ߙ ൌ 0.8. By contrast, CDLP-surr performs considerably worse with many revenues 

around 93% and only a few values exceeding 96%. 

For ሺݒ଴ு, ଴௅ሻ்ݒ ൌ ሺ0.01, 0.01ሻ், the revenue gain (Figure 6) of DPD-surr is considera-

bly smaller at around 1%–2%. With the other three preference weights of ሺݒ଴ு,  ଴௅ሻ்ݒ

considered, the gain is more or less the same as in network 1. However, especially for 

ሺݒ଴ு, ଴௅ሻ்ݒ ൌ ሺ10,20ሻ் and time-homogeneous demand, considerably higher gains are 

observed.  

 
Figure 5: Average revenues of DPD-surr, DPD-ah, and CDLP-surr relative to UB in network 2 

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%

(v
0H

, v
0L

) = (0.01, 0.01)

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%

(v
0H

,v
0L

) = (1, 5)

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%

(v
0H

,v
0L

) = (5, 10)

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%

(v
0H

,v
0L

) = (10, 20)

DPD-surr
DPD-ah
CDLP-surr

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%

capacity factor
0.4 0.6 0.8 1 1.2

92%

94%

96%

98%

100%



II  Beiträge  
Beitrag B2: Dynamic programming decomposition for choice-based revenue management with flexible 

products 

 

 
54 

 
Figure 6: Revenue gains of DPD-surr over DPD-ah UB in network 2 

6 Discussion and future research 

Several managerial implications follow from our work. Most importantly, the inclusion 

of flexible products no longer excludes the use of standard dynamic programming tech-

niques. We presented a novel generic way to overcome the commitment-based state 

space and the feasibility problem inherent in network revenue management problems 

regarding flexible products. In the surrogate approach, the problem is reformulated by 

applying FME to the feasibility problem, and an equivalent standard revenue manage-

ment problem is obtained. This allows the direct use of standard DPD. Moreover, it al-

lows the continued use of arbitrary methods and existing software systems, albeit with 

modified input data.  

In a large number of numerical experiments, we compared the approach with a bench-

mark approach adapted from the literature that forgoes flexibility and obtains a re-

source-based state space by immediately assigning flexible products (ad hoc) after sale. 

The surrogate approach consistently obtains the highest revenues, which are close to the 
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creases revenues by up to 8% compared to the ad hoc approach. Moreover, revenue 

gains increase when forecast errors are considered. Thus, we think the surrogate ap-

proach should be the first choice when incorporating flexible products into revenue 

management.  

Moreover, the difference between the revenue of the surrogate approach and that ob-

tained with the ad hoc approach can also be roughly interpreted as the supply-side bene-

fit of offering flexible products instead of opaque products. Flexible products should be 

offered if this benefit outweighs their demand-side disadvantages (customers usually 

prefer an opaque product where they are immediately informed of what they get). How-

ever, there is no clear advice here. The difference is marginal in some cases (extreme 

capacity situations, low forecast errors) and considerable in others (intermediate capaci-

ty, medium to high forecast errors). 

We think that our results are promising, and we encourage future work on this topic. 

First, research could focus on problem instances where our transformed feasibility prob-

lem is heuristic. In this respect, a starting point might be projection for integer problems 

(see, e.g., Williams and Hooker (2014)). Second, our results indicate that heuristics re-

stricting flexible products’ flexibility can also yield a good revenue performance. Con-

sequently, we think it is promising to develop approximate dynamic programming tech-

niques tailored to flexible products that retain more flexibility than the ad hoc approach. 

For example, the linear programming approach for approximate dynamic programming 

(see, e.g., Adelman (2007) for the traditional revenue management setting; Tong and 

Topaloglu (2014), as well as Vossen and Zhang (2015a) for refinements) could be ex-

tended to flexible products. 
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Appendix 

 Proof of Proposition 1 

Proposition 1: Given Condition 1 holds, ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ (that is, the feasibility problem 

(2)–(4) has a solution) if and only if ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ ൒ ૙ (that is, (11)–(12) has a so-

lution). 

Proof: First, (2)–(4) is reformulated as (8) using Condition 1. This is transformed into 

(11)–(12) by projecting out one distribution variable after the other, using Algorithm 1. 

To show that the whole algorithm keeps equivalence, it is sufficient to show that the 

inequality system before an iteration implies the inequality system after the iteration and 

vice versa. In the following, we show this for an arbitrary iteration ݀. Please note that, 

due to the construction of the algorithm, ݀ always refers to the first column of the cur-

rent ܁۶ۺ, which contains at least one nonzero coefficient. 

W.l.o.g., assume that the coefficients in the first column are 1, െ1, or 0. The system 

before the iteration starts is given by 

1 ⋅ ௗݕ ൅ ∑ lhs௣௢௦,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ൑ ݏ݋݌ ௣௢௦ for all܁۶܀ ∈  (A.1) ݏ݋ܲ

ሺെ1ሻ ⋅ ௗݕ ൅ ∑ lhs௡௘௚,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ൑ ݃݁݊ ௡௘௚ for all܁۶܀ ∈ ܰ݁݃ (A.2) 

∑ lhs௡௨௟௟,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ൑ ݈݈ݑ݊ ௡௨௟௟ for all܁۶܀ ∈  (A.3) ݈݈ݑܰ

and the system after the iteration by 

∑ lhs௡௨௟௟,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ൑ ݈݈ݑ݊ ௡௨௟௟ for all܁۶܀ ∈  (A.4) ݈݈ݑܰ

∑ ൫lhs௣௢௦,௖௢௟ ൅ lhs௡௘௚,௖௢௟൯ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ൑ ௣௢௦܁۶܀ ൅    ௡௘௚܁۶܀

   for all ሺݏ݋݌, ݊݁݃ሻ ∈ ݏ݋ܲ ൈ ܰ݁݃.  (A.5) 

Now, note that (A.1) and (A.2) imply 

െ܁۶܀௡௘௚ ൅ ∑ lhs௡௘௚,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ൑ ௗݕ ൑ ௣௢௦܁۶܀ െ ∑ lhs௣௢௦,௖௢௟ ⋅ ௖௢௟ݕ

|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ   

   for all ሺݏ݋݌, ݊݁݃ሻ ∈ ݏ݋ܲ ൈ ܰ݁݃,  (A.6) 

which itself implies  
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െ܁۶܀௡௘௚ ൅ ∑ lhs௡௘௚,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ൑ ௣௢௦܁۶܀ െ ∑ lhs௣௢௦,௖௢௟ ⋅ ௖௢௟ݕ

|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ   

   for allሺݏ݋݌, ݊݁݃ሻ ∈ ݏ݋ܲ ൈ ܰ݁݃.  (A.7) 

The proof that (A.1)–(A.3) implies (A.4)–(A.5) is particularly easy. Consider an arbi-

trary solution ൫ݕௗ,… , ∑|ݕ ࣧೖೖ |൯
்
from (A.1)–(A.3). Then, (A.4) has a solution, because it 

is equivalent to (A.3). Moreover, because (A.1) and (A.2) hold, (A.7) holds and, there-

fore, also (A.5), which is (A.7) slightly reformulated.   

Now, in order to show that (A.4)–(A.5) implies (A.1)–(A.3), consider an arbitrary solu-

tion ൫ݕௗାଵ, … , ∑|ݕ ࣧೖೖ |൯
்
 from (A.4)–(A.5). (A.3) has a solution, because it is equiva-

lent to (A.4). Moreover, because (A.5) and its reformulation (A.7) have a solution, we 

can construct a ݕௗ for which ݕௗ ൒ max
௡௘௚∈ே௘௚

ቄെ܁۶܀௡௘௚ ൅ ∑ lhs௡௘௚,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ቅ and 

ௗݕ ൑ min
௣௢௦∈௉௢௦

ቄ܁۶܀௣௢௦ െ ∑ lhs௣௢௦,௖௢௟ ⋅ ௖௢௟ݕ
|∑ ࣧೖೖ |
௖௢௟ୀௗାଵ ቅ holds. Therefore (A.2) and (A.1) 

hold, too. ᇝ 

 Equivalence of DP-flex and DP-surr  

B.1 Proof of Proposition 2 

Proposition 2: Let ሺࢉ, ࢟ሻ ∈ ࣴሺ࡭,गሻ be an arbitrary state of DP-flex. Then, we have  

(a) ൫ࢉ െ ,௝ࢇ ࢟൯ ∈ ࣴሺ࡭,गሻ if and only if ቀࢉ െ ,௝ࢇ ,ग,࡭෤൫ࢉ ࢉ െ ,௝ࢇ ࢟൯ቁ ൒ ૙	∀݆  

and 

ሺࢉ, ࢟ ൅ ௞ሻࢋ ∈ ࣴሺ࡭,गሻ if and only if ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ ൅ ௞ሻ൯ࢋ ൒ ૙	∀݇ 

(b) ቀࢉ െ ,௝ࢇ ,ग,࡭෤൫ࢉ ࢉ െ ,௝ࢇ ࢟൯ቁ ൌ 	 ቀࢉ െ ,௝ࢇ ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ   ݆∀	गሻቁ,࡭෥௝ሺࢇ

and 

൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ ൅ ௞ሻ൯ࢋ ൌ ቀࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ ෩࢈
௞ሺ࡭,गሻቁ	∀݇  

Proof: Expression (a) obviously follows from Proposition 1, because we can simply 

define the state ൫ࢉ െ ,௝ࢇ ࢟	൯ ≔ ሺࢉᇱ, ࢟	ሻ (and ሺࢉ, ࢟ ൅ ௞ሻࢋ ≔ ሺࢉ, ࢟ᇱሻ) and apply Proposi-

tion 1 to the so-defined state. 

To show expression (b), first consider the upper case; that is, the sale of a regular prod-

uct ݆. Regarding the first term in both brackets (ࢉ െ  ௝, i.e., the regular resources), theࢇ
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equality is trivial. Regarding the second term in the brackets (i.e., the artificial re-

sources), we have:  

,ग,࡭෤൫ࢉ ࢉ െ ,௝ࢇ ࢟൯ ൌ  

ൌ ∑ गሻ,࡭෨௛ሺࢌ ⋅ ൫ܿ௛ െ ܽ௛௝൯௛ െ ∑ ෩࢈
௞ሺ࡭,गሻ ⋅ ௞௞ݕ ൌ  

ൌ ∑ गሻ,࡭෨௛ሺࢌ ⋅ ܿ௛ െ ∑ ෩࢈
௞ሺ࡭,गሻ ⋅ ௞௞ݕ െ௛ ∑ गሻ,࡭෨௛ሺࢌ ⋅ ܽ௛௝௛ ൌ  

ൌ ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ   गሻ,࡭෥௝ሺࢇ

The first equality simply follows from the definition of the function ࢉ෤ሺ⋅ሻ with reduced 

capacity, the second is algebra, and the third uses the definitions of ࢉ෤ሺ⋅ሻ and ࢇ෥௝ሺ⋅ሻ. 

Next, consider the lower case of Proposition 2 (b); that is, the sale of a specific flexible 

product ݇ (in the summations, flexible products are denoted as ݇ᇱ in the following). 

Similarly to the considerations above, we only have to consider the second term in 

brackets: 

,ग,࡭෤ሺࢉ ,ࢉ ࢟ ൅ ௞ሻࢋ ൌ  

ൌ ∑ गሻ,࡭෨௛ሺࢌ ⋅ ܿ௛௛ െ ∑ ෩࢈
௞ᇲሺ࡭,गሻ ⋅ ௞ᇲ௞ᇲஷ௞ݕ െ ෩࢈

௞ሺ࡭,गሻ ⋅ ሺݕ௞ ൅ 1ሻ ൌ  

ൌ ∑ गሻ,࡭෨௛ሺࢌ ⋅ ܿ௛௛ െ ∑ ෩࢈
௞ᇲሺ࡭,गሻ ⋅ ௞ᇲ௞ᇲݕ െ ෩࢈

௞ሺ࡭,गሻ ⋅ 1 ൌ  

ൌ ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ ෩࢈
௞ሺ࡭,गሻ  

The first and the third equality follow from the definition of ࢉ෤ሺ⋅ሻ with increased com-

mitments and the second is algebra.  ᇝ 

B.2 Proof of Proposition 3 

Proposition 3: ௧ܸሺࢉ, ࢟ሻ ൌ ௧ܸ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ for all ݐ, ሺࢉ, ࢟ሻ. 

Proof: The equality is shown by induction over ݐ. It holds for 	ݐ ൌ 0, because, from the 

boundary conditions, we have ଴ܸሺࢉ, ࢟ሻ ൌ ଴ܸ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ ൌ 0 for ሺࢉ, ࢟ሻ ∈

ࣴሺ࡭,गሻ ⟺ ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ ൒ ૙ and ଴ܸሺࢉ, ࢟ሻ ൌ ଴ܸ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ ൌ െ∞ other-

wise, where the equivalence is Proposition 1. 
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Now, assume that the result holds for ݐ െ 1. In respect of ݐ, two cases have to be distin-

guished again. If the boundary condition ሺࢉ, ࢟ሻ ∉ ࣴሺ࡭,गሻ ⟺ ൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ ≱ ૙ 

applies, we have ௧ܸሺࢉ, ࢟ሻ ൌ ௧ܸ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ ൌ െ∞. Otherwise, we have: 

௧ܸሺࢉ, ࢟ሻ ൌ max
ௌ

ቄ∑ ߣ ⋅ ௝ܲ
௥௘௚ሺܵሻ ⋅ ቀݎ௝

௥௘௚ ൅ ௧ܸିଵ൫ࢉ െ ,௝ࢇ ࢟൯ቁ௝   

൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ ቀݎ௞

௙௟௘௫ ൅ ௧ܸିଵሺࢉ, ࢟ ൅ ௞ሻቁ௞ࢋ   

൅ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵሺࢉ, ࢟ሻሽ  

ൌ max
ௌ

ቄ∑ ߣ ⋅ ௝ܲ
௥௘௚ሺܵሻ ⋅ ൬ݎ௝

௥௘௚ ൅ ௧ܸିଵ
௦௨௥௥ ቀࢉ െ ,௝ࢇ ,ग,࡭෤൫ࢉ ࢉ െ ,௝ࢇ ࢟൯ቁ൰௝   

൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ ቀݎ௞

௙௟௘௫ ൅ ௧ܸିଵ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ ൅ ௞ሻ൯ቁ௞ࢋ   

൅ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ൟ   

ൌ max
ௌ

ቄ∑ ߣ ⋅ ௝ܲ
௥௘௚ሺܵሻ ⋅ ൬ݎ௝

௥௘௚ ൅ ௧ܸିଵ
௦௨௥௥ ቀࢉ െ ,௝ࢇ ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ गሻቁ൰௝,࡭෥௝ሺࢇ   

൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ ൬ݎ௞

௙௟௘௫ ൅ ௧ܸିଵ
௦௨௥௥ ቀࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ െ ෩࢈

௞ሺ࡭,गሻቁ൰௞   

൅ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯ൟ   

ൌ ௧ܸ
௦௨௥௥൫ࢉ, ,ग,࡭෤ሺࢉ ,ࢉ ࢟ሻ൯  

The first equality is simply the definition of DP-flex (1), the second uses the induction 

hypothesis, the third equality follow from Proposition 2 (b), and the fourth is the defini-

tion of DP-surr (13). ᇝ 

 Derivation of artificial resources for network types 1 and 2 

C.1 Proof of Proposition 4 

Proposition 4: In network type 1, the number of artificial resources is ෥݉ ൌ 1 (and thus 

constant in the number of regular resources ݉). 

Proof: Network type 1 consists of ݉ parallel resources and one flexible product that 

may be assigned to the ݉ resources. Thus, the feasibility problem (5)–(7) is given by 
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ଵ௛ݕ ൑ ܿ௛	∀݄ ൌ 1,… ,݉     (C.1.1) 

∑ െݕଵ௛
௠
௛ୀଵ ൑ െݕଵ     (C.1.2) 

 െݕଵ௛ ൑ 0	∀݄ ൌ 1,… ,݉     (C.1.3) 

Throughout the proof, we refer to the FME-steps as given by Algorithm 1. W.l.o.g., we 

assume that the elimination of ݕଵ௛ by Algorithm 1 is done iteratively in increasing order 

of ݄. We index the iterations of Algorithm 1 with ݅ ൌ 1,… ,݉ ൅ 1, each referring to the 

feasibility problem before eliminating the distribution variable ݕଵ௜ (and after eliminating 

݅ ଵ,௜ିଵ). Please note that iterationݕ ൌ 1 corresponds to the initial feasibility problem and 

that the dummy iteration ݅ ൌ ݉ ൅ 1 gives us the feasibility problem after eliminating all 

the distribution variables.  

Now, by induction over ݅, we show the following: 

Induction hypothesis: The feasibility problem in iteration ݅ is given by 

ଵ௛ݕ ൑ ܿ௛	∀݄ ൌ ݅, … ,݉    (C.1.4) 

 െݕଵ௛ ൑ 0	∀݄ ൌ ݅, … ,݉    (C.1.5) 

0 ൑ ܿ௛	∀݄ ൌ 1,… , ݅ െ 1    (C.1.6) 

െ∑ ଵ௛ݕ
௠
௛ୀ௜ ൑ ∑ ܿ௛

௜ିଵ
௛ୀଵ െ  ଵ    (C.1.7)ݕ

Induction basis: The induction hypothesis holds for ݅ ൌ 1, because (C.1.4), (C.1.7), and 

(C.1.5) equal (C.1.1), (C.1.2), and (C.1.3), respectively, and because (C.1.6) drops out 

(∀݄ ൌ 1,… , 0). 

Induction step: Assume that the hypothesis holds for ݅. We next show that it will then 

also hold for ݅ ൅ 1. The feasibility problem of iteration ݅ ൅ 1 is obtained by applying 

FME on ݕଵ௜ in (C.1.4)–(C.1.7). The constraints/rows with null coefficients for ݕଵ௜ stay 

the same according to lines 9 and 10 of Algorithm 1: 

ଵ௛ݕ ൑ ܿ௛	∀݄ ൌ ݅ ൅ 1,… ,݉ (second constraint to last constraint of (C.1.4))  (C.1.8) 

െݕଵ௛ ൑ 0	∀݄ ൌ ݅ ൅ 1,… ,݉ (second constraint to last constraint of (C.1.5))  (C.1.9) 

0 ൑ ܿ௛	∀݄ ൌ 1,… , ݅ െ 1 (constraints (C.1.6)) 
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The constraints with coefficient ൅1 or െ1 for ݕଵ௜ are given by 

ଵ௜ݕ ൑ ܿ௜ (first constraint of (C.1.4))    (C.1.10) 

െݕଵ௜ ൑ 0 (first constraint of (C.1.5))    (C.1.11) 

െ∑ ଵ௛ݕ
௠
௛ୀ௜ ൑ ∑ ܿ௛

௜ିଵ
௛ୀଵ െ  .ଵ (constraint (C.1.7))ݕ

Consequently, adding (C.1.10) and (C.1.11), as well as (C.1.10) and (C.1.7), according 

to lines 13 and 14 of Algorithm 1 leads to 

0 ൑ ܿ௜    (C.1.12) 

െ∑ ଵ௛ݕ
௠
௛ୀ௜ାଵ ൑ ܿ௜ ൅ ∑ ܿ௛

௜ିଵ
௛ୀଵ െ ଵݕ ൌ ∑ ܿ௛

௜
௛ୀଵ െ  ଵ.   (C.1.13)ݕ

Thus, in total, we obtain the following set of constraints from iteration ݅: 

ଵ௛ݕ ൑ ܿ௛	∀݄ ൌ ݅ ൅ 1,… ,݉  (constraints (C.1.8)) 

െݕଵ௛ ൑ 0	∀݄ ൌ ݅ ൅ 1,… ,݉ (constraints (C.1.9)) 

0 ൑ ܿ௛	∀݄ ൌ 1,… , ݅ (consisting of constraints (C.1.6) and (C.1.12)) 

െ∑ ଵ௛ݕ
௠
௛ୀ௜ାଵ ൑ ∑ ܿ௛

௜
௛ୀଵ െ  ଵ (constraint (C.1.13)ݕ

These constraints equal (C.1.4)–(C.1.7) with increased ݅ ≔ ݅ ൅ 1, which concludes the 

induction step. 

Given this result, we subsequently consider the feasibility problem after completely 

executing Algorithm 1, that is, after eliminating all the distribution variables. The result-

ing problem is given by (C.1.6) and (C.1.7) with ݅ ൌ ݉ ൅ 1, because (C.1.4) and (C.1.5) 

drop out (∀݄ ൌ ݉ ൅ 1,… ,݉): 

0 ൑ ܿ௛	∀݄ ൌ 1,… ,݉ (regular resources, constraints (C.1.6)) 

0 ൑ ∑ ܿ௛
௠
௛ୀଵ െ  ଵ (artificial resource, constraint (C.1.7))ݕ

Therefore, we obtain a total of ෥݉ ൌ 1 artificial resource.  ᇝ
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C.2 Proof of Proposition 5 

Proposition 5: In network type 2, the number of artificial resources is ෥݉ ൌ
ሺ௠ିଵሻ⋅௠

ଶ
 

(and thus polynomial in the number of regular resources ݉). 

Proof: Network type 2 consists of ݉ parallel resources and ݉െ 1 flexible products. 

Flexible product ݇ may be assigned to resource ݇ or ݇ ൅ 1. Thus, the feasibility prob-

lem (5)–(7) is given by: 

ଵଵݕ ൑ ܿଵ   (C.2.1) 

௞ଶݕ ൅ ௞ାଵ,ଵݕ ൑ ܿ௞ାଵ	∀݇ ൌ 1,… ,݉ െ 2    (C.2.2) 

௠ିଵ,ଶݕ ൑ ܿ௠    (C.2.3) 

െݕ௞ଵ െ ௞ଶݕ ൑ െݕ௞	∀݇ ൌ 1,… ,݉ െ 1   (C.2.4)  

െݕ௞ଵ ൑ 0	∀݇ ൌ 1,… ,݉ െ 1   (C.2.5)  

െݕ௞ଶ ൑ 0	∀݇ ൌ 1,… ,݉ െ 1    (C.2.6)  

W.l.o.g., we assume that the 2 ⋅ ሺ݉ െ 1ሻ distribution variables are eliminated in the 

order of ݕଵଵ, ,ଵଶݕ ,ଶଵݕ … , ݅ ௠ିଵ,ଶ. For this purpose, we conduct the iterationsݕ ൌ

1,… ,݉ െ 1, with ݅ referring to the feasibility problem after eliminating ݕ௜ିଵ,ଶ (for ݅ ൐

1) and before eliminating ݕ௜ଵ. Please note that dummy iteration ݅ ൌ 1 corresponds to the 

initial feasibility problem, that each iteration comprises eliminating both distribution 

variables of flexible product ݅ (and thus, two of the iterations of Algorithm 1), and that 

݅ ൌ ݉ refers to the feasibility problem after eliminating all the distribution variables, 

that is, after iteration ݉ െ 1. 

Now, by induction over ݅, we show the following: 

Induction hypothesis: The feasibility problem in iteration ݅ ൌ 1,… ,݉ െ 1 is given by: 
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௜ଵݕ ൑ ܿ௜    (C.2.7) 

௞ଶݕ ൅ ௞ାଵ,ଵݕ ൑ ܿ௞ାଵ	∀݇ ൌ ݅, … ,݉ െ 2    (C.2.8) 

௠ିଵ,ଶݕ ൑ ܿ௠    (C.2.9) 

 െݕ௞ଵ െ ௞ଶݕ ൑ െݕ௞	∀݇ ൌ ݅, … ,݉ െ 1   (C.2.10) 

െݕ௞ଵ ൑ 0	∀݇ ൌ ݅, … ,݉ െ 1    (C.2.11) 

 െݕ௞ଶ ൑ 0	∀݇ ൌ ݅, … ,݉ െ 1    (C.2.12) 

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ െ 1, ∀݄ ൌ ݄,… , ݅ െ 1  (C.2.13) 

௜ଵݕ  ൑ ∑ ܿ௛
௜
௛ୀ௛ െ ∑ ௛ݕ

௜ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ െ 1   (C.2.14) 

Induction basis: The induction hypothesis holds for ݅ ൌ 1, because (C.2.7)–(C.2.12) 

equal (C.2.1)–(C.2.6), respectively, and because (C.2.13) and (C.2.14) drop out (∀݄ ൌ

1,… , 0). 

Induction step: Assume that the hypothesis holds for ݅. We now show that it will then 

also hold for ݅ ൅ 1. We first eliminate ݕ௜ଵ by performing one iteration of Algorithm 1. 

The constraints/rows with null coefficients for ݕ௜ଵ stay the same according to lines 9 

and 10 of Algorithm 1: 

௞ଶݕ ൅ ௞ାଵ,ଵݕ ൑ ܿ௞ାଵ	∀݇ ൌ ݅, … ,݉ െ 2 (constraints (C.2.8))   

௠ିଵ,ଶݕ ൑ ܿ௠ (constraint (C.2.9))     

െݕ௞ଵ െ ௞ଶݕ ൑ െݕ௞	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (second constraint to last constraint  

of (C.2.10))    (C.2.15) 

െݕ௞ଵ ൑ 0	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (second constraint to last constraint  

of (C.2.11))    (C.2.16) 

െݕ௞ଶ ൑ 0	∀݇ ൌ ݅, … ,݉ െ 1 (constraints (C.2.12))    

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ െ 1, ∀݄ ൌ ݄,… , ݅ െ 1 (constraints (C.2.13))  

The constraints with coefficient ൅1 or െ1 for ݕ௜ଵ are given by 

௜ଵݕ ൑ ܿ௜ (constraint (C.2.7)) 
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௜ଵݕ ൑ ∑ ܿ௛
௜
௛ୀ௛ െ ∑ ௛ݕ

௜ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ െ 1 (constraints (C.2.14)) 

െݕ௜ଵ െ ௜ଶݕ ൑ െݕ௜	 (first constraint of  (C.2.10))   (C.2.17) 

െݕ௜ଵ ൑ 0 (first constraint of (C.2.11)).   (C.2.18) 

Consequently, adding (C.2.7) and (C.2.17), (C.2.7) and (C.2.18), (C.2.14) and (C.2.17), 

as well as (C.2.14) and (C.2.18), according to lines 13 and 14 of Algorithm 1 leads to 

െݕ௜ଶ ൑ ܿ௜ െ  ௜    (C.2.19)ݕ

0 ൑ ܿ௜   (C.2.20) 

െݕ௜ଶ ൑ ∑ ܿ௛
௜
௛ୀ௛ െ ∑ ௛ݕ

௜ିଵ
௛ୀ௛ െ ௜ݕ ൌ ∑ ܿ௛

௜
௛ୀ௛ െ ∑ ௛ݕ

௜
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ െ 1  (C.2.21) 

0 ൑ ∑ ܿ௛
௜
௛ୀ௛ െ ∑ ௛ݕ

௜ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ െ 1.   (C.2.22) 

Thus, in total, we obtain the following set of constraints after the elimination of ݕ௜ଵ: 

௞ଶݕ ൅ ௞ାଵ,ଵݕ ൑ ܿ௞ାଵ	∀݇ ൌ ݅, … ,݉ െ 2 (constraints (C.2.8))    

௠ିଵ,ଶݕ ൑ ܿ௠ (constraint (C.2.9))     

െݕ௞ଵ െ ௞ଶݕ ൑ െݕ௞	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (constraints (C.2.15))  

െݕ௞ଵ ൑ 0	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (constraints (C.2.16))    

െݕ௞ଶ ൑ 0	∀݇ ൌ ݅, … ,݉ െ 1 (constraints (C.2.12))    

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅, ∀݄ ൌ ݄,… , ݅ (consisting of constraints (C.2.13),  

(C.2.20), and (C.2.22))    (C.2.23) 

െݕ௜ଶ ൑ ∑ ܿ௛
௜
௛ୀ௛ െ ∑ ௛ݕ

௜
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ (consisting of constraints (C.2.19) and  

(C.2.21))   (C.2.24) 

For this set of constraints, we show that, when applying another iteration of Algorithm 1 

to eliminate ݕ௜ଶ, we obtain the feasibility problem of iteration ݅ ൅ 1; that is (C.2.7)–

(C.2.14) with increased ݅ ≔ ݅ ൅ 1. The constraints/rows with null coefficients for ݕ௜ଶ 

stay the same according to lines 9 and 10 of Algorithm 1: 

௞ଶݕ ൅ ௞ାଵ,ଵݕ ൑ ܿ௞ାଵ	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 2 (second constraint to last constraint of 

(C.2.8); drops out in case that ݅ ൌ ݉ െ 2)   (C.2.25) 
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௠ିଵ,ଶݕ ൑ ܿ௠ (constraint (C.2.9); note that ݅ ൏ ݉ െ 1 according to the hypothesis; 

thus this constraint always has null coefficients for ݕ௜ଶ) 

െݕ௞ଵ െ ௞ଶݕ ൑ െݕ௞	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (constraints (C.2.15)) 

െݕ௞ଵ ൑ 0	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (constraints (C.2.16)) 

 െݕ௞ଶ ൑ 0	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (second constraint to last constraint  

of (C.2.12))    (C.2.26) 

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅, ∀݄ ൌ ݄,… , ݅ (constraints (C.2.23)) 

The rows with coefficient ൅1 or െ1 are 

௜ଶݕ ൅ ௜ାଵ,ଵݕ ൑ ܿ௜ାଵ (first constraint of (C.2.8); note that ݅ ൏ ݉ െ 1 according to the 

hypothesis, thus this constraint always exists)   (C.2.27) 

െݕ௜ଶ ൑ 0 (first constraint of (C.2.12))    (C.2.28) 

െݕ௜ଶ ൑ ∑ ܿ௛
௜
௛ୀ௛ െ ∑ ௛ݕ

௜
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ (constraints (C.2.24)). 

Consequently, adding (C.2.27) and (C.2.28), as well as (C.2.27) and (C.2.24), according 

to lines 13 and 14 of Algorithm 1 leads to 

௜ାଵ,ଵݕ ൑ ܿ௜ାଵ   (C.2.29) 

௜ାଵ,ଵݕ ൑ ܿ௜ାଵ ൅ ∑ ܿ௛
௜
௛ୀ௛ െ ∑ ௛ݕ

௜
௛ୀ௛ ൌ ∑ ܿ௛

௜ାଵ
௛ୀ௛ െ ∑ ௛ݕ

௜
௛ୀ௛ 	∀݄ ൌ 1,… , ݅.  (C.2.30) 

Thus, in total, we obtain the following set of constraints after the elimination of ݕ௜ଶ: 
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௜ାଵ,ଵݕ ൑ ܿ௜ାଵ (constraint (C.2.29)) 

௞ଶݕ ൅ ௞ାଵ,ଵݕ ൑ ܿ௞ାଵ	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 2  (constraints (C.2.25)) 

௠ିଵ,ଶݕ ൑ ܿ௠ (constraint (C.2.9)) 

െݕ௞ଵ െ ௞ଶݕ ൑ െݕ௞	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (constraints (C.2.15)) 

െݕ௞ଵ ൑ 0	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (constraints (C.2.16)) 

 െݕ௞ଶ ൑ 0	∀݇ ൌ ݅ ൅ 1,… ,݉ െ 1 (constraints (C.2.26)) 

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… , ݅, ∀݄ ൌ ݄,… , ݅ (constraints (C.2.23)) 

௜ାଵ,ଵݕ ൑ ∑ ܿ௛
௜ାଵ
௛ୀ௛ െ ∑ ௛ݕ

௜
௛ୀ௛ 	∀݄ ൌ 1,… , ݅ (constraints (C.2.30)) 

These constraints equal (C.2.7)–(C.2.14) with increased ݅ ≔ ݅ ൅ 1, which concludes the 

induction step. Given this result, we can now formally state the feasibility problem after 

performing ݉െ 2 iterations by simply setting ݅ ൌ ݉ െ 1 in the hypothesis. We obtain: 

௠ିଵ,ଵݕ ൑ ܿ௠ିଵ     

௠ିଵ,ଶݕ ൑ ܿ௠     

െݕ௠ିଵ,ଵ െ ௠ିଵ,ଶݕ ൑ െݕ௠ିଵ     

െݕ௠ିଵ,ଵ ൑ 0	      

 െݕ௠ିଵ,ଶ ൑ 0	     

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… ,݉ െ 2, ∀݄ ൌ ݄,… ,݉ െ 2    

௠ିଵ,ଵݕ ൑ ∑ ܿ௛
௠ିଵ
௛ୀ௛ െ ∑ ௛ݕ

௠ିଶ
௛ୀ௛ 	∀݄ ൌ 1,… ,݉ െ 2     

Finally, we perform the remaining ݉ െ 1-th iteration, that is, two final iterations of Al-

gorithm 1 to subsequently eliminate ݕ௠ିଵ,ଵ and ݕ௠ିଵ,ଶ. After the elimination of ݕ௠ିଵ,ଵ, 

we obtain the following set of constraints: 

௠ିଵ,ଶݕ ൑ ܿ௠    

െݕ௠ିଵ,ଶ ൑ 0	  
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0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… ,݉ െ 1	∀݄ ൌ ݄,… ,݉ െ 1   

െݕ௠ିଵ,ଶ ൑ ∑ ܿ௛
௠ିଵ
௛ୀ௛ െ ∑ ௛ݕ

௠ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… ,݉ െ 1     

After eliminating ݕ௠ିଵ,ଶ―that is, after eliminating all the distribution variables of the 

original feasibility problem―we obtain the constraints 

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… ,݉	∀݄ ൌ ݄,… ,݉,  

which may be rewritten as:  

0 ൑ ܿ௛	∀݄ ൌ 1,… ,݉ (regular resources) 

0 ൑ ∑ ܿ௛
௛
௛ୀ௛ െ ∑ ௛ݕ

௛ିଵ
௛ୀ௛ 	∀݄ ൌ 1,… ,݉ െ 1, ∀݄ ൌ ݄ ൅ 1	, … ,݉ (artificial resources) 

Therefore, we have a total of ෥݉ ൌ ∑ ݄௠ିଵ
௛ୀଵ ൌ

ሺ௠ିଵሻ௠

ଶ
 artificial resources.  ᇝ 

 Technical details of the implemented methods 

In Section 5, we evaluated the average revenues obtained by using our surrogate ap-

proach (DPD-surr) in comparison with two revenue management methods (DPD-ah 

and CDLP-surr), as well as an upper bound (UB) on the optimal expected revenue of 

DP-flex (1). In the following, we provide the technical details. 

D.1 Upper bound (UB) 

As the upper bound on the optimal expected revenue of (1), we use the optimal objec-

tive value of the corresponding CDLP formulation, which Gallego et al. (2004) propose 

(CDLP-flex): 

 Maximize ∑ ሺܵሻݐ ⋅ ߣ ⋅ ൫∑ ௝ܲ
௥௘௚ሺܵሻ ⋅ ௝ݎ

௥௘௚
௝ ൅ ∑ ௞ܲ

௙௟௘௫ሺܵሻ ⋅ ௞ݎ
௙௟௘௫

௞ ൯ௌ  (D.1.1) 

subject to 

 ∑ ሺܵሻݐ ⋅ ߣ ⋅ ∑ ௝ܲ
௥௘௚ሺܵሻ ⋅ ܽ௛௝௝ௌ ൅ ∑ ∑ ܽ௛௝ ⋅ ௞௝௝∈ࣧೖ௞ݕ ൑ ܿ௛	∀݄  (D.1.2) 

 ∑ ሺܵሻݐ ⋅ ߣ ⋅ ௞ܲ
௙௟௘௫ ൌௌ ∑ ௞௝௝∈ࣧೖݕ

	∀݇    (D.1.3) 

 ∑ ሺܵሻௌݐ ൌ ܶ    (D.1.4) 

ሺܵሻݐ  ൒ 0	∀ܵ    (D.1.5) 
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௞௝ݕ  ൒ 0	∀݇, ݆ ∈ ௞ࣧ    (D.1.6) 

In this model, the variable ݐሺܵሻ denotes how long set ܵ is offered. Please note that con-

straints (D.1.2), (D.1.3), and (D.1.6), after some minor rearrangements, equal the (re-

laxed) feasibility problem (5)–(7). 

In order to solve CDLP-flex and obtain UB, we use column generation (see, e.g., Liu 

and van Ryzin (2008) and Miranda Bront et al. (2009) for an extensive description in 

the context of standard revenue management). We start with a reduced number of col-

umns in CDLP-flex; that is, with only a subset of the possible offer sets. Let ߨ௛
௥௘ௗ, ߤ௞

௥௘ௗ, 

and ߪ௥௘ௗ denote the optimal dual prices for restrictions (D.1.2), (D.1.3), and (D.1.4) of 

this reduced problem. Thereafter, we have to check whether there is an offer set with 

positive reduced costs that must be included. More precisely, a column corresponding to 

a new offer set is the optimal solution of the following column generation sub-problem: 

 max
ௌ
൛ߣ ⋅ ൫∑ ௝ܲ

௥௘௚ሺܵሻ ⋅ ൫ݎ௝
௥௘௚ െ ∑ ܽ௛௝ ⋅ ௛ߨ

௥௘ௗ
௛ ൯௝   

 ൅∑ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ ൫ݎ௞

௙௟௘௫ െ ௞ߤ
௥௘ௗ൯௞ ൯ൟ െ  ௥௘ௗ    (D.1.7)ߪ

The second term in the argument of the maximum function is due to the consideration 

of flexible products. The solution technique depends on the choice model used.  

Please note that we can obtain UB alternatively by using the surrogate reformulation 

from Section 4. To see this, we apply the surrogate network on the standard CDLP for-

mulation without flexible products (see, e.g., Liu and van Ryzin (2008)) and obtain the 

following formulation (CDLP-surr): 

 Maximize ∑ ሺܵሻݐ ⋅ ߣ ⋅ ൫∑ ௝ܲ
௥௘௚ሺܵሻ ⋅ ௝ݎ

௥௘௚
௝ ൅ ∑ ௞ܲ

௙௟௘௫ሺܵሻ ⋅ ௞ݎ
௙௟௘௫

௞∈ௌ ൯ௌ  (D.1.8) 

subject to 

 ∑ ሺܵሻݐ ⋅ ߣ ⋅ ∑ ௝ܲ
௥௘௚ሺܵሻ ⋅ ܽ௛௝௝ௌ ൑ ܿ௛	∀݄    (D.1.9) 

 ∑ ሺܵሻݐ ⋅ ߣ ⋅ ൫∑ ௝ܲ
௥௘௚ሺܵሻ ⋅ ෤ܽ௜௝௝ ൅ ∑ ௞ܲ

௙௟௘௫ሺܵሻ ⋅ ෨ܾ௜௞௞ ൯ௌ ൑ ܿ̃௜	∀݅  (D.1.10) 

 ∑ ሺܵሻௌݐ ൌ ܶ    (D.1.11) 

ሺܵሻݐ  ൒ 0	∀ܵ    (D.1.12) 
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A comparison of CDLP-flex with CDLP-surr shows that they only differ in the con-

straints representing the feasibility problem: While CDLP-flex contains the original 

feasibility problem, CDLP-surr contains the transformed feasibility problem (constraints 

(D.1.9) and (D.1.10)). Thus, both CDLPs are equivalent. This result is intuitive, because 

both the original and the surrogate networks represent the same stochastic problem (rep-

resented by the DPs). In this sense, this result for the deterministic equivalent (given by 

the CDLP) of the stochastic problem parallels the result obtained in Section 4.2 in re-

spect of the DPs. Please note that Condition 1 is not required for equivalence here.  

D.2 Ad hoc assignment DPD approach (DPD-ah) 

This method is based on an idea that was already investigated by Steinhardt and Gönsch 

(2012) in respect of the special case of upgrades and without customer choice. It forgoes 

flexibility and immediately assigns flexible products (ad hoc) after sale. As this assign-

ment is irrevocable, we can immediately reduce the remaining capacity and do not need 

to store any commitments. Thus, a resource-based state space is obtained, and DPD by 

resources is possible. However, existing choice-based approaches do not include the 

described ad hoc assignment of flexible products and have to be modified appropriately. 

In the following, we carry out these modifications on the DPD approach of Liu and van 

Ryzin (2008). 

The immediate assignment of a flexible product ݇ to the current best of its alternatives 

݆ ∈ ௞ࣧ is captured by the second line in the Bellman equation 

 ௧ܸ
௔௛ሺࢉሻ ൌ max

ௌ
ቄ∑ ߣ ⋅ ௝ܲ

௥௘௚ሺܵሻ ⋅ ቀݎ௝
௥௘௚ ൅ ௧ܸିଵ

௔௛ ൫ࢉ െ ௝൯ቁ௝ࢇ   

 ൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ max

௝∈ࣧೖ
൛ݎ௞

௙௟௘௫ ൅ ௧ܸିଵ
௔௛ ൫ࢉ െ ௝൯ൟ௞ࢇ   

 ൅ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵ
௔௛ ሺࢉሻሽ    (D.2.1) 

with the boundary conditions ௧ܸ
௔௛ሺࢉሻ ൌ െ∞ if ࢉ ≱ ૙ and ଴ܸ

௔௛ሺࢉሻ ൌ ࢉ∀	0 ൒ ૙.  

The standard starting point of the decomposition is the corresponding CDLP formula-

tion CDLP-flex (D.1.1)–(D.1.6). Let ߨ௛
௔௛ denote the optimal dual prices associated with 



II  Beiträge  
Beitrag B2: Dynamic programming decomposition for choice-based revenue management with flexible 

products 

 

 
70 

the capacity of resource ݄ (constraint (D.1.2)). We then obtain the following one-

dimensional problem to assess the value of capacity of each resource ݄ᇱ ∈ ࣢:  

 ௧ܸ
௔௛,௛ᇲሺܿ௛ᇲሻ ൌ max

ௌ
ቄ∑ ߣ ⋅ ௝ܲ

௥௘௚ሺܵሻ ⋅ ൬ݎ௝
௥௘௚ െ ∑ ܽ௛௝ ⋅ ௛ߨ

௔௛
௛ஷ௛ᇲ ൅ ௧ܸିଵ

௔௛,௛ᇲ൫ܿ௛ᇲ െ ܽ௛ᇲ௝൯൰௝   

 ൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ max

௝∈ࣧೖ
ቄݎ௞

௙௟௘௫ െ ∑ ܽ௛௝ ⋅ ௛ߨ
௔௛

௛ஷ௛ᇲ ൅ ௧ܸିଵ
௔௛,௛ᇲ൫ܿ௛ᇲ െ ܽ௛ᇲ௝൯ቅ௞   

 ൅ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵ
௔௛,௛ᇲሺܿ௛ᇲሻቅ    (D.2.2) 

with boundary conditions ௧ܸ
௔௛,௛ᇲሺܿ௛ᇲሻ ൌ െ∞ if ܿ௛ᇲ ൏ 0 and ଴ܸ

௔௛,௛ᇲሺܿ௛ᇲሻ ൌ 0	∀ܿ௛ᇲ ൒ 0. 

During the booking horizon (that is, during the simulations), we approximate the oppor-

tunity cost of a regular product ݆ and all flexible products’ alternatives ݆ ∈ ௞ࣧ, respec-

tively, as the sum of the required resources’ opportunity cost. More formally, with re-

source ݄’s opportunity cost defined as  

 Δ௛ ௧ܸ
௔௛,௛ሺܿ௛ሻ ≔ ௧ܸ

௔௛,௛ሺܿ௛ሻ െ ௧ܸ
௔௛,௛ሺܿ௛ െ 1ሻ,   (D.2.3) 

the offer set is the optimal solution of  

 max
ௌ
൛∑ ௝ߣ ⋅ ௝ܲ

௥௘௚ሺܵሻ ⋅ ൫ݎ௝
௥௘௚ െ ∑ ܽ௛௝ ⋅ Δ௛ ௧ܸିଵ

௔௛,௛ሺܿ௛ሻ௛ ൯  

 ൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ max

௝∈ࣧೖ
൛ݎ௞

௙௟௘௫ െ ∑ ܽ௛௝ ⋅ Δ௛ ௧ܸିଵ
௔௛,௛ሺܿ௛ሻ௛ ൟ௞ ൠ.  (D.2.4) 

Note that compared to the standard setting described, for example, in Liu and van Ryzin 

(2008), the second lines in equations (D.2.2) and (D.2.4) are extensions that are due to 

the consideration of flexible products. These modifications follow the lines of the modi-

fications performed without customer choice in Steinhardt and Gönsch (2012) in respect 

of upgrades, and in Gönsch and Steinhardt (2013) in respect of opaque products. Similar 

to the column generation sub-problems used to solve CDLP-flex and CDLP-surr, the 

solution technique applied to find the optimal offer set ܵ in (D.2.2) and (D.2.4) depends 

on the choice model used. 

D.3 Primal solution of CDLP-surr (CDLP-surr) 

This method operationalizes the optimal primal solution of CDLP-surr (D.1.8)–

(D.1.12). Recall that the optimal solution gives us the time a set ܵ is offered. Alterna-

tively, the same solution is obtained by CDLP-flex (D.1.1)–(D.1.6). 
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We round fractional values of the decision variables ݐሺܵሻ to the nearest integer. The 

sequence in which we offer the sets follows the lexicographic order in which the sets 

appear in the optimal solution. Please note that the offer sets are static over a number of 

periods. Thus, we have to check continuously (i.e., in each period) whether the capacity 

allows for offering the products contained in the static set. To do so, we use the capacity 

check of the surrogate network (i.e., constraints (11) and (12)). If the capacity is not 

sufficient to sell a product, it is removed from the set. Note that it is also possible to 

check capacity by solving the original feasibility problem (2)–(4). 

D.4 Surrogate DPD approach (DPD-surr) 

Our main method DPD-surr is obtained by applying the surrogate network to the DPD 

approach of Liu and van Ryzin (2008). 

Analogously to DPD-ah, the starting point of the decomposition is the corresponding 

CDLP formulation; that is, CDLP-surr (D.1.8)–(D.1.12). Let ߨ௛ denote the optimal dual 

prices of regular resource ݄ (constraint (D.1.9)). Furthermore, let ߨ෤௜ denote the optimal 

dual prices of artificial resource ݅ (constraint (D.1.10)). 

We subsequently obtain the following two types of one-dimensional problems to assess 

the value of capacity of resources ݄ᇱ ∈ ࣢ and ݅ᇱ ∈ ࣢෩ :  

 ௧ܸ
௦௨௥௥,௛ᇲሺܿ௛ᇲሻ ൌ max

ௌ
൛∑ ߣ ⋅ ௝ܲ

௥௘௚ሺܵሻ ⋅௝ ൫ݎ௝
௥௘௚ െ ∑ ܽ௛௝ ⋅ ௛௛ஷ௛ᇲߨ െ ∑ ෤ܽ௜௝ ⋅ ෤௜௜ߨ ൅	 

 ൅ ௧ܸିଵ
௦௨௥௥,௛ᇲ൫ܿ௛ᇲ െ ܽ௛ᇲ௝൯	ቁ ൅ ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ௧ܸିଵ

௦௨௥௥,௛ᇲሺܿ௛ᇲሻቅ (D.4.1) 

with boundary conditions ௧ܸ
௦௨௥௥,௛ᇲሺܿ௛ᇲሻ ൌ െ∞ if ܿ௛ᇲ ൏ 0 and ଴ܸ

௦௨௥௥,௛ᇲሺܿ௛ᇲሻ ൌ 0	∀ܿ௛ᇲ ൒

0 and 

 ෨ܸ
௧
௦௨௥௥,௜ᇲሺܿ̃௜ᇲሻ ൌ max

ௌ
൛∑ ߣ ⋅ ௝ܲ

௥௘௚ሺܵሻ ⋅௝ ൫ݎ௝
௥௘௚ െ ∑ ܽ௛௝ ⋅ ௛௛ߨ 	െ ∑ ෤ܽ௜௝ ⋅ ෤௜௜ஷ௜ᇲߨ   

 ൅ ෨ܸ
௧ିଵ
௦௨௥௥,௜ᇲ൫ܿ̃௜ᇲ െ ෤ܽ௜ᇲ௝൯൰ ൅ ∑ ߣ ⋅ ௞ܲ

௙௟௘௫ሺܵሻ ⋅௞ ൫ݎ௞
௙௟௘௫ െ ∑ ෨ܾ

௜௞ ⋅ ෤௜௜ஷ௜ᇲߨ   

൅ ෨ܸ
௧ିଵ
௦௨௥௥,௜ᇲ൫ܿ̃௜ᇲ െ ෨ܾ

௜ᇲ௞൯൰ ൅ ሺߣ ⋅ ଴ܲሺܵሻ ൅ 1 െ ሻߣ ⋅ ෨ܸ௧ିଵ
௦௨௥௥,௜ᇲሺܿ̃௜ᇲሻቅ  (D.4.2) 

with boundary conditions ෨ܸ௧
௦௨௥௥,௜ᇲሺܿ̃௜ᇲሻ ൌ െ∞ if ܿ̃௜ᇲ ൏ 0 and ෨ܸ଴

௦௨௥௥,௜ᇲሺܿ̃௜ᇲሻ ൌ 0	∀ܿ̃௜ᇲ ൒ 0. 
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During the booking horizon, we approximate the opportunity cost as the sum of the re-

quired resources’ opportunity cost. More formally, let regular resource ݄’s opportunity 

cost be defined as  

Δ௛ ௧ܸ
௦௨௥௥,௛ሺܿ௛ሻ ≔ ௧ܸ

௦௨௥௥,௛ሺܿ௛ሻ െ ௧ܸ
௦௨௥௥,௛ሺܿ௛ െ 1ሻ   (D.4.3) 

and artificial resource ݅’s opportunity cost be defined as 

Δ෩௜ ௧ܸ
௦௨௥௥,௜ሺܿ௛ሻ ≔ ෨ܸ

௧
௦௨௥௥,௜ሺܿ௜ሻ െ ෨ܸ

௧
௦௨௥௥,௜ሺܿ௜ െ 1ሻ.   (D.4.4) 

Then the offer set is the optimal solution of  

max
ௌ
൛∑ ௝ߣ ⋅ ௝ܲ

௥௘௚ሺܵሻ ⋅ ൫ݎ௝
௥௘௚ െ ∑ ܽ௛௝ ⋅ Δ௛ ௧ܸିଵ

௦௨௥௥,௛ሺܿ௛ሻ௛ െ ∑ ෤ܽ௜௝ ⋅ Δ෩௜ ௧ܸିଵ
௦௨௥௥,௜ሺܿ௛ሻ௜ ൯  

൅∑ ߣ ⋅ ௞ܲ
௙௟௘௫ሺܵሻ ⋅ ൫ݎ௞

௙௟௘௫ െ ∑ ෨ܾ
௜௞ ⋅ Δ෩௜ ௧ܸିଵ

௦௨௥௥,௜ሺܿ௛ሻ௜ ൯௞ ൟ.   (D.4.5) 

 Detailed values for products and segments in network 2 

Regarding network 2, Table E.1 and Table E.2 summarize regular products’ capacity 

consumption and revenues, as well as the segments’ arrival probabilities, consideration 

sets, and preference weights. 

Product Legs Revenue Product Legs Revenue 

1 1 1000 12 1 500 

2 2 400 13 2 200 

3 3 400 14 3 200 

4 4 300 15 4 150 

5 5 300 16 5 150 

6 6 500 17 6 250 

7 7 500 18 7 250 

8 ሺ2,4ሻ 600 19 ሺ2,4ሻ 300 

9 ሺ3,5ሻ 600 20 ሺ3,5ሻ 300 

10 ሺ2,6ሻ 700 21 ሺ2,6ሻ 350 

11 ሺ3,7ሻ 700 22 ሺ3,7ሻ 350 

Table E.1: Description of regular products for network 2 
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Segment Class Probability Consideration set Preference vector 

1 H	 0.08 ሼ1,8,9ሽ ሺ10,5,5ሻ	
2 L	 0.16 ሼ12,19,20ሽ ሺ10,10,5ሻ	
3 H	 0.05 ሼ2,3ሽ ሺ10,10ሻ	
4 L	 0.16 ሼ13,14ሽ ሺ10,10ሻ	
5 H	 0.10 ሼ4,5ሽ ሺ10,10ሻ	
6 L	 0.12 ሼ15,16ሽ ሺ10,5ሻ	
7 H	 0.02 ሼ6,7ሽ ሺ10,5ሻ	
8 L	 0.04 ሼ17,18ሽ ሺ10,10ሻ	
9 H	 0.02 ሼ10,11ሽ ሺ10,5ሻ	

10 L	 0.04 ሼ21,22ሽ ሺ10,10ሻ	
11 –	 0.05 ሼ݂1ሽ ሺ10ሻ	
12 –	 0.02 ሼ݂2ሽ ሺ10ሻ	
13 –	 0.05 ሼ݂3ሽ ሺ10ሻ	
14 –	 0.04 ሼ݂4ሽ ሺ10ሻ	
15 –	 0.02 ሼ݂5ሽ ሺ10ሻ	

Table E.2: Descriptions of customer segments for network 2 
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Abstract 

In practice, human-decision makers often feel uncomfortable with the risk-neutral reve-

nue management systems’ output. Reasons include a low number of repetitions of simi-

lar events, a critical impact of the achieved revenue for economic survival, or simply 

business constraints imposed by management. However, solving capacity control prob-

lems is a challenging task for many risk measures and the approaches are often not 

compatible with existing software systems. 

In this paper, we propose a flexible framework for risk-averse capacity control under 

customer choice behavior. Existing risk-neutral decision rules are augmented by the 

integration of adjustable parameters. Our key idea is the application of simulation-based 

optimization (SBO) to calibrate these parameters. This allows to easily tailor the result-

ing capacity control mechanism to almost every risk measure and customer choice be-

havior. 

In an extensive simulation study, we analyze the impact of our approach on expected 

utility, conditional value-at-risk (CVaR), and expected value. The results show a superi-

or performance in comparison to risk-neutral approaches from literature. 

Keywords: Revenue Management, Capacity Control, Risk-Aversion, Conditional Value-

at-Risk 
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1 Introduction 

During the last decades, revenue management has become one of the most successful 

fields of application for operations research in practice. Its main task is capacity control, 

which is usually described as controlling the availability of differentiated products over 

a given booking horizon such that the expected revenue is maximized. The assumption 

of risk-neutrality lies at the heart of this classical definition and is justified by a large 

number of repetitions of similar decision problems. However, human decision makers, 

who tend to be risk-averse, often doubt this assumption. In daily practice, they feel un-

comfortable with the capacity control system’s output and overwrite it manually with 

less aggressive decisions. Furthermore, in many fields of application, the number of 

repetitions is too small to justify the use of expected value and a single event is critical 

for economic survival. Risk-aversion first became popular in economics and finance, 

but it is today also increasingly considered in revenue management. The underlying 

trade-off is to give up a portion of expected value in order to reduce the risk of poor 

outcomes. 

The problem of risk-averse capacity control can be solved to optimality by dynamic 

programming (DP). However, building a DP formulation is a challenging task for many 

risk measures. In many cases, the state space must be augmented and the resulting DP 

formulation becomes intractable. Furthermore, DP formulations are not compatible with 

many existing revenue management systems.  

Our main contribution is to propose a flexible framework for risk-averse capacity con-

trol. In practice, revenue management systems are fixed in the long run and the capacity 

control process is modeled by standard decision rules such as bid prices. Therefore, our 

framework is based on the risk-neutral formulation. Risk-aversion is then integrated by 

augmenting existing capacity control mechanisms with a few parameters that can be 

calibrated. Existing research recommends that this is done manually by human decision 

makers. However, we suggest the use of simulation-based optimization (SBO) which 

allows automated optimization and a higher number of parameters. The resulting ap-

proach is quite general. It can be used with arbitrary demand models, risk measures, and 
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network structures. In an extensive simulation study, we illustrate the impact of our ap-

proach on expected utility, conditional value-at-risk (CVaR), and expected revenue in 

various settings with customer choice and different network structures.  

The remainder of this paper is structured as follows: First, we restate the risk-neutral 

problem of capacity control under customer choice behavior, review the relevant scien-

tific literature and position our work. Based upon this, we present our framework for 

risk-averse capacity control, including a detailed description of the components. We 

continue with the simulation study, followed by a discussion of the results and a conclu-

sion. 

2 Background and previous research 

Research from three areas of revenue management is relevant for our work. First, we 

restate the problem of risk-neutral capacity control under customer choice behavior and 

summarize standard solution approaches. Then, we discuss research on risk-averse ca-

pacity control and the use of SBO for capacity control. 

2.1 Risk-neutral capacity control under customer choice-behavior 

Initially, revenue management (RM) was based on the well-known independent demand 

assumption. Overviews can be found in the textbooks of Talluri and van Ryzin (2004b) 

and Phillips (2005). 

Later, research considered that most customers actually choose between several more or 

less suitable products. Gallego et al. (2004), Talluri and van Ryzin (2004a), and Liu and 

van Ryzin (2008) established capacity control under a general discrete choice model of 

demand. In this setting, a firm disposes of resources ݅ ൌ 1,… ,݉ which are jointly used 

by products ݆ ൌ 1,… , ݊. The products are associated with revenues ࢘ ൌ ሺݎଵ, … ,  .௡ሻ்ݎ

Furthermore, each product ݆ has a capacity consumption ࢇ௝ ൌ ൫ܽଵ௝, … , ܽ௠௝൯
்
, which is 

either ܽ௜௝ ൌ 1 if product ݆ requires resource ݅ or ܽ௜௝ ൌ 0 else. Resources’ remaining 

capacity is denoted by the vector ࢉ ൌ ሺܿଵ, … , ܿ௠ሻ், the initial endowment is given by 
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଴ࢉ ൌ ሺܿଵ
଴, … , ܿ௠଴ ሻ். Customers arrive successively and stochastically over time. The 

booking horizon is discretized into sufficiently small time periods ݐ ൌ 1,… , ܶ, such that 

in each period ݐ at most one customer arrives. Thus, at most one product can be sold in 

each period. The periods are numbered forward in time. Any capacity remaining at the 

end of the booking horizon is worthless and overbooking of the given resources’ capaci-

ty is not allowed. 

In each period ݐ, the firm’s risk-neutral decision problem is to determine a subset of 

products to offer, called the offer set, so that the overall expected revenue ଵܸሺࢉ଴ሻ is 

maximized. The offer set is captured by the vector ࢞ ൌ ሺݔଵ, … ,  ௡ሻ் of binary decisionݔ

variables with ݔ௝ ൌ 1 if product ݆ is offered for sale. Product ݆ is sold with probability 

 .௧଴ሺ࢞ሻ݌ ௧௝ሺ࢞ሻ and no purchase is made with probability݌

Let the value function ௧ܸሺࢉሻ denote the optimal expected revenue-to-go in period ݐ with 

capacity ࢉ and let Δ௝ ௧ܸሺࢉሻ ≔ ௧ܸሺࢉሻ െ ௧ܸ൫ࢉ െ  ௝൯ denote the opportunity cost of sellingࢇ

one unit of product ݆. Then, ௧ܸሺࢉሻ and the expected revenue-maximizing offer set can be 

computed recursively by the following DP formulation (DP-EV) 

 ௧ܸሺࢉሻ ൌ max
࢞

ቄ∑ ௧௝ሺ࢞ሻ݌ ⋅ ቀݎ௝ െ Δ௝ ௧ܸାଵሺࢉሻቁ
௡
௝ୀଵ ቅ ൅ ௧ܸାଵሺࢉሻ     (1) 

subject to the boundary conditions ௧ܸሺࢉሻ ൌ െ∞ if ࢉ ≱ ૙ and ்ܸ ାଵሺࢉሻ ൌ 0 if ࢉ ൒ ૙. 

Two issues render DP-EV difficult to solve optimally: recursively calculating the oppor-

tunity cost Δ௝ ௧ܸሺࢉሻ and solving the maximization over all 2௡ possible offer sets. Over 

time, different heuristic approaches have been developed. Regarding the first issue, vir-

tually all approaches use additive bid prices ߨ௧௜௖೔ that reflect the current value of one 

unit of capacity of resource ݅ in period ݐ with remaining capacity ܿ௜. With these values, 

an approximation Δ෩௝ ௧ܸሺࢉሻ of the opportunity cost can be obtained: 

 Δ෩௝ ௧ܸሺࢉሻ ൌ ∑ ܽ௜௝ ⋅ ௧௜௖೔ߨ
௠
௜ୀଵ 	   (2) 

The approaches differ in how the bid prices are computed, but the main idea is usually 

to derive an easy-to-compute upper bound on ௧ܸሺࢉሻ and use information from this upper 

bound to approximate the opportunity cost in an offline stage (that is, before the book-

ing horizon starts). Such approximations can be found, for example, in Liu and van 
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Ryzin (2008), Miranda Bront et al. (2009), Zhang and Adelman (2009), and Meissner 

and Strauss (2012b). Online (that is, during the booking horizon), the offer set is then 

determined by solving the maximization, which is an assortment optimization problem 

(see, e.g., Miranda Bront et al. (2009)): 

 max
࢞

ቄ∑ ௧௝ሺ࢞ሻ݌ ⋅ ቀݎ௝ െ Δ෩௝ ௧ܸାଵሺࢉሻቁ
௡
௝ୀଵ ቅ    (3) 

The technique used to solve (3) strongly depends on the choice model assumed. For 

example, under the independent demand model, (3) reduces to the classical method of 

simply offering all products for which revenue exceeds (an approximation of) oppor-

tunity cost: 

௝ݎ  ൒ Δ෩௝ ௧ܸାଵሺࢉሻ	   (4) 

A popular way to manage the selling process, in particular in practice, is to use this in-

dependent demand decision rule (4) in combination with additive bid prices (2). This 

kind of capacity control approach is often referred to as bid price control. Even if de-

mand is not independent, decision rule (4) can be used heuristically (see, e.g., Chaneton 

and Vulcano (2011) and Meissner and Strauss (2012a)). 

Table 1 summarizes the notation used throughout this section. 

 

݅ ൌ 1,… ,݉  resources 

݆ ൌ 1,… , ݊  products 

ݐ ൌ 1,… , ܶ  time periods (numbered forward) 

ࢉ ൌ ሺܿଵ, … , ܿ௠ሻ்  remaining capacity 

଴ࢉ ൌ ሺܿଵ
଴, … , ܿ௠଴ ሻ்  initial capacity 

࢘ ൌ ሺݎଵ,… ,  ௡ሻ்  product revenuesݎ

௝ࢇ ൌ ൫ܽଵ௝, … , ܽ௠௝൯
்
  capacity consumption of 

product ݆ 

࢞ ൌ ሺݔଵ, … ,  ௡ሻ்  offer set of productsݔ

 ௧௝ሺ࢞ሻ  purchase probability of product ݆ given݌
offer set ࢞ 

 ࢞ ௧଴(x)  no-purchase probability given offer set݌

௧ܸሺࢉሻ  optimal expected revenue-to-go in period 
 ࢉ with capacity ݐ

Δ௝ ௧ܸሺࢉሻ  opportunity cost of product ݆ 

Δ෩௝ ௧ܸሺࢉሻ  approximation of opportunity cost of 
product ݆ 

 with ݐ ௧௜௖೔  bid price of resource ݅ in periodߨ
remaining capacity ܿ௜ 

Table 1: Notation introduced in this section 
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2.2 Risk-averse capacity control 

In this section, we briefly outline the consideration of risk in the academic literature on 

capacity control. Only the most relevant literature is mentioned. For a recent review, we 

refer to Gönsch and Hassler (2014) and the references therein. 

The need for considering risk-aversion in capacity control was first raised by Lancaster 

(2003) who proposed a risk-adjusted revenue per available seat mile. Weatherford 

(2004) then modified the famous EMSR-b heuristic of Belobaba (1992) by substituting 

revenues with a risk-averse utility function. Barz (2007), Barz and Waldmann (2007), 

and Feng and Xiao (2008) use an exponential utility function to model risk-aversion, but 

instead of altering a heuristic, they work with the original DP formulation. Assuming 

independent demand and a single resource, they show that several well-known proper-

ties regarding the structure of an optimal policy carry over from the risk-neutral case. In 

addition, Barz (2007) extends this analysis to the case of customer choice behavior. 

Zhuang and Li (2011) examine optimal booking limits with an atemporal utility func-

tion to address risk-aversion. Furthermore, there are two publications from Koenig and 

Meissner (Koenig and Meissner (2015b, 2015c)) who consider target percentile risk and 

value-at-risk. 

Most relevant to our work are Huang and Chang (2011) and Koenig and Meissner 

(2015a). Similar to our work, they modify existing capacity control approaches to ad-

dress risk-aversion. In particular, Huang and Chang (2011) heuristically consider risk-

aversion via a discount factor on the opportunity cost in the DP formulation. This factor 

is either constant or a function of remaining demand and capacity. Koenig and Meissner 

(2015a) extend this analysis. In addition, they consider a discount factor on the oppor-

tunity cost from a risk-neutral DP formulation and an alternative function of demand 

and capacity. However, the approaches are restricted to a few parameters that are cali-

brated manually. Moreover, as in all the literature on risk-averse capacity control so far, 

only single-leg settings are considered. 
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Finally, the literature on risk-averse dynamic pricing is related to us (see Gönsch et al. 

(2016) for a recent review). The main difference between dynamic pricing and capacity 

control is that the decision maker influences demand by setting the prices of products 

instead of choosing the offer set, while the general setting is quite similar (see, e.g., 

Gallego and van Ryzin (1997) and Talluri and van Ryzin (2004b) for problems with 

risk-neutral decision makers). Thus, the incorporation of risk-aversion is done in a simi-

lar fashion (see, e.g., Li and Zhuang (2009) for utility functions; Feng and Xiao (1999) 

for revenue variance; Levin et al. (2008) for target percentile risk; Gönsch et al. (2015) 

for conditional value-at-risk). 

2.3 Simulation-based optimization for capacity control 

Until now, SBO has only been used in risk-neutral capacity control. For a general over-

view of SBO please refer to, for example, Gosavi (2015) or Spall (2003). Robinson 

(1995) was the first to use SBO in the context of revenue management to approximate 

the optimal booking limit policy in the single-leg case. More recent research derives 

stochastic gradients of the value function and uses estimates of these gradients in the 

optimization step. Bertsimas and de Boer (2005) present an algorithm for the improve-

ment of booking limits, which uses a discretization of the state space for value function 

estimation. Gosavi et al. (2007) show that an algorithm based on simultaneous perturba-

tion for the improvement of booking limits outperforms both EMSR-b and DAVN-

EMSR-b for single-leg and network problems, respectively. Topaloglu (2008) and van 

Ryzin and Vulcano (2008b) improve bid prices and nested protection limits, respective-

ly, by using a continuous approximation of the discrete problem which enables an exact 

recursive computation of gradients. While all the aforementioned papers follow the in-

dependent demand assumption, van Ryzin and Vulcano (2008a) use a procedure similar 

to van Ryzin and Vulcano (2008b) in order to improve nested protection limits under 

customer choice behavior. Chaneton and Vulcano (2011) present a stochastic gradient 

algorithm for improvement of bid prices with customer choice. 
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However, the use of stochastic gradients is feasible only if a recursive formulation of 

the value function is available. Unfortunately, this is often not the case or very challeng-

ing for the objective functions considered in risk-averse revenue management. There-

fore, we concentrate on purely numerical approaches in our paper that can be adapted 

easily to different objectives. In this sense, Klein (2007) is closest to us. He introduces 

auto-adaptive bid prices by means of the metaheuristic scatter search assuming inde-

pendent demand. 

3 Risk-averse capacity control using SBO 

In this section, we first present an overview of the new framework allowing the incorpo-

ration of risk-aversion. Then, we turn to the most important components and describe in 

detail the risk measures and capacity control approaches considered in this study. Table 

2 summarizes the additional notation introduced in the following section. 

 

݊௖௔௟௜௕  number of calibration streams 

݊௘௩௔௟  number of evaluation streams 

ܴ  revenue obtained 

ܷሺ⋅ሻ  utility function 

 ,.ሻ  distribution of total revenue ܴ, i.eݕሺܨ
ሻݕሺܨ  ൌ ℙሺܴ ൑  ሻݕ

ܷఊሺ⋅ሻ  exponential utility function with level 
of risk-aversion ߛ 

 ఈሺ⋅ሻ  conditional value-at-risk (CVaR) atܴܸܽܥ
probability level ߙ 

-parameters to integrate risk (arbitrary)  ࣂ
aversion into capacity control mecha-
nisms 

Table 2: Notation introduced in this section 

3.1 Overview 

Our basic idea is to modify standard approaches appropriately to account for risk-

aversion. This modification is governed by parameters ࣂ, which are determined by an 

out-of-the-box iterative SBO algorithm before the beginning of the booking horizon. 

The whole process consists of three steps (see Figure 1). 
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Figure 1: Framework for risk-averse capacity control 

The optimization step aims at improving values for the parameters ࣂ. It passes tentative 

values to the simulation step to estimate their performance. The simulation step in turn 

mimics sales processes using ݊௖௔௟௜௕ independent customer demand streams, each en-

compassing the whole booking horizon. This calibration set is generated in advance 

according to the firm’s belief about future demand. For each demand stream, the control 

mechanism with the current values of ࣂ is applied and a total per-stream revenue is ob-

tained. All per-stream revenues are used to calculate a risk measure, which is passed 

back to the optimization step as an estimate of the ࣂ-values’ performance. Using this 
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new estimate as well as data from previous iterations, a standard (derivative-free) direct 

search optimization technique computes new values of ࣂ. These new values are passed 

to the simulation step again and a new iteration starts. The cycle ends when a predefined 

convergence criterion is satisfied. The final values of the parameters ࣂ are tested in the 

evaluation step. Analogously to the simulation step, the resulting control mechanism is 

applied to ݊௘௩௔௟ demand streams of the evaluation set and various risk measures are 

calculated. The evaluation step is completely analogous to the simulation step, except 

that the evaluation set must obviously be independent from the calibration set. 

The framework described above can be easily tailored to specific applications by chang-

ing two key components that are technically independent from each other: the modified 

capacity control approach and the optimized risk measure. Accordingly, we will identify 

the method used with an abbreviation of the form SBO-[MECHANISM]-

[RISKMEASURE]. In the following, we describe the variants of each of these compo-

nents we consider in this study. Note that, in addition, the SBO technique can also be 

varied, but we do not investigate this rather technical issue and stick to a standard ap-

proach. 

3.2 Risk measures 

In the following, we briefly restate the risk measures used in this study. As customers’ 

arrivals and choices are stochastic, total revenue obtained with a given control mecha-

nism is random and denoted by the random variable ܴ with distribution function 

ሻݕሺܨ ൌ ℙሺܴ ൑  .ሻ. Note that bigger values of ܴ are preferredݕ

One well established way to address risk-aversion is the use of expected utility which 

was introduced by von Neumann and Morgenstern (1944). The main idea behind this 

concept is that decision makers value the same revenue differently due to individual 

preferences. These preferences are encompassed in an utility function ܷ and two ran-

dom revenues, say ܴଵ and ܴଶ, can be compared by the resulting expected utility, where 

ܴଵ is preferred over ܴଶ if ॱሾܷሺܴଵሻሿ ൒ ॱሾܷሺܴଶሻሿ. Following Barz and Waldmann 

(2007), we consider an exponential utility function: 
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 ܷఊሺܴሻ ൌ 1 െ ݁ିఊ⋅ோ	   (5) 

The parameter ߛ indicates the level of risk-aversion. The exponential utility function is 

the most widely used nonlinear utility function (see, e.g., Corner and Corner (1995)). In 

our computational study, we abbreviate this risk measure as Utility(ߛ). 

The second risk-measure we consider, conditional value-at-risk (CVaR), has attracted a 

lot of attention over the last decade. For a given probability level ߙ ∈ ሾ0,1ሿ, the CVaR 

at level ߙ is simply the expectation below the ߙ-quantile of ܨ: 

ఈሺܴሻܴܸܽܥ  ൌ ॱሾܴ|ܴ ൑ ሻሿߙଵሺିܨ    (6) 

CVaR is often described as an advancement of the widely popular Value-at-Risk (VaR) 

to avoid certain theoretical and practical shortcomings of the latter (see, e.g., Artzner et 

al. (1999)). Note that, to be formally precise, the intuitive definition (6) is valid only for 

atomless distributions. As revenues are discrete in capacity control, we use CVaR’s less 

intuitive dual representation (not given here; see, e.g., Pflug and Römisch (2007)) to 

calculate the CVaR. In our computational study, we abbreviate CVaR at level ߙ as 

CVaR(ߙ). 

3.3 Capacity control mechanisms 

In total, we augment three standard control mechanisms for the optimization of arbitrary 

risk measures.  

The first two mechanisms use bid prices ߨ௧௜௖೔ that, in case of a single resource, come 

directly from DP-EV (1) or, in case of multiple resources, from the DP decomposition 

proposed in Liu and van Ryzin (2008). Thus, the bid prices equal or approximate oppor-

tunity cost from the risk-neutral problem. Then, building on Koenig and Meissner 

(2015a) as well as on Huang and Chang (2011), we integrate a constant factor ߠ௜ to ad-

just the bid prices to different levels of risk-aversion.  

Our first mechanism, BPF (“Bid Price control with Factor”), follows a traditional, inde-

pendent demand bid price control approach. Hence, a product ݆ is available for sale if 
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௝ݎ  ൒ ∑ ܽ௜௝ ⋅ ௜ߠ ⋅ ௧ାଵ,௜௖೔ߨ
௠
௜ୀଵ ,   (7) 

where the parameters ࣂ ൌ ሺߠଵ, ,ଶߠ … , ௠ሻ்ߠ ൐ ૙ are determined using SBO as described 

above.  

In the second mechanism, AOF (“Assortment Optimization with Factor”), we adjust the 

bid prices within the exact assortment optimization problem. Compared to (7), this ap-

proach is able to consider more combinations of products. Accordingly, the offer set is 

determined by solving 

 max
࢞
൛∑ ௧௝ሺ࢞ሻ݌ ⋅ ൫ݎ௝ െ ∑ ܽ௜௝ ⋅ ௜ߠ ⋅ ௧ାଵ,௜௖೔ߨ

௠
௜ୀଵ ൯௡

௝ୀଵ ൟ.   (8) 

In order to solve (8) efficiently during our simulation step, we use the greedy algorithm 

of Miranda Bront et al. (2009). Although this approach is heuristic in nature, it is known 

to yield high-quality solutions. Please note that the bid prices (i.e., ߠ௜ ⋅  ௧௜௖೔) used inߨ

these approaches are artificially set to infinity if ܿ௜ ൌ 0. Furthermore, they are state-

dependent with regard to the state definition from the risk-neutral problem and represent 

input parameters to the SBO-algorithm altering the bid price control via the choice of ࣂ.  

For our third approach, BPB (“Bid Price control with Basis functions”), we broadly 

follow Klein (2007) and use state-dependent bid prices in (7). The state-dependency is 

given by a linear model of basis functions:  

௧௜௖೔ߨ  ≔ ௜ߨ
଴ െ ௜ߠ

௖௔௣ ⋅ ௖೔
௖೔
బ ൅ ௜ߠ

௧௜௠௘ ⋅
ሺ்ି௧ାଵሻ

்
   (9) 

with ߨ௧௜௖೔ ൌ ∞ if ܿ௜ ൌ 0. Again, the parameters ࣂ௖௔௣ ൌ ൫ߠଵ
௖௔௣, … , ௠ߠ

௖௔௣൯
்
 and ࣂ௧௜௠௘ ൌ

൫ߠଵ
௧௜௠௘, … , ௠௧௜௠௘൯ߠ

்
 are estimated by SBO. The variables ܿ௜ and ሺܶ െ ݐ ൅ 1ሻ sufficiently 

describe the current booking situation. Note that we normalize these variables to ease 

the calibration. ߨ௜
଴ is our starting bid price coming from a linear approximation of (DP-

EV) such as the well-known deterministic linear program (DLP; see, e.g., Talluri and 

van Ryzin (1998)) or choice-based deterministic linear program (CDLP; see, e.g., 

Gallego et al. (2004) and Gallego et al. (2004); Liu and van Ryzin (2008)). 
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4 Simulation study 

In this section, we illustrate the impact of our approaches for a risk-averse decision 

maker, that is, the improvement in risk measure and, if at all, the associated loss in ex-

pected revenue. We use four examples that are—as usual in the literature—expressed in 

airline terminology. However, the results can be transferred to other areas of applica-

tion. Wherever available, we use standard example networks from literature. 

All algorithms were implemented in MATLAB (Version 8, Release R2014b). Linear 

Programs were solved by the function linprog from the Optimization Toolbox, Mixed-

Integer Linear Programs by CPLEX from IBM ILOG (Version 12.6). In the optimiza-

tion step, we used the function patternserach with standard settings from the Global Op-

timization Toolbox. For each problem instance, the size of the evaluation set is ݊௘௩௔௟ ൌ

10,000. Regarding the three SBO-based approaches presented in the previous section, 

we use a calibration set of ݊௖௔௟௜௕ ൌ 5,000 demand streams. Additional notation intro-

duced in this section is summarized in Table 3. 

 

Single-leg with independent demand 

 ݆ ௧௝  probability of selling product݌

 

Single-leg with choice-based demand 

 ݐ ௧௝  preference weight of product ݆ in periodݒ

 ଴  no-purchase preference weightݒ

Parallel flights and one-hub network with 
choice-based demand 

݈  customer segment 

ࣝ௟  consideration set of segment ݈ 

-௟  arrival probability of a customer from segߣ
ment ݈ 

-௟௝  binary variable indicating whether consideraݖ
tion set ࣝ௟ contains product ݆ 

࢜௟ ൌ ൫ݒ௟௝൯|ࣝ೗|ൈଵ
  preference weights of segment ݈ 

  ௟଴  no-purchase preference weight of segmentݒ

Table 3: Notation introduced in this section 

4.1 Example 1: Small single-leg flight with independent demand 

In our first experiment, we consider the classical single-leg example of Lee and Hersh 

(1993) which was also used by several previous studies on risk-averse capacity control 

(see, e.g., Barz (2007), Barz and Waldmann (2007), and Koenig and Meissner (2015a)). 
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It represents a small single-leg flight with a capacity of ܿ଴ ൌ 10 seats and ݊ ൌ 4 prod-

ucts (booking classes) with revenues ࢘ ൌ ሺ200, 150, 120, 80ሻ். Demand follows the 

independent demand assumption, that is, the selling probabilities ݌௧௝ሺ࢞ሻ are independent 

of ݔ௜, ݅ ് ݆, and given by 

௧௝ሺ࢞ሻ݌  ൌ ቊ
௧௝݌ if	ݔ௝ ൌ 1

0 else
.  (10) 

The booking horizon consists of ܶ ൌ 30 periods and is partitioned into five time inter-

vals, so that higher value demand tends to arrive later in the booking horizon (see Table 

4). 

݆ ௧௝݌ ൌ 1  ݆ ൌ 2  ݆ ൌ 3  ݆ ൌ 4  

ݐ ൌ 1,… ,5  0.08 0.08 0.14 0.14 

ݐ ൌ 6,… ,12  0.06 0.06 0.14 0.14 

ݐ ൌ 13,… ,19  0.10 0.10 0.10 0.10 

ݐ ൌ 20,… ,26  0.14 0.14 0.16 0.16 

ݐ ൌ 27,… ,30  0.15 0.15 0 0 

Table 4: Purchase probabilities in Example 1 

In this subsection, we consider the risk measures CVaR (6) and expected utility with an 

exponential utility function (5). We combine these risk measures with the control mech-

anisms BPF and BPB and, thus, investigate the performance of SBO-BPF-CVaR(ߙ), 

SBO-BPB-CVaR(ߙ), SBO-BPF-Utility(ߛ), and SBO-BPB-Utility(ߛ). Because we assume 

that demand is independent of the offer set, we do not need to consider the capacity con-

trol mechanism AOF. Furthermore, we implemented the following approaches as 

benchmarks: 

 BPF1 is our benchmark. This is the expected revenue-maximizing policy derived 

from (1), that is, using decision rule (4) with ߨ௧ଵ௖ ≔ ௧ܸሺܿሻ െ ௧ܸሺܿ െ 1ሻ.  

 BPF0.8 uses a constant discount factor of 0.8 on the opportunity cost ߨ௧ଵ௖ in line 

with Koenig and Meissner (2015a) and Huang and Chang (2011). 

 DP-CVaR(ߙ) is the CVaR-maximizing policy based on the DP formulation of 

Gönsch and Hassler (2014) and depends on the probability level ߙ. 
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 DP-Utility(ߛ) is the expected utility-optimal policy from Barz and Waldmann 

(2007) and depends on the level of constant absolute risk-aversion ߛ. 

 
Figure 2: CVaR and average utility in Example 1 

In the left (right) part of Figure 2, we consider a CVaR- (utility-) maximizing decision 

maker and depict the CVaR (utility) relative to that of our benchmark, the expected-

value optimal policy from BPF1. We calculated and evaluated all policies for ߙ ൌ

0.1, 0.15,… , ߛ) 1 ൌ 1 ⋅ 10ିଷ, … ,10 ⋅ 10ିଷ). Taking a look at the left part of Figure 2, 

not surprisingly, the DP-based approach DP-CVaR(ߙ) performs best for all values of ߙ. 

For ߙ ൏ 0.6, all control mechanisms, even DP-Utility(0.003), considerably improve 

CVaR in comparison to ܨܲܤଵ. A constant discount on opportunity cost (ܨܲܤ଴.଼), as 

suggested in previous literature, seems to work very well for ߙ ∈ ሾ0.2, 0.4ሿ but the re-

sults quickly worsen for other values of ߙ. Our simulation-based approach SBO-BPF-

CVaR(ߙ) is—after DP-CVaR(ߙ)—the second best control mechanism for all values of 

 .ߙ ଵ determined by the SBO monotonically increase from 0.4 to 1 inߠ The factors .ߙ

This shows the good performance of the intuitively appealing concept of discounts on 

opportunity cost, which leads to more accepted requests as risk-aversion increases. 

Moreover, the fact that SBO-BPF-CVaR(ߙ) is able to reclaim most of the difference in 
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CVaR between BPF0.8 and DP-CVaR(ߙ)—which is applicable only in single-leg set-

tings due to its inherent DP formulation—is encouraging and underlines the perfor-

mance of the more general SBO approach. However, SBO-BPB-CVaR(ߙ) and DP-

Utility(0.003) yield a poorer performance in this example. This is due to the fact that 

the linear basis functions of SBO-BPB-CVaR(ߙ) are not able to fully capture the mono-

tonicity of the opportunity cost of the expected revenue-maximizing value function (or, 

equivalently, the concavity of the value function). Therefore, given such a setting, using 

a simple discount on opportunity cost is advised. Regarding DP-Utility(0.003), the 

poorer performance is not surprising as the corresponding policy is optimized in respect 

to a different risk measure.  

Now, please consider the upper right part of Figure 2. The upper bound on average rela-

tive utility is given by the exact DP-based approach DP-Utility(ߛ) of Barz and Wald-

mann (2007). Because the differences in relative average utility between the different 

control mechanisms are quite small, we chose to limit the range of values to a small 

interval, thus excluding BPF0.8 from the figure due to a poorer performance. SBO-BPF-

Utility(ߛ) works fine for maximizing utility, as the results are nearly identical to DP-

Utility(ߛ). The factors ߠଵ are again discounts that range from 0.67 to 0.9 and decrease 

with increasing risk-aversion ߛ. Similar to the optimization of CVaR, the results of 

SBO-BPB-Utility(ߛ) are slightly worse. However, all control mechanisms, including 

BPF1, show practically identical results for ߛ ൒ 0.007.  

On the lower right part of Figure 2, we compare average revenue and standard deviation 

for ߛ ∈ ሼ0.003, 0.007, 0.01ሽ. Obviously, higher values of ߛ lead to a smaller average 

revenue but also a smaller standard deviation of revenues, yielding some kind of effi-

cient frontier. This shows that although the differences in relative utility are often negli-

gible, the approaches lead to different policies. 

4.2 Example 2: Single-leg flight with choice-based demand 

In the remainder of the paper, we assume customer choice behavior. Hence, our main 

benchmark mechanism is AOF1 with its near-optimal policy regarding expected revenue 
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and—unless stated otherwise—all results are given relative to this benchmark. Moreo-

ver, we now focus on the optimization of CVaR. We consider all three SBO-based 

mechanisms and additionally state the results of BPFଵ. Please note that DP-CVaR(ߙ) is 

not tractable for the following examples. 

Unfortunately, we are not aware of an established choice-based single-leg setting from 

the literature for capacity control. There are only a few settings complementing analyti-

cal results. For example, Talluri and van Ryzin (2004a) use a simple example to illus-

trate demand estimation by an expectation-maximization algorithm and as a proof of 

concept for their DP formulation. However, in their example, capacity is not scarce (i.e., 

opportunity cost equals zero) and the authors only have to solve the same assortment 

optimization problem over time. Nonetheless, the following example is structurally sim-

ilar. 

In this subsection, we consider a single-leg flight with a capacity of ܿ଴ ൌ 50, four prod-

ucts with revenues ࢘ ൌ ሺ1000, 800, 600, 400ሻ் and ܶ ൌ 110 periods. Demand follows 

a multinomial logit model. Thus, the purchase probabilities ݌௧௝ሺ࢞ሻ depend on product-

specific preference weights ݒ௧௝ as well as the no-purchase preference weight ݒ଴ ൌ 1 and 

are given by  

௧௝ሺ࢞ሻ݌  ൌ
௩೟ೕ⋅௫ೕ

ଵା∑ ௩೟ೖ⋅௫ೖ
೙
ೖసభ

 .   (11) 

We consider two variants regarding the distribution of demand over time. In the first 

variant, the purchase probabilities are time-homogenous. In the second variant, higher 

value demand tends to arrive later in the booking horizon. We call these settings time-

homogenous and low-before-high, respectively. The corresponding values of ݒ௧௝ are 

given in Table 5. The 10ିହ values in the second demand variant lead to virtually no de-

mand for the corresponding products, but due to some technicalities, the weights must 

be strictly positive (also this is often not explicitly stated in the literature). 
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݆  ௧௝ݒ ൌ 1  ݆ ൌ 2 ݆ ൌ 3 ݆ ൌ 4 

time-homogenous 

ݐ ൌ 1,… ,110   0.05 0.1 0.5 0.6 

low-before-high 

ݐ ൌ 1,… ,80   10ିହ 0.2 0.6 0.8 

ݐ ൌ 81,… ,110   0.2 0.3 10ିହ 10ିହ 

Table 5: Preference weights in Example 2 

Figure 3 shows the CVaR of all control mechanisms relative to ܨܱܣଵ. Note that the 

spread of relative CVaR is higher in the low-before-high-setting. This reflects a well-

known effect of capacity control, namely that the decision problem becomes more chal-

lenging when demand tends to arrive in low-before-high order. 

Naturally, SBO-AOF-CVaR(ߙ) performs best and, in both examples, with small benefits 

over SBO-BPB-CVaR(ߙ) as well as larger benefits over SBO-BPF-CVaR(ߙ). Interest-

ingly, even the standard bid price control BPFଵ is often competitive and yields a higher 

CVaR than AOF1 for low levels of ߙ because more low value products are offered for 

sale. However, for medium and high values of ߙ, there are severe losses in CVaR. With 

SBO, these losses can be successfully reduced.  

Regarding ߠଵ, we observe values of 0.45 to 1 for SBO-AOF-CVaR(ߙ) that are increasing 

in ߙ and which represent discounts on the opportunity cost analogously to Example 1. 

Regarding SBO-BPF-CVaR(ߙ), ߠଵ ranges from 0.85 to 1.87 and also increases with ߙ. 

This reflects that with a bid price control, there is a trade-off between a discount on the 

opportunity cost to allow for risk-aversion and a markup to prohibit buy-down behavior. 

This effect is better captured by the state-dependent bid prices of SBO-BPB-CVaR(ߙ) in 

comparison with SBO-BPF-CVaR(ߙ), which uses a constant markup over the whole 

booking horizon. In a risk-neutral setting, increased bid prices to induce higher value 

demand were, for example, also observed in Meissner and Strauss (2012a). 
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Figure 3: CVaR in Example 2 

We now delve deeper into the opportunities and threats that accompany risk-averse ca-

pacity control. For all SBO-based mechanisms and three selected values of ߙ, the upper 

part of Figure 4 shows the absolute gains in CVaR compared to the absolute gains in 

average revenue. Please note that the gains in CVaR are subject to the specific level of 

risk-aversion ߙ and, thus, need to be treated with caution. A higher gain in CVaR usual-

ly leads to a bigger loss in expected revenue. For example, in low-before-high, improv-

ing the CVaR଴.ସ by around 250 costs 500 in average revenue (see the upper right part of 

Figure 4). The lower part of Figure 4 compares the sampled distribution of total reve-

nues of SBO-AOF-CVaR(0.4) and AOF1 over the evaluation streams. In line with the 

results from the optimization of utility in Example 1, risk-averse capacity controls leads 

to a smaller support of the distribution and shorter tails. In other words, extreme out-

comes are less likely. 
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Figure 4: CVaR vs. expected value and revenue distribution in Example 2 

4.3 Example 3: Parallel flights with choice-based demand 

Our third example is based on the parallel flight network of Miranda Bront et al. (2009). 

It consists of three flights with two products defined on each flight, that is, one low-

class and one high-class product. In this example, we additionally investigate the impact 

of different capacity provision on the risk-profile: First, we consider an initial capacity 

of ࢉ଴ ൌ ሺ27, 45, 36ሻ் and, second, an initial capacity of ࢉ଴ ൌ ሺ21, 35, 28ሻ். Demand 

follows a mixture of multinomial logit models. More precisely, customers belong to 

different market segments ݈ ൌ 1,… ,4, each of which has a subset of products to consid-

er for purchase, namely the consideration set ࣝ௟. The variable ݖ௟௝ indicates whether 

product ݆ ∈ ࣝ௟ (ݖ௟௝ ൌ 1) or not (ݖ௟௝ ൌ 0). A customer from segment ݈ arrives with prob-

ability ߣ௟ and has preference weights ࢜௟ ൌ ൫ݒ௟௝൯|ࣝ೗|ൈଵ
 as well as ݒ௟଴ for the no-purchase 

alternative. Note that ݒ௟௝ is only defined if ݖ௟௝ ൌ 1. Demand is time-homogenous over 

the booking horizon of ܶ ൌ 300 periods. Then, the probability of selling product ݆ in 

period ݐ is given by  

௧௝ሺ࢞ሻ݌  ൌ ∑ ௟ߣ ⋅
ସ
௟ୀଵ

௩೗ೕ⋅௭೗ೕ⋅௫ೕ
௩೗బା∑ ௩೗ೖ⋅௭೗ೖ⋅௫ೖ

೙
ೖసభ

.   (12) 
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The remaining data is summarized in Table 6 in Appendix A. The corresponding rela-

tive CVaRs are shown in Figure 5. Similar to the previous example, the absolute CVaR 

gains vs. absolute expected revenue gains and the sampled distribution of total revenues 

for ߙ ൌ 0.4 are illustrated in Figure 6.  

In the following, we summarize the key observations complementing the former results. 

First, comparing the results for the two initial capacities, we see that only minor varia-

tions of the setting can lead to large differences in the risk profile. Second, there are 

settings, such as the first initial capacity, where the consideration of risk-aversion is 

more or less negligible. Given such a setting, the better the expected revenue of a policy 

is, the better is its CVaR for almost all levels ߙ and vice versa. More precisely, optimiz-

ing one can also increase the other and it suffices to optimize expected revenue. Third, 

standard bid price controls such as BPF1 can perform quite poorly when considering 

customer choice behavior (second initial capacity) and SBO can successfully address 

this. In this instance, SBO-BPF-CVaR(ߙ) uses factors ߠ௜ of up to 3.97 and outperforms 

the other approaches. It is usually even better than the near-exact assortment optimiza-

tion in AOF1. For example, the gain of SBO-AOF-CVaR(1) in expected revenue over 

AOF1 is almost 1%. This remarkable result can only be explained with the fact that all 

approaches, including ܨܱܣଵ, use approximate bid prices from a DP decomposition in-

stead of the exact opportunity cost from the intractable DP formulation. 
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Figure 5: CVaR in Example 3 

 

 
Figure 6: CVaR vs. expected value and revenue distribution in Example 3 
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4.4 Example 4: One hub-network with choice-based demand 

The last example is based on an airline network structure from Meissner and Strauss 

(2012b) with one hub H connecting two non-hub cities A and B with four flight legs 

(see Figure 7). There are six itineraries (A to H, A to B via H, H to B, B to H, B to A via 

H, and H to A). For each itinerary, one high-class and one low-class product are availa-

ble. The demand behavior is the same as in the parallel flight example. For each itiner-

ary, there is one customer segment with a higher preference for the low-class product. A 

detailed description of products (revenues ݎ௝ and capacity consumptions ࢇ௝) and seg-

ments (consideration sets ࣝ௟, preference weights ࢜௟, no-purchase preference weights 

 .௟) can be found in Table 7 in Appendix Aߣ ௟଴, and segment probabilitiesݒ

 
Figure 7: One-hub network of Example 4 

We assume an initial capacity ܿ௛
଴ ൌ 15 (ܿ௛

଴ ൌ 60) for all ݄ and a booking horizon length 

ܶ ൌ 300 (ܶ ൌ 1200). The corresponding relative CVaRs are shown in Figure 8. 

In general, the observations confirm the results of the previous examples. However, it is 

remarkable that large gains in CVaR and expected revenue in settings with connecting 

flights are possible. This is because AOF1 decomposes the network by flights and, ap-

parently, this does not sufficiently capture the network effects. SBO is able to remedy 

this shortcoming and, thus, all three SBO-based approaches perform quite well. Com-

paring the two initial capacities shows that the differences between all mechanisms de-

cline as we scale up the size of the network. 
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Figure 8: CVaR in Example 4 

5 Discussion 

After analyzing the numerical results in detail in the previous section, we now take a 

broader perspective and discuss the relevance of our work. 

First, the relevance of risk-aversion in revenue management—and particularly network 

revenue management—is the foundation of this paper, although risk-neutrality has been 

taken for granted for a long time in the literature. One reason is probably that risk-

neutrality leads to mathematically simpler models. However, many people who are new 

to revenue management consider this assumption counter-intuitive and many industry 

partners question it at first. 

Lancaster (2003) was the first to raise the issue of risk in revenue management. He 

pointed out that airlines, like all businesses, face risks which should be managed appro-

priately. By contrast, he observes that revenue management considers only the reward 

side, that is, increasing expected revenue and completely ignores the risks assumed in 

doing so. Despite this early work, most authors cite experiences from practice to show 
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the relevance of risk-aversion. For example, smaller airlines asked a consultant about 

risk-averse capacity control (see Weatherford (2004)). Two other examples are due to 

Levin et al. (2008). Event promoters may organize only a few large events per year in 

locations that are very expensive to rent. Accordingly, their first priority is to recover 

this fixed cost (see Levin et al. (2008)). In other industries, a manager’s primary con-

cern is often to provide stable results because negative news can lead to negative stock 

market assessments that can far outweigh the marginal revenue advantages of a risk-

neutral policy. 

In contrast to the above-mentioned rather small businesses, many companies have a 

large number of similar events. Thus, the law of large numbers ensures that the average 

revenue of each event is maximized and also quite stable when using a risk-neutral 

model that focuses on the expected revenue. For example, network airlines have hun-

dreds, major ones even several thousands of take-offs every day. Although risk-

neutrality may be appropriate for these companies as a whole, it may not be appropriate 

for every department and individual decision maker, leading to missing acceptance of 

risk-neutral revenue management systems. For example, a consultant’s clients were not 

comfortable with their risk-neutral revenue management system (see Barz (2007)). They 

manually altered the forecast to obtain less aggressive (and risky) results. Singh (2011) 

observed that analysts’ individual risk-aversion has a huge impact on their decisions 

when overwriting a revenue management system’s output at a cruise line company. He 

attributes this behavior largely to their personality because they made decisions about 

exactly the same issues and possessed identical information. 

Second, we would like to point out that, regarding the company as a whole, the need to 

incorporate risk-aversion declines with the network size due to compensatory effects. 

However, our examples showed that there are also bigger settings where risk-aversion is 

relevant in the sense that a risk-averse solution differs from a risk-neutral one. For this 

purpose, we used established examples from literature both for single-leg and network 

capacity control with mid-sized capacity. In our opinion, these networks serve as a good 

representation of the sub-networks that individual decision makers may control. None-
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theless, it would be worthy of future research to investigate the impact of risk-averse 

control mechanisms in large-scale problem instances from practice. 

Third, our results show that we were able to sufficiently address customer choice behav-

ior in most cases by using bid price rules instead of solving the exact assortment optimi-

zation problem. This is in line with the literature on the optimization of expected reve-

nue: Chaneton and Vulcano (2011) and Meissner and Strauss (2012a) make similar ob-

servations. But, despite of their widespread use, bid price controls can sometimes yield 

a comparatively poor performance. This may be due to the fact that bid price controls 

are not always able to represent the optimal policy in networks, especially if customer 

choice is considered (see, e.g., Talluri and van Ryzin (1998)). By contrast, the solution 

of the assortment optimization problem is able to represent all decision options. Thus, 

SBO-AOF-CVaR(ߙ) performs slightly better than the bid price controls. Nonetheless, 

our results indicate that SBP-BPF-CVaR(ߙ) and SBO-BPB-CVaR(ߙ) perform very well 

and, thus, explain the favoritism of bid price controls in practice due to the trade-off 

between solution quality and simplicity.  

To summarize the discussion so far, the overall framework works quite well because 

arbitrary controls may be designed and optimized regarding a certain risk measure. We 

focused on enhancing existing control mechanisms with risk-averse components, since 

commercial revenue management systems are fixed in the long run. Given a control 

mechanism, our framework always improves the results of the original control. 

Finally, the framework presented can also be used to capture risk-aversion in dynamic 

pricing, where a firm decides on the products’ prices instead of their availability. Thus, 

instead of the assortment optimization problem (3), the firm has to solve a pricing prob-

lem in each period to determine the products’ prices. As in capacity control, the value of 

future sales is reflected by opportunity cost which is often approximated by bid prices. 

Therefore, our framework can be easily applied to risk-averse dynamic pricing because 

the bid prices can be modified via tunable parameters that capture risk-aversion. More-

over, if continuous prices are allowed, the pricing problem can be solved analytically 

for many demand models and, thus, much faster than the assortment optimization prob-
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lem we consider. This could allow the SBO to perform more simulation runs, possibly 

leading to even better results. 

6 Conclusion 

We presented a flexible and modular framework for risk-averse capacity control that 

offers several advantages compared to existing approaches. First, the practical decision 

rules we consider can be implemented easily in existing operational systems because 

they build on well-established standard risk-neutral control mechanisms. Second, using 

SBO, the control mechanisms can be tailored to every risk measure. Third, because 

SBO-algorithms are meanwhile widely available in standard software, the only prereq-

uisite for using this model-free framework is being able to undertake Monte-Carlo simu-

lations of the arrival process and choice behavior of customers. There is no need for a 

DP formulation of the decision problem, which is prohibitive for most risk measures, or 

an explicit model of customer behavior. 

For demonstration purposes, we conducted a simulation study with the widely used 

multinomial logit model, but our approach admits the use of any other choice model. 

Based on CVaR and expected utility, we showed that small and intuitive modifications 

in standard control mechanisms, if designed properly, can be sufficient to successfully 

incorporate risk-aversion into capacity control, including network settings and customer 

choice. This usually leads to a narrower distribution of revenues in comparison to stand-

ard controls as well as more predictable and stable revenues.  
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Appendix 

 Product and segment data in Example 3 and 4 

Regarding Example 3 (parallel flights) and Example 4 (one hub), Table 6 and Table 7 

summarize the remaining product and segment data. 

Products  Segments 

 ௟ߣ ௟଴ݒ ௝  ݈ ࣝ௟ ࢜௟ݎ ௝ࢇ  ݆
1 ሺ1, 0, 0ሻ் 400  1 ሼ2, 4, 6ሽ ሺ5, 10, 1ሻ்  1 0.1 

2 ሺ1, 0, 0ሻ் 800  2 ሼ1, 3, 5ሽ ሺ5, 1, 10ሻ்  5 0.15 

3 ሺ0, 1, 0ሻ் 500  3 ሼ1, 2, 3, 4, 5, 6ሽ ሺ10, 8, 6, 4, 3, 1ሻ்  5 0.2 

4 ሺ0, 1, 0ሻ் 1000  4 ሼ1, 2, 3, 4, 5, 6ሽ ሺ8, 10, 4, 6, 1, 3ሻ் 1 0.05 

5 ሺ0, 0, 1ሻ் 300       

6 ሺ0, 0, 1ሻ் 600       

Table 6: Product and segment description in Example 3 

 
Products  Segments 

 ௟ߣ ௟଴ݒ ௝  ݈  ࣝ௟ ࢜௟ݎ ௝ࢇ ݆
1 ሺ1, 0, 0, 0ሻ் 300  1 ሼ1,2ሽ ሺ0.5, 2ሻ் 1 0.1 

2 ሺ1, 0, 0, 0ሻ் 150  2 ሼ3,4ሽ ሺ0.5, 2ሻ் 1 0.06 

3 ሺ1, 1, 0, 0ሻ் 600  3 ሼ5,6ሽ ሺ0.5, 2ሻ் 1 0.1 

4 ሺ1, 1, 0, 0ሻ் 300  4 ሼ7,8ሽ ሺ0.5, 2ሻ் 1 0.1 

5 ሺ0, 1, 0, 0ሻ் 350  5 ሼ9,10ሽ ሺ0.5, 2ሻ் 1 0.09 

6 ሺ0, 1, 0, 0ሻ் 175  6 ሼ11,12ሽ ሺ0.5, 2ሻ் 1 0.07 

7 ሺ0, 0, 1, 0ሻ் 300       

8 ሺ0, 0, 1, 0ሻ் 150       

9 ሺ0, 0, 1, 1ሻ் 500       

10 ሺ0, 0, 1, 1ሻ் 250       

11 ሺ0, 0, 0, 1ሻ் 250       

12 ሺ0, 0, 0, 1ሻ் 125       

Table 7: Product and segment description in Example 4 
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III Fazit und Ausblick 

Gegenstand der vorliegenden Dissertationsschrift war die (heuristische) Lösung praxis-

relevanter Entscheidungsprobleme im Revenue Management. Ein konkreter Anwen-

dungsfall bestand zum einen in der Berücksichtigung nachfrageseitiger Substitution in 

Form von Kundenwahlverhalten (vgl. Beiträge B1, B2 und B5). Dies wirkt sich im 

Vergleich zum klassischen Revenue Management vor allem auf die Komplexität des 

Entscheidungsproblems, das in jedem Zustand des zugrundeliegenden dynamischen 

Optimierungsproblems zu lösen ist, aus. Zum anderen wurden mit der Berücksichtigung 

anbieterseitiger Substitution (vgl. Beiträge B2, B3 und B4) sowie der Annahme eines 

risikoaversen Entscheiders (vgl. Beitrag B5) zwei Anwendungsfälle betrachtet, bei de-

nen sich die grundlegende Definition des Zustandsraums ändert, so dass Standardme-

thoden des Revenue Managements nicht ohne Weiteres verwendet werden konnten. 

Methodisch lag der Fokus deshalb vor allem auf der Untersuchung simulationsbasierter 

approximativer, dynamischer Optimierung im engeren Sinne (vgl. Beitrag B1) sowie 

simulationsbasierter Optimierung zur Verbesserung existierender Standardmethoden 

(vgl. Beiträge B3 und B5). In beiden Fällen werden – im Gegensatz zu den in der Lite-

ratur verbreiteten, überwiegend analytisch motivierten Ansätzen – Simulationspfade der 

echten Nachfrage verwendet, um im Laufe von Iterationen eine gute Politik zu lernen. 

Ein wesentlicher Vorteil eines solchen Vorgehens ist, dass die Bestimmung einer guten 

Politik unter Zuhilfenahme von Standardsoftware erfolgen kann. Sowohl Solver für 

Kleinste-Quadrate-Probleme, wie sie bei der Schätzung von Approximationen einer 

Wertfunktion zum Einsatz kamen, als auch Metaheuristiken zur Kalibrierung weniger 

Parameter im Rahmen einer simulationsbasierten Optimierung sind bereits vielfach in 

Software zur Entscheidungsunterstützung integriert. In Rahmen dieser Dissertations-

schrift wurde dabei auf in MATLAB verfügbare Routinen sowie auf CPLEX von IBM 

ILOG zurückgegriffen. 

Ein zweiter, entscheidender Vorteil ist, dass vergleichsweise wenige Annahmen bzgl. 

des Kundenwahlverhaltens getroffen werden müssen. Während in der Literatur zum 
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Revenue Management aufgrund seiner einfachen Handhabbarkeit nahezu ausschließlich 

das MNL-Modell untersucht wird, erfordern die vorgeschlagenen Methoden lediglich 

die Verfügbarkeit von Simulationspfaden (vgl. Powell (2011), Kap. 4.2.3), die bspw. 

mittels Monte-Carlo-Simulation erzeugt (vgl. Domschke et al. (2015), Kap. 10.1.1) für 

eine Einführung in Monte-Carlo-Simulation) oder Realweltdaten in Form historischer 

Buchungen sein können. Damit können auch fortgeschrittene Formen von Kundenwahl-

verhalten untersucht werden, bspw. falls Kunden komplexere Optimierungsprobleme 

zur Produktauswahl lösen (vgl. Mayer und Steinhardt (2016)) oder heuristische Ent-

scheidungsregeln befolgen (vgl. Gigerenzer und Gaissmaier (2011)). 

Insgesamt konnte gezeigt werden, dass sämtliche vorgeschlagenen Lösungsmethoden 

für viele der in der Literatur existierenden Standard-Probleminstanzen statistisch signi-

fikant höhere durchschnittliche Erlöse liefern. In diesem Zusammenhang sei erwähnt, 

dass im Revenue Management bereits kleine Erlössteigerungen aufgrund ihrer Hebel-

wirkung einen erheblichen Einfluss auf das Gesamtergebnis des Unternehmens haben.  

Zudem wurden in dieser Dissertationsschrift einige Ansätze zu einer besseren Ausnut-

zung der zeitlichen Flexibilität, wie sie häufig mit flexiblen Produkten und Upgrades 

einhergeht, aufgezeigt. Dennoch steht die Forschung zu (weiteren Formen) anbietersei-

tiger Substitution immer noch am Anfang. Es ist wohl weiterhin mit dem Verkauf inno-

vativer Produkte in der Praxis und in Folge mit der Untersuchung der Vorteilhaftigkeit 

dieser Produkte in der Forschung zu rechnen. Beispielsweise ist ein vermehrter Einsatz 

kostenpflichtiger Upsells anstelle kostenloser Upgrades zu beobachten. Anbieter von 

Software-Lösungen finden sich unter anderem in der Passagierluftfahrt und der Hotelle-

rie, bspw. Optiontown (www.optiontown.com) und nor1 (www.nor1.com). Ähnlich wie 

bei flexiblen Produkten und Upgrades lassen sich vermutlich auch Entscheidungsprob-

leme des Revenue Managements bei Berücksichtigung solcher Upsells nicht mehr über 

einen rein ressourcenbasierten Zustandsraum beschreiben. Da für derartige, vergleichs-

weise komplexe Problemstellungen ein Einsatz herkömmlicher, analytisch motivierter 

Methoden fraglich erscheint, liegen Anpassungen und Weiterentwicklungen der in die-

ser Dissertationsschrift vorgeschlagenen Lösungsmethoden nahe.   
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