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I Introduction 

Digitalization and globalization are the two main drivers of the increment in the level of 

connectedness in today’s global systems (Helbing 2013; Gimpel and Röglinger 2015). Despite 

the promising socio-economic benefits and opportunities of high connectivity between 

systems, these global systems are vulnerable to failure (Helbing 2013). In March 2011, an 

earthquake in Tohoku, Japan affected Toyota’s production system for more than three months, 

while some of its production lines were affected for up to six months (Matsuo 2015). This 

disruption happened to Toyota because Denso - a supplier of Toyota - could not comply with 

Toyota’s demand for automotive microcontroller units manufactured by Renesas Electronics 

which was located at Tohoku (Matsuo 2015). The disruption therefore was due to a tier two 

supplier of Toyota having lost their facilities in the area affected by the earthquake. 

The earthquake in Tohoku in 2011, the flood crisis in Thailand in 2011, the cloud computing 

strike outage in Dublin in 2011, the global financial crisis of 2007-2009, and the electrical 

blackout in Italy in 2003 are only a few examples of recent disruptive events that created 

systemic risk and caused costly system disruptions (Hall 2004; Chopra and Sodhi 2014; Matsuo 

2015; Acharya et al. 2010; Buldyrev et al. 2010; Keller and König 2014; Miller 2011). There 

are many types of disruptive events (e.g. natural disasters, financial crashes, food shortages, 

organized crime, or cyberwar), that can bring along systemic risk on a global scale (Helbing 

2013). While systemic risk is a fundamental concept in the analysis of financial systems (Bandt 

and Hartmann 2000) it is becoming increasingly important in analyzing other systems as well. 

For instance, the concept of systemic risk can be applied to analyze today’s supply chain 

networks which consist of inter-tier connections, cycles and feedback loops with rather network 

structures than chains (Ledwoch et al. 2016). Analyzing health systems, financial systems, 

supply chain networks, or information systems reveals that most of these systems are subject 

to systemic risk due to their complex network structures (Helbing 2013; Acemoglu et al. 2015). 

Complex network structures “are graphs with non-trivial topological features; they display 

patterns of connectivity between their elements that are neither purely regular nor purely 

random” (Vrabič et al. 2012). 

Systemic risk is “the threat that individual failures, accidents, or disruptions present to a system 

through the process of contagion.” (Centeno et al. 2015). Systemic risk is not only the risk of 

isolated, independent failure, but the emerging risk due to the cascading effect of a failure 

within the interconnected systems (Helbing 2013). Such cascading effects (also called domino 
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effects) have an impact on the system’s performance and can lead to a system crisis (Ellinas et 

al. 2016; Acemoglu et al. 2015). The potential severity of such system crises emphasizes the 

importance of the assessment of systemic risk (Cetina et al. 2016; Helbing 2013). 

Considering the assessment of systemic risk in complex network structures, information 

technology (IT) is, in metaphorical terms, a man wearing two hats (cf. Figure 1). On the one 

hand, today’s large and complex IT project portfolios (ITPP) are subject to systemic risk 

(Zhang 2016; Wolf 2015; Ellinas et al. 2016), which turns IT (projects) into a challenge for 

organizations. On the other hand, organizations that handle the challenges of IT can profit from 

IT solutions in the assessment of systemic risk of their underlying systems (in Research Paper 

3, their supply chain network). It should be noted that Fridgen (2010) introduced a similar 

approach and regarded two different roles of IT in his work. The work of Fridgen (2010) 

accounts for IT as an enabler of risk/return management and also assesses the associated risk 

of IT outsourcing projects (see also Buhl et al. (2009), Fridgen (2009), Fridgen and Müller 

(2009), and Buhl and Fridgen (2011)). However, he did not account for systemic risk and did 

not provide solutions for the assessment of systemic risk. This doctoral thesis especially regards 

the assessment of systemic risk in complex network structures and accounts for the role of IT, 

alongside.  

 

Figure 1. IT as a challenge and a chance for organizations1

Many system disruptions in the digital world result from the lack of comprehensive 

understanding of the network structure of these systems (Helbing 2013). To avoid costly 

system disruptions, it is important to invest in systemic risk assessment solutions which enable  

better understanding of individual components of these systems, as well as the dependencies 

between these systems (Ackermann et al. 2007; Helbing 2013; Zhang 2016).  

                                            
1 Inspired by Fridgen (2010) 
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A network interpretation of the complex structure of systems allows for the development of 

solutions to gain a deeper understanding of individual components and the dependence 

structures of the systems. These solutions can utilize as established methods either centrality 

measures (Wasserman and Faust 2009; Newman 2013) or probabilistic graphical models 

(Killen and Kjaer 2012). On the one hand, centrality measures are suitable approaches for 

quantitatively analyzing the patterns of dependencies in networks and capturing specific 

features of its nodes (Newman 2013; Freeman 1977; Wasserman and Faust 2009). Examples 

of commonly used centrality measures in the assessment of systemic risk are betweenness 

centrality and alpha centrality (Kim et al. 2011; Wolf 2015; Bonacich and Lloyd 2001). On the 

other hand, probabilistic graphical models are suitable for dealing with the uncertainty and 

complexity of systems (Jordan 1999). Considering various probabilistic graphical models, 

Bayesian network modeling is identified a well-established method for systemic risk analysis 

(Khakzad et al. 2013).  

Application of centrality measures or Bayesian network modeling for systemic risk assessment 

presupposes knowing the network structure (adjacency matrix) of the systems beforehand. 

Considering individual components of the systems as nodes and the dependencies between the 

nodes as edges result in the adjacency matrix of a system. However, retrieving all the 

information that composes the network structure, especially in global systems such as supply 

chain networks, is not a trivial task (Kim et al. 2011). IT can enable both the retrievement of 

information on the network structure of these systems and the aggregation (Kerschbaum et al. 

2011; Helbing 2013) for utilizing and applying the aforementioned methods in the assessment 

of systemic risk. The development of suitable IT solutions requires data-driven solutions and 

close collaboration between real-life techno-socio-economic-environmental systems (Helbing 

2013). These IT solutions support decision makers in better assessment of systemic risk, e.g., 

in forecasting the dissemination and the effects of failures, or quantifying estimated overall 

damage (Mertens and Barbian 2015).  

IT solutions can support organizations in collecting the required information and assessing 

systemic risk. However, in many systems - and especially in supply chain networks – a further 

challenge arises, since, due to the lack of trust and fear of losing their competitive advantages, 

many organizations are unwilling to disclose or share information of their underlying business 

network (Kerschbaum et al. 2011; Blackhurst et al. 2005). This results in a scarcity of real-time 

data on supply chain networks, which poses a major problem for adequate risk assessment in 
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supply chain networks using on the aforementioned methods (Wolfgang et al. 2008; Kim et al. 

2011; Blackhurst et al. 2005). The application of cryptography approaches (e.g. secure 

multiparty computation (Yao 1986)) in systemic risk assessment methods can improve the 

applicability of these methods. Solutions developed based on these approaches can enable the 

assessment of systemic risk with privacy preserving information sharing between 

organizations. These privacy preserving approaches reduce the risk of losing the competitive 

advantage by sharing information. In summary, IT provides a chance for organizations to 

proactively assess the systemic risk and to reduce privacy concerns coming along with its 

application (Helbing 2013).  

The development of suitable IT solutions for the assessment of systemic risk in global networks 

is one of the grand challenges of IT in the next years (Mertens and Barbian 2015; GI 2014). 

Digitalization intensifies the challenge and forces organizations to develop innovative IT 

solutions to sustain their competitiveness (Nguyen and Mutum 2012; Urbach and Ahlemann 

2016). In 2017, the worldwide IT spending is expected to reach $3.5 trillion, which includes 

7.2 percent growth in software spending to a total of $357 billion (van der Meulen 2016). Such 

growth implies an increasing number of IT projects within organizations and a growing 

proportion of their budget being allocated to those IT projects (Cha et al. 2009; Dahlberg et al. 

2015).  

However, an average cost overrun of 200%, an average schedule overrun of 70% by one out of 

six IT projects (Flyvbjerg and Budzier 2011), and a failure rate of 19% (Hastie and Wojewoda 

2015) emphasize the complexity of successfully managing IT (projects). Furthermore, 

organizations often execute IT projects in an IT project portfolio (ITPP) (Bathallath et al. 

2016a). In these ITPPs, the failure of a single IT project can cascade and cause severe value 

disruptions within the ITPP and its connected systems (Nelson 2007; Helbing 2013). Therefore, 

organizations need to invest in the assessment of systemic risk of IT projects and ITPPs to be 

able to proactively manage their associated risks (Zhang 2016; Bathallath et al. 2016b; Carlo 

et al. 2008).  

To assess the systemic risk within ITPPs it is important to consider both its individual 

components (e.g. IT projects) and the dependencies between these components. Extensive 

information systems publications consider dependencies to be an important feature of many IT 

projects (Aaker and Tyebjee 1978; Santhanam and Kyparisis 1996; Lee and Kim 2001; 

Bardhan et al. 2004; Eilat et al. 2006; Kundisch and Meier 2011; Buhl 2012; Meier et al. 2016). 
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Dependency is the relationship between two IT projects, by which the state (e.g. success or 

failure) of one IT project is correlated or influenced by the state of another (Rinaldi et al. 2001; 

Cho 2010; Fridgen and Müller 2011). Dependencies between IT projects thus bear the risk that 

an IT project’s success being affected by one or more of its dependent IT projects or by the 

availability of its required resources (Buhl 2012). For example, the delay of an IT project is 

often caused by the delay of its predecessor IT project (Buhl 2012). On the other hand, 

dependencies between IT projects may also lead to higher value creation. For example, an IT 

infrastructure project, which as a standalone project might not create high value, could enable 

another IT project, so that their completion leads to significant value creation for the 

organization (Bardhan et al. 2004). Resource dependencies and technical dependencies are 

common categories of dependencies between IT projects (Aaker and Tyebjee 1978; Bardhan 

et al. 2004; Lee and Kim 2001; Wehrmann et al. 2006; Lee 2008; Fridgen et al. 2015). When 

considering time as a component in analyzing dependencies, IT projects can be classified as 

inter- or intratemporally dependent (Zimmermann 2008; Embrechts et al. 2009; Meier and 

Zimmermann 2015). Dependencies between IT projects can be hard (negative), when an IT 

project is prerequisite to another, soft (positive), when an IT project enhances another, or soft 

(negative), when two IT projects cannibalize each other (Bardhan et al. 2004; Angelou and 

Economides 2008).  

The challenge in the assessment of systemic risk in ITPPs is to develop a comprehensive 

network modelling approach that allows for the integration of the different categories of 

dependencies. There are first approaches towards the modelling of ITPPs as networks (Wolf 

2015; Bathallath et al. 2016a); however, these approaches have some shortcomings, especially 

in quantifying and integrating the aforementioned dependencies. Therefore, it is necessary to 

invest in approaches to integrate and quantify dependencies to utilize the aforementioned 

methods (e.g. centrality measure, Bayesian network modelling) for the assessment of systemic 

risk (Dwivedi et al. 2015; Müller et al. 2015; Helbing 2013). These approaches should 

empower decision makers in the assessment of systemic risk and serve as the first step towards 

the management of the challenges of systemic risk in ITPPs (Khan and Burnes 2007; Hallikas 

et al. 2004). Furthermore, these methods should serve for a better alignment of IT projects with 

the organization’s strategy (Bathallath et al. 2016b).  

Altogether, the assessment of systemic risk in complex network structures and the role of IT, 

respectively, reveal great potential for research to address the current challenges practitioner 
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and researchers face. This doctoral thesis elaborates on the assessment of systemic risk of IT 

projects and ITPPs as the first step in proactive management of their associated risks, in order 

to attain a higher success rate of IT projects. Organizations which handle the challenges of IT 

can profit from IT solutions in the assessment of systemic risk. Furthermore, this doctoral thesis 

introduces a privacy preserving IT solution for the assessment of systemic risk in supply chain 

networks. The following section (Section I.1) illustrates the objectives and structure of this 

doctoral thesis. Section I.2 describes the research context and embeds included research papers 

into the context of this doctoral thesis.   
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I.1 Objectives and Structure  

The objective of this doctoral thesis is to provide solutions for the assessment of systemic risk 

in complex network structures, and the role of IT, respectively. In this context, the thesis studies 

the two roles of IT as a challenge and as a chance for organizations. Table 1 provides an 

overview of the objectives of this doctoral thesis.  

Table 1. Objectives and Structure of this Doctoral Thesis 

I Introduction 

Objective I.1: Outlining the objectives and the structure of the doctoral thesis 

Objective I.2: Motivating the research context and embedding included research papers 

into the context of the doctoral thesis  

II Systemic Risk in IT Project Portfolios: IT as a Challenge (Research Papers 1 and 
2) 

Objective II.1: Assessing systemic risk of single IT projects within an IT project 

portfolio 

Objective II.2: Integrating systemic risk assessment in the IT project portfolio evaluation  

III Systemic Risk in Supply Chain Networks: IT as Chance (Research Paper 3) 

Objective III.1: Developing an IT solution to assess the systemic risk within supply chain 

networks preserving the privacy of organizations  

IV Conclusion 

Objective IV.1: Presenting the findings of this doctoral thesis 

Objective IV.2: Addressing the direction of future research 
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I.2 Research Context and Research Questions 

The following sections motivate the research questions of chapters II & III and the included 

research papers (Research Papers 1-3), respectively. Each section addresses one of the 

aforementioned roles of IT in organizations. 

I.2.1 Chapter II: Systemic Risk in IT Project Portfolios: IT as a Challenge  

Research Paper 1: “Bayesian Network Modelling for Assessing the Criticality of IT Projects 

in a Portfolio Context” 

Due to the dependence structures of ITPPs, the failure of an IT project may cascade into the 

ITPP and may cause disruptions to other projects. To proactively identify and manage the 

systemic risk and avoid its consequences for the organization, it is important to invest in the 

assessment of the criticality of IT projects within ITPPs. The criticality assessment includes 

not only the analysis of independent failures, but also the associated risk due to the cascading 

effect of failure within the interconnected systems, and the economic impact of the failure 

(Theoharidou et al. 2009). Research Paper 1 provides a holistic method for the criticality 

assessment of IT projects in an ITPP context. For this purpose, the paper identifies the 

requirements for the criticality assessment of IT projects in the context of ITPP. Further, the 

paper evaluates the application of Bayesian network modelling for IT project criticality 

assessment. Bayesian network modelling is an accurate method which is widely used for 

criticality assessment in, for example, financial portfolios (Shenoy and Shenoy 1999), the 

railway industry (Marsh and Bearfield 2004), off-shore installation in the oil and gas industry 

(Ren et al. 2009), chemical process plants (Khakzad et al. 2013), and maritime transportation 

(Trucco et al. 2008). Accordingly, Research Paper 1 addresses the following research question:  

RQ 1. Can Bayesian network modelling serve to assess the criticality of IT projects within 

an ITPP, considering the associated effects of failure based on the economic impact and 

dependencies between IT projects? 

Research Paper 2: “Systemic Risk in IT Portfolios – An Integrated Quantification Approach” 

Besides the assessment of the criticality of IT projects, it is necessary to develop rigorous 

methods to consider the assessment of systemic risk in a value-based evaluation of ITPPs. 

These valuation methods should serve for a better alignment of IT projects in organizations’ 

strategies. Research Paper 2 provides a solution inspired by the portfolio theory of Markowitz 
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(1952), which enhances existing IT project evaluation methods (Beer et al. 2013; Fridgen et al. 

2015) by considering systemic risk for a holistic ITPP evaluation method. Thus, Research 

Paper 2 addresses the following research question: 

RQ 2. How can costs, benefits, risks, and different types of dependencies be integrated into 

a value-based ITPP evaluation method? 

I.2.2 Chapter III: Systemic Risk in Supply Chain Networks: IT as a Chance 

Research Paper 3: “Systemic Risk in Supply Chain Networks – A Privacy Preserving 

Approach for Collaborative Analysis” 

Considering organizations in the supply chain network as nodes and the economic 

dependencies (e.g. material or financial flow) between them as edges, a supply chain network 

can be considered as a network structure (Kim et al. 2011). This structure of a supply chain 

network and the positioning of organizations within the network plays an important role in its 

vulnerability or robustness (Kim et al. 2011; Serdarasan 2013). A number of scholars have 

evaluated the applicability of centrality measures in order to analyze supply chain networks 

(Mizgier et al. 2013; Kim et al. 2011). Considering different centrality measures, the 

betweenness centrality can serve as a suitable measure for identifying organizations that have 

high impact on the supply chain network’s performance. A fault in an organization with high 

impact can cause severe value disruptions. On the one hand, application of centrality measures 

requires availability of the information on each organization (node) and it connections (edges) 

within the supply chain network. On the other hand, organizations are concerned about their 

competitiveness and about risking their strategic connections by exchanging this information 

(Kerschbaum et al. 2011; Blackhurst et al. 2005). Therefore, the development of IT solutions 

which apply well-established methods of cryptography like secure multiparty computation 

(Yao 1986; Cramer et al. 2010) can provide a solution in the assessment of criticality in a 

supply chain network without risking organizations’ competitiveness. To summarize, Research 

Paper 3 addresses the following research question:  

RQ 3. How can methods of network studies and cryptography serve to assess systemic risk 

in supply chain networks while preserving the privacy of organizations? 
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I.2.3 Chapter IV: Conclusion and Future Research 

Chapter IV contains the conclusion and key findings of this doctoral thesis. Further, it outlines 

the areas of future research in the assessment of systemic risk in ITPPs and addresses further 

potential of IT in the assessment of systemic risk in today’s complex network structures. 
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II Systemic Risk in IT Project Portfolios: IT as a Challenge  

This chapter includes the papers ”Bayesian Network Modelling for Assessing the Criticality of 

IT Projects in a Portfolio Context” and ”Systemic Risk in IT Portfolios – An Integrated 

Quantification Approach”. 

II.1 Bayesian Network Modelling for Assessing the Criticality of IT Projects 
in a Portfolio Context1 

Author: Tirazheh Zare Garizy 

Abstract 

Digitalization and globalization are the two main factors leading to large and complex IT project 

portfolios. IT project portfolios’ dependence structures are often vulnerable to a cascading effect 

of failure and irrecoverable consequences for organizations. To avoid such failure scenarios 

proactively, the ability to assess the criticality of IT projects in an IT project portfolio context is 

crucial for organizations. This paper applies Bayesian network modelling and provides concrete 

guidance on how to evaluate the criticality of IT projects in a portfolio context. Our novel method 

considers different types of dependencies in an integrated cost-risk approach and provides the risk 

exposure of IT projects as a measure of criticality. The method is able to consider information on 

IT projects’ success and failure during a portfolio’s execution for ex-nunc and ex-post 

assessments. The method enables decision-makers to assess the criticality of IT projects, which 

is the first step towards the management of systemic risk and can increase the success rate of IT 

projects.  

Keywords: IT Project Portfolio, Bayesian Network, Dependencies, Criticality Assessment. 

  

                                            
1 Grateful acknowledgment is due to the DFG (German Research Foundation) for their support of the project 
“ITPM (FR 2987/2-1, BU 809/13-1)” making this paper possible. 
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II.1.1 Introduction 

Digitalization, globalization, and rapid technological changes increase the importance of IT 

projects for sustainable competitiveness (Kutsch et al., 2014; Wolf, 2015; Beer et al., 2015). 

However, despite the importance of the success of IT projects, they are facing a high failure 

rate (Saynisch, 2010). A study of Flyvbjerg and Budzier (2011) states that one out of six IT 

projects exhibits an average cost overrun of 200% and an average schedule overrun of almost 

70%. Recent technological, social, and economic changes have increased the complexity of 

managing IT projects, which has led to a higher impact of occurring risks (Saynisch, 2010). 

Additionally, IT projects are often accomplished in a portfolio of several dependent IT projects, 

which further raises the impact of occurring risks (Graves et al., 2003; Buhl, 2012; Centeno et 

al., 2015; Martínez and Fernandez-Rodriguez, 2015). Although organizations seek to manage 

the risk associated with IT projects, recent studies indicate IT project risk management is 

regularly under-performed in practice (Bannerman, 2008; Kutsch et al., 2014). Also, literature 

emphasizes the insufficiency of existing IT project portfolio (ITPP) risk assessment methods 

and the need for an adequate consideration of dependencies within ITPPs (Flyvbjerg and 

Budzier, 2011; Müller et al., 2015).  

Criticality assessment is defined as analyzing the probability and severity of a failure 

(traditional risk analysis), and the associated effects of failure based on its economic impact 

and dependencies (Theoharidou et al., 2009). The majority of common risk assessment 

approaches focus on stand-alone IT project risk assessment and do not consider the 

dependencies between IT projects (Bardhan et al., 2004; Jonen and Lingnau, 2007; Bakker et 

al., 2010). Dependencies between IT projects often arise when multiple IT projects require the 

output of a predecessor IT project (technical dependencies), or they share resources (resource 

dependencies) (Bardhan et al., 2004; Müller et al., 2015). A predecessor IT project, which fails 

to deliver the planned output, may cause serious problems for other IT projects. Additionally, 

shared resources are often overused by one of the IT projects of a portfolio, which may cause 

failure of multiple other IT projects (Heinrich et al., 2014). The dependencies between IT 

projects often cause cascading failure in ITPPs and irrecoverable consequences for 

organizations.  

Mapping ITPPs as networks offers insights into the dependencies between different IT projects 

and also supports decision makers with the ITPP management process (Killen and Kjaer, 2012). 

Taking up the network interpretation of ITPPs several network measures (Wasserman and 
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Faust, 2009; Newman, 2013) or probabilistic graphical models (Koller and Friedman, 2009) 

can provide deeper insight and better understanding of ITPP’s dependencies.  

Network measures are suitable to analyze the interactions, and the patterns of dependencies in 

networks quantitatively (Newman, 2013). Betweenness, closeness, and alpha centrality are 

some of the network analysis measures widely used in social network analysis (Freeman, 1977; 

Wasserman and Faust, 2009; Bonacich and Lloyd, 2001). Recent methods in supply chain 

network analysis apply these measures to capture characteristics of supply chain networks, or 

identify risky organizations within supply chain networks (Kim et al., 2011; Mizgier et al., 

2013; Fridgen and Zare Garizy, 2015). Wolf (2015) interprets the corresponding network of 

ITPP as a graph and identifies alpha centrality as a suitable network measure for criticality 

assessment in ITPPs. Despite being novel in how it considers dependencies, this method has 

some limitations and does not provide a measure which takes the economic impact of failures 

into account. Beer et al. (2015) extend that method and apply alpha centrality to integrate the 

effect of transitive dependencies into a measure of risk for ITPP evaluation. However, they do 

not provide a criticality value for each IT project. Therefore, and despite of these first 

approaches in criticality assessment, more advanced approaches which model dependency 

structures of ITPPs and monetarily assess the criticality of IT projects are required.  

Probabilistic graphical models are suitable tools to deal with uncertainty and complexity in 

networks (Jordan, 1999). Among probabilistic graphical models, Bayesian network modelling 

is a promising method for risk analysis (Khakzad et al., 2013). It is widely used in other fields 

for criticality assessment and analysis of domino effects in networks (Shenoy and Shenoy, 

1999; Marsh and Bearfield, 2004; Trucco et al., 2008; Ren et al., 2009; Khakzad et al., 2013; 

Garvey et al., 2015). Therefore, we identify Bayesian network modelling as an alternative 

approach which might also be applicable to the IT projects’ criticality assessment. Hence, we 

set the following research question: 

“Can Bayesian network modelling serve to assess the criticality of IT projects within an ITPP 

considering the associated effects of failure based on the economic impact and dependencies 

between IT projects?” 

To answer this question, we study the dependence structures of ITPPs and evaluate to which 

extent Bayesian network modelling can cover the criticality assessment of IT projects within 

ITPPs. As our research method, we use the recurring research cycle of Meredith et al. (Meredith 

et al., 1989). Meredith et al. (Meredith et al., 1989) propose a three-stage research cycle 

paradigm in the field of operations research. The cycle starts with the description phase, 
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proceeds to the explanation phase, and the testing phase (Meredith et al., 1989). Accordingly, 

the remainder of this paper is structured as follows: the problem formulation section 

characterizes the elements of the problem and therefore, covers the description phase of the 

research paradigm. The solution approach section elaborates on the procedure of assessing the 

criticality using Bayesian network and infers causal relations within ITPPs, which covers the 

explanation phase of the research paradigm. In the evaluation section, we examine if the method 

meets our requirements on criticality assessment. Furthermore, we evaluate the functionalities 

and usability of our model with a demonstration example. To study the behaviour of the model 

and to evaluate its robustness to the deviation of input parameters, we conduct a sensitivity 

analysis, and use simulation as a dominant mode of testing (Meredith et al., 1989; Pannell, 

1997). In the discussion section, we critically discuss limitations of this method. In the 

conclusion, we summarize results and provide an outlook for further research.  

II.1.2 Problem Formulation 

II.1.2.1 Different Types of Dependencies in ITPPs 

Academia has come up with several classifications for dependencies between IT projects. The 

most common frameworks distinguish between three categories: resource dependencies, 

technical dependencies, and benefits (Aaker and Tyebjee, 1978; Lee and Kim, 2001; Wehrmann 

et al., 2006; Beer et al., 2015). Resource dependencies arise from shared personal or shared 

infrastructure between projects which are taking place at one point in time. Originally designed 

to realize cost synergies, resource dependencies can also lead to risk accumulation effects 

(Heinrich et al., 2014). Technical dependencies arise when an IT project requires the output of 

its predecessor IT project (Diepold et al., 2009; Beer et al., 2015). Benefits dependencies (or 

synergies) arise when the simultaneous realization of multiple projects increases the value of at 

least one of the projects (Buchholz et al., 1987). An alternative way to differentiate between 

dependencies is to classify them as intertemporal and intratemporal (Santhanam and Kyparisis, 

1996; Bardhan et al., 2004; Zimmermann, 2008; Kundisch and Meier, 2011; Meier and 

Zimmermann, 2015). Intertemporal dependencies are commonly interpreted as technical 

dependencies, and intratemporal dependencies are commonly interpreted as resource 

dependencies between IT projects (Santhanam and Kyparisis, 1996; Diepold et al., 2009).  

Corresponding to the common interpretation of criticality, we consider each IT project or shared 

resource to have two states: success or failure. Failure of an IT project occurs when it is unable 

to deliver the desired output. Failure of shared resources occurs when a resource is overused by 

a particular project and does not have the capacity to fulfill its tasks for other projects. Failure 
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of projects or resources, which have dependencies with risk accumulation effect lead to a 

cascading failure through the entire ITPP and provoke a network failure. For the purpose of 

criticality assessment, we focus on dependencies with risk accumulation effects. Our 

assessment revealed that both technical and resource dependencies show risk accumulation 

effects. Technical dependencies have risk accumulation effects when a project failure cascades 

through the network and cause failure of its successor projects as well as other indirectly 

dependent projects. Resource dependencies can cause risk accumulation effects when a shared 

resource which is overused by one IT project, provokes the failures of multiple IT projects.  

Several papers have already brought forward useful approaches to model the corresponding 

network of ITPPs as graphs (Beer et al., 2015; Wolf, 2015). We model ITPPs graphs as follows: 

IT projects and shared resources are depicted by nodes. Technical dependencies and resource 

dependencies are depicted as directed edges between projects and their shared resources. We 

use circles to denote nodes which represent projects and arrows to denote edges which represent 

technical dependencies between projects. Figure 1 illustrates a technical dependency of 𝑃𝑃𝑗𝑗 on 

𝑃𝑃𝑖𝑖. It reads “Project 𝑃𝑃𝑗𝑗 depends on project 𝑃𝑃𝑖𝑖”. 

 

Figure 1. Two IT projects with technical dependency 

We use squares to denote nodes which represent shared resources and dashed arrows to denote 

edges which represent resource dependencies between projects. We consider shared resources 

between projects as nodes with two or more resource dependencies originating from them. The 

edges point to the projects which are sharing the particular resource.  

Resources that are only assigned to a single IT project do not constitute a resource dependency 

between IT projects. Therefore, we do not consider them as nodes in our model. Nevertheless, 

we consider the dependencies of a project on its exclusive resources as part of its inherent risk. 

Figure 2 illustrates resource dependencies between IT projects 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗 due to the shared 

resource 𝑅𝑅𝐼𝐼. It reads “Project 𝑃𝑃𝑖𝑖 depends on resource 𝑅𝑅𝐼𝐼”.  

 

Figure 2. Two IT projects with resource dependency 
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Interpreting the corresponding network of ITPP as a graph, we can model how the failure of a 

single IT project cascades through the entire ITPP.  

II.1.2.2 Requirements to Assess Criticality in ITPPs 

A method that aims to assess the criticality of IT projects within ITPPs should meet the 

following requirements, according to Wolf (2015), Müller et al. (2015), and Theoharidou et al. 

(2009): 

Requirement 1: The method accounts for both direct and indirect dependencies.  

Direct dependencies arise between projects with technical or resource dependencies. Due to the 

transitive characteristic of networks, the effect of a failure cascades through the network and 

indirectly impacts further projects. Therefore, when considering dependencies, it is important 

to account for direct and indirect dependencies.  

Requirement 2: The method accounts for the impact of different strengths of dependencies. 

The dependencies between projects can have different impacts on the success or failure of their 

directly dependent projects. The impact determines the strength of their dependencies. It is 

important to integrate the strength of dependencies into the determination of the criticality of 

projects.  

Requirement 3: The method accounts for project-specific influence factors to quantitatively 

consider the importance of directly and indirectly dependent IT projects. 

Besides the importance of the dependencies in criticality assessment, the economic impact of 

the failure plays an important role. This economic impact can be the cost of failure or other 

project-specific influence factors. The impact of dependencies between projects varies 

depending on the economic impact of a project’s failure. The higher the cost of failure of a 

project, the more its contribution to the criticality value of itself and its directly and indirectly 

depended projects. 

Requirement 4: The method integrates different dependencies, their strengths, and project-

specific influence factors of criticality into one measure of criticality. 

To provide an accountable criticality value for IT projects it is important to consider the 

network-specific factors (different dependencies, and their strength), and project-specific 

influence factors (Theoharidou et al., 2009). Accordingly, the method should integrate all these 

factors into a single measure of criticality of each IT project.  
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The criticality assessment method which meets the above-mentioned requirements provides a 

holistic insight into the risks and dependencies between IT projects and their impacts on the 

ITPPs. It empowers decision makers to successfully implement ITPPs (Bathallath et al., 2016). 

In Section II.1.4, we examine how and to what extent our proposed method accounts for 

requirements 1-4. 

II.1.2.3 Need for a New Method for Criticality Assessment in ITPPs 

Whilst accounting for the dependencies between IT projects is important for ITPPs’ success, 

there are only few approaches which take multiple categories of dependencies into account 

(Meier et al., 2016; Bathallath et al., 2016; Keil et al., 2013; Killen and Kjaer, 2012; Wolf, 

2015; Beer et al., 2015). Many of these approaches (Meier et al., 2016; Bathallath et al., 2016; 

Keil et al., 2013; Killen and Kjaer, 2012) focus on the identification and visualization of 

dependencies, rather than on criticality assessment in the context of ITPP. Wolf (2015) and 

Beer et al. (2015) provided the first approaches based on alpha centrality to assess the criticality 

in ITPPs. Despite the advantages of these approaches, they do not meet all four of the previously 

stated requirements (cf. Table 1).  

Table 1. Fulfillment of the stated requirements by existing approaches 

 Wolf (2015) Beer et al. (2015)  

Requirement 1  

The method accounts for both 

direct and indirect dependencies. 

  

The method accounts for both direct 

and indirect dependencies. 

Requirement 2 () 

The method has the possibility to 

account for the impact of 

dependencies, but the author does 

not provide a solution to quantify 

this impact. 

 

The method accounts for the impact of 

dependencies by distinguishing 

between two types of dependencies 

(intra- and intertemporal) and by using 

the relative time lag to quantify 

dependencies. 
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Table 1. Fulfillment of the stated requirements by existing approaches 

 Wolf (2015) Beer et al. (2015)  

 Requirement 3 () 

The method has the possibility to 

account for project-specific 

influence factors, but does not 

introduce a suitable factor which 

accounts for the economic impact 

of failures. 

() 

The method considers a pseudo-

covariance matrix as a project-specific 

influence factor. However, the method 

does not consider the economic impact 

of failures. 

Requirement 4 () 

The method integrates different 

dependencies, their strengths, 

and project-specific influence 

factors of criticality. The method 

delivers a criticality score, but 

does not consider associated 

effects of failure based on its 

economic impact and 

dependencies. 

 

The method integrates different 

dependencies, their strengths, and 

project-specific influence factors of 

criticality. However, since the method 

considers a pseudo-covariance matrix 

as project-specific influence factor, the 

result of alpha centrality is a matrix. 

This matrix determines corresponding 

ITPP risk and does not provide the 

criticality value of each IT project. 

Furthermore, approaches of Wolf (2015) and Beer et al. (2015) have two main drawbacks due 

to the application of alpha centrality in their calculations. In the alpha centrality, α determines 

the arbitrary ratio between the importance of ITPP structure (network structure) and the IT 

projects (nodes) in the calculation (Bonacich and Lloyd, 2001). This results in the first 

drawback: the result of alpha centrality depends significantly on the choice of α and there is no 

specific guidance on how to choose α (Bonacich and Lloyd, 2001). The second drawback is: 

difficulties in interpretation of the criticality scores. Since, the interpretation is not intuitive, it 

makes the method’s usability in practice quite challenging.  

Based on the mentioned drawbacks and limitation of existing methods, it is necessary to 

develop approaches which cover all four of the stated requirements and reduce these drawbacks.  
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II.1.3 Solution Approach through Bayesian Network Modelling 

We aim to develop a model which is scalable and is explicitly applicable for large and complex 

ITPPs, where criticality can no longer be assessed intuitively. In the following, we elaborate 

our procedure to calculate the risk exposure of each IT project as a measure of criticality. We 

therefore, model ITPPs and their dependence structure as a Bayesian network.  

II.1.3.1 ITPPs as Bayesian Network 

“Bayesian networks are graphical structures for representing the probabilistic relationships 

among a large number of variables and for doing probabilistic inference with those variables” 

(Neapolitan, 2004). Bayesian networks combine expert judgments with the traditional 

quantitative analysis in an intuitive manner (Shenoy and Shenoy, 1999). For example, a 

Bayesian network of a disease and its symptoms could reveal the probability of the presence of 

a disease, given its symptoms. 

A Bayesian network is a directed acyclic graph (DAG) with nodes representing a set of random 

variables and edges representing conditional dependencies between nodes (Jensen, 2002; 

Russell and Norvig, 2010). Node 𝑋𝑋 with direct edge to 𝑌𝑌 is called a parent of 𝑌𝑌, and 𝑌𝑌 is called 

its child. Nodes without direct edges pointing to them are called roots. If a node 𝑋𝑋 influences 

node Z directly (through an edge) or indirectly (through edges of neighboring nodes), then 𝑍𝑍 is 

a reachable node for 𝑋𝑋 (Neapolitan, 2004). A conditional probability table (CPT) contains the 

strength of edges (conditional dependencies) between directly connected nodes (Neapolitan, 

2004; Jensen et al., 2007). Bayesian networks enable calculating probabilities of the occurrence 

of an event, given particular observations of the state of the network’s nodes (Neapolitan, 2004). 

For example, in a DAG of Figure 2 with three nodes 𝑃𝑃𝑖𝑖, 𝑃𝑃𝑗𝑗, and 𝑅𝑅𝐼𝐼, we can obtain the probability 

of occurrence of an event (e.g. success of 𝑃𝑃𝑖𝑖, 𝑃𝑃𝑖𝑖 = 𝑇𝑇), given an observation (e.g. failure of 𝑅𝑅𝐼𝐼, 

𝑅𝑅𝐼𝐼 = 𝐹𝐹) in the network as in equation (1).  

𝑃𝑃(𝑃𝑃𝑖𝑖 = 𝑇𝑇|𝑅𝑅𝐼𝐼 = 𝐹𝐹) =
𝑃𝑃(𝑃𝑃𝑖𝑖 = 𝑇𝑇,𝑅𝑅𝐼𝐼 = 𝐹𝐹)

𝑃𝑃(𝑅𝑅𝐼𝐼 = 𝐹𝐹)
=
∑ 𝑃𝑃(𝑃𝑃𝑖𝑖 = 𝑇𝑇,𝑅𝑅𝐼𝐼 = 𝐹𝐹,𝑃𝑃𝑗𝑗)𝑃𝑃𝑗𝑗∈{𝑇𝑇,𝐹𝐹}

∑ 𝑃𝑃(𝑃𝑃𝑖𝑖,𝑅𝑅𝐼𝐼 = 𝐹𝐹,𝑃𝑃𝑗𝑗)𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗∈{𝑇𝑇,𝐹𝐹}
 (1) 

Bayesian networks have been widely used as an accurate method to project management and 

risk assessment (Shenoy and Shenoy, 1999; Shenoy and Shenoy, 2002; Marsh and Bearfield, 

2004; Trucco et al., 2008; Ren et al., 2009; Martínez and Fernandez-Rodriguez, 2015). 

Recently, the idea of adopting Bayesian networks in IT project management is emerging. 

Gingnell et al. (2014) quantified IT projects’ success factors using Bayesian networks. Hu et 

al. (2012) used Bayesian networks to analyse outsourced software project risks. However, to 
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the best of our knowledge, Bayesian networks have not been used in ITPPs criticality 

assessment yet.  

To model ITPPs as Bayesian networks the corresponding graph must be a DAG. Therefore, we 

state the assumption that the graph of the ITPP is acyclic. 

This assumption is in line with real-world scenarios of IT projects without dual relations 

between projects (cf. (Wiest, 1981)). Furthermore, if we consider IT projects as fine granular 

subprojects which only deliver one output, technical dependencies do not cause a cyclical 

dependency. Moreover, resource dependencies, since in our modelling resource dependencies 

are originating from a resource which is always a root (cf. Section II.1.2.1), by definition cannot 

cause cyclical graph. Hence, when excluding unlikely scenarios which may lead to cyclical 

dependencies in ITPPs, our assumption is in line with real-world scenarios.  

The next step of our modelling procedure is to estimate the CPT of each IT project and shared 

resource. We already mentioned each IT project or shared resource (node) in our model has two 

states: success (𝑇𝑇) and failure ( 𝐹𝐹). The CPT of a root node contains the estimated values of 

probabilities of the node’s failure and success. The CPT of a non-root node, contains the 

estimated values of probabilities of the node’s failure and success, given all possible 

combinations of the success and failure of its parents. Subsequently, CPT entries express the 

strength of the node’s technical and resource dependencies in an integrated manner. 

Consequently, henceforth we do not distinguish between types of dependencies in the 

calculations but refer to the entries of CPT instead.  

Common methods to estimate CPTs use existing data and/or expert estimations (Neapolitan, 

2004). Since using Bayesian Networks in ITPPs assessment is not yet common, existing data is 

scarce. Therefore, we focus on expert estimations. Due to the various perceptions of failure, it 

is important to implement mechanisms to have a clear definition of the probability of failure 

for our value estimations. Moreover, the cognitive bias of the managers can influence the 

estimation and results, and it is necessary to implement mechanisms, which moderate this effect 

(Etzioni, 2014). These mechanisms support the homogeneity of the estimated values and enable 

uniform interpretation of the result in the organization. To estimate CPTs based on expert 

estimations, the expert should estimate probabilities of the failure and success of each project 

and shared resource, given all possible combinations of the success and failure of their parents. 

The following questions are two example questions for the expert estimations: What is the 

probability that your project cannot deliver the planned output if predecessor project 𝐴𝐴 does 

not deliver the desired output while all other parent projects deliver the desired output and all 
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shared resources fulfil their tasks? What is the probability that your project cannot deliver the 

planned output if all predecessor projects do not deliver the desired output and all shared 

resources fail to fulfil their tasks? 

In large and complex ITPPs, it is not possible that a single person estimates the CPTs for all IT 

projects. In these cases, each IT project manager should provide the CPT of their IT project and 

its shared resources. This decentral data estimation approach benefits from the local information 

of all IT project managers. However, the close collaboration with the ITPP manager in the 

estimation process is crucial to ensure data consistency across the inputs of various IT project 

managers.  

II.1.3.2 Assessing Criticality of the IT Projects Using Bayesian Network Modelling  

So far, we developed the Bayesian network of an ITPP, which can facilitate decision-making. 

A Bayesian network enables the estimation of the probabilities of success or failure of certain 

nodes (e.g., IT projects or shared resources), based on an observation (e.g., success or failure 

of an IT project) (Jensen, 2002). Using this method, we can model how the failure of a single 

IT project cascades through the entire ITPP. Besides, the method can consider information on 

IT projects’ success and failure during portfolios execution for ex-nunc (continual) and ex-post 

assessments.  

In the assessment of IT projects’ criticality, we strongly focus on the key influence factors of 

criticality. First, we calculate the joint probabilities of the failures of one or more IT projects, 

given that project 𝑃𝑃𝑖𝑖 fails. We assess the criticality of 𝑃𝑃𝑖𝑖 based on the changes, which the 

observation of the failure of 𝑃𝑃𝑖𝑖 causes to the states of other IT projects. To consider the 

economic impact, increase the tangibility of the results, and provide managerial insight we 

incorporate the cost of failure of IT projects into our assessment. With this approach, we take 

an integrated cost-risk perspective on the criticality of each IT project. Methodologically, we 

use the so-called “with-without” principle from risk management (Howe and Cochrane, 1993; 

Tasche, 2008). This principle calculates the marginal risk contribution of an asset by calculating 

the difference of the portfolio risk with and without the asset (Howe and Cochrane, 1993; 

Tasche, 2008). Transferred to our model, we use the difference between the costs of failure 

within the entire ITPP if 𝑃𝑃𝑖𝑖 fails and if it does not fail as our measure of risk. In the following, 

we elaborate on this method in detail. First, we determine how the failure of an IT project affects 

the states of its directly and indirectly dependent (reachable) IT projects. Therefore, we refer to 

the conditional probabilities of failure for the cases in which 𝑃𝑃𝑖𝑖 fails (𝑃𝑃(𝑃𝑃𝑗𝑗 = 𝐹𝐹|𝑃𝑃𝑖𝑖 = 𝐹𝐹)) and 

in which it does not fail (𝑃𝑃(𝑃𝑃𝑗𝑗 = 𝐹𝐹|𝑃𝑃𝑖𝑖 = 𝑇𝑇)). Second, we integrate the cost of failure of IT 
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projects into our assessment. To do so, we define the expected cost of failure (ECF) of an IT 

project 𝑃𝑃𝑗𝑗 as the product of the probability of its failure and its cost of failure using the “with-

without” principle. We calculate the ECF as depicted in equation (2).  

 𝐸𝐸𝐸𝐸𝐹𝐹�𝑃𝑃𝑗𝑗 = 𝐹𝐹|𝑃𝑃𝑖𝑖� = 𝑃𝑃�𝑃𝑃𝑗𝑗 = 𝐹𝐹�𝑃𝑃𝑖𝑖 = F� × 𝐸𝐸𝐹𝐹(𝑃𝑃𝑗𝑗) − 𝑃𝑃(𝑃𝑃𝑗𝑗 = 𝐹𝐹|𝑃𝑃𝑖𝑖 = 𝑇𝑇) × 𝐸𝐸𝐹𝐹(𝑃𝑃𝑗𝑗) (2) 

The result of equation (2) is the effect of 𝑃𝑃𝑖𝑖 on the failure of its reachable project 𝑃𝑃𝑗𝑗. To calculate 

the total expected loss which may occur due to the failure of 𝑃𝑃𝑖𝑖, we sum up the expected cost 

of failure of 𝑃𝑃𝑖𝑖 and all its reachable IT projects, as shown in equation (3). 

Δ𝐸𝐸𝐹𝐹(𝑃𝑃𝑖𝑖) =  𝐸𝐸𝐹𝐹(𝑃𝑃𝑖𝑖) + �𝐸𝐸𝐸𝐸𝐹𝐹�𝑃𝑃𝑗𝑗 = 𝐹𝐹|𝑃𝑃𝑖𝑖�
𝑗𝑗

 (3) 

The result of equation (3) is the extent of loss which 𝑃𝑃𝑖𝑖 can cause in the network. As a final 

step, we need to consider the probability of failure for 𝑃𝑃𝑖𝑖 to incorporate the likelihood of this 

loss and provide the risk exposure (RE) or also called the risk impact of each IT project (Boehm, 

1989). Equation (4) provides the RE of 𝑃𝑃𝑖𝑖 as an integrated cost-risk measure of criticality for 

IT project 𝑃𝑃𝑖𝑖.  

𝑅𝑅𝐸𝐸(𝑃𝑃𝑖𝑖) =  Δ𝐸𝐸𝐹𝐹(𝑃𝑃𝑖𝑖) × 𝑃𝑃(𝑃𝑃𝑖𝑖 = 𝐹𝐹) (4) 

II.1.4 Evaluation 

Modelling ITPPs as Bayesian networks enables us to address the following requirements on 

criticality assessment. Regarding requirement 1: we refer to the conditional probabilities of 

success and failure of projects in equation (2), which enables us to consider both direct and 

indirect dependencies. Regarding requirement 2: we use the entries of CPTs for our 

calculations, which enables us to consider the impact of different strengths of dependencies. 

Regarding requirement 3: we refer to the cost of failure as a project specific influence factor in 

equation (2) and equation (3), which integrates the importance of dependent IT projects 

quantitatively. Regarding requirement 4: we derive RE of each IT project in equation (4), which 

serves as the measure of criticality, and considers dependencies and their strength, as well as 

project-specific characteristics for the criticality assessment. The RE of an IT project is higher 

if its failure has more consequences for the network and if more IT projects might be affected 

by its failure. The RE of an IT project decreases if the probability of the success of IT projects 

increase and therefore the impact of dependencies decreases. The RE of an IT project is more 

influenced by the cost of failure if the effect of dependencies decreases. The assessment reveals 
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the expected relation between input parameters and RE. This monetary assessment of criticality 

by calculating the RE of each IT project enables considering both economic impacts of failure 

of single IT projects as well as the dependence structure of ITPP in a holistic approach.  

Our Bayesian network modelling approach enables us to overcome two main drawbacks of 

alpha centrality based approaches (cf. Section II.1.2.3): Firstly, our method does not have any 

α-like factor which significantly impacts the result. Our method only requires the estimation of 

CPD and the cost of failure which can be estimated more intuitively by decision makers than 

estimating α. Secondly, our approach is based on common patterns of human reasoning. 

Therefore it is easier for decision makers to interpret its results compared to the results of alpha 

centrality. 

In the remainder of this section, we evaluate the functionalities and usability of our model 

within a demonstration example. In general, our model is scalable and explicitly designed for 

large and complex ITPPs, where criticality can no longer be assessed intuitively and where it 

can deliver most valuable support for decision makers. However, we have deliberately chosen 

a relatively small ITPP as a demonstration example. Although the small portfolio size leads to 

findings that might seem straightforward, it transparently demonstrates its functionality and 

enables a comprehensible evaluation. Using a large and complex settings would be too 

exhaustive for the purpose of a demonstration. To study the behaviour of the model and to 

evaluate its robustness to the inaccuracy of input parameters, we conduct a sensitivity analysis 

with respect to the deviation of the input parameters (Pannell, 1997; Fridgen and Müller, 2011). 

For our demonstration and robustness validation, we use the RE of IT projects (equation (4)). 

We used expert estimations and simulation as a dominant method of testing (Fridgen and 

Müller, 2009), which is in line with Meredith et al. (1989). 

II.1.4.1 Demonstration Example 

For the demonstration example, we interviewed the IT manager of a medium-sized applied 

research organization with two branches in Germany. Most of the IT infrastructure of this 

organization is in the cloud, which makes their IT infrastructure scalable. Therefore, projects’ 

resource dependencies are mainly due to personnel resource sharing. The IT manager identified 

the sharing of personnel as the main challenge of their ITPPs. Table 2 illustrates one of their 

current ITPPs that consists of eight IT projects and one shared resource. 
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Table 2. The ITPP of the organization 

Variable Description 

𝑃𝑃1 System images (Windows 7) for the first branch’s laptops  

𝑃𝑃2 System images (Windows 7) for the first branch’s workstations 

𝑃𝑃3 System images (Windows 7) for the second branch’s laptops (this branch has no 

workstations) 

𝑃𝑃4 System images (Windows 10) for laptops (integrated solution for both branches) 

𝑃𝑃5 System images (Windows 10) for the first branch’s workstations 

𝑃𝑃6 System images (Windows-ToGo) for laptops, workstations, and other devices, 

which enables the bring-your-own-device concept and aims to release a portable 

Windows 10 

𝑃𝑃7 Connection tool for an improved usability of SharePoint on laptops and 

workstations 

𝑃𝑃8 Connecting tool for an improved usability of SharePoint on all systems 

𝑅𝑅1 Personnel resource shared between projects 

The projects 𝑃𝑃1 and 𝑃𝑃2 are sharing the resource 𝑅𝑅1. The IT project manager emphasized the 

importance of the successful implementation of 𝑃𝑃1 and 𝑃𝑃2 to reuse the gained functional and 

technical know-how for the successful implementation of 𝑃𝑃3. Therefore,  𝑃𝑃3 technically 

depends on 𝑃𝑃1 and 𝑃𝑃2. 𝑃𝑃4 and 𝑃𝑃5 are sharing 𝑅𝑅1 which causes a resource dependency. 𝑃𝑃4 and 𝑃𝑃5 

require the functionality of 𝑃𝑃3, which causes its technical dependency to 𝑃𝑃3. The project 𝑃𝑃6 

depends on the projects 𝑃𝑃4 and 𝑃𝑃5, since the availability of the sub modules of the system image 

creation and the establishment of user acceptance for Windows 10 are necessary to start 𝑃𝑃6. 𝑃𝑃6 

also depends on 𝑃𝑃8 for its connectivity to SharePoint. The personnel resource 𝑅𝑅1 is an expert 

with an in-depth know-how of the project and the organization. This is the only shared resource 

of this ITPP. As previously mentioned (cf. II.1.2.1) resources which are not shared are not part 

of the model. Therefore, 𝑅𝑅1 is the only resource which we use in the modelling of this ITPP. 

Figure 3 illustrates the graph of this ITPP. 
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 Figure3. ITPP of a medium-sized organization 

The IT manager also estimated the entries of the CPT of each IT project and each shared 

resource as well as the cost of failure of each IT project. For demonstration purposes, we 

provide the CPT of project 𝑃𝑃3 in Table 3. 

Table 3. The CPT for Project 3 

 𝑃𝑃1 = 𝐹𝐹 𝑃𝑃1 = 𝑇𝑇 
𝑃𝑃2 = 𝐹𝐹 𝑃𝑃2 = 𝑇𝑇 𝑃𝑃2 = 𝐹𝐹 𝑃𝑃2 = 𝑇𝑇 

𝑃𝑃(𝑃𝑃3 = 𝐹𝐹|𝑃𝑃1, P2) 100% 95% 50% 10% 
𝑃𝑃(𝑃𝑃3 = T|𝑃𝑃1, P2) 0% 5% 50% 90% 

Forming the DAG of the ITPP and determining the CPTs, we build the Bayesian network and 

calculate the RE of each project using equation (4). For demonstration purposes, we elaborate 

on the computation path for RE of 𝑃𝑃3 in the following. Table 4 provides the cost of failure and 

the conditional probabilities of 𝑃𝑃4,𝑃𝑃5, and 𝑃𝑃6 (reachable from 𝑃𝑃3). On this basis, we can 

substantiate equations (2), (3) and (4) by Δ𝐸𝐸𝐹𝐹(𝑃𝑃3) =  6,197 €, 𝑃𝑃(𝑃𝑃3 = 𝐹𝐹) = 66%, and 

ultimately the RE of 4,099 € for P3.  

Table 4. Conditional probability of the failures of reachable IT projects from 𝑷𝑷𝟑𝟑 

IT Project CF (€) 𝑃𝑃�𝑃𝑃𝑗𝑗 = 𝐹𝐹�𝑃𝑃3 = 𝐹𝐹� 𝑃𝑃�𝑃𝑃𝑗𝑗 = 𝐹𝐹�𝑃𝑃3 = 𝑇𝑇� 

𝑃𝑃4 625 73% 8% 

𝑃𝑃5 1,875 80% 0.4% 

𝑃𝑃6 10,000 73% 55% 

Table 5 provides the results of RE for all IT projects of the ITPP.  
Table 5.  IT projects sorted based on their RE 

Project 𝑃𝑃1 𝑃𝑃8 𝑃𝑃2 𝑃𝑃3 𝑃𝑃6 𝑃𝑃7 𝑃𝑃5 𝑃𝑃4 

RE  6,707 6,611 6,032 4,099 3,984 3,823 2,454 717 

Project

Technical Dependency

Shared Resource

Resource Dependency
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With this information, we are able to assess the criticality of IT projects in the ITPP using our 

method. By defining priority groups, we minimize the effect of possible estimation errors in 

decision making, since estimation errors cause changes in the position of adjacent projects in 

the priority list (section II.1.4.2). We group projects with similar RE and assign them to priority 

groups as follows. System images (Windows 7) for the first branch’s laptops and workstations 

(𝑃𝑃1 and 𝑃𝑃2), and connection tool for an improved usability of SharePoint on all systems (𝑃𝑃8) 

belong to the category of most critical IT projects for ITPP. Since their RE are very close to 

each other, all three require high management attention to prevent the ITPP’s failure. 

Subsequently, system images (Windows 7) for the second branch’s laptops (𝑃𝑃3), Windows-

ToGo project (𝑃𝑃6), and connection tool for an improved usability of SharePoint on laptops and 

workstations (𝑃𝑃7) have lower RE and can be assigned to the category of medium risk projects 

for management attention.  

II.1.4.2 Sensitivity Analysis  

Since our method uses estimated parameters, it is important to study how the model reacts to 

estimation inaccuracies. Moreover, the understanding of the relation between input parameters 

and criticality prioritization is important for a sound evaluation of the model. Therefore, we 

conduct a sensitivity analysis with respect to the input data from the demonstration example to 

investigate the robustness of our model and its behaviour. As variation steps, “ceteris paribus”, 

we increase the success probabilities and the cost of failure of one IT project as reported by the 

IT manager by 1%, 10%, 25%, and 50%.  

Table 6 provides the sensitivities on the variation of the entries of CPT of 𝑃𝑃3, and highlights 

those IT projects, which changed their positions on the priority list. Despite the estimation error, 

𝑃𝑃1 and 𝑃𝑃8 stay the most critical projects. Moreover, the projects’ position-changes only take 

place between adjacent projects of the original priority list, with similar RE. Therefore, the 

estimation error of one project ceteris paribus, does not have a high impact on the respective 

criticality of the IT projects. Additionally, we could observe that increasing the probability of 

the success for 𝑃𝑃3 decreases the cost of failure of the entire ITPP. This observation illustrates 

the desired, proportional relation between success probability and the portfolio criticality.  
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Table 6 Sensitivity analysis results of varying values of CPT for 𝑷𝑷𝟑𝟑 

Estimation 

error 
IT projects sorted based on their RE (€) 

0% 
𝑃𝑃1 𝑃𝑃8 𝑃𝑃2 𝑃𝑃3 𝑃𝑃6 𝑃𝑃7 𝑃𝑃5 𝑃𝑃4 

6,707 6,611 6,032 4,099 3,984 3,823 2,454 717 

1% 
𝑃𝑃1 𝑃𝑃8 𝑃𝑃2 𝑃𝑃3 𝑃𝑃6 𝑃𝑃7 𝑃𝑃5 𝑃𝑃4 

6,677 6,610 6,007 4,061 3,984 3,823 2,452 719 

10% 
𝑃𝑃8 𝑃𝑃1 𝑃𝑃2 𝑃𝑃6 𝑃𝑃7 𝑃𝑃3 𝑃𝑃5 𝑃𝑃4 

6,602 6,415 5,792 3,980 3,817 3,706 2,434 738 

25% 
𝑃𝑃8 𝑃𝑃1 𝑃𝑃2 𝑃𝑃6 𝑃𝑃7 𝑃𝑃3 𝑃𝑃5 𝑃𝑃4 

6,589 5,995 5,431 3,975 3,806 3,086 2,401 774 

50% 
𝑃𝑃8 𝑃𝑃1 𝑃𝑃2 𝑃𝑃6 𝑃𝑃7 𝑃𝑃5 𝑃𝑃3 𝑃𝑃4 

6,562 5,302 4,790 3,963 3,786 2,337 1,994 839 

We also examined the changes in priorities by simultaneously varying the values of CPTs of 

all IT projects. This multiple variation caused more position changes with mostly similar pattern 

as compared to the variation of the values of CPT of 𝑃𝑃3. Only increasing success probabilities 

by 25% led to a dramatic change and made 𝑃𝑃6 the most critical IT project. However, it should 

be noted that 25% estimation error in all input parameters is quite unlikely in the real-world. 

Therefore, we assign a high robustness to our model. As a second finding, we observed that 

simultaneously increasing the probabilities of success (which implies a decrease of the 

importance of direct and indirect dependencies) decreases the influence of network structure on 

criticality values. Consequently, the importance of the project-specific influence factors (cost 

of failure) increased. In the final step, we examine the result of varying cost of failure for all IT 

projects simultaneously as well as for one IT project ceteris paribus. Whereas varying all values 

at the same rate did not lead to any changes in the prioritization, the variation for a single project 

(e.g. 𝑃𝑃3) evokes few positional changes. The result of the analysis gives us no indication that 

the estimation errors may cause an unexpectedly extreme response of the model which leads to 

errors in decision making. We also observed the expected relation between input parameters 

and criticality prioritization (e.g. incrementing probability failure increases RE). 
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II.1.5 Discussion 

In our method, we stated the assumption that IT projects are fine granular subprojects which 

only deliver one output and therefore, technical dependencies may not cause a cyclical 

dependency. Accounting for dependencies between these fine granular subprojects is necessary 

for the criticality assessment, though, in large ITPPs this will be a challenging and time-

consuming task. Moreover, increasing the number of IT projects (nodes) impacts the time 

complexity of the algorithms used for Bayesian network modelling. In the worst case, this time 

complexity can be exponential as function of the number of nodes without any observation of 

their state in the network (Cooper, 1990). Yet, the risk identification has a significant positive 

impact on risk transparency and consequently ITPP’s success (Teller and Kock, 2013). This 

brings the decision makers to the trade-off between effort or the “cost” of gathering data for 

modelling and the potential benefits of the assessment of systemic risk in the management of 

systemic risk. The development of the techniques to support decision makers to evaluate if the 

application of the method is worth the effort is subject to further research. 

Our proposed approach relies on the ex-ante estimation of the failure probability of an IT project 

under the circumstance that another project has failed. This might sound unfeasible in the real-

world and especially in large and complex ITPPs. However, we proposed gathering CPTs of 

each IT project from their respective IT project managers, in collaboration with the ITPP 

manager. Consequently, each IT project manager requires to estimate the CPTs of their IT 

project only considering the dependencies to the neighboring IT projects and not to the whole 

ITPP. This increases the applicability and the feasibility of the method by profiting from the 

decentral knowledge of all involved IT project managers.  

II.1.6 Conclusion, and Outlook 

In this paper, we developed an approach based on a Bayesian network modelling, and we used 

the research paradigm of Meredith et al. (1989) as our research method. Our method integrated 

various types of dependencies, their strengths and project-specific influence factors in the 

criticality assessment of IT projects. Subsequently, the method presented the RE of IT projects 

as a measure of criticality. Our method not only supports decision makers in ex-ante 

assessments but it is also applicable for ex-nunc and ex-post assessments. We therefore, 

contribute to the formalization of the risk management process, which is positively related to 

the management quality of ITPPs and consequently to their success (Teller, 2013; Keil et al., 

2013). This enables efficient risk response actions as well as better resource allocation (Teller 
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and Kock, 2013). In our evaluation, we used a demonstration example, sensitivity analysis, and 

simulations. Nevertheless, further testing of our model in real-world scenarios is important.  

Our model focused on the risks associated with IT projects and shared resources to evaluate the 

criticality of IT projects. Our long-term vision is to extend our method according to the 

following aspects. First, we want to extend our method by assessing benefits of different types 

of dependencies towards a holistic ITPP evaluation method. Second, we want to extend our 

method through the application of methods like fuzzy reasoning and by using real-world data 

in order to reduce the estimation error and to increase its usability.   
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II.2 Systemic Risk in IT Portfolios – An Integrated Quantification 
Approach1,2 

                                            
1 This doctoral thesis appends the following comments and corrections to the published version of this paper: 

• On page 7 and 8 of the paper, the variables 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑗𝑗 are referred as the variance of the expected 
value, but the correct notation is the standard deviation.  

• The result of Equation (6), on page 13 of the paper is a matrix and not a vector as stated. Therefore 
the expression 𝑥𝑥 = (𝐼𝐼 − 𝛼𝛼 ∗ 𝐴𝐴𝑇𝑇)−1 ∘ 𝐸𝐸 is not correct. The correct expression of the equation is:  
𝑋𝑋 = (𝐼𝐼 − 𝛼𝛼 ∗ 𝐴𝐴𝑇𝑇)−1 ∘ 𝐸𝐸. 

• As mentioned on page 7 of the paper, for the purpose of quantitative assessment of an IT portfolio, 
we draw on an approach inspired by both portfolio theory of Markowitz (Markowitz 1952) and the 
approach of Beer et al. (2013), whereby the approach of Beer et al. (2013) is compatible with the 
Bernoulli principle (Bernoulli 1954). On page 8 and 13 of the paper we replace the parameters of 
the covariance (𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 and 𝜌𝜌𝑖𝑖𝑗𝑗) of the Equation (1) (Φ(µ,σ) =  −𝐸𝐸 + Σ 𝜇𝜇𝑖𝑖 − 𝛾𝛾 ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗) based on 
our own interpretation and for our modelling purposes. We interpret 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 as a (not normalized) 
covariance, and use it as an exogenous matrix in Equation (6). Further, we do not use the Bravais–
Pearson correlation coefficient 𝜌𝜌𝑖𝑖𝑗𝑗 and use a pseudo correlation value 𝜌𝜌�𝑖𝑖𝑗𝑗 instead. In Equation (2), 
we replace ∑ ∑ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖  with ∑ ∑ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 . ∑ ∑ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖  is based on an element-wise 
multiplication of the elements of the matrices (𝐼𝐼 − 𝛼𝛼 ∗ 𝐴𝐴𝑇𝑇)−1 and 𝐸𝐸 in Equation (6) and the sum of 
the rows of the resulted matrix. The inspiration and adoption of parameters give the impression that 
our method is a well-founded and statistically rigorous approach, which is not the case. It constitutes 
an ad-hoc approach inspired by the formulas mentioned up.  
Furthermore, on page 7 we state the assumption that the cash flows of an IT project are normally 
distributed random variables. The assumption, given that the utility function of the preference 
function is exponential, is necessary to be compatible with the Bernoulli principle (Bernoulli 1954). 
However, since our approach is ad-hoc this assumption is unnecessary for our method.    
Nevertheless, the adoption of the computational logic and respective assumption allows us to provide 
a pragmatic solution for the quantitative assessment of systemic risk in IT portfolios. Further, it 
enables us to evaluate and depict the plausibility of our method based on the comparison of its result 
with the result of the established method of Beer et al. (2013). 

• On page 13, in Equation (5) we elaborate on the variables of α-centrality. It is necessary to extend 
the elaboration of the variable α by the fact that large values of α indicate that the status of nodes (IT 
projects) is endogenously (based on network structure) determined, while the small values mean that 
the dependencies between nodes (transitive dependencies) is relatively unimportant in determining 
the overall status of the nodes (Bonacich and Lloyd, 2001). Although the choice of α has a high 
impact on the results of this paper, we did not address how to choose α. An organization for instance 
can apply our method in real-world cases, and use ex-post historical data of these IT portfolios to 
estimate an appropriate α for its IT portfolios.   

• In Equation (6) (𝑋𝑋 = (𝐼𝐼 − 𝛼𝛼 ∗ 𝐴𝐴𝑇𝑇)−1 ∘ 𝐸𝐸) the question which arise is: Is the matrix  
(𝐼𝐼 − 𝛼𝛼 ∗ 𝐴𝐴𝑇𝑇) invertible? The range of 𝛼𝛼 is the answer to this question. The method limits 𝛼𝛼 to the 
range of 0 < 𝛼𝛼 < 𝜆𝜆1−1 (the spectral radius of 𝐴𝐴). This bounds on 𝛼𝛼 ensures that the matrix  
(𝐼𝐼 − 𝛼𝛼 ∗ 𝐴𝐴𝑇𝑇) is invertible (Benzi and Klymko 2015).  
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Abstract 

Recent trends in digitalization, combined with continuous innovation pressure, have led to an 
increasing number of IT projects that are often accomplished within huge IT project portfolios. 
Although numerous IT project and portfolio evaluation and planning approaches have been 
developed and applied in companies all over the world, approximately 25% of IT projects still 
fail, which may result in a global value destruction of approximately 900 billion USD. One main 
reason for the numerous failures is the lack of transparency concerning dependencies within IT 
portfolios. This paper draws on graph theory to present a rigorous assessment of systemic risk 
that is based on different types of direct and indirect dependencies within IT portfolios. Based on 
this assessment, an integrated, novel, and quantitative approach to IT portfolio evaluation is 
presented that strives to mitigate IT project failures as it helps decision makers to evaluate their 
IT portfolios more adequately.  

Keywords: Ex ante IT portfolio evaluation, project dependencies, intra-temporal dependencies, 
inter-temporal dependencies, systemic risk, risk quantification, network analysis, α-centrality 
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II.2.1 Introduction 

New trends, such as digitalization, intensify the already high importance of information 

technology (IT) to companies all over the world. Additionally, recent technological 

developments and associated changes in customer expectations are forcing companies to 

develop innovative ideas and creative solutions (Nguyen and Mutum, 2012) that can be 

translated into a vast increase in IT projects to fulfill these demands. As a consequence, more 

and more IT projects are being split into several stand-alone but interrelated IT solutions with 

customer impact to satisfy this continuous demand for innovation. To address this development 

and the resulting increase in IT project portfolio complexity, a holistic approach the valuation 

of IT project portfolios, hereinafter referred to simply as IT portfolios, is crucial. Although there 

are already a number of approaches for the valuation of IT projects and portfolios, investments 

in planning techniques for IT projects and IT portfolios continue to increase (Gartner 2014). 

Nevertheless, an alarmingly high number of IT projects fail. Flyvbjerg and Budzier (2011) 

contend that approximately 16% of IT projects cause an on average budget deficit of 

approximately 200%. Moreover, project failure rates greater than 25% have been reported 

(Mieritz 2012). The failure of so many IT projects could result in a global value destruction of 

approximately 900 billion USD (Gartner 2013). Recent studies have shown that existing 

methods for IT project and IT portfolio evaluation might not be sufficient (Flyvbjerg and 

Budzier 2011; Radar Group 2012). 

IT projects are usually planned and implemented within aggregated and quite extensive 

portfolios of several different IT projects, such as mobile application development projects, 

database restructuring projects, and large software development projects for business system 

applications. Therefore, they incorporate high-order dependencies, in contrast to projects that 

are accomplished in isolation or in pairs (Graves et al. 2003). Consequently, one major reason 

for IT project failures may be inadequate reflection upon and consideration of dependencies 

regarding shared assets between IT projects (CA Research 2008). This premise is supported by 

a questionnaire survey of 560 IT decision makers in Scandinavia, conducted by the Radar 

Group, which revealed that one reason for IT project failure is a lack of transparency regarding 

dependencies (Radar Group 2012). The management of such dependencies could help to reduce 

overall IT project costs and increase the benefits achieved by IT projects (Santhanam and 

Kyparisis 1996). However, many existing IT project evaluation methods consider neither 

dependencies associated with IT portfolios nor their associated risks. Although there are some 

approaches for IT project or IT portfolio evaluation (cf. Beer et al. 2013; Kundisch and Meier 

2011; Lee and Kim 2001; Wehrmann et al. 2006) that do consider dependencies, they do not 
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consider the specific characteristics of IT portfolio dependencies. Different types of 

dependencies and the prevalence of transitive dependencies are almost consistently neglected 

in existing IT portfolio evaluation methods. Furthermore, some approaches that do consider the 

dependencies of IT project portfolios in more elaborate ways fail to evaluate them quantitatively 

and are therefore not regarded as reasonable decision support tools for IT portfolio managers 

(Müller et al. 2015). Most approaches also lack feasibility for practical application 

(Zimmermann 2008), which further emphasizes the need from praxis for adequate means for 

IT portfolio evaluation that incorporate a detailed assessment of risk based on interdependencies 

among IT projects. 

As stated by Benaroch and Kauffmann (1999), “a major challenge for information systems (IS) 

research lies in making models and theories that were developed in other academic disciplines 

usable in IS research and practice.” In fulfilling the need for a method for IT portfolio evaluation 

that incorporates a detailed assessment of risk based on inherent interdependencies, we consider 

IT portfolios as networks of interdependent nodes, where each node reflects an IT project and 

the arcs reflect dependencies between projects. We draw on concepts from sociological research 

based on graph theory that have already been applied to the analysis of several network-alike 

structures, in areas such as social network analyses (Wasserman and Faust 1994; Newman 

2010), supply chain management (Kim et al. 2011; Fridgen and Zare Garizy 2015), and IT 

infrastructure management (Simon and Fischbach 2013). To be more precise, we focus on the 

application of centrality measures that identify the central nodes of networks based on their 

positioning and/or their connectivity to other nodes and are consequently considered suitable 

for use in assessing the systemic risk arising from dependencies among the nodes of the 

network, or rather, the projects in the portfolio. Furthermore, we integrated the resulting 

criticality score, derived from the centrality measure, to the existing classical portfolio theory 

approaches.  

Thus, we are able to develop a novel and fresh approach for value-based IT portfolio evaluation 

that integrates costs, benefits, risks, and different types of dependencies in a thoroughly 

quantitative and feasible way. The appropriate consideration of different types of dependencies 

and in particular of transitive dependencies in IT portfolios is a main contribution of this 

research because these have been identified as important reasons for IT project failures but have 

not been sufficiently considered in previous research, to the best of our knowledge. The 

consideration of these dependencies is important for decision makers because it will result in 

better estimation of the values of IT portfolios. Better IT portfolio value estimation will make 

it possible for decision makers to request appropriate budget for IT portfolios and avoid the 
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difficulty of applying for additional budget during project execution as a result of unseen 

dependency risks. Therefore, the results should empower decision makers to consider 

dependencies and associated risks accurately in their IT portfolio evaluations. Since, if 

considered properly, the risk associated with dependencies in some cases might result in a 

negative portfolio value (when costs and risk surpass benefits), this approach moreover reduces 

the risk of false investments. 

To provide a relevant and rigorous approach to IT portfolio evaluation, we followed the 

recommendations of Hevner et al. (2004) and Gregor and Hevner (2013) and developed our 

approach as an artifact, according to their Design Science Research guidelines. To describe the 

problem relevance and the need for an integrated approach for value-based IT portfolio 

evaluation, we illustrate current developments and existing challenges in the motivation section. 

Based on a structured review of the literature and recent state-of-the-art articles, we furthermore 

explain and relate key terms associated with dependencies and summarize current methods for 

their appraisal in section 2. In section 3, we present our integrated approach step by step to 

ensure comprehensibility. To guarantee research rigor, the artifact design is based on well-

established methods and theories prevalent in literature, extended or adopted to fit our purposes. 

We also performed some evaluation cycles during the development-phase to ensure rigor and 

relevance. We evaluate the artifact regarding quality, utility and efficacy in section 4. Therefore, 

we draw on simulation, which according to Hevner et al. (2004) is an established evaluation 

method. To demonstrate the applicability of our artifact, we moreover provide an application 

example and describe its benefits in comparison to other established theories and practices. 

Section 5 concludes the paper and includes a discussion of the limitations of our approach and 

future research needs.  

II.2.2 Theoretical Background 

For decades, IT project and IT portfolio evaluation and appropriate consideration of IT project 

dependencies have been highly relevant topics in research and practice. Hence, it is reasonable 

that over the last few decades, a great number of publications have been published on this 

subject. To develop a fresh approach that holistically assesses dependencies within a value-

based IT portfolio evaluation, we need to understand and integrate three subtopics of research 

on the subject. Thus, we first present a general overview of methods for IT project and IT 

portfolio evaluation. We then identify and elaborate different types of dependencies before 

describing how they are currently appraised in literature. We performed a keyword-based 

search (using the terms dependency, interdependency, interaction, project, portfolio, 
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information technology, information systems, model, method, requirements, approach, 

quantification, assessment, IT project, evaluation, value assurance, and valuation) of various 

data bases (AIS Electronic Library, EBSCOhost, EmeraldInsight, ProQuest, ScienceDirect, 

Wiley, Google Scholar, JStor, Springer, and ACM). Although this search identified many 

relevant articles, we found that most of these were already considered in the most recent articles 

summarizing the state of the art. On our first subtopic of IT project and IT portfolio evaluation 

methods, Beer et al. (2013) performed an extensive literature review as part of their research on 

an integrated project quantification method. The second subtopic, different types of 

dependencies, was outlined by Wolf (2015) and also, quite comprehensively, by Müller et al. 

(2015), who published a state-of-the-art article dedicated to different types of dependencies and 

their current appraisal. Therefore, based on our keyword-based search and the recently 

published state-of-the-art articles, we developed a brief, sound, and integrated overview of the 

existing literature. Our review, however, is structured to address all three of the aforementioned 

subtopics. For more detailed reviews of the literature on these subtopics, please refer to the 

articles of Müller et al. (2015), Wolf (2015), and Beer et al. (2013). 

II.2.2.1 Methods for IT project evaluation and IT portfolio evaluation 

It is important to note that the evaluation of IT portfolios typically includes the evaluation of IT 

projects. Furthermore, IT project evaluation methods are sometimes simply adopted to IT 

portfolio evaluation. Therefore, as it is almost impossible to differentiate strictly between IT 

project and portfolio approaches, this section gives only a brief overview of important IT project 

and portfolio evaluation methods, without distinguishing between them regarding their 

application within a project or portfolio context. There are indeed many approaches and 

methods in literature that address IT project and portfolio evaluation. Though, integrated 

evaluation approaches that consider benefits, costs, risks, and dependencies in a quantitative 

and feasible manner are quite rare, even though this has been identified as a highly relevant 

topic in research and practice (Müller et al. 2015). Existing approaches often account only for 

qualitative factors. Some models also use quantitative figures for the valuation of benefits and 

sometimes risks — but not, unfortunately, on a monetary basis. We present below a brief 

summary of some existing approaches to IT project and portfolio evaluation. Because the focus 

of this paper is on quantitative methods for IT project and portfolio evaluation, we focused on 

these types of approaches, although we are aware that many publications are focused on a more 

general evaluation that also accounts for qualitative factors. 
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Frequently used tools for IT project evaluation are so-called scoring models (e.g., Walter and 

Spitta 2004; Zangemeister 1976), which identify and weight all relevant evaluation criteria for 

a specific IT project. The resulting scores are aggregated to provide an overall value that enables 

the comparison of different alternatives. The Balanced Scorecard by Van Grembergen and De 

Haes (2005) is also a type of a scoring model. The cause-and-effect relations between key 

qualitative and quantitative figures are described to identify two general types of key figures: 

performance drivers and output figures. The project is evaluated on the basis of the degree of 

target achievement of each key figure. The so-called WARS-Model (Ott 1993) has the ability 

to estimate benefits and costs crudely by classifying them into three categories according to their 

tangibility. The risk aversion of decision makers is taken into account by assessing different risk 

stages for optimistic or pessimistic decision makers. A more quantitative approach for IT project 

evaluation was presented by Schumann (1993), whose approach is based on functional chains. 

In this approach, benefits can be expressed in monetary terms by focusing on their effects. 

However, this approach lacks a proper quantitative integration of risks and dependencies. 

Another approach that considers quantitative values for costs, benefits, risks, and dependencies 

in an integrated manner is the so-called benefits management approach of Beer et al. (2013). 

Using preference functions, they derive a risk-adjusted monetary project value. This has been 

proven a feasible approach by business experts. Like the approach proposed by Beer et al. 

(2013), many approaches for IT project and portfolio evaluation refer to or are based on the 

well-known methods of decision theory, as for instance 𝜇𝜇/𝜎𝜎-decision rules (which means that 

the investment decisions of decision makers in companies are reached by comparing the 

expected values of investments while taking into consideration their respective risks). This 

seems to be an adequate way to derive a risk-adjusted IT portfolio value, although some 

approaches (e.g. Beer et al. (2013)) only applied these methods in a single project instead of a 

project portfolio context.  

Despite the vast number of different approaches for IT project and portfolio evaluation in 

research and practice, to the best of our knowledge, there is no integrated, value-based 

evaluation approach that also considers the specific characteristics of dependencies between 

projects in an IT portfolio.  

II.2.2.2 Different types of dependencies 

As mentioned before, there are different types of dependencies between the projects within IT 

portfolios. This fact is also reflected in literature. We found that some articles just mention 

certain types of dependencies, while others try to integrate and structure these types of 



Systemic Risk in IT Project Portfolios: IT as a Challenge 44 

dependencies in specific frameworks. Most articles (e.g., Lee and Kim (2001); Santhanam and 

Kyparisis (1996); Tillquist et al. (2004), Zuluaga et al. (2007)) describe resource dependencies, 

technical dependencies, and dependencies regarding benefits. A further segmentation of 

resource dependencies distinguishes between personal and technical dependencies (Wehrmann 

et al. 2006). Personal dependencies refer to projects competing for personnel resources, and 

technical dependencies refer to projects competing for technical resources. In contrast to the 

segmentation provided by Wehrmann et al (2006), Kundisch and Meier (2011) developed a 

framework for subdividing resource dependencies into allocation, performance, and sourcing 

dependencies.  

Technical dependencies are defined in many different ways in the literature, but in general, two 

major categories can be differentiated: technical dependencies can either arise from two projects 

competing for technical resources, as described by Wehrmann et al. (2006), or they can 

represent the fact that a specific project requires input from a precedent-associated project. 

Benefit dependencies may also be considered as synergies (Buchholz and Roth 1987) and can 

be realized if the value of at least one of the concerned projects increases when being 

implemented simultaneously with another. Examples of such synergies could be databases that 

have been built for specific projects but can also be used for other projects. Other examples are 

accumulated expert knowledge that is relevant to more than one project and the reuse of code 

fragments for two similar software development projects.  

A well-established way of structuring dependencies is provided by Wehrmann et al. (2006) and 

Zimmermann (2008), who distinguish between intra- and inter-temporal dependencies. Intra-

temporal dependencies refer to the dependencies of different projects that are assigned to the 

same period in time. Intra-temporal dependencies are presumed to encompass structural 

dependencies and resource dependencies (Wehrmann et al. 2006). Considering the number of 

related published articles, intra-temporal dependencies seem to be well recognized in literature, 

especially within the spectrum of Operations Research (e.g., Aaker and Tyebjee 1978; 

Carraway and Schmidt 1991; Fox et al. 1984; Gear and Cowie 1980; Medaglia et al. 2007; 

Kundisch and Meier 2011; Lee and Kim 2001; Santhanam and Kyparisis 1996; Stummer and 

Heidenberger 2003). In general, there is a common understanding in literature about the causes 

of resource dependencies in IT projects. They are presumed to arise from the sharing of scarce 

resources, such as personnel, hardware (servers), and software (database logic) resources 

(Graves and Ringuest 2003; Santhanam and Kyparisis 1996). Structural dependencies can be 

divided into the subcategories of process dependencies, data dependencies, and IT-functionality 
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dependencies if two or more IT projects are, for example, based on the same processes, use the 

same data, or apply the same IT functionalities (Wehrmann et al. 2006).  

Inter-temporal dependencies, in contrast, refer to dependencies between different projects that 

are assigned to different periods in time. Thus, inter-temporal dependencies describe a 

coherence by which a succeeding project is based on a preceding one. These dependencies can 

be distinguished as logical and technical or rather technological dependencies (Maheswari and 

Varghese 2005, Santhanam and Kyparisis 1996). Logical dependencies or integrative 

coherences are further subdivided into hard and soft dependencies by Bardhan et al. (2004). 

Other authors distinguish inter-temporal dependencies either in inter-temporal output 

interactions (e.g., Pendharkar 2014) or in inter-temporal output–resource interactions (e.g., Dos 

Santos 1991; Kumar 1996; Panayi and Trigeorgis 1998; Taudes 1998; Taudes et al. 2000). Most 

approaches, however, focus on output–resource-based dependencies, whereas output 

dependencies without the resource context are barely included.  

To provide an overview of different types of dependencies and to enhance comprehensibility, 

Figure 1 summarizes the different types of dependencies in a revised framework based on those 

by Wehrmann et al. (2006) and Wolf (2015). 

 

 

Figure 1. Dependencies in IT Portfolio 
II.2.2.3 Methods for consideration of dependencies 

To provide a more structured overview of existing research regarding the current appraisal of 

different types of dependencies, we structured this section according to the well-established 

classification of intra- and inter-temporal dependencies as described by Wehrmann et al. (2006). 

Intra-temporal dependencies  
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Various approaches to account for intra-temporal dependencies among IT projects and IT 

portfolios exist. One approach is to integrate them as auxiliary conditions in an optimization 

model (Kundisch and Meier 2011; Lee and Kim 2001; Santhanam and Kyparisi 1996). Another 

approach, used by Beer et al. (2013), Butler et al. (1999), and Wehrmann et al. (2006), for 

example, is to draw on the portfolio theory of Markowitz (1952) to determine a risk- and return-

optimized IT portfolio using the normalized covariances of the corresponding IT projects. A 

modified discounted cash flow approach, presented by Verhoef (2002), considers dependencies 

implicitly while focusing on cost and time risks for a given interest rate. However, many of 

these methods fall short to some degree because of their underlying financial restrictions 

(Zimmermann et al. 2012) or because they often do not consider the dependence structure of 

the whole portfolio but rather focus only on the dependencies between two specific projects. A 

wide number of publications concerning intra-temporal dependencies, particularly from 

problem-solving domains such as Operations Research, do not focus on ex ante evaluation alone 

(meaning that an evaluation takes place prior to the start of an IT project or IT portfolio) but 

rather provide procedures to consider dependencies continuously during the portfolio planning 

process. Thus, the contributions of these papers are methods, models, or algorithms that are 

aimed at solving specific capacity problems in the context of intra-temporal dependencies, 

rather than integrating these intra-temporal dependencies in the IT portfolio evaluation (Aaker 

and Tyebjee 1978; Carazo et al. 2010; Carraway and Schmidt 1991; Cho and Kwon 2004; De 

Maio et al. 1994; Doerner et al. 2006; Eilat et al. 2006; Fox et al. 1984; Gear and Cowie 1980; 

Klapka and Pinos 2002; Lee and Kim 2001; Liesiö et al. 2008; Medaglia et al. 2007; Nelson 

1986; Santhanam and Kyparisis 1996; Stummer and Heidenberger 2003; Weingartner 1966). 

Inter-temporal dependencies  

Inter-temporal dependencies within IT portfolios are most commonly assessed by using real 

options-based approaches, which stem from options theory in the financial sector. Several 

methods described in literature are based on the Black–Scholes model, and some use binomial 

trees to represent inter-temporal dependencies (cf. Bardhan et al. 2004; Benaroch and 

Kauffmann 1999; Dos Santos 1991; Taudes et al. 2000). As both approaches were originally 

developed in the financial sector, they feature specific restrictions and assumptions that are only 

partly fulfilled in the context of IT portfolios (Emery et al. 1978; Schwartz and Zozaya-

Gorostiza 2003). Therefore, their applicability to inter-temporal dependencies in the context of 

IT portfolios is doubtful. For a more detailed discussion of whether real options approaches are 

applicable in the IT portfolio context, please refer to Diepold et al. (2009) and Ullrich (2013), 
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who present a detailed investigation into the transferability of these methods to the 

consideration of dependencies in IT project and IT portfolio evaluation.  

There have also been some attempts to integrate the two types of dependencies, namely inter- 

and intra-temporal dependencies (cf. Bardhan 2004, Pendharkar 2014). However, based on the 

outlined examination of current approaches for IT project and portfolio evaluation, different 

types of dependencies in IT portfolios, and their current appraisal, we can conclude that 

different types of dependencies are almost always considered in isolation from one another. 

However, because in reality different types of dependencies are interconnected and can be 

found in every IT portfolio, they have to be considered in a holistic way, which is not done by 

any approach proposed so far (cf. Müller et al. 2015). Moreover, we found that none of the 

existing IT portfolio evaluation and management techniques explicitly considers transitive 

dependencies between IT projects within IT portfolios. An assessment of transitive 

dependencies is essential to an appropriate risk assessment and value-based evaluation in these 

network-like structures. Therefore, none of the investigated approaches can be considered 

completely appropriate for the purpose of integrated value-based evaluation of IT portfolios 

with consideration of their characteristic inherent dependency structures. 

II.2.3 Modeling Procedure, Assumptions, and Requirements 

In this section, we present an integrated, quantitative approach for holistic IT portfolio 

evaluation. This approach not only considers different types of dependencies but also accounts 

for transitive dependencies. We first introduce an integrated approach that is capable of 

accounting for the costs, benefits, risks, and dependencies of IT projects in a portfolio context. 

We then describe how this approach can be expanded to account for intra- and inter-temporal 

dependencies within an IT portfolio. We introduce a procedure to quantify the strength of intra- 

and inter-temporal dependencies and aggregate the strength assessments into a uniform 

dependency value. Based on this value and considering the IT portfolio as an IT project 

network, we use α-centrality to measure and quantify the dependence structure of an IT 

portfolio, including inherent transitive dependencies. Based on this procedure, we strive to 

determine a risk-adjusted IT portfolio value that considers costs, benefits, risks, and 

dependencies in a comprehensive und quantitative manner.  

II.2.3.1 An Integrated view of IT project evaluation 

For the purpose of quantitative assessment of an IT portfolio, we draw on an approach inspired 

by the portfolio theory of Markowitz (Markowitz 1952). More specifically, we adapt and 

modify the integrated approach of Beer et al. (2013), who integrate benefits, costs, risks, and a 
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superficial kind of dependencies to determine a risk-adjusted IT project value using the 

preference function. This function is an established method in decision theory (Bernoulli 1738; 

Bernoulli 1954; Markowitz 1952; von Neumann and Morgenstern 1947) and has been used in 

a considerable number of IT project-related studies (cf. Bardhan et al. 2004; Fogelström et al. 

2010; Fridgen and Müller 2011; Hanink 1985; Zimmermann et al. 2008). According to Beer et 

al. (2013), this risk-adjusted IT project value Φ is based on the overall cost C of the complete 

IT project i and the aggregated sum Σµi of all projects’ expected benefits µi. In a manner similar 

to that proposed by Markowitz, dependencies are considered in terms of the Bravais–Pearson 

correlation coefficient ρij and offset within one term for the overall risk adjustment ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗. 

The Bravais–Pearson correlation coefficient is a statistical measure of the linear correlation 

between two variables, or in the case of Beer et al. (2013), between two benefits of an IT project. 

Its value lies between -1 and 1, where -1 indicates a perfect negative linear correlation, 0 

indicates that there is no linear correlation, and +1 indicates a perfect positive linear correlation. 

Since a negative correlation value decreases the overall value of risk adjustment, it is considered 

to represent synergies between the respective benefits. In contrast, a positive value is considered 

to refer to any other kind of dependencies that consequently increase the overall value of risk 

adjustment or rather the risk discount to the overall project value. 

The other parameters of the term of risk adjustment are σi and σj representing the variances of 

the values of the expected benefits. Furthermore, to account for the level of risk aversion of the 

decision maker, this risk adjustment term is weighted by a risk aversion parameter, in our case 

referred to as γ. The risk aversion parameter γ is a linear transformation of the Arrow–Pratt 

characterization of absolute risk aversion (Arrow 1971) and reflects a decision maker’s attitude 

toward risk in uncertain situations. The value of γ increases with the decision maker’s level of 

risk aversion, which means that the higher the value of γ is, the more risk-averse the decision 

maker is. Highly risk-averse decision makers tend to invest in less risky investment options, 

whereas less risk-averse decision makers tend to invest in more risky investment options. In 

practice, the degree of risk aversion can be determined at the executive level using an elaborate 

questionnaire, according to Sauter (2007) and Beer et al. (2013). Based on this considerations, 

the risk-adjusted IT project value can be expressed by the following preference function: 

Φ(µ,σ) =  −𝐸𝐸 + Σ 𝜇𝜇𝑖𝑖 − 𝛾𝛾 ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗 (1) 

The approach described above is used for the evaluation of single IT projects with a particular 

focus on benefits management (through the integration of costs, benefits, dependencies among 

benefits, and risks). This approach lacks direct applicability in an IT portfolio context and does 
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not take into consideration the different types of dependencies described previously. However 

because this approach is inspired by Markowitz portfolio theory, it can easily be adapted to the 

evaluation of IT portfolios. In contrast to Beer et al. (2013), we take a cash flow-based 

perspective, in a manner similar to that described by Fridgen et al. (2015), and state the 

following assumption:  

Assumption 1: The cash flows of an IT project are normally distributed random variables 

𝑐𝑐𝑐𝑐𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖).  

Although project cash flows might not be normally distributed in every case, it is common in 

IT portfolio management to assume that they are (cf. Fridgen and Müller 2011, Fridgen et al. 

2015; Wehrmann et al. 2006; Wehrmann and Zimmermann 2005; Zimmermann et al. 2008). 

Based on this assumption, we can derive the distribution parameters 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 for each IT 

project, where 𝑖𝑖 = 1. . .𝑛𝑛 indicates the respective IT project of the IT portfolio. Consequently, 

𝜇𝜇𝑖𝑖 represents the expected value of IT project 𝑖𝑖, and 𝜎𝜎𝑖𝑖 indicates the variance of this expected 

value, or rather, the corresponding risk.  

Whereas Beer et al. (2013) and Fridgen et al. (2015) took dependencies into consideration by 

means of a correlation coefficient between every pair of underlying investigation objects and 

derive an overall term for risk adjustment, we distinguish between an IT project risk term Σ 𝜎𝜎𝑖𝑖2 

that refers to the risk related to a particular IT project and an IT portfolio risk term ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗 

that refers to the systemic risk originating from the inherent direct and indirect dependencies 

between IT projects in the IT portfolio. However, the Bravais–Pearson correlation coefficient 

𝜌𝜌𝑖𝑖𝑗𝑗was developed to determine the values of coherence based on statistically measureable 

historical data (e.g., covariance of the shares in the stock market), which implicitly describe 

transitive dependencies as well. However, in the context of the ex ante evaluation of IT projects, 

historical data for the statistical calculation of covariance are usually not available. Instead, in 

this case, the corresponding prevalent values are mostly represented by ex ante expert 

estimations of project dependencies. Because experts normally are asked for pairwise 

estimations of project dependencies, they usually are not aware of possible transitive 

dependencies, which are consequently mostly neglected in the resulting estimated covariance 

matrix of a corresponding IT portfolio. Therefore, the Beer at al. (2013) approach is able to 

consider dependencies in a very ingenuous way only, and is neither able to consider different 

types of dependencies nor transitive dependencies. 

Φ∗(µ,σ) =  �𝜇𝜇𝑖𝑖
𝑖𝑖

 − 𝛾𝛾 �𝜎𝜎𝑖𝑖2

𝑖𝑖

 − 𝛾𝛾 ��𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗
𝑗𝑗≠𝑖𝑖𝑖𝑖

 (2) 



Systemic Risk in IT Project Portfolios: IT as a Challenge 50 

As we strive to consider both, different kinds of dependencies as well as direct and transitive 

dependencies, we refrain from using the classical Bravais–Pearson correlation coefficient 𝜌𝜌𝑖𝑖𝑗𝑗. 

Instead, we consider a value 𝜌𝜌�𝑖𝑖𝑗𝑗 with 0 ≤ 𝜌𝜌�𝑖𝑖𝑗𝑗 ≤ 1 to reflect the aggregated strength of 

dependencies between pairs of IT projects 𝑖𝑖, 𝑗𝑗 = 1. . .𝑛𝑛. We moreover draw on α-centrality to 

determine a corresponding IT portfolio risk term 𝛴𝛴𝛴𝛴 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗 that accounts not only for direct 

but also for transitive dependencies. However, before we are able to do so, we need to assess 

the different types of dependencies between pairs of IT projects in the IT portfolio and aggregate 

them into a single dependency value that we can quantify. 

II.2.3.2 Assessing different types of dependencies  

As described previously, there are different types of dependencies within an IT portfolio. We 

use the distinction made by Wehrmann et al. (2006) between intra- and inter-temporal 

dependencies. However, we do not consider synergies between different IT projects within our 

term of risk adjustment. This seems plausible though, since the coherence between IT projects 

have been reported to rather exist due to dependencies than to synergies (e.g. Häckel and 

Hänsch 2014). In the case of intra-temporal dependencies, IT projects can be dependent on each 

other because they share resources (e.g., personnel) or infrastructure (e.g., data or databases). 

Therefore, we use the word “asset” to refer to either resources or infrastructure components that 

are planned for an IT project. In addition, each IT project can be separated into many 

interdependent activities. Accordingly, the dependencies between two IT projects can be 

considered as the result of dependencies on a more granular level. To facilitate this 

characterization, we do not distinguish between different levels of granularity; rather, we 

consider an IT project to be the most granular level, which cannot be divided into further distinct 

categories of activities. Furthermore, we assume that every IT project is assigned to one specific 

period of time 𝑡𝑡, i.e., that the start and end date of the project are within the same period. In 

reality, IT projects often take place over several months. Consequently, we assume that these 

IT projects can be subdivided into smaller ones that can be assigned to specific periods of time. 

An IT portfolio usually has a specific planning horizon and encompasses IT projects that take 

place during many of the covered periods 𝑡𝑡 = 1. . .𝑇𝑇. There can also be 1 to 𝑛𝑛 IT projects within 

the same period of time, because there might be more than one IT project going on at the same 

time, even in a small company.  

There are two different perspectives on how assets are shared between IT projects: the asset 

pooling perspective and the asset accounting perspective. The asset pooling perspective 

considers different IT projects to draw on the same pool of assets. A specific asset can be used 
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by [1 …𝑛𝑛] IT projects. However, if the IT projects take place at the same point in time, they 

have to share the asset, and consequently, each IT project only accounts for a specific 

percentage of the asset between [0% … 100%]. At each point in time, the sum of the asset 

shares of an IT project cannot exceed 100%. If asset 𝑎𝑎1 is shared between IT projects 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘 

and the shares of the IT projects for asset 𝑎𝑎1 are 𝑎𝑎1𝑖𝑖,𝑎𝑎1𝑗𝑗 , and 𝑎𝑎1𝑘𝑘, then 𝑎𝑎1𝑖𝑖 + 𝑎𝑎1𝑗𝑗 + 𝑎𝑎1𝑘𝑘 ≤

100%. If the asset is not shared between two or more IT projects, there is no dependency caused 

by this asset. This coherence is illustrated in Figure 2. 

This perspective, however, seems unfavorable in the case of inter-temporal dependent IT 

projects. Because the asset pool and an IT portfolio are strictly segregated, an IT project would 

have to be considered an asset to serve as an input to another IT project. Consequently, it would 

have to be considered as an asset and an IT project at the same time, which seems inappropriate 

for the purpose of this research. 

 

 

 Figure 2. Asset Pooling in an Exemplary IT portfolio 

In this context, the asset accounting perspective provides a more appropriate solution to the 

simultaneous consideration of intra- and inter-temporal dependencies. According to this 

perspective, assets are assigned directly to IT projects that depend upon them (cf. Figure 3). 

Consequently, [1 … 𝑘𝑘] assets can be allocated to [1 …𝑛𝑛] IT projects with percentage shares 

between [0% … 100%]. However, in this case as well, the sum of the asset shares of an IT 

project cannot exceed 100% at any point in time. If the asset is assigned to one specific IT 

project alone, there is no dependency to another IT project caused by this asset. For instance, if 

a software developer (a personnel resource) is allocated exclusively to project 𝑖𝑖, other projects 

have no dependency on project 𝑖𝑖 associated with this asset.  
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 Figure 3. Asset Accounting in an Exemplary IT portfolio 

As Figure 3 shows, according to the asset accounting perspective, dependencies are considered 

to exist between different projects but not between projects and assets. Therefore, in contrast to 

the asset pooling perspective, inter-temporal dependencies can easily be considered. However, 

it should be noted that an asset that is assigned to two consecutive IT projects (cf. projects 4 

and 6 in Figure 3) does not constitute an inter-temporal dependency, because of our assumption 

that every IT project is assignable to one specific period of time. Therefore, if an asset is 

assigned to two projects that take place at different points in time, it does not cause any 

dependency, as the first project will have finished using the asset before the second project 

starts to use it.  

In addition to the dependency caused by sharing a specific asset between IT projects, assets are 

typically able to cause a different type of risk: a risk associated with the availability of the asset 

itself. Each type of asset has an inherent risk of failure, which is independent of whether it is 

shared between different IT projects. In the context of personnel resources, the availability of a 

software developer, for instance, depends on the software developer’s health. Because this type 

of risk does not originate on the dependencies of different projects on specific assets, it is not 

considered within the IT portfolio risk term and thus is not considered in the following 

discussion.  

II.2.3.3 Aggregating different types of dependencies into a single value 

Since we strive to consider both inter- and intra-temporal dependencies, we need to aggregate 

them into a single quantitative value. Therefore, we take the asset accounting perspective, as 

described above, and draw on the idea presented by Wolf (2015), considering the IT portfolio 

to be an IT project network. Consequently, we model the IT portfolio as a connected and 

directed graph. Each IT project 𝑖𝑖 = 1 …𝑛𝑛 in the portfolio is represented by a node. A 

dependency (inter-/intra-temporal) between IT projects 𝑖𝑖, 𝑗𝑗 = 1 …𝑛𝑛 is represented by a directed 

edge between these IT projects. Inter-temporal dependencies are represented by a directed edge 

pointing from the dependent IT project to the IT project upon which it depends. Logically, when 
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an IT project 𝑖𝑖 is inter-temporally dependent on an IT project 𝑗𝑗, IT project 𝑗𝑗 cannot be inter-

temporally dependent on IT project 𝑖𝑖. Intra-temporal dependent IT projects share an asset within 

the same period of time. Hence, as these IT projects are affected at the same time, there is an 

edge from IT project 𝑖𝑖 to IT project 𝑗𝑗 and an edge from IT project 𝑗𝑗 to IT project 𝑖𝑖. We define 

the weight of an edge in the graph as representing the strength of the dependency between two 

IT projects.  

Figure 4 illustrates an example IT portfolio with inter- and intra-temporal dependencies 

between IT projects based on an IT project network perspective.  

 

 

 Figure 4. Exemplary IT portfolio 

To aggregate intra- and inter-temporal dependencies to a single value, we quantify the strengths 

of these dependencies based on the same underlying factor. We identify “time” as the common 

factor that enables a quantitative determination of inter- and intra-temporal dependencies. More 

specifically, we consider the relative time lag that a particular IT project can cause to the other 

projects that depend on this particular project. We describe the quantification of intra- and inter-

temporal dependencies below.  

Intra-temporal Dependencies 

In the case of intra-temporal dependencies, the relative time lag refers to the time that an IT 

project—given that all assets are available—would require for implementation. The lag 

describes the prolongation of this implementation time due to the struggle between two different 

IT projects regarding one critical asset. We thus consider two types of assets: uncritical assets 

𝑎𝑎𝑢𝑢𝑢𝑢 that are not simultaneously required by different IT projects and critical assets 𝑎𝑎𝑢𝑢 that are 

simultaneously required by at least two different IT projects. We strive to quantify the time lag 

in case all, none, or some percentage of the critical assets of a particular IT project are available. 

However, as the extent of such a time lag can differ based on the assets’ importance to a 

particular IT project and the size of the project, we denote its value relative to the project size. 

Therefore, we consider each IT project 𝑖𝑖 = 1. . .𝑛𝑛 to have a size 𝑆𝑆𝑝𝑝𝑖𝑖, which is usually measured 
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in time-related units, such as full-time equivalents (FTEs). However, we consider project size 

to represent the overall duration of the implementation of an IT project in working hours. Based 

on the average working hours of a specific company, this value can easily be converted into 

FTEs. Using the project’s size, we are able to determine a project’s duration 𝐷𝐷𝑝𝑝𝑖𝑖 based on the 

number of assets that are assigned to the IT project.  

Assumption 2: The coherence between the duration of an IT project and its assigned assets is 

linear. 

Although this assumption might not be realistic for each type of asset, it seems plausible for at 

least the most important intra-temporal dependencies, and it is easy to grasp. Therefore, we 

consider it to be an appropriate assumption for the first step toward aggregation and consistent 

quantification of different types of intra-temporal dependencies. Based on this assumption, we 

are able to quantify the intra-temporal dependencies between two different IT projects. We 

calculate the prolongation of the project duration resulting from the reciprocal shortfall of 

required critical assets according to the following equation:  

𝐷𝐷𝑘𝑘
𝑝𝑝𝑖𝑖 =  

𝑆𝑆𝑝𝑝𝑖𝑖
(𝑎𝑎𝑘𝑘𝑢𝑢𝑢𝑢 + 𝜗𝜗𝑘𝑘 ∙ 𝑎𝑎𝑘𝑘𝑢𝑢)

 (3) 

To do so, we use equation 3 to calculate two different scenarios, which will be related afterward. 

In the first (max-)scenario, we calculate the duration of the project for the case in which all 

planned assets 𝑎𝑎𝑘𝑘, uncritical assets 𝑎𝑎𝑘𝑘𝑢𝑢𝑢𝑢, and critical assets 𝑎𝑎𝑘𝑘𝑢𝑢 in each asset category 𝑘𝑘 = 1 … 𝑙𝑙 

(e.g., resources and infrastructure) are available. Whereas uncritical assets 𝑎𝑎𝑘𝑘𝑢𝑢𝑢𝑢 are presumed to 

be available without having any other project competing for them, the availability of critical 

assets 𝑎𝑎𝑘𝑘𝑢𝑢  is reflected by the parameter 𝜗𝜗𝑘𝑘, where 0 ≤ 𝜗𝜗𝑘𝑘 ≤ 1. This parameter represents the 

percentage of availability of the assets of a specific asset category. Consequently, in the case of 

the first scenario, 𝜗𝜗𝑘𝑘 = 1 for each asset that is assigned to the IT project. In the second (min-

)scenario, we calculate the duration of the project in the case of a rival IT project being given 

preference regarding all critical assets 𝑎𝑎𝑘𝑘𝑢𝑢 . In this case, 𝜗𝜗𝑘𝑘 = 0 for all competed-for assets. 

Combining the resulting values for the two scenarios, we can calculate the percentage of the 

project that can be accomplished with the available assets in the initially planned time frame 

(the originally planned period for the project duration when all assets are available). 

Consequently, we can determine the percentage of the project that remains incomplete during 

the initial time frame and is caused by asset category 𝑘𝑘 = 1 … 𝑙𝑙 as follows:  
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∆𝐷𝐷𝑘𝑘
𝑝𝑝𝑖𝑖 = 1 −

𝐷𝐷𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝𝑖𝑖

𝐷𝐷𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚

𝑝𝑝𝑖𝑖  (4) 

The result of equation (4) is the percentage of project 𝑖𝑖 that remains incomplete because its 

critical assets are unavailable and blocked by project 𝑗𝑗. Therefore, the percentage of project 𝑖𝑖 

that might remain undone as a result of the critical asset dependency on project 𝑗𝑗 is the weight 

of the edge from project 𝑖𝑖 to project 𝑗𝑗 or rather the strength of the corresponding dependency. 

Consequently, equation (3) quantifies the effects of IT projects competing for one or more 

critical assets. However, as mentioned before, equation (3) and (4) do not consider the 

prolongation of the project duration resulting from a shortfall of an assets (uncritical or critical). 

This is considered to be part of the project’s individual risk (𝜎𝜎𝑖𝑖) in equation (2). 

To illustrate the outlined coherence, we refer to Figure 3, where 𝑝𝑝1 and 𝑝𝑝5 have intra-temporal 

dependencies caused by a single asset category 𝑎𝑎1. Let 𝑝𝑝1 be a software development project 

with an approximate size of approximately 250 working hours, and let 𝑝𝑝5 be a smaller project 

with an approximate size of 150 working hours. Project 𝑝𝑝1 requires five assets 𝑎𝑎1 from category 

𝑘𝑘 = 1 to be completed on schedule, and 𝑝𝑝5 requires three assets. However, two specific 

software developers are required for both projects and thus are critical assets. Therefore, the 

critical assets 𝑎𝑎1𝑢𝑢 = 2 for both projects, whereas 𝑎𝑎1𝑢𝑢𝑢𝑢 = 3 for 𝑝𝑝1 and 𝑎𝑎1𝑢𝑢𝑢𝑢 = 1 for 𝑝𝑝5. According 

to equation (3), we can calculate the (max-)scenario with 𝜗𝜗1 = 1 and the (min-)scenario with 

𝜗𝜗1 = 0 and relate the resulting values 𝐷𝐷1𝑚𝑚𝑖𝑖𝑚𝑚
𝑝𝑝1 = 83.33 and 𝐷𝐷1𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝1 = 50 to derive ∆𝐷𝐷1
𝑝𝑝1 = 0.4, 

which can be considered the percentage of project 𝑝𝑝1 that remains incomplete during the 

initially planned time frame due to the critical asset category 𝑘𝑘 = 1. The dependency of project 

𝑝𝑝1 on project 𝑝𝑝2 is a result of the dependency on asset category 𝑘𝑘1. Consequently, the weight 

of the edge from project 𝑝𝑝1 to project 𝑝𝑝2 is equal to 0.4. 

In the case in which there is only one critical asset category, such as that described above, ∆𝐷𝐷𝑘𝑘
𝑝𝑝𝑖𝑖 

is considered to represent the quantification 𝑤𝑤𝑖𝑖𝑗𝑗 of the intra-temporal dependency between the 

dependent project 𝑝𝑝𝑖𝑖 and another project 𝑝𝑝𝑗𝑗 upon which it depends due to the specific asset 

category. However, if there are multiple critical asset categories 𝑘𝑘 = 1 … 𝑙𝑙, we need to 

aggregate these categories to derive a single value for intra-temporal dependencies. In this case, 

𝑤𝑤𝑖𝑖𝑗𝑗 = ∑ ∆𝐷𝐷𝑘𝑘
𝑝𝑝𝑖𝑖𝑙𝑙

𝑘𝑘=1 . However, this can potentially result in values of 𝑤𝑤𝑖𝑖𝑗𝑗 > 1. Because 𝑤𝑤𝑖𝑖𝑗𝑗 = 1 

reflects the maximum dependency of 100%, we set 𝑤𝑤𝑖𝑖𝑗𝑗 = 1 for each aggregated value 𝑤𝑤𝑖𝑖𝑗𝑗 > 1.  

Inter-temporal Dependencies  
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Inter-temporal dependencies are considered over the whole planning horizon of the IT portfolio. 

If two projects are inter-temporally dependent, they are assigned to different points in time that 

do not necessarily have to be consecutive. According to the precedence diagram method 

(Project Management Institute 2009), inter-temporal dependencies can be distinguished 

according to their start and finish points as follows:  

• Finish-to-start (FS): The start of the successor project depends upon the completion of the 

predecessor project. Because the successor project is dependent on the result of the 

predecessor project, any delay in finishing the predecessor project can cause a delay in 

completion of the successor project. Consequently, we consider this as an inter-temporal 

dependency in the sense of our paper. 

• Finish-to-finish (FF): The completion of the successor project depends on the completion of 

the predecessor project. This dependency describes a coherence where the completion of the 

succeeding project requires the preceding project to be completed to a specific extent. Since 

this dependency might cause a prolongation of the succeeding project, we consider it as an 

inter-temporal dependency in the sense of our paper. 

• Start-to-start (SS): The successor and predecessor project should start at the same time and 

hence are allocated to the same period. As in this case there is no dependency between the 

successor and the results of predecessor project, we do not consider it as inter-temporal 

dependency in the sense of this paper. 

• Start-to-finish (SF). The completion of the successor project depends on the start of the 

predecessor project. This implies that the predecessor project must be started before the 

successor project can be finished. Since this case does not reflect any kind of dependencies 

between the results of the predecessor project and the successor project either, but is mainly 

an issue for scheduling purposes, it is not considered as inter-temporal dependency in the 

sense of this paper. 

In summary, we distinguish between only two types of inter-temporal dependencies: FS and FF 

dependencies, where incidents by predecessor projects might cause prolongations of successor 

projects, taking place at future points in time. As in the case of intra-temporal dependencies, 

we use the relative time lag to describe the prolongation of the project implementation time due 

to inter-temporal dependencies. In particular, we assess inter-temporal dependencies by 

calculating the relative prolongation of the project implementation of the succeeding project 𝑝𝑝2 

based on a delay in a preceding project 𝑝𝑝1 (cf. Figure 4). In a case in which there is an FS 

dependency between 𝑝𝑝2 and 𝑝𝑝1, project 𝑝𝑝2 cannot start before project 𝑝𝑝1has been finished. 
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Therefore, we consider the strength 𝑤𝑤𝑖𝑖𝑗𝑗 of this dependency to be 100% and consequently 

declare 𝑤𝑤21 = 1. In contrast, if there is an FF dependency between 𝑝𝑝2 and 𝑝𝑝1, the completion 

of 𝑝𝑝2 depends on the completion of 𝑝𝑝1. Considering this coherence to be valid for partial 

completion as well, we can determine the strength of this type of dependency from the 

percentage of the predecessor project that has to be completed before the successor project can 

be completed. For example, if 60% of 𝑝𝑝1 need to be completed before 𝑝𝑝2 can be completed, we 

determine the strength 𝑤𝑤𝑖𝑖𝑗𝑗 of this dependency to be 60% and consequently declare 𝑤𝑤21 = 0.6. 

II.2.3.4 Quantifying the dependence structure of IT portfolios based on α-centrality  

As mentioned before, we strive to determine an IT portfolio risk term ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗 that accounts 

for both direct and transitive dependencies in an IT portfolio. Therefore, we employ the idea 

presented by Wolf (2015), considering an IT portfolio to be an IT project network, where each 

node represents a project and each arc represents a dependency. Wolf (2015) identified the 

following five requirements that a centrality measure has to fulfill to be applicable in the context 

of IT portfolios: 

1. The measurement accounts for directed relations between projects. 

2. The result of the measurement for a specific project increases with the strengths of the 

relations with dependent projects. 

3. The result of the measurement for a specific project increases with the number of directly 

dependent projects. 

4. The measurement accounts for transitive dependencies, as the result increases with the 

number of indirectly dependent projects. 

5. The result of the measurement of a specific project increases with the importance of 

directly and indirectly dependent projects. 

Based on these requirements, Wolf (2015) introduced some common centrality measures and 

investigated whether and to what extent they are appropriate for use in the quantification of 

dependencies in IT portfolios. The result of this investigation was that α-centrality was 

identified as the most suitable measure for quantifying dependencies in IT portfolios. We 

consequently use α-centrality to assess the network dependence structure and the corresponding 

inherent systemic risk. According to Wolf (2015), α-centrality accounts not only for direct 

dependencies, such as the number of directly dependent projects, but also for indirect or 

transitive dependencies. It thereby considers more interconnected and therefore critical projects 

to contribute more strongly to the criticality of the projects upon which they are dependent than 

projects that are less critical (Wolf 2015). In the following discussion, we briefly introduce the 
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elements of α-centrality and illustrate how the concept can be adapted to the derivation of an 

IT portfolio risk term that can be used within an integrated quantification approach. α-centrality 

can be calculated according to the following equation:  

𝑥𝑥 = (𝑰𝑰 − 𝛼𝛼 ∗ 𝑨𝑨𝑇𝑇)−1 ∗ 𝒆𝒆 (5) 

Presuming the arcs of the IT project network to be weighted, the elements 𝑤𝑤𝑖𝑖𝑗𝑗 of the 𝑛𝑛×𝑛𝑛 

adjacency matrix 𝑨𝑨 represent the weighted conjunctions of the network, or rather, the strengths 

of the corresponding IT project dependencies. We previously outlined how we derive 𝑤𝑤𝑖𝑖𝑗𝑗 for 

intra- and inter-temporal dependencies. These values can be considered equivalent to the 

pseudo correlation values 𝜌𝜌𝑖𝑖𝑗𝑗 of (1), which represent the linear dependencies between every 

pair of investigation objects (e.g., IT projects), based on expert judgments. Therefore, we 

consider 𝑤𝑤𝑖𝑖𝑗𝑗 to equal 𝜌𝜌�𝑖𝑖𝑗𝑗 in our IT portfolio risk term ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗. The remaining elements in 

equation (5) are the identity matrix 𝑰𝑰 and the scalar 𝛼𝛼 > 0. The latter is an arbitrary ratio 

between the endogenous status of the nodes (projects), which is calculated based on the network 

(dependency) structure, and the exogenous status of the nodes, which can be arbitrarily assigned 

based on the vector 𝒆𝒆. The parameter 𝛼𝛼 can take values in the range of 0 < 𝛼𝛼 < 𝜆𝜆1−1, where 𝜆𝜆1−1 

is the maximum value of the eigenvector of the adjacency matrix 𝑨𝑨. Most researchers choose a 

value for 𝛼𝛼 that is close to the maximum value of 𝜆𝜆1−1 (Bonacich and Lloyd, 2001) because this 

choice maximizes the consideration of the endogenous character, or rather, the network or 

dependency structure. The exogenous status represented by the vector 𝒆𝒆 makes it possible to 

assign a value to each node in the network, independent of the actual network structure 

described by the adjacency matrix 𝑨𝑨. Within an IT portfolio context, this exogenous status 

might, for instance, be the risks or the sizes of the projects. To integrate the dependency values 

𝑤𝑤𝑖𝑖𝑗𝑗 or 𝜌𝜌�𝑖𝑖𝑗𝑗in a risk measure that is comparable to established approaches like the one of Beer et 

al. (2013), we in this case consider the estimated (not normalized) covariance of the IT projects 

(which do not account for transitive dependencies) to be the exogenous factor in the α-centrality 

calculation. Since we strive to derive an according IT portfolio risk term ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗, each 

dependency values 𝑤𝑤𝑖𝑖𝑗𝑗 = 𝜌𝜌�𝑖𝑖𝑗𝑗 of the adjacency matrix 𝑨𝑨 needs to be multiplied by the respective 

covariance 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 of a corresponding 𝑛𝑛×𝑛𝑛 matrix 𝑬𝑬. Therefore, the exogenous vector 𝒆𝒆 of α-

centrality needs to be replaced by the described matrix 𝑬𝑬 whose elements 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 represent the 

estimated covariance of all corresponding projects 𝑖𝑖, 𝑗𝑗 = 1 …𝑛𝑛. This adaption makes possible a 

more accurate and holistic consideration of IT project dependencies. Based on this adaption, 

the equation for the modified α-centrality used in this paper is as follows: 
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𝑥𝑥 = (𝑰𝑰 − 𝛼𝛼 ∗ 𝑨𝑨𝑇𝑇)−1 ∘ 𝑬𝑬 (6) 

In this equation, the mathematical operator ∘ signifies an element-wise multiplication of the 

adjacency matrix 𝑨𝑨, which contains the elements 𝜌𝜌�𝑖𝑖𝑗𝑗, and the exogenous matrix 𝑬𝑬, which 

contains the covariances 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗. The result of this multiplication is an IT portfolio risk term 

ΣΣ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗 that is comparable to the one introduced by Beer et al. (2013) but accounts for the 

specific characteristics of IT portfolio dependencies. We can thus calculate an integrated and 

adequately risk-adjusted IT portfolio value.  

II.2.4 Evaluation 

The evaluation of approaches for IT portfolio quantification is quite difficult because it is 

impossible to determine the “right” solution for an IT portfolio, which is based on several expert 

estimations and assumptions in each real-world case. Consequently, it is difficult to judge 

whether the result of an IT portfolio quantitation approach is right or wrong. It is rather a matter 

of how accurate or how plausible it seems. Since the approach of Beer et al. (2013) reflects an 

integrated approach of several well-established methods and approaches that themselves have 

often-times been evaluated and applied in practice and literature, we consider it an approved 

approach of suitable relevance and quality to serve as a benchmark for our evaluation purpose. 

To do justice to the Design Science Research principles, we evaluate our artifact regarding 

quality, utility and efficacy based on a comparison to the approach of Beer et al. (2013), 

henceforth referred to as benchmark approach. Therefore, we compute a simulation, which 

according to Hevner et al. (2004) is an established evaluation method in Design Science 

Research. We furthermore demonstrate the practicability of our artifact by providing an 

application example.  

II.2.4.1 Simulation-based evaluation 

Our evaluation procedure was as follows: For an exemplary IT portfolio, we calculated the IT 

portfolio value using our approach, which considers the systemic risk of IT portfolios based on 

their characteristic dependency structures. We also calculated the values for the exemplary IT 

portfolio based on the benchmark approach and compared the results of the two methods. Like 

previously explained, this approach reflects an integrated approach of several well-established 

methods and is therefore used as a benchmark for the purpose of this evaluation.  

Since we were not yet able to gather real-world data for the evaluation presented below, we 

interviewed some experts to define approximate ranges for the input data based on their 

estimates. Table 1 presents an overview of the input data gained and used for the simulation. 
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The experts estimated values for a project’s expected net present value (which is based on the 

discounted cash flows of the projects) and standard deviation, for small IT projects such as 

updates of existing applications or mobile application development projects. They furthermore 

estimated the risk aversion variable 𝛾𝛾. To investigate the effects of considering different levels 

of network dependencies on the IT portfolio values, we chose three different values of 𝛼𝛼—low 

(almost ignoring the underlying IT portfolio dependencies), medium (considering half of the 

effect of underlying IT portfolio dependencies), and high (full consideration of the underlying 

IT portfolio dependencies).  

We simulated three different IT project networks with three different connectivity degrees—

low, medium, and high. We define the connectivity degree as the number of edges in the IT 

project network divided by the maximum possible number of edges. By increasing the number 

of edges, the connectivity of the IT project network, or rather the dependency of the IT portfolio, 

increases. However, it should be noted that the connectivity degree in an IT project network 

will never be 100%, as not all projects in an IT portfolio will be likewise dependent on each 

other. In our simulation, the IT portfolios consisted of 20 projects, which resulted in a maximum 

number of 190 (𝑛𝑛∗(𝑛𝑛−1)
2

) edges in the network. The simulated IT project networks have 20, 30, 

and 50 edges, which result in connectivity degrees of 11%, 16%, and 26%. For each edge 

between a project 𝑖𝑖 and 𝑗𝑗 within a specific IT project network, we use randomly generated 

weights 𝑤𝑤𝑖𝑖𝑗𝑗 ∈ [0,1] to represent the strength of the underlying dependencies between projects 

𝑖𝑖 and 𝑗𝑗. As previously mentioned, we compared the results of our approach with the results of 

the benchmark approach. Therefore, as 𝑤𝑤𝑖𝑖𝑗𝑗 can be considered equivalent to the pseudo 

correlation values 𝜌𝜌𝑖𝑖𝑗𝑗 of equation (1), we used the simulated values of 𝑤𝑤𝑖𝑖𝑗𝑗 for 𝜌𝜌𝑖𝑖𝑗𝑗.  

As previously explained, the parameter 𝛼𝛼 determines the trade-off between exogenous and 

endogenous factors in the α-centrality calculation. To investigate the coherence between 𝛼𝛼 and 

the results of our approach, we simulated three different scenarios for low, medium, and high 

values of 𝛼𝛼. Because 0 < 𝛼𝛼 < 𝜆𝜆1−1, the minimum value is close to zero and the maximum value 

is close to the maximum eigenvector of 𝜆𝜆1−1. 
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Table 1. Simulation Input Data 

 Range Distribution 

Expected net present value of 

each project (𝜇𝜇) 

10,000 –  100,000 equal 

Standard deviation of each 

project (𝜎𝜎) 

0 –  10% 

of project’s net present 

value 

equal 

Parameter of risk aversion (𝛾𝛾) 5 ⋅  10−15 –  15 ⋅ 10−15 equal 

Correlations (𝜌𝜌) for projects = 

Weight of the edge (w) 

0 –  100% equal 

Parameter (𝛼𝛼) for relative importance of 

endogenous versus exogenous factors 

0.05 ∗ 𝜆𝜆1−1, 0.5 ∗ 𝜆𝜆1−1, 0.95

∗ 𝜆𝜆1−1 

low, medium, high 

Number of projects 𝑛𝑛 constant 

Connectivity degree of the portfolio  low, medium, high  

Based on the input data summarized in Table 1, we generated 500 different IT portfolios. Table 

2 presents the average results for the portfolio’s value, based on the simulation for each chosen 

level of 𝛼𝛼 and each connectivity degree.  

Table 2. Average IT Portfolio’s Value 

Results of Φ for IT Portfolio’s Connectivity Degree 

Low Medium High 

Markowitz-

based  

1,065,436.8

2 

1,058,239.24 1,042,966.1

1 

𝛼𝛼 =  low 1,079,836.9

0 

1,079,852.78 1,079,817.7

6 

𝛼𝛼 =  medium 1,070,429.9

0 

1,069,584.65 1,068,454.7

8 

𝛼𝛼 =  high 945,735.44 890,242.78 860,942.10 

We performed the simulation several times and found that the results were reproducible. For a 

more convenient comparison of the results of our approach with the results of the benchmark 
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approach, we provide the results of the evaluation in the following figures. Figure 5 presents 

the average results of our approach for three different values of 𝛼𝛼 (Φ1
∗ ,Φ2

∗ ,Φ3
∗). Figure 6 

presents the average results of our simulation for three different IT portfolios with low, medium, 

and high connectivity degrees. For both figures, the vertical axis displays the risk-adjusted 

portfolio values derived using either the benchmark approach of Beer et al. (2013) (cf. equation 

(1)) or our approach (cf. equation (2)). 

The results shown in Figure 5 indicate that increasing 𝛼𝛼, which implies a higher consideration 

of the underlying IT portfolio dependencies, leads to a lower risk-adjusted value of the IT 

portfolio. This shows the high impact potential of dependencies within the IT portfolio on the 

respective risk-adjusted portfolio value. Moreover, the results indicate that more interdependent 

IT portfolios are increasingly prone to systemic risk and thus have smaller risk-adjusted IT 

portfolio values. For low and medium values of 𝛼𝛼, the results of our approach differ from the 

results of the benchmark approach by between 0.5% and 3.4%. The risk of transitive 

dependencies seems to be comparably low for this parametrization. This, however, is quite 

plausible, as for low and medium values of 𝛼𝛼, the portfolio’s dependence structure, represented 

by the weights 𝑤𝑤𝑖𝑖𝑗𝑗 of the connections, is almost neglected. In contrast, for a value of 𝛼𝛼 which 

is close to the upper boundary 𝜆𝜆1−1, the portfolio’s dependence structure is considered to be 

more important, and the simulation shows significant differences between the two different IT 

portfolio evaluation approaches with respect to the consideration of characteristic dependency 

structures. 

 

 

Figure 5. Evaluation of the Results 

Depending on the connectivity of the specific IT portfolio, the benchmark approach leads to an 

overestimation of the risk-adjusted portfolio value by between approximately 11% and 17%, 

based on a high value of 𝛼𝛼. For connectivity degrees of 11%, 16%, and 26%, which are referred 

to as low, medium and high, this coherence is illustrated in Figure 6.  
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Figure 6. Evaluation of the Results 

Based on our simulation results, we conclude that for IT portfolios with low degrees of 

connectivity, the risk-adjusted portfolio value determined using our approach and that 

determined using the benchmark approach are relatively similar, differing by approximately 

11%. This implies that the risks of overestimation and underestimation in IT portfolios with 

lower connectivity degrees are comparably low. For IT portfolios with moderate (16%) degrees 

of connectivity, the difference is approximately 16%, and for portfolios with high (26%) 

degrees of connectivity, the difference is approximately 18%. We conclude that the probability 

of underestimating or overestimating the risk-adjusted IT portfolio value increases with the 

number and strength of directly and indirectly dependent projects in an IT portfolio.  

II.2.4.2 Application example 

The following example illustrates the applicability of our approach using data that has been 

shown to be obtainable in practice by Beer et al. (2013). We consider the exemplary IT portfolio 

shown in Figure 4 and calculate the IT portfolio’s values using our method and the one of Beer 

et al. (2013) to illustrate the effects of integrating different types of dependencies and modeling 

IT portfolios from a network perspective. We defined the range of the IT project’s expected 

values to be 266,700 € to 626,700 €, the standard deviations to be 20%, and the value of risk 

aversion 𝛾𝛾 to be 0.000031, based on the parameters given by Beer et al. (2013). Since we 

examined the exemplary IT portfolio of Figure 4, we generated random values for the weights 

(w) of the edges according to the ranges given in Table 1. However, as it has been shown by 

Beer et al. (2013), such weights representing the strength of dependencies between two projects 

of the IT portfolio can easily be determined based on expert estimations. We used the same 

input parameters for both methods. The results for the parameters of equations (1) and (2) are 

as follows: ∑ 𝜇𝜇𝑖𝑖𝑖𝑖  is 3,060,759.70, 𝛾𝛾 ⋅ ∑ 𝜎𝜎𝑖𝑖2𝑖𝑖  is 461,647.02, 𝛾𝛾 ⋅ ∑ ∑ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖  is 189,480.40, and 

𝛾𝛾 ⋅ ∑ ∑ 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌�𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖  for low, medium, and high 𝛼𝛼 values are 11,052.68, 201,348.68, and 

3,870,817.02. The IT portfolio values obtained using Beer et al. (2013) and our method for low, 

medium, and high 𝛼𝛼 values are as follows: 2,409,632.28 €, 2,588,060.00 €, 2,397,763.99 €, and 
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-1,271,704.34 €. The result of this application example indicates similar conclusions like the 

results of the simulation. In comparison to Beer et al. (2013), our approach leads to higher 

project values for low 𝛼𝛼 values, since in this case almost all dependencies and corresponding 

risks of the IT portfolio are neglected. However, the results also show that in cases of high 𝛼𝛼 

values (as in our simulated example with the maximum 𝛼𝛼), our approach, in comparison, 

provides lower IT portfolio values that might even be negative due to the inherent risk of direct 

and indirect dependencies. Such values indicate IT portfolios that can cause financial losses for 

an organization. Such potential losses would probably be overlooked by the application of 

methods that do not appropriately consider the dependence structure of an IT portfolio. 

II.2.5 Conclusion, Limitations, and Outlook 

Our novel approach integrates various types of direct and indirect (transitive) dependencies 

between IT projects and thus enables holistic, quantitative, value-based IT portfolio evaluation 

in a feasible way. By considering IT portfolios as IT project networks and using α-centrality to 

investigate and evaluate underlying dependency structures, we addressed the major challenge 

stated by Benaroch and Kauffmann (1999) and adapted a model from another academic 

discipline to IS research. We combined α-centrality with an established and thoroughly 

evaluated, integrated approach for IT project and portfolio evaluation provided by Beer et al. 

(2013) to derive a comprehensive approach to value-based IT portfolio evaluation that 

appropriately considers risks emerging from characteristic dependency structures, as well as the 

costs and benefits of IT portfolios. This approach was developed and evaluated in line with 

Design Science Research principles. By means of simulation, we examined the quality and 

efficacy of our approach and compared it to the approach of Beer et al. (2013), which is based 

on the well-established methods from decision theory. The results of our simulation indicate 

that for low connectivity of the IT project network, which reflects a low number of 

dependencies in the corresponding IT portfolio, the results of our approach are comparable with 

the result of the one of Beer et al. (2013). This confirms the validity of the results of our 

approach. For IT portfolios with a high number of dependencies, our approach yields different 

results than the other approach of Beer et al. (2013) that is based on Markowitz’s portfolio 

theory. This, however, seems quite plausible because the Markowitz-based approach does not 

consider systemic risks associated with transitive dependencies and consequently overestimates 

the overall IT portfolio value. We moreover illustrated an application example for further 

evaluate and demonstrate the feasibility and utility of the approach. 
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Nevertheless, our approach has some limitations. Because it is a deductive mathematical 

approach, we had to make a few simplifying assumptions and apply some constraints that are 

not entirely realistic. For instance, we defined an IT project as being assigned to one specific 

period in time. In reality, there may be IT projects which, even if subdivided into smaller 

subprojects, have to be assigned to more than one period of time. Our assumption of normally 

distributed cash flows might also be unrealistic in some cases, but it is a common assumption 

in IT portfolio management (cf. Fridgen and Müller 2011; Fridgen et al. 2015; Wehrmann and 

Zimmermann 2005; Wehrmann et al. 2006; Zimmermann et al. 2008). However, the more cash 

flows are considered within the evaluation of an IT portfolio, the better the central limit theorem 

and variations thereof apply, which supports the normal distribution assumption. Another 

assumption of our approach is that the coherence between the duration of an IT project and its 

assigned assets is linear. Although this assumption might not be realistic for each type of asset, 

it seems plausible for at least the most important intra-temporal dependencies, and we 

considered it to be appropriate for this first step towards an integrated value-based IT portfolio 

evaluation. Finally, the validity and contribution of our approach has only been demonstrated 

by means of simulation. For further evaluation and improvement of the method, it should be 

applied to real-world scenarios. This will be addressed in future research. Moreover, future 

research should investigate whether the integration of different risk measures can yield even 

more plausible results regarding the consideration of risk associated with direct and indirect 

dependencies or whether the existing limitations can be reduced. Furthermore, an extension of 

the integrated ex ante evaluation of IT portfolios to integrated ex nunc (continual) IT portfolio 

control and management may be of interest in holistic IT portfolio management.  
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III  Systemic Risk in Supply Chain Networks: IT as a Chance 

This chapter includes only one paper: “Systemic Risk in Supply Chain Networks – A Privacy 
Preserving Approach for Collaborative Analysis”, as described below. 

III.1 Systemic Risk in Supply Chain Networks – A Privacy Preserving 
Approach for Collaborative Analysis1 

Authors: Tirazheh Zare Garizy, Gilbert Fridgen, Lars Wederhake 

Abstract  

Globalization, and outsourcing are two main factors which are leading to higher complexity of 
supply chain networks. Due to the strategic importance of having a sustainable network it is 
necessary to have an enhanced supply chain network risk management. In a supply chain network 
many firms depend directly or indirectly on a specific supplier. In this regard, unknown risks of 
network’s structure can endanger the whole supply chain network’s robustness. In spite of the 
importance of risk identification of supply chain network, companies are not willing to exchange 
the structural information of their network. Firms are concerned about risking their strategic 
positioning or established connections in the network. Combining the secure multiparty 
computation cryptography methods with risk identification algorithms driven from social 
network analysis, is the solution of this paper for this challenge. With this combination we enable 
structural risk identification of supply chain networks without endangering companies’ 
competitive advantage.  

Keywords: Supply Chain Network, Systemic Risk, Risk Management, Multiparty Computation, 
Algorithms, Privacy.  
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III.1.1 Introduction 

In March 2000, a thunderstorm in New Mexico caused a 400-million-dollar loss for the 

telecommunications equipment company Ericsson. The fire in a semiconductor plant, a single 

source key components provider for Ericsson, led to this damage. This loss could have been 

lower with an appropriate risk management within the supply chain network (SCN) of Ericsson 

(Peck 2003).  

High complexity of SCNs and steady increase in vulnerability within the SCN are the results 

of globalization, digitalization, outsourcing and customer or supplier dependencies (Wagner 

and Neshat 2012). The complex structures of SCNs are vulnerable to systemic risk at all scales. 

Systemic risk is not just the risk of statistically independent failure, but also the risk of failure 

cascading within the whole interconnected system (Helbing 2013). This cascading effect 

impacts the whole system’s performance and can lead to irrecoverable value disruptions 

(Acemoglu et al. 2015; Ellinas et al. 2016). 54% of companies are either extremely or very 

concerned about their sustainability performance (HBR Advisory Council 2010). Being one of 

the four emerging issues in global risk (World Economic Forum 2008,), it is inevitable to invest 

in risk management for supply chains. Managers and public policy makers need to identify risks 

to perform proper risk management and mitigation plans.  

Simulation models (Fridgen et al. 2014; Giannakis and Louis 2011; Chu et al. 2010), descriptive 

case studies (Blome and Schoenherr 2011; Choi and Hong 2002), and development of 

taxonomies of SCNs (Wilding et al. 2012; Zhao et al. 2011) are common research results of the 

scholars on analysis of SCNs. The embedded positioning of firms within the SCN is important 

for each firm in the network as well as for the network as a whole. Innovation adoption, 

influence power or brokering activities of the firms can be derived from their structural 

positioning in the SCN. Moreover the structural positioning of the firms can affect the 

vulnerability or robustness of the SCN (Kim et al. 2011). Over the last few decades, the 

importance of adopting a network perspective in supply chain analysis and management has 

increased. Recently, the idea of adopting network measures for the investigation of SCNs is 

opening new potentials to evaluate supply chains (Vereecke et al. 2006, 2006; Mizgier et al. 

2013). 

There are several measures to quantitatively characterize the network structure. Each measure 

can be adopted to capture a specific feature of the network (Newman 2013). Betweenness, 

closeness, and degree centrality are some of the widely used measures in social network 

analysis (Freeman 1977; Wasserman and Faust 2009). Kim et al. (2011) mapped these measures 
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within the SCN and defined their implication for two types of supply networks: material flows 

and contractual relationships. They identified that firms with higher betweenness centrality 

(BC) have a higher impact on the product quality, coordination cost, and lead time or can cause 

unwanted intervene or control among the SCN. These risky firms have a higher contribution to 

systemic risk. The BC is an indicator for identifying firms with the possibility of influencing 

information processing, strategic alignments, and perverting risk management within the supply 

network (Kim et al. 2011). Based on Hallikas et al. (2004) the risks in a SCN can affect the 

long-term sustainable competitive advantage of the network. Considering our focus and above 

mentioned findings, we assume the BC to be an appropriate measure to identify risky firms in 

the SCN. 

One of the main challenges in studying supply chain risks is the scarcity of real life data on 

SCNs (Kersten et al. 2008; Kim et al. 2011). The fear of risking competitors’ advantage by 

information sharing hinders companies’ collaboration within the SCN. To calculate the BC, 

either based on definition (Freeman 1977; Newman 2013), or by means of widely used 

algorithms such as Brandes’ (2001), having information about the network’s structure is 

necessary. This structural information contains data on the network’s firms and their possible 

connectivity to other firms. However, the strategic importance of the firms’ position and 

connections within the network (Hochberg et al. 2007) dissuades firms from sharing this 

information. In this case, the application of secure multiparty computation (SMC) 

cryptographic algorithms (Yao 1986; Goldreich et al. 1987) would be one of the solutions to 

facilitate information sharing willingness within the network. SMC algorithms are based on 

simultaneous exchanges of encrypted data among parties. The result is calculated from the 

encrypted data, and is shared among all firms (parties) in the network. The algorithm prevents 

leakage of key information between the firms. 

Given the importance of risk analysis in SCNs and the adequacy of the BC to identify the 

bottlenecks in SCNs. The main focus of this paper is to introduce an artifact – based on the 

design science paradigm – for privacy preserving calculation of the BC of a given SCN. This 

paper is an extended version of our prior research (Fridgen and Zare Garizy 2015), and includes 

detailed information on the developed artifact, pseudocode of the artifact, and a detailed 

description of the artifact's code. Our artifact consists of four main methods that are calculating 

the desired result. The main contributions of our paper are: 

• Identification of risks: In the first step of risk management it is necessary to develop models 

and methods for risk identification in SCNs. In a small SCN, companies are more likely to 
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keep the overview of the SCN topology and the companies in the network. Consequently, 

in such cases risks are relatively transparent and privacy is not the subject of interest. Our 

concern is the risk identification in large SCNs consisting of hundreds of inter-connected 

companies. In a large SCN, on the one hand the identification of unknown risks is important 

and on the other hand the privacy of members should be maintained. For an increasing size 

of the SCN and the inter-relationships among the firms, the network becomes more complex 

(Choi and Krause 2006; Lessard 2013). Due to the higher complexity the probability of 

unseen risks and the necessity of proper risk analysis increases. In the artifact proposed, we 

study the economic dependency (e.g. material or financial flow) between firms by means of 

BC calculation for the identification of risky firms in SCNs. We thereby assume that our 

artifact could be a module of standard ERP systems that use existing communication links 

to suppliers and customers.  

• Preservation of Privacy: One of the main concerns of companies in a SCN is their strategic 

position in the network, so they avoid to risk their competitive advantage in order to identify 

their own risks. Our artifact keeps the network’s structure mostly unknown to the firms 

within the network. The artifact prevents data leakage or reconstruction of information to 

ensure the firms’ willingness for information sharing. In order to meet this objective, we 

base our approach on SMC algorithms in a semi-honest environment as outlined in the latter. 

Our modeling focus is on providing a privacy preserving artifact, whereas we omit the 

analysis and improvement of computational complexity. 

Considering the guidelines of Hevner et al. (2004) and Gregor and Hevner (2013) for the 

conduction of design science research, the remainder of this papers is organized as follows: The 

first section covers a brief review on essential literature. It also includes specifying the 

problem’s context and the relevance of the problem for SCNs. Subsequently, we discuss the 

modeling procedure and requirements that must be met for solving the problem. The fourth 

section illustrates the developed artifact. The section is followed by the evaluation of the artifact 

by means of testing and descriptive methods. The paper ends with a summary and an outlook 

on further research. 

III.1.2 Literature Review 

III.1.2.1 Supply Chain Networks 

“Supply chains are interlinked networks of suppliers, manufacturers, distributors and customers 

that provide a product or service to customers” (Blackhurst et al. 2004). Current trends, like e-
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commerce, e-logistics, and e-business, increase the complexity of supply chains. Furthermore, 

the importance of staying competitive in the market gives supply chain management a higher 

importance (Arns et al. 2002). The SCN in a global economy consists of a large number of 

interdependent networks. This interdependency is very susceptible to external effects and 

defaults (Buhl and Penzel 2010). The risk type in SCNs can be specific disruption, general 

disruption, cost shock (e.g. exchange rates), product safety, commoditization, and shift in tastes 

(Lessard 2013). Weather, terrorism, firms manufacturing failures, or financial crises can cause 

a default in the supply chain (Babich et al. 2007). Risks in SCNs can lead to various types of 

losses such as financial loss, performance loss, physical loss, psychological loss, social loss and 

time loss (Yates and Stone 1992). Since the disruptions in SCN in extreme cases may lead to 

the bankruptcy of the SCN’s firms, it is important for the firms to manage these risks and 

minimize the possible losses. A study of Gyorey et al. (2011) states that 67% of companies are 

not ready for geopolitical instability challenges. In the management of SCNs, one of the main 

tasks is risk management. The risk management process consists of risk identification and 

assessment, decision and implementation of risk management actions, and risk monitoring 

(Hallikas et al. 2004). Bellamy and Basole (2013) classified the themes in SCNs analysis as 

system architecture (network structure), system behavior, and system policy and control. 

Among these categories, system architecture analysis methods focus on structural investigation 

of SCNs, relationship of firms, and the importance of the relationship. Considering social 

networks, structural investigations based on network analysis methods are well-established. In 

the field of SCNs they are relatively new but evolving (Li and Choi 2009; Kim et al. 2011; 

Mizgier et al. 2013). These methods focus on network components’ connections and patterns, 

and implication of these connections for the whole network (Wasserman and Faust 2009; 

Newman 2013). Among various measures on structural analysis of SCN, as it has been 

mentioned earlier, the BC can be a suitable indicator to identify the structural risks of a SCN 

(Kim et al. 2011) and it is our choice in this paper. 

III.1.2.2 Privacy Concerns in Supply Chain Networks 

On the one hand knowing the structure of a network is a prerequisite of calculating the BC (as 

outlined earlier) and on the other hand in a SCN, the competitive advantage of network firms 

is relying on the privacy of their contacts and network relations they have (Buhl and Penzel 

2010). Solutions to these data privacy concerns of companies can be: 

• A Trusted Third Party: If the firms trust a third party, it is easy to solve the problem by 

sharing their information with this trusted third party and letting it calculate the results. For 
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instance, Brandes’ algorithm for the BC (2001), works based on the idea of having a third 

party who collects the information and calculates the indices and returns the result. In 

practice such a party that all network’s firms trust might be difficult to find and firms might 

have concerns about this third party revealing the information.  

• SMC Algorithms: These cryptography algorithms enable different firms in the network to 

share their information privately and calculate the result jointly. The main advantage of 

these algorithms is that the individual’s input stays mostly private.  

SMC first was addressed by Yao (1982). Yao’s (1982) algorithm is answering the question of 

SMC for two parties. This algorithm is a solution to the Millionaires’ problem. The problem is 

that two millionaires want to know which of them is richer but they do not want to share the 

real amount of their wealth. Yao’s (1982) algorithm provides a solution that lets them privately 

encrypt their input, share it, and jointly calculate the result. The main advantage is that their 

input stays private. SMC algorithms today enable us to do secure addition, multiplication, and 

comparison (Shamir 1979; Yao 1986; Sheikh et al. 2009; Cramer et al. 2013).  

SMC algorithms are used in various fields of science. For instance they are used for secure 

auctions (Bogetoft et al. 2006). They are also used for sharing financial risk exposures (Abbe 

et al. 2012) with the focus on necessity of process and methods secrecy in financial industry. 

SMC algorithms are also applied for sustainable benchmarking in clouds without disclosing the 

individual’s confidential information (Kerschbaum 2011). 

“SecureSCM”, secure collaborative supply chain management, the European research project 

(Kerschbaum et al. 2011), is an example of the application of SMC algorithms in the field of 

SCNs. The project enabled privacy preserving online collaboration among various firms in a 

SCN. The focus was on providing the possibility to better reaction on possible capacity 

concerns or short notices. The collaboration of the firms with the application of SMC algorithms 

results in better production planning in the SCN. However, they did not study SCN’s risks and 

focused on cost minimization. 

In this paper, SMC algorithms are our choice for the privacy preserving calculation of the result. 

To apply these algorithms, we develop an artifact that enables calculation of the result based on 

private shares of the firms. SMC algorithms have a high acceptance and are widely used in the 

field of cryptography since the 1980’s (Dolev and Yao 1983; Beaver et al. 1990; Lindell and 

Pinkas 2009; Bogetoft et al. 2006; Reistad 2012). Therefore, we do not investigate the security 

of these algorithms and assume security is given.  
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III.1.2.3 Network Centrality Measures 

To calculate the BC, we model the SCN as a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸). Each company 𝑣𝑣 in the SCN is 

represented by a vertex 𝑣𝑣 ∈ 𝑉𝑉. An economic dependency (e.g. material or financial flow) 

between companies 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 is represented by an edge (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 between these companies. In 

this case, we name 𝑢𝑢 and 𝑣𝑣 adjacent or neighbors. Since an economic dependency is undirected, 

in this paper graphs are undirected. Moreover the graphs are connected, as connected firms are 

forming a SCN. The BC is a centrality index based on the number of shortest paths and the 

frequency in which a vertex is appearing on shortest paths between two other vertices. A 

shortest path is a path between two vertices such that the sum of the weights of its constituent 

edges is minimized (as outlined in Section 3). The BC describes how other vertices potentially 

can influence the interaction between two non-neighboring vertices (Wasserman and Faust 

2009; Newman 2013). Based on Newman (2013) the BC for vertex 𝑣𝑣 is calculated as follows: 

𝐵𝐵𝐸𝐸(𝑣𝑣) =  �
𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣)
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠≠𝑣𝑣≠𝑠𝑠∈𝑉𝑉

 (1) 

In Equation (1), 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) ∈ ℕ0 is the number of shortest paths between source vertex 𝑠𝑠 and target 

vertex 𝑡𝑡, which pass through vertex 𝑣𝑣, and 𝜎𝜎𝑠𝑠𝑠𝑠 is the number of shortest paths between source 

vertex 𝑠𝑠 and target vertex 𝑡𝑡.  

The main aspect of the BC algorithms (Jacob et al. 2005; Klein 2010; Brandes 2001) is finding 

the shortest paths. Based on categorization of Cormen et al.’s (2001) on shortest paths 

algorithms we classify existing BC algorithms as follows: 

• Algorithms based on single-source shortest paths: Brandes’ (2001) algorithm is a widely 

used one among them. Brandes (2001) applies single source shortest paths algorithms 

(breadth-first (Moore 1959)) search for unweighted and Dijkstra’s algorithm for weighted 

graphs (Dijkstra 1959; Cormen et al. 2001) to calculate the BC. 

• Algorithms based on all-pairs shortest paths: The method developed by Edmonds et al. 

(2010) adopted modification of algorithms like the Floyd-Warshall (Floyd 1962; Warshall 

1962; Cormen et al. 2001) to enable parallelism and space-efficiency in calculation of the 

BC.  

Both categories of algorithms need the network topology as input and a stack to store 

information. For privacy concerns we strive to avoid a central stack for information. Having a 

central stack implies that there is a central player who owns this stack. This player can infer 

information, from the communication of the players via this stack or from the large amounts of 
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available data (although the information is encrypted) in the stack. This can be a risk for privacy 

concerns of the firms in the SCN.  

In this paper, inspired by the Floyd-Warshall (Floyd 1962; Warshall 1962; Cormen et al. 2001) 

algorithm as well as backtracking search (Russell and Norvig 2009) to identify shortest paths, 

we develop an artifact which does not need a central stack, stores information decentrally, and 

does not need the network’s topology as input. 

III.1.3 Modeling Procedure, Assumptions, and Requirements 

The first part of this section focuses on modelling procedure and assumptions for our artifact. 

In this part before we focus on privacy concerns and information that each firm has, we define 

the general terms and construct of our artifact. The second part includes the more specific 

information on privacy preserving of the firms and requirements. 

We label each company and its representing vertex with a unique number 1,2, … , |𝑉𝑉|. The 

numbers are randomly assigned to each company and represent the row number for the player 

in the graph’s weight matrix. The relation between the identity of a company and its number is 

only known to the company itself and to the neighborring companies. From now on, we name 

a company and its representing vertex as a “player” when we mean the company’s row number 

and not the true identity of the company.  

In the following, we illustrate an exemplary SCN (Figure 1). The SCN is chosen simple to make 

the visualization easier and the example more comprehensible. The SCN consists of 7 players. 

Each player is represented by its own unique number. The set of vertices (players) is: 𝑉𝑉 =

{1,2,3,4,5,6,7}.  

 

Figure 1. Exemplary network 
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For reasons of simplicity, the following assumptions are the basis for the development of our 

artifact.  

Assumption 1. The companies are semi-honest (honest-but-curious).  

Semi-honest adversaries are following the protocol, but they might try to gather information 

and draw conclusions from the messages they receive. Our artifact’s construction preserves 

privacy assuming the companies are semi-honest. Moreover, related works on SMC algorithms 

are also based on a semi-honest model (Brickell and Shmatikov 2005; Canetti 2008; Huang et 

al. 2012; Schneider 2012).  

Assumption 2. The connections in the SCN are equally weighted.  

In general, our artifact is applicable for graphs with 𝑤𝑤𝑢𝑢𝑣𝑣 ∈ ℝ. However, Kim et al. (2011) did 

their analysis on the BC, assuming equal weight connections. Their focus is on links between 

firms and the number of firms that are engaged in transferring information or material. 

Therefore, without loss of generality, in this paper we do not focus on the determination of the 

intensity of connections and its analysis and we treat the connections as equally weighted and 

leave the topic of connections’ intensity subject to further research. The weight of the edge 

(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 with arbitrary 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 is then defined by 

𝑤𝑤𝑢𝑢𝑣𝑣 =  �
0
1
∞

𝑖𝑖𝑐𝑐 𝑢𝑢 = 𝑣𝑣,                            
𝑖𝑖𝑐𝑐 𝑢𝑢 ≠ 𝑣𝑣 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸,
𝑖𝑖𝑐𝑐 𝑢𝑢 ≠ 𝑣𝑣 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑢𝑢, 𝑣𝑣) ∉ 𝐸𝐸.

 (2) 

The 𝑛𝑛 × 𝑛𝑛 matrix 𝑊𝑊 = (𝑤𝑤𝑢𝑢𝑣𝑣) contains all weights of edges in the graph with 𝑛𝑛 nodes ∀ 𝑢𝑢, 𝑣𝑣 ∈

𝑉𝑉 (Cormen et al. 2001). The (symmetric) matrix 𝑊𝑊 in Figure 1 represents the weight matrix of 

our exemplary SCN.  

The sequence of vertices that are forming the path from a source vertex 𝑠𝑠 ∈ 𝑉𝑉 to a target vertex 

𝑡𝑡 ∈ V is represented by 𝑝𝑝𝑎𝑎𝑡𝑡ℎ = 〈𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘〉. In this we assume that 𝑣𝑣0 = 𝑠𝑠, 𝑣𝑣𝑘𝑘 = 𝑡𝑡, and 

(𝑣𝑣𝑖𝑖−1, 𝑣𝑣𝑖𝑖) ∈ 𝐸𝐸 for 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘. The length of the path is the sum of the weights of its forming 

edges. Based on Equation (2) the weight of an edge is 1 therefore, if 𝑘𝑘 vertices are forming a 

path, there are 𝑘𝑘 − 1 edges on this path and 𝑤𝑤(𝑝𝑝𝑎𝑎𝑡𝑡ℎ) =  𝑘𝑘 − 1. We define the length of a 

shortest path, labeled as distance between 𝑠𝑠 and 𝑡𝑡, as 

𝑎𝑎𝑠𝑠𝑠𝑠 =  min {𝑤𝑤(𝑝𝑝𝑎𝑎𝑡𝑡ℎ): 𝑣𝑣𝑠𝑠 ↝ 𝑣𝑣𝑠𝑠} (3) 

The 𝑛𝑛 × 𝑛𝑛 matrix 𝐷𝐷 = (𝑎𝑎𝑠𝑠𝑠𝑠) contains the distances ∀ 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉. By our definition, if 𝑠𝑠 and 𝑡𝑡 are 

adjacent then 𝑎𝑎𝑠𝑠𝑠𝑠 =  1. To find a shortest path from a source vertex 𝑠𝑠 to the target vertex t, the 

𝑝𝑝𝑎𝑎𝑡𝑡ℎ 
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existing distance and the distance of all alternative paths via intermediate vertices ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑣𝑣 ≠

𝑠𝑠, 𝑡𝑡 are compared (Equation (4)) and we choose the path with the minimum length. 

min (𝑎𝑎𝑠𝑠𝑠𝑠,𝑎𝑎𝑠𝑠𝑣𝑣 + 𝑎𝑎𝑣𝑣𝑠𝑠)  (4) 

In this part we represent the above mentioned figures with particular details which include 

privacy preserving concerns and information availability for the players.  

In our artifact we restricted the information availability of the players mostly up to their 

neighbors. Therefore, although the set 𝑉𝑉 is known to every player in the network, but the 

relation between the players’ unique numbers and their true identities is in only known to 

neighboring players. Furthermore the network’s structure as illustrated in the Figure 1 is not 

known to the players. Consequently 𝑊𝑊 is unknown to the players. Each player 𝑝𝑝 has access to 

the 𝑝𝑝 − 𝑡𝑡ℎ row/column (since the matrix is symmetric) of the weight matrix 𝑊𝑊. The accessible 

information for player 5, is the 5-th row of the matrix, as marked in the Figure 1. Moreover the 

distance matrix 𝐷𝐷 is unknown to the players. Although, each player 𝑝𝑝 has access to the 𝑝𝑝-th 

row of the matrix 𝐷𝐷.  

For our artifact we state the following requirements: 

Requirement 1. The artifact should keep the SCN topology as private as possible.  

Requirement 1 is an extension to conditions of SMC on satisfying privacy (Cramer et al. 2013). 

In our case it is allowed that more information than the final result (BC) is shared. More 

specifically, we prohibit the sharing of the following information that can be used for 

reconstructing the SCN topology or interfering the real identity of the firms.  

• The length of the shortest paths, to prevent firms from knowing the positioning of the 

players in the network.  

• The number of the shortest paths between a given source and target player in the network, 

to prevent firms from knowing which alternatives for trading players have in the network. 

• The number which shows how often a player is appearing on the shortest paths between a 

given source and target player, to prevent firms from knowing accessibility and connections 

to other firms.  

Requirement 2. The artifact should keep the identities of non-neighboring players private. 

In a large SCN, due to members’ variety and multiplicity in the SCN, a company is not able to 

identify other companies in the network. Concluding the identity of a player via execution of 

the artifact can provide the possibility of reconstructing a part of the network’s topology. 
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Therefore, the artifact should not enable a company to infer the real identity of non-neighboring 

companies. 

III.1.4 Artifact Development 

We choose an object oriented approach to design the artifact. To model the structure and 

behavior of the players in our artifact we model the class Player. We represent each player by 

an object of class Player running on a distributed system. Each player executes the methods on 

its own system and delivers the result. In our artifact we assume there is an initializing and 

synchronizing agent (ISA) (one of the SCN’s firms or an organization) who initializes, 

coordinates, and synchronizes the executions. The ISA does not have the possibility to access 

the private information of the players or monitor the communication between the players.  

Figure 2 presents class Player. For reasons of simplicity, in the following we assume the 

players’ object references equal to their respective 𝑟𝑟𝑡𝑡𝑤𝑤𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 during the 

calculations. 𝑟𝑟𝑡𝑡𝑤𝑤𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the unique number assigned to each player in the network. 

𝑟𝑟𝑡𝑡𝑤𝑤𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑝𝑝 implies the player is pointing the 𝑝𝑝-th row/column the weight matrix 𝑊𝑊. 

We assume 𝑝𝑝 is the number of the current object of the Player class. Table  provides the 

description of the attributes of the Player class. Table 2 provides an overview and description 

of the commonly used variables in the methods. Table 3 provides the description of the methods 

of the Player class. 

 

Figure 2. Visualization of the class Player in UML-oriented Notation 

has neighbors 

Player

+
calculateSecureShortestPath(sourcePlayerNumber: int, targetPlayerNumber: int) : int

calculateNumberOfShortestPaths(sourcePlayerNumber: int, targetPlayerNumber: int) : void

determinePlayersOnShortestPaths(sourcePlayerNumber: int, targetPlayerNumber: int) : void

calculateSecureBetweenness(aPlayerNumber: int): int
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Table 1. Description of the attributes of the class Player 

Attribute Mathem-

atical 

Variable 

Description 

𝑎𝑎𝑖𝑖𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑟𝑟: int[𝑛𝑛] 𝐷𝐷 = (𝑎𝑎𝑠𝑠) 

∀ 𝑡𝑡 ∈ 𝑉𝑉 

Denotes a vector of the distances of player 𝑝𝑝 

to each target player 𝑡𝑡 in the network. The 

distances are unknown at the beginning of 

the execution. Each member of this list is the 

output of the method 

calculateSecureShortestPath() for a given 

target player.  

𝑡𝑡𝑟𝑟𝑟𝑟𝑜𝑜𝑎𝑎: Set < int > [𝑛𝑛] Ω = (Ω𝑠𝑠) 

∀ 𝑡𝑡 ∈ 𝑉𝑉 

Denotes a vector which contains the set of 

neighboring players of player 𝑝𝑝 that are 

connecting the player with the shortest paths 

to the target player 𝑡𝑡 The method 

calculateSecureShortestPath() sets the 

values of this set.  

𝑎𝑎𝑟𝑟𝑙𝑙𝑡𝑡𝑎𝑎: int δ Denotes a random generated number of the 

player. We use it to modify the distance value 

to preserve privacy. Each player generates δ 

before participating in the execution of 

methods. For each player, this number stays 

constant during the execution of the artifact. 

It assures an identical response of the player 

to all calculation requests. 

𝑟𝑟𝑟𝑟𝑡𝑡𝑤𝑤𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑠𝑠𝑠𝑠𝐸𝐸𝑟𝑟𝑛𝑛𝑡𝑡𝑟𝑟𝑎𝑎𝑙𝑙𝑖𝑖𝑡𝑡𝑏𝑏: int[𝑛𝑛] 𝐵𝐵𝐸𝐸 =

(𝑟𝑟𝑐𝑐𝑣𝑣) 

∀ 𝑣𝑣 ∈ 𝑉𝑉 

Denotes a vector which is filled with the BC 

of all players in the network. Each member 

of this list is the output of the 

calculateSecureBetweenness() method for 

each given player 𝑣𝑣.  
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Attribute Mathem-

atical 

Variable 

Description 

𝑟𝑟𝑢𝑢𝑠𝑠𝑏𝑏: bool[𝑛𝑛][𝑛𝑛] 𝐵𝐵𝑍𝑍

= (𝑟𝑟𝑧𝑧𝑠𝑠𝑠𝑠) 

∀ 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉 

Denotes an 𝑛𝑛 × 𝑛𝑛 matrix of flags (true/false). 

This flag serves implementation purposes 

and especially access management of the 

players (as described in Table 6, Line 1-4). 

 

Table 2. Description of the commonly used variables  

Variable  Mathematical 

Variable 

Description 

 𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑐𝑐𝑟𝑟𝑃𝑃𝑙𝑙𝑎𝑎𝑏𝑏𝑟𝑟𝑟𝑟𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: int 𝑠𝑠 Denotes the unique number of the 

source player. 

𝑡𝑡𝑎𝑎𝑟𝑟𝑜𝑜𝑟𝑟𝑡𝑡𝑃𝑃𝑙𝑙𝑎𝑎𝑏𝑏𝑟𝑟𝑟𝑟𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: int 𝑡𝑡 Denotes the unique number of the 

target player. 

𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑡𝑡𝑃𝑃𝑙𝑙𝑎𝑎𝑏𝑏𝑟𝑟𝑟𝑟𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: int 𝑝𝑝 Denotes the unique number of the 

current instance of the class 

Player. 

𝑛𝑛𝑟𝑟𝑖𝑖𝑜𝑜ℎ𝑟𝑟𝑡𝑡𝑟𝑟𝑖𝑖𝑛𝑛𝑜𝑜𝑃𝑃𝑙𝑙𝑎𝑎𝑏𝑏𝑟𝑟𝑟𝑟𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: in  𝑎𝑎 Denotes the unique number of a 

neighboring player. 

𝑎𝑎𝑃𝑃𝑙𝑙𝑎𝑎𝑏𝑏𝑟𝑟𝑟𝑟𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: int 𝑣𝑣 Denotes the unique number of a 

given player. 

 

Table 3. Description of the methods of class Player 

Method Description 

Name     

calculateSecureShortestPath 

Input 

   sourcePlayerNumber: int 

The method recursively identifies the shortest paths from the 

given source player to the given target player. It returns the 

encrypted value of the distance and keeps other variables 

local. If the target player is not the current player, the method 

calls itself at all neighboring players to determine their 

distances to the target. The method compares the delivered 
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   targetPlayerNumber: int  

Output 

   distance: int 

results of the neighboring players and chooses the path via 

the neighboring player/s which has/have the minimum 

distance value. For privacy preserving purposes the 

comparisons in this method are based on Yao’s (1982) secure 

comparison protocol. The method also identifies the 

neighboring players who are forming the shortest paths and 

fills the set Ω.  

Name   

calculateNumberOfShortestP

aths 

Input 

   sourcePlayerNumber: int 

   targetPlayerNumber: int  

 Output 

   void 

The method recursively calculates the number of shortest 

paths between given unique numbers of source player 𝑠𝑠 and 

given target player 𝑡𝑡 via players forming the shortest paths. If 

𝑡𝑡 is not a neighboring player of 𝑠𝑠, the method calls itself at all 

neighboring players forming the shortest paths between 𝑠𝑠 and 

𝑡𝑡. The method determines the number of shortest paths which 

passes through current player 𝑝𝑝 by means of the size of the 

set Ω𝑠𝑠.  

The method saves the results of the calculation in an 

intermediate storage and later uses it to participate in 

calculateSecureBetweenness method. 

Name 

 

determinePlayersOnShortest

Paths 

Input 

   sourcePlayerNumber: int 

   targetPlayerNumber: int  

 Output 

   void 

The method recursively determines how often players are 

appearing on the shortest paths from source player 𝑠𝑠 to target 

player 𝑡𝑡 via current player 𝑝𝑝. If 𝑡𝑡 is not a neighboring player 

of 𝑠𝑠, the method calls itself for all neighboring players which 

are forming the shortest paths between 𝑠𝑠 and 𝑡𝑡. At each 

recursion the members of the set Ω𝑠𝑠 determine the players 

which are on the shortest paths through player 𝑝𝑝.  

The method determines the players which are on the shortest 

paths through current player 𝑝𝑝 by means of the members of 

the set Ω𝑠𝑠. 

The method saves the results of the calculation in an 

intermediate storage and later uses it to participate in 

calculateSecureBetweenness method. 
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Name 

   

calculateSecureBetweenness 

Input 

   sourcePlayerNumber: int 

   targetPlayerNumber: int  

 Output 

   BC(v): int 

This method calculates the BC(𝑣𝑣) for the given player in the 

network. It is based on SMC algorithms and requires 

information exchange among the players in the network. The 

method performs all arithmetic based on secure protocols of 

Cramer et al. (2013). These protocols for SMC are extension 

of Shamir’s algorithm (1979) and providing us the possibility 

to calculate the BC preserving the privacy concerns. 

Furthermore the method applies the distributive property of 

binary operations to calculate the result of Equation (1). This 

provides us the possibility that private shares of players stay 

private. 

 

For privacy preserving concerns, in methods calculateSecureShortestPath(), 

calculateNumberOfShortestPaths(), and determinePlayersOnShortestPaths() players only 

communicate via their neighboring players. Each object routes its messages through 

neighboring players in the network. The methods calculateNumberOfShortestPaths() and 

determinePlayersOnShortestPaths() calculate values of 𝜎𝜎𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) decentrally. Each player 

has a portion of these values from its own perspective. We denote the portion of information 

which player 𝑝𝑝 has by 𝜎𝜎𝑠𝑠𝑠𝑠
𝑝𝑝 , and 𝜎𝜎𝑠𝑠𝑠𝑠

𝑝𝑝 (𝑣𝑣). The final values of 𝜎𝜎𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) are the sum of the 

decentrally calculated values of all players as follows. 

𝜎𝜎𝑠𝑠𝑠𝑠 =  �𝜎𝜎𝑠𝑠𝑠𝑠
𝑝𝑝

𝑝𝑝∈𝑉𝑉

, 

 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) =  �𝜎𝜎𝑠𝑠𝑠𝑠
𝑝𝑝 (𝑣𝑣)

𝑝𝑝∈𝑉𝑉

. 
(5) 

The method calculateSecureBetweenness() uses the decentral values (𝜎𝜎𝑠𝑠𝑠𝑠
𝑝𝑝 , and 𝜎𝜎𝑠𝑠𝑠𝑠

𝑝𝑝 (𝑣𝑣)) to 

calculate the betweenness centrality, and applies SMC algorithms to preserve privacy. 

Table 4 elaborates sequences of our artifact. Steps 1 to 5 and 9 in Table 4 are not in the focus 

of this paper and are not influencing our artifact’s construction therefore, these steps are not 

documented in this paper. Furthermore, we provide the illustration of the methods of the 

artifact.  



Systemic Risk in Supply Chain Networks: IT as a Chance 85 

Table 4. The artifact’s structure 

Step Executor Description 

Initialization 

1 ISA Identifies the number of players, 𝑛𝑛, in the network.  

2 ISA Assigns each participating company a 𝑟𝑟𝑡𝑡𝑤𝑤𝑁𝑁𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (without knowing 

the real identities of the firms).  

3 ISA Shares the number of players, 𝑛𝑛, with all players in the network and 

notifies the players to initialize. 

4 Player Each player initializes a new object of class Player and informs ISA. 

5 ISA Notifies all players that the players’ objects exist and they are available 

to execute the methods. 

Decentral calculation of the shortest paths and path forming players 

6 Player Each player executes the calculateSecureShortestPath() method for itself 

as the source player and all given targets in the network. 

7 Player Each player executes the calculateNumberOfShortestPaths() method to 

decentrally set the values of 𝜎𝜎𝑠𝑠𝑠𝑠 for each given target 𝑡𝑡.  

8 Player Each player executes the determinePlayersOnShortestPaths() method to 

decentrally calculate the values of 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) for itself as source player 𝑠𝑠 and 

each given target 𝑡𝑡. By termination of the method for all given targets, the 

player informs ISA. 

Synchronization 

9 ISA ISA informs every player in the network that the 

determinePlayersOnShortestPaths() is terminated when it receives the 

notification of termination from all players. This implies that the variables 

to calculate the BC are available.  

Calculation of the BC 

10 ISA ISA coordinates players for execution of the 

calculateSecureBetweenness() method. With termination of the method 
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Step Executor Description 

for all players in the network, all firms have their own BCs as well as the 

BC of all players in the network. 

 

In the following, we provide the pseudocodes and a detailed description of the methods of our 

artifact.  

In Figure 3 we provide the pseudocode of calculateSecureShortestPath() method. This method 

requires an additional variable 𝑡𝑡𝑎𝑎 for calculation purposes. Table 5 provides the description of 

this variable.  

Table 5. Description of the variable defined for calculateSecureShortestPath() method 

Variable  Mathematical  

Variable 

Description 

𝑡𝑡𝑟𝑟𝑟𝑟𝑝𝑝𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟𝑏𝑏 𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑟𝑟: int 𝑡𝑡𝑎𝑎 Denotes a temporary variable saving the 

distances during calculation of the shortest 

paths. This variable ensure data consistency. 
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Figure 3. Pseudocode of the method calculateSecureShortestPath 

  

Table 6 provides a detailed description of the calculateSecureShortestPath() method.  
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Table 6. Description of the calculateSecureShortestPath() method 

Line Description 

1-4 The calculateSecureShortestPath() is a recursive method, which sequentially routes 

the requests of the calculation of shortest paths via the neighboring players. Therefore, 

each player should not receive a duplicate request for the calculation of a specific path. 

However, a player may receive such a request, since the graph of the SCN is not 

necessarily acyclic. Once current player 𝑝𝑝 routes the message of the calculation of a 

specific shortest path via a neighboring player, due to the possible graph cycles, after 

few message routings player 𝑝𝑝 might receive its own message from a neighboring 

player causing endless loop. To avoid such conditions, the method uses a busy flag 

(𝑟𝑟𝑧𝑧𝑠𝑠𝑠𝑠).  

As long as player 𝑝𝑝 is busy with the calculation of the shortest paths between players 

𝑠𝑠 and 𝑡𝑡, if it receives a message for the calculation of the same path, it implies that the 

message is its own message. Therefore, Line 1 identifies this message as a duplicate 

message. Furthermore, Line 3 prevents further calculations of the method and returns 

∞. Returning ∞ ensures that the duplicate request has no influence on the result of the 

calculations, and the method terminates.  

5-8 To calculate the BC (c.f. Equation (1)), it is important to know the number of the 

shortest paths between two players, and to know which players are forming the 

shortest paths. The absolute numeric value of the length of the shortest paths does not 

change the result of BC. Thus, for privacy preserving concerns, we can modify the 

absolute numeric value of the distances between players by adding an offset to the 

target players given that the number of shortest paths and their forming players remain 

intact. Still, we obtain the same results as without modification of the distances.  

In our method, each player uses its own private number 𝛿𝛿 ∈ ℕ (delta explained in 

Table 1) to modify the distance value (Line 7). Note that, this number must not be the 

players’ unique number, because if it is so, the positioning of the players might be 

disclosed. Please note, since the communication is only via neighboring players, this 

private number is only known to the player and its neighboring players. Players use 

the private number 𝛿𝛿 only if they are the target player 𝑡𝑡. This assures a consistent 

modification of the distances to a specific target player 𝑡𝑡 and the comparability of the 

results for the source player 𝑠𝑠. 
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The following scenario elaborates the importance of using δ to modify the value of 

distance. In our exemplary network (Figure 1), if the method does not modify the 

value of distances, and player 6 shares 1 as its distance to players 7 (𝑎𝑎67 = 1), player 

5 (as a neighboring player of player 6) infers that players 6 and 7 are adjacent. But if 

the method uses a modified value of the distance (we define, 𝛿𝛿 for player 7 be 70), 

player 6 shares 71 as its distance to players 7 (𝑎𝑎67 = 71). This modification hinders 

unwanted information sharing in terms of inferring the positioning of players in the 

network. 

To find the shortest paths, we must be able to compare the distances of the paths. 

Although the modified distance values (Line 7) eliminate many sorts of privacy 

concerns, yet there is a chance to reconstruct parts of the network structure by 

comparing the modified values. For instance in Figure 1 we set 𝛿𝛿 for player 7 to 70. 

The distance of player 3 to 7 via player 5 is 𝑎𝑎37 = 73 and the distance of player 3 to 

7 via player 6 is 𝑎𝑎37 =  72. Based on this information, player 3 reveals that players 5 

and 6 are adjacent. Therefore, in addition to modifying the shortest path we apply a 

privacy preserving method to compare the shortest paths (See Line 17-40).  

9-12 If the player already calculated the distance to target player 𝑡𝑡, then it returns this 

calculated value of distance. This part increases the efficiency of the method by 

preventing recalculation of the shortest paths, which are already calculated. 

13-43 If the current player 𝑝𝑝 receives a request for the calculation of a specific path for the 

first time and is not the target player, this part of the method (Line 17-40) recursively 

calculates the shortest paths between source player 𝑠𝑠 and target player 𝑡𝑡.  

To avoid data inconsistency during the execution of various instances of the method, 

Line 16 sets the temporary distance variable 𝑡𝑡𝑎𝑎𝑠𝑠𝑠𝑠 to 𝑤𝑤𝑝𝑝𝑠𝑠 which is the initial distance 

value of the current player to the target. The method does not use its distance attribute 

(𝑎𝑎𝑠𝑠) for calculations, because the value of 𝑎𝑎𝑠𝑠, may change during the calculation of a 

specific shortest path, leading to inconsistency of the result. The following example 

elaborates the necessity of the temporary distance variable.  

We assume player 5 is executing calculateSecureShortestPath(1,7) and it is the first 

request to player 5 for calculating the path to player 7. Players 5 and 7 are not adjacent 

and the initial value of the distance is 𝑎𝑎7 = 𝑤𝑤57 = ∞. In the meantime, player 5 
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receives the request for calculation of the path from source player 2 to target player 

7 (calculateSecureShortestPath(2,7)). If the execution of this request ends faster than 

calculateSecureShortestPath(1,7), player 5 updates the distance to player 7 (𝑎𝑎7) to 

72. Consequently, the value of 𝑎𝑎7 for the player 5 varies during the execution of 

calculateSecureShortestPath(1,7).This leads to inconsistent values of the distance for 

the comparisons within the execution of the method. Using 𝑡𝑡𝑎𝑎, the method prevents 

this sort of inconsistencies. 

When player 𝑝𝑝 starts the calculation of the path between source player 𝑠𝑠 and target 

player 𝑡𝑡 via its neighboring players, Line 15 sets the 𝑟𝑟𝑧𝑧𝑠𝑠𝑠𝑠 to true. When player 𝑝𝑝 

finishes calculating the shortest paths between players 𝑠𝑠 and 𝑡𝑡, Line 41 sets 𝑟𝑟𝑧𝑧𝑠𝑠𝑠𝑠 to 

false. It allows the player to respond to the messages which are not originating from 

itself. 

At Line 42 the method returns the value of distance (𝑡𝑡𝑎𝑎), which is the distance of 

player 𝑝𝑝 to the target player 𝑡𝑡 (𝑎𝑎𝑠𝑠). 

17-40 Current player 𝑝𝑝 routes the message of the calculation of the path via all neighboring 

players to calculate the result recursively. For this purpose Line 17 goes through each 

player 1 to 𝑛𝑛, where 𝑛𝑛 is the number of players in the network. Furthermore, the 

method identifies the neighboring players and only routes the request for calculating 

the shortest path via them.  

19-39 Player 𝑝𝑝 identifies its neighboring players at Line 19. For this purpose it considers a 

given player 𝑎𝑎 as a neighboring player when the distance of the current player to the 

player is equal to one (𝑤𝑤𝑝𝑝𝑝𝑝 = 1 (Equation (2))). The player routes the request of 

calculation only via its neighboring players, since for privacy preserving concerns we 

limit direct communication of players and only allow communication via neighboring 

players. Please note that in this paper we assume the connections in the SCN are 

equally weighted. In a weighted graph, another mechanism to identify the neighboring 

players will be necessary.  

Furthermore, this part of the method determines a new shortest path (Line 21-28), or 

the additional shortest paths (Line 29-38). 
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21-28 This part of the method determines if the path via the neighboring player is a new 

shortest path. 

We define, smin(𝑟𝑟,𝑛𝑛) as a function which performs the comparison of given input 

parameters 𝑟𝑟 and 𝑛𝑛 based on Yao’s secure comparison algorithm as 

𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛(𝑟𝑟,𝑛𝑛) =  �true if 𝑛𝑛 < 𝑟𝑟,
false otherwise  

which keeps the input parameters of the players 𝑛𝑛 and 𝑟𝑟 private. 

In method calculateSecureShortestPath() we are interested in finding the result of 

𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛(𝑤𝑤𝑝𝑝 + 𝑎𝑎𝑠𝑠
(𝑝𝑝),𝑎𝑎𝑠𝑠). The values of 𝑎𝑎𝑠𝑠 and 𝑤𝑤𝑝𝑝 are known to player 𝑝𝑝. The distance of 

the neighboring player 𝑎𝑎 to target player 𝑡𝑡, (𝑎𝑎𝑠𝑠
(𝑝𝑝)) is known to player 𝑎𝑎. To use 𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛(), 

and keep the input variables of each player private, we do the comparison as 

𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛�𝑎𝑎𝑠𝑠
(𝑝𝑝),𝑎𝑎𝑠𝑠 − 𝑤𝑤𝑝𝑝� which uses the input of the current player and the neighboring 

player separately. The value of 𝑎𝑎𝑠𝑠
(𝑝𝑝) is not known for the current player, therefore it 

routes the requests to its neighboring player to participate in the calculation of the 

𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛 by 𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛(𝑎𝑎. 𝑐𝑐𝑎𝑎𝑙𝑙𝑐𝑐𝑢𝑢𝑙𝑙𝑎𝑎𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑆𝑆ℎ𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠𝑡𝑡𝑃𝑃𝑎𝑎𝑡𝑡ℎ(), 𝑡𝑡𝑎𝑎 − 𝑤𝑤𝑝𝑝). Please note, as 

mentioned at Line 16 current player uses a temporary distance value 𝑡𝑡𝑎𝑎 instead of 𝑎𝑎𝑠𝑠 

during the calculation. 

Player 𝑎𝑎 does not share the distance value, and takes part with its encrypted input in 

the secure comparison of the distances. If the result of smin(𝑎𝑎𝑠𝑠
(𝑝𝑝),𝑎𝑎𝑠𝑠 − 𝑤𝑤𝑝𝑝) is true, it 

implies that the alternative path via 𝑎𝑎 is shorter than the existing path(s), so this path 

is a shortest path in this iteration. In this case current player, at Line 27, assigns the 

calculated value of distance to its temporary variable of distance 𝑡𝑡𝑎𝑎.  

For privacy preserving concerns, we share as little information as possible. 

Consequently, if the alternative path via player 𝑎𝑎 is not shorter than the existing one(s), 

current player will not find it out. 

23-26 Since the method is recursive, it is important to prevent assignment of values during 

the execution and before the source player which initiated the request receives the 

final result. Line 23 examines if 𝑝𝑝 is source player 𝑠𝑠, which implies the initiating 

player received its own request, and then allows the method to update Ωt. 



Systemic Risk in Supply Chain Networks: IT as a Chance 92 

Line Description 

By finding a new shortest path (at Line 21), the previously found path(s) and the 

players which are forming these paths are not relevant anymore. Player 𝑎𝑎 is the 

neighboring player, which connects player 𝑝𝑝 with the shortest path to the target. 

Therefore, the method updates Ω𝑠𝑠, and sets player 𝑎𝑎 as its only member. 

29-38 If the path via the neighboring player is not shorter than previously found shortest 

path(s), this part of the method determines if the path via this neighboring player is an 

additional shortest path. 

31-37 This part of the method aims to determine if the path via the neighboring player is an 

additional shortest path. If the following equation is true, it implies that the alternative 

path via player 𝑎𝑎, and the already calculated path are equal.  

¬𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛(𝑟𝑟,𝑛𝑛)⋀¬𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛(𝑛𝑛,𝑟𝑟) = 𝑡𝑡𝑟𝑟𝑢𝑢𝑟𝑟 

In our case we evaluate the following expression: ¬𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛(𝑎𝑎𝑠𝑠
(𝑝𝑝),𝑎𝑎𝑠𝑠 −

𝑤𝑤𝑝𝑝)⋀¬𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛�𝑎𝑎𝑠𝑠 − 𝑤𝑤𝑝𝑝,𝑎𝑎𝑠𝑠
(𝑝𝑝)� = 𝑡𝑡𝑟𝑟𝑢𝑢𝑟𝑟. In the case of ¬𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛�𝑎𝑎𝑠𝑠

(𝑝𝑝),𝑎𝑎𝑠𝑠 − 𝑤𝑤𝑝𝑝� = 𝑡𝑡𝑟𝑟𝑢𝑢𝑟𝑟, 

we only need to examine ¬𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛�𝑎𝑎𝑠𝑠 − 𝑤𝑤𝑝𝑝,𝑎𝑎𝑠𝑠
(𝑝𝑝)� = true. Line 31 of the methods 

performs this comparison.  

For privacy preserving concerns (as already elaborated at Line 21-28) player 𝑎𝑎 does 

not share the distance value, but only takes part with its encrypted input for secure 

multiparty calculation of 𝑠𝑠𝑟𝑟𝑖𝑖𝑛𝑛( 𝑡𝑡𝑎𝑎 − 𝑤𝑤𝑝𝑝,𝑎𝑎. 𝑐𝑐𝑎𝑎𝑙𝑙𝑐𝑐𝑢𝑢𝑙𝑙𝑎𝑎𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑆𝑆ℎ𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠𝑡𝑡𝑃𝑃𝑎𝑎𝑡𝑡ℎ()). 

It should be noted that for the comparison of the shortest path distances (Line 31) the 

current player does not know 𝑎𝑎𝑠𝑠
(𝑝𝑝), and therefore routes the request to the neighboring 

player 𝑎𝑎 by a.calculateSecureShortestPath(s,t). Please note, the neighboring player 𝑎𝑎, 

already calculated this path (as Line 21) and therefore immediately returns this value. 

33-36 Since the method is recursive, it is important to prevent the assignment of values 

before the source player, which initiated the request receives the final result. Line 33 

examines if 𝑝𝑝 is source player 𝑠𝑠 and then allows the method to update Ωt. 

Finding an additional shortest path implies that player 𝑎𝑎 is connecting player 𝑝𝑝 with 

the shortest path to target player 𝑡𝑡. Therefore, Line 35 adds player 𝑎𝑎 to Ω𝑠𝑠.  
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For reasons of simplicity we provide the sequence diagram of the method for a specific path. 

Figure 4 provides the calculateSecureShortestPath(5,7) from player 5’s perspective for our 

exemplary network (Figure 1). We assumed 𝛿𝛿 for player 7 is 70.  

 

 

Figure 4. Sequence diagram for calculateSecureShortestPath(5,7) from player 5’s 
perspective 

In the following, (Figure 5) we provide the pseudocode of calculateNumberOfShortestPaths() 

method. 

 

Figure 5. Pseudocode of the method calculateNumberOfShortestPaths 

Table 7 provides a detailed description of calculateNumberOfShortestPaths() method. 

METHOD 2. calculateNumberOfShortestPaths
Input: sourcePayerNumber , targetPlayerNumber .
1
2 {
3 if
4 {
5
6 }
7
8 {
9
10 }
11 }
12
13 {
14
15 }
16
17 {
18
19 }
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Table 7. Description of the calculateNumberOfShortestPaths () method 

Line Description 

1-11 
This part of the method sets the number of the shortest paths (𝜎𝜎𝑠𝑠𝑠𝑠) when the current 

player is the source player 𝑠𝑠. 

 

3-6 

This part of the method sets the number of the shortest paths (𝜎𝜎𝑠𝑠𝑠𝑠) when the target 

player is a neighboring player of source player 𝑠𝑠. 

If target player 𝑡𝑡 is a neighboring player of source player s (Line 3), Line 5 sets the 

number of the shortest paths to one (𝜎𝜎𝑠𝑠𝑠𝑠 = 1) because there is only one shortest path 

between two neighboring players in an unweighted graph. 

7-10 

This part of the method sets the number of the shortest paths (𝜎𝜎𝑠𝑠𝑠𝑠) when the target 

player is not a neighboring player of source player 𝑠𝑠. 

If target player 𝑡𝑡 is not a neighboring player of source player s, the size of set Ω𝑠𝑠 

(that includes all neighboring players which connect current player 𝑝𝑝 as source to 

the target) is the number of shortest paths between player 𝑝𝑝 and the target 𝑡𝑡 (𝜎𝜎𝑠𝑠𝑠𝑠). 

As already mentioned, the player has a portion of this value from its own 

perspective. The final value of 𝜎𝜎𝑠𝑠𝑠𝑠 is the sum of the decentrally calculated values of 

all players as shown in Equation 5. 

12-15 

This part of the method sets the number of the shortest paths (𝜎𝜎𝑠𝑠𝑠𝑠) when the current 

player is not the source player 𝑠𝑠. This player received the request of 

calculateNumberOfShortestPaths(s,t) because it is one of the players which is 

forming the shortest path between source and target player.  

Already one of the shortest paths on which the player lies, is considered by the source 

player 𝑠𝑠. Consequently, we need to consider the additionally identified shortest paths 

via this player. If there is an additional path via this player to the source, Line 14 sets 

the value of 𝜎𝜎𝑠𝑠𝑠𝑠 to |𝛺𝛺𝑠𝑠| − 1, otherwise set it to zero. We decrease the value of |𝛺𝛺𝑠𝑠| by 

one, to prevent double consideration of the already considered path.  

16-19 

To consider additional shortest paths which might be identified by the players 

which are forming the shortest paths between the source and target player, the 

method recursively routes the message for calculating the number of shortest paths 

via the neighboring players which are forming the shortest paths (Line 18). The 

method identifies this neighboring player by Line 16, when 𝜔𝜔 ∈  Ω𝑠𝑠. 
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The calculateNumberOfShortestPaths() method identifies the number of the shortest paths from 

the source player and recursively identifies additional shortest paths via the players who are 

forming the shortest path(s). The following example elaborates an exemplary scenario of the 

method’s execution. For instance player 5 executes the calculateNumberOfShortestPaths(5,7) 

and identifies 𝜎𝜎57
(5) = 1. Since player 7 is not a neighboring player of player 5, and player 6 is 

in Ω7 player the method calls itself from player 6. Player 6 does not identify any additional path 

(since player 6’s Ω7 = 0) therefore, it sets 𝜎𝜎57
(6) = 0. At this point the method terminates while 

player 7 (the target) is a neighboring player of player 6. 

Figure 6 provides the pseudocode of determinePlayersOnShortestPaths() method. 

 

Figure 6. Pseudocode of the method determinePlayersOnShortestPaths 

 

Table 8 provides a detailed description of determinePlayersOnShortestPaths() method. 

METHOD 3. determinePlayersOnShortestPaths
Input: sourcePlayerNumber s, targetPlayerNumber t.
1
2 {
3
4 }
5
6 {
7

9 }
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Table 8. Description of determinePlayersOnShortestPaths() method 

Line Description 

1-4 This part of the method sets the values of the frequency of the appearance of a player 

on a shortest path for itself 𝜎𝜎𝑠𝑠𝑠𝑠(𝑝𝑝). 

When current player 𝑝𝑝 is not source player 𝑠𝑠 and the number of shortest paths (size of 

set Ω𝑠𝑠) from the current player to the target is greater that one, Line 3 sets the value of 

𝜎𝜎𝑠𝑠𝑠𝑠(𝑝𝑝) to |𝛺𝛺𝑠𝑠| − 1. The player is already considered on the shortest paths by the 

neighboring player which called it. Therefore, to prevent double consideration of the 

player we decrease the value of |𝛺𝛺𝑠𝑠| by one. As already mentioned, the player has a 

portion of this value from its own perspective. The final value of 𝜎𝜎𝑠𝑠𝑠𝑠(𝑝𝑝) is the sum of 

the decentrally calculated values of all players as shown in Equation 5. 

5-9 This part of the method sets the values of the frequency of the appearance of a the 

neighboring players that form the shortest path on the shortest path between players 

𝑠𝑠 and 𝑡𝑡 (𝜎𝜎𝑠𝑠𝑠𝑠(𝜔𝜔)) and routes the message via the neighboring players forming the 

shortest paths. 

Line 7 sets the value of 𝜎𝜎𝑠𝑠𝑠𝑠(𝜔𝜔) for the neighboring player 𝜔𝜔 to one because the 

player 𝜔𝜔 is on the shortest path from 𝑠𝑠 to 𝑡𝑡. 

Player 𝑝𝑝 can only update the values of 𝜎𝜎𝑠𝑠𝑠𝑠(𝜔𝜔) for its neighboring players, but the 

frequency of appearance of a player on the shortest paths should be updated for all of 

the players on the shortest paths between source player 𝑠𝑠 and target player 𝑡𝑡. The 

method calls itself to route the message via its neighboring player and update the 

values recursively. 

 

The determinePlayersOnShortestPaths() method subsequently considers a player on the 

shortest paths between source player 𝑠𝑠 and target player 𝑡𝑡 when the player is in Ω𝑠𝑠 of the current 

player. The following example elaborates an exemplary scenario of the method’s execution. 

Moreover it reconsiders the current player (except the case where 𝑠𝑠 = 𝑝𝑝) on the shortest paths 

when current player 𝑝𝑝 has more than one shortest path to the target. For instance the 

determinePlayersOnShortestPaths(5,7), identifies 𝜎𝜎57
(5)(6) = 1 while player 6 is in player 5’s 

Ω7. Since player 7 is not a neighboring player of player 5, the method calls itself from its 

neighboring player (player 6). Player 6 is the neighboring player of the target (player 7) 

therefore, no further calculation takes place and the method terminates.  
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The calculateSecureBetweenness(𝑣𝑣) method calculates the BC for player 𝑣𝑣 based on SMC 

algorithms. In order to facilitate all-to-all communication, ISA coordinates the simultaneous 

exchange of information. To ensure that the real identities of the firms stay private in an all-to-

all communication, existing tools for anonymization can be adapted. 

The BC for player 𝑣𝑣 based on Equation (1) is as follows:  

BC(𝑣𝑣) = ∑ 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) 
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠≠𝑣𝑣≠𝑠𝑠∈𝑉𝑉  =𝜎𝜎12(𝑣𝑣) 

𝜎𝜎12
+ 𝜎𝜎13(𝑣𝑣) 

𝜎𝜎13
+ 𝜎𝜎14(𝑣𝑣) 

𝜎𝜎14
+ ⋯+ 𝜎𝜎𝑚𝑚,𝑚𝑚−1(𝑣𝑣) 

𝜎𝜎𝑚𝑚,𝑚𝑚−1
, where 𝑛𝑛 = |𝑉𝑉| . 

For the calculation of the BC we use SMC algorithms. Secure addition and secure multiplication 

algorithms will, however, reveal a party’s input as inverse functions can easily be applied for 

only two input factors. To keep the input variables in arithmetic operations private, it is 

necessary that more than two players deliver input. In the above mentioned equation we address 

this problem. By division of two variables delivered by two players, even with the application 

of SMC algorithms, the end result reveals the input variables for the players. Therefore, by 

using a common denominator we solve the problem as follows: 

BC(𝑣𝑣) =
𝜎𝜎12(𝑣𝑣) ⋅ �𝜎𝜎13 ⋅ … ⋅ 𝜎𝜎𝑛𝑛,𝑛𝑛−1� + 𝜎𝜎13(𝑣𝑣) ⋅ �𝜎𝜎12 ⋅ … ⋅ 𝜎𝜎𝑛𝑛,𝑛𝑛−1� + ⋯+ 𝜎𝜎𝑛𝑛,𝑛𝑛−1(𝑣𝑣) ⋅ (𝜎𝜎12 ⋅ … ⋅ 𝜎𝜎𝑛𝑛,𝑛𝑛−2)

𝜎𝜎12 ⋅ 𝜎𝜎13 ⋅ … ⋅ 𝜎𝜎𝑛𝑛,𝑛𝑛−1
 (6) 

Please note, Equation (6) does not include the values of 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) and 𝜎𝜎𝑠𝑠𝑠𝑠 where 𝑠𝑠 = 𝑣𝑣 or 𝑡𝑡 = 𝑣𝑣. 

Furthermore, the values of 𝜎𝜎𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) ∀𝑠𝑠 ≠ 𝑣𝑣 ≠ 𝑡𝑡 ∈ 𝑉𝑉 are the results of Equation (5). For 

privacy preserving concerns, as addressed in Requirement 1, we do not calculate and share the 

final values of 𝜎𝜎𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣) in the network. Hence, we use the distributive property of 

arithmetic operations to distributedly consider the components of Equation (5) in Equation (6). 

Using the mentioned modification on the BC calculation’s equation we provide the possibility 

to keep the private shares of the players private and calculate the BC. The implementation of 

the artifact with the application of SMC algorithms, anonymization methods, and necessary 

communication protocols are not covered in this paper.  

III.1.5 Evaluation 

This section provides the evaluation of our artifact. Concerning characteristics of our artifact, 

we chose the “testing” and “descriptive evaluation” methods based on Hevner et al. (2004) and 

Gill and Hevner (2013). We implemented a simplified prototype of the artifact. The prototype 

covers the methods of class Player. However, the prototype does not cover the implementation 

of SMC algorithms and assumes they are given. Moreover, the prototype models each player 

as a local thread, and it is not executed on a distributed system. Furthermore, a third person 

other than the authors manually evaluated the artifact with a structural walk through the code. 
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In the following we cover general evaluation of completeness, termination, complexity, utility 

and privacy of the artifact. Furthermore, we illustrate the privacy evaluation based on an 

application example. Although based on the acceptance and wide application of SMC 

algorithms we did not analyze their properties. We assume SMC algorithms are complete and 

secure. 

Completeness: To evaluate the artifact in terms of completeness we executed the prototype with 

various scenarios and evaluated the results. It proved that our approach creates complete results 

for each given network. Moreover, the structural walk through the code resulted the same. 

Termination: By means of testing the prototype in various scenarios as well as structural walk 

through the code we conducted that the artifact terminates.  

Complexity: Analysis of our artifact pointed both the time complexity and the message 

complexity are polynomial in the maximum distance between the source and the target player, 

and number of network members. In our artifact we focused to achieve a privacy preserving 

method. To preserve privacy, it is necessary for the players to encrypt and exchange data more 

often compared to some widely used algorithms (e.g. Brandes’ algorithm (2001)). Further 

improvements of computational complexity of the artifact is subject to further research. 

Utility: Based on Gregor and Hevner (2013) an artifact evaluation must address the utility of 

the artifact. Due to the complexity of implementation and evaluation of the artifact’s utility in 

reality, in this paper we evaluated the utility of the artifact based a simplified prototype, and 

used an application example. Our artifact’s characteristics based on Gill and Hevner (2013) are: 

it is a novel method, which is open because it is possible to modify it, and is interesting because 

it addresses risk management and sustainability as one of the main concerns of the firms in 

SCNs. 

Privacy: The privacy requirements of our artifact (Requirement 1 and 2) are addressed as 

follows. 

• The application of Yao’s (1982) comparison algorithm and using the modified values for 

distances ensure that the distances of non-neighboring players stays unknown. Although in 

a small network, we illustrate in our application example, the distances might be inferable. 

However, in larger networks (which are in the focus of our research) players cannot infer 

the distance during the execution of the artifact. 
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• The number of the shortest paths, and the frequency of appearance of a player on the shortest 

path are saved decentrally, as mentioned in Equation (5). Therefore, the final values of 𝜎𝜎𝑠𝑠𝑠𝑠 

and 𝜎𝜎st(𝑣𝑣) are not available to the players and stay private.  

• By restricting communication via neighboring players and application of anonymization 

methods, we addressed Requirement 2. 

However, we will appreciate if other researchers challenge our artifact in terms of privacy. In 

specific cases players might infer information when they are called from neighboring players 

to execute the methods. However, the inferred information of the players are limited to the 

information from their perspective. For instance if the shortest path of a neighboring player to 

target 𝑡𝑡 is via the current player it implies for the current player that the neighboring player and 

target 𝑡𝑡 are not neighbors. Whereas it does not contain the information about the players which 

are forming the shortest paths and the number of shortest paths.  

Furthermore, to illustrate the potential of our artifact to preserve privacy, we describe the 

artifact’s outcome in a short example. Figure 7 provides the network structure (See Figure 1) 

from player 5’s perspective before and after execution of the method. Based on the result of the 

BC calculation, players are prioritized and colored as shown in the figure. Player 5 has the 

highest BC. Player 4 is the second. Players 6 and 2 are having the same BC and are standing at 

the third place. The BC of players 1, 3 and 7 is zero, because they are not on any shortest path. 

This is a valuable information for all network’s members. For instance it implies that if player 

5 faces any failure, the whole network’s robustness might be at risk. The BC of the players is 

available for all players in the SCN.  

In our exemplary network through execution of the methods, player 5 infers some information. 

It knows that player 3 and 6 are neighbors, since player 6 and 3 are 5’s neighboring players and 

their shortest paths are not via player 5. Player 5 knows also that players 1 and 6, 2 and 6, as 

well as 4 and 6 are not neighboring players. The latter information is inferred based on the 

information that their shortest path is via player 5. But the player is not knowing their exact 

positioning and if there exists any other alternative shortest path.  

It is to conclude that the gained information about the network’s structure, even in a small 

network is limited. By increasing the network’s size and complexity the possibility of inferring 

information decreases. Additionally, the inferred information on non-neighboring vertices is 

limited. This is similar to a common situation of a SCN. In reality, in a SCN, a company knows 

more information about its neighbors. The company can partially reveal information about the 

neighbors of its own neighbors. By going further in the SCN, the company is less capable to 
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deduce the underlying topology or identity of the companies. Moreover, in most of the SCNs, 

there are some main players that are known by everyone. If other companies identify these firms 

and their importance, it is not a risk for these players. Their importance and positioning in the 

network is predictable for most of the firms in the SCN.  

 

Figure 7. The network’s structure from player 5’s perspective 

III.1.6 Conclusion 

In this paper, we proposed an artifact which preserves privacy and identifies the risky players 

in the SCNs applying the BC measure. Based on the guidelines of Hevner et al. (2004), and 

Gregor and Hevner (2013) for conducting design science research, we can summarize our work 

as follows: Our artifact consists of four main methods. It is an exaptation solution, because we 

adopted the existing methods in social networks and cryptography algorithms to identify risks 

in SCNs. Our artifact is formally noted and therefore is well-defined. Based on the literature 

(e.g. (Buhl and Penzel 2010)) we addressed two relevant problems: the risk identification in 

SCNs and privacy concerns of firms in SCNs. We focused on the study of Kim et al. (2011) 

and decided to calculate the BC as a measure to identify risky firms. In the evaluation section, 

beside the testing and descriptive evaluation, we illustrated that in our artifact, even in a small 

exemplary network, the inferred information is limited. To develop a rigorous artifact, we 

applied well established methods of other fields and extended them to our problem context. 

Regarding the contribution of our result, we choose the evolving technical solutions in computer 

science and network theory, to answer the question of risk management in SCNs. 

In this paper, we focused on identifying risks and kept the information as private as possible. 

However, higher visibility in the network facilitates improved risk management (Basole and 

Bellamy 2014). Therefore, it might be necessary that companies agree on sharing more 

information than the BCs. For instance they might decide to reveal the identities of companies 
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with the BC among top 10%, because they are the most risky ones for the network. On the one 

hand the more information is shared, the highest is the privacy at risk, and on the other hand it 

is inevitable to share extra information to reach the network’s robustness. Hence, the companies 

in the network should deal with the trade-off between sharing additional information to 

facilitate risk management in the network or preserve their privacy.  

Although the BC measure identifies the risks in the SCN, integration of complementary network 

analysis approaches (e.g. (Newman 2013)) in our artifact for an enhanced risk identification, is 

subject to further research. It is also important to study the intensity of connection and their 

impacts on the network. These subjects as well as improvement of computational complexity 

are subject to further research.  

  



Systemic Risk in Supply Chain Networks: IT as a Chance 102 

III.1.7 References 

Abbe, E. A., Khandani, A. E., & Lo, A. W. (2012). Privacy-preserving Methods for Sharing Financial Risk 
Exposures. The American Economic Review, 102(3), 65–70. 

Acemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2015). Networks, Shocks, and Systemic Risk. 
Cambridge, MA: National Bureau of Economic Research. 

Arns, M., Fischer, M., Kemper, P., & Tepper, C. (2002). Supply Chain Modelling and Its Analytical 
Evaluation. Journal of the Operational Research Society, 53(8), 885–894. 

Babich, V., Burnetas, A. N., & Ritchken, P. H. (2007). Competition and diversification effects in supply 
chains with supplier default risk. Manufacturing & Service Operations Management, 9(2), 123–146. 

Basole, R. C., & Bellamy, M. A. (2014). Supply Network Structure, Visibility, and Risk Diffusion: A 
Computational Approach. Decision Sciences, 45(4), 753–789. 

Beaver, D., Micali, S., & Rogaway, P. (1990). The Round Complexity of Secure Protocols. In H. Ortiz 
(Ed.), twenty-second annual ACM symposium on Theory of computing (pp. 503–513): ACM. 

Bellamy, M. A., & Basole, R. C. (2013). Network Analysis of Supply Chain Systems: A Systematic 
Review and Future Research. Systems Engineering, 16(2), 235–249. 

Blackhurst, J., Wu, T., & O’grady, P. (2004). Network-based Approach to Modelling Uncertainty in a 
Supply Chain. International Journal of Production Research, 42(8), 1639–1658. 

Blome, C., & Schoenherr, T. (2011). Supply chain risk management in financial crises—A multiple case-
study approach. International Journal of Production Economics, 134(1), 43–57. 

Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., & Toft, T. (2006). A Practical 
Implementation of Secure Auctions Based on Multiparty Integer Computation. Financial 
Cryptography and Data Security, 4107, 142–147. 

Brandes, U. (2001). A faster algorithm for betweenness centrality*. Journal of Mathematical Sociology, 
25(2), 163–177. 

Brickell, J., & Shmatikov, V. (2005). Privacy-preserving graph algorithms in the semi-honest model. 
Advances in Cryptology-ASIACRYPT 2005, 236–252. 

Buhl, H. U., & Penzel, H.-G. (2010). The Chance and Risk of Global Interdependent Networks. Business 
& Information Systems Engineering, 2(6), 333–336. 

Canetti, R. (2008). Theory of cryptography. In R. Canetti (Ed.), Fifth theory of cryptography conference, 
TCC : Springer. 

Choi, T. Y., & Hong, Y. (2002). Unveiling the structure of supply networks: case studies in Honda, Acura, 
and DaimlerChrysler. Journal of Operations Management, 20(5), 469–493. 

Choi, T. Y., & Krause, D. R. (2006). The supply base and its complexity: implications for transaction costs, 
risks, responsiveness, and innovation. Journal of Operations Management, 24(5), 637–652. 

Chu, L. K., Shi, Y., Lin, S., Sculli, D., & Ni, J. (2010). Fuzzy chance-constrained programming model for 
a multi-echelon reverse logistics network for household appliances. Journal of the Operational 
Research Society, 61(4), 551–560. 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (Vol. 2): MIT 
press Cambridge. 

Cramer, R., Damgard, I., & Nielsen, J. B. (2013). Secure Multiparty Computation and Secret Sharing: An 
Information Theoretic Approach. Aarhus Unoversity, Denmark: Aarhus University. 

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 
269–271. 

Dolev, D., & Yao, A. C. (1983). On the security of public key protocols. Information Theory, IEEE 
Transactions on, 29(2), 198–208. 

Edmonds, N., Hoefler, T., & Lumsdaine, A. (2010). A space-efficient parallel algorithm for computing 
betweenness centrality in distributed memory. In International Conference on High Performance 
Computing (HiPC) (pp. 1–10): IEEE. 

Ellinas, C., Allan, N., & Johansson, A. (2016). Project systemic risk: Application examples of a network 
model. International Journal of Production Economics, 182, 50–62 (2016). 
doi:10.1016/j.ijpe.2016.08.011 

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345. 
Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40, 35 (1977). 

doi:10.2307/3033543 



Systemic Risk in Supply Chain Networks: IT as a Chance 103 

Fridgen, G., Stepanek, C., & Wolf, T. (2014). Investigation of exogenous shocks in complex supply 
networks–a modular Petri Net approach. International Journal of Production Research(ahead-of-
print), 1–22. 

Fridgen, G., & Zare Garizy, T. (2015). Supply Chain Network Risk Analysis: A Privacy Preserving 
Approach. In 23rd European Conference on Information Systems (ECIS 2015). 

Giannakis, M., & Louis, M. (2011). A multi-agent based framework for supply chain risk management. 
Journal of Purchasing and Supply Management, 17(1), 23–31. 

Gill, T. G., & Hevner, A. R. (2013). A fitness-utility model for design science research. ACM Transactions 
on Management Information Systems (TMIS), 4(2), 5. 

Goldreich, O., Micali, S., & Wigderson, A. (1987). How to Play any Mental Game - A Completeness 
Theorem for Protocols with Honest Majority. In A. V. Aho (Ed.), Nineteenth annual ACM Symposium 
on the Theory of Computing (pp. 218–229). 

Gregor, S., & Hevner, A. R. (2013). POSITIONING AND PRESENTING DESIGN SCIENCE 
RESEARCH FOR MAXIMUM IMPACT. MIS Quarterly, 37(2), 337-A-6. 

Gyorey, T., Jochim, M., & Norton, S. (2011). The challenges ahead for supply chains. McKinsey on Supply 
Chain: Select Publications, 10–15. 

Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V.-M., & Tuominen, M. (2004). Risk management 
processes in supplier networks. International Journal of Production Economics, 90, 47–58 (2004). 
doi:10.1016/j.ijpe.2004.02.007 

HBR Advisory Council. (2010). Is Your Supply Chain Sustainable? Harvard Business Review;, 88(10), 
74. 

Helbing, D. (2013). Globally networked risks and how to respond. Nature, 497, 51–59 (2013). 
doi:10.1038/nature12047 

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. 
MIS Quarterly, 28(1), 75–105. 

Hochberg, Y. V., Ljungqvist, A., & Lu, Y. (2007). Whom you know matters: Venture capital networks and 
investment performance. The Journal of Finance, 62(1), 251–301. 

Huang, Y., Katz, J., & Evans, D. (2012). Quid-pro-quo-tocols: Strengthening semi-honest protocols with 
dual execution. In 2012 IEEE Symposium on Security and Privacy (SP) (pp. 272–284): IEEE. 

Jacob, R., Koschützki, D., Lehmann, K. A., Peeters, L., & Tenfelde-Podehl, D. (2005). Algorithms for 
Centrality Indices. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, 
et al. (Eds.), Network Analysis (Vol. 3418, pp. 62–82, Lecture Notes in Computer Science). Berlin, 
Heidelberg: Springer Berlin Heidelberg. 

Kerschbaum, F. (2011). Secure and sustainable benchmarking in clouds. Business & Information Systems 
Engineering, 3(3), 135–143. 

Kerschbaum, F., Schroepfer, A., Zilli, A., Pibernik, R., Catrina, O., Hoogh, S. de, et al. (2011). Secure 
Collaborative Supply-Chain Management. Computer, 44, 38–43 (2011). doi:10.1109/MC.2011.224 

Kersten, W., Hohrath, P., & Winter, M. (2008). Risikomanagement in Wertschöpfungsnetzwerken–Status 
quo und aktuelle Herausforderungen. Supply Chain Risk Management, 7. 

Kim, Y., Choi, T. Y., Yan, T., & Dooley, K. (2011). Structural investigation of supply networks: A social 
network analysis approach. Journal of Operations Management, 29(3), 194–211. 

Klein, D. J. (2010). Centrality measure in graphs. Journal of mathematical chemistry, 47(4), 1209–1223. 
Lessard, D. R. (2013). Uncertainty and Risk in Global Supply Chains. MIT Sloan Research Paper No. 

4991-13. 
Li, M. E., & Choi, T. Y. (2009). Triads in Services Outsourcing: Bridge, Bridge Decay and Bridge 

Transfer*. Journal of Supply Chain Management, 45(3), 27–39. 
Lindell, Y., & Pinkas, B. (2009). A proof of security of Yao’s protocol for two-party computation. Journal 

of Cryptology, 22(2), 161–188. 
Mizgier, K. J., Jüttner, M. P., & Wagner, S. M. (2013). Bottleneck identification in supply chain networks. 

International Journal of Production Research, 51(5), 1477–1490. 
Moore, E. F. (1959). The shortest path through a maze. In Harvard University Press (Ed.) (pp. 285–

292): Bell Telephone System. 
Newman, M. E. J. (2013). Networks: An introduction. Oxford: Oxford Univ. Press. 
Peck, H. (2003). Creating Resilient Supply Chains: A Practical Guide. United Kingdom: Cranfield 

University. 



Systemic Risk in Supply Chain Networks: IT as a Chance 104 

Reistad, T. I. (2012). Multi-party secure position determination. In Norsk Informatikkonferanse NIK 2006 
(pp. 137–142, A General Framework for Multiparty Computations). Trondheim: Norwegian 
University of Science and Technology. 

Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach : Prentice Hall. 
Schneider, T. (2012). Engineering Secure Two-Party Computation Protocols: Design, Optimization, and 

Applications of Efficient Secure Function Evaluation. Berlin, Heidelberg: Springer. 
Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613. 
Sheikh, R., Kumar, B., & Mishra, D. K. (2009). Privacy Preserving k Secure Sum Protocol. International 

Journal of Computer Science and Information Security, 6(2), 184–188. 
Vereecke, A., van Dierdonck, R., & Meyer, A. de. (2006). A typology of plants in global manufacturing 

networks. Management science, 52(11), 1737–1750. 
Wagner, S. M., & Neshat, N. (2012). A comparison of supply chain vulnerability indices for different 

categories of firms. International Journal of Production Research, 50(11), 2877–2891. 
Warshall, S. (1962). A theorem on boolean matrices. Journal of the ACM (JACM), 9(1), 11–12. 
Wasserman, S., & Faust, K. (2009). Social network analysis: Methods and applications (19th ed., Structural 

analysis in the social sciences, Vol. 8). Cambridge: Cambridge Univ. Press. 
Wilding, R., Miemczyk, J., Johnsen, T. E., & Macquet, M. (2012). Sustainable purchasing and supply 

management: A structured literature review of definitions and measures at the dyad, chain and network 
levels. Supply Chain Management: An International Journal, 17, 478–496 (2012). 
doi:10.1108/13598541211258564 

World Economic Forum. (2008,). Global Risks 2008: A Global Risk Network Report. 
Yao, A. C. (1982). Protocols for secure computations. In 23rd Annual Symposium on Foundations of 

Computer Science (pp. 160–164). 
Yao, A. C. (1986). How to generate and exchange secrets. In 27th Annual Symposium on Foundations of 

Computer Science (pp. 162–167): IEEE. 
Yates, J. F., & Stone, E. R. (1992). The risk construct. In J. F. Yates (Ed.), Risk-taking behavior (pp. 49–

85). New York: John Wiley & Sons. 
Zhao, K., Kumar, A., Harrison, T. P., & Yen, J. (2011). Analyzing the resilience of complex supply network 

topologies against random and targeted disruptions. Systems Journal, IEEE, 5(1), 28–39. 
 

 



Conclusion and Future Research 105 

IV Conclusion and Future Research 

This chapter gives a summary of the main findings of this doctoral thesis (Section IV.1), and 

outlines the further research agenda (Section IV.2) on the subject of systemic risk assessment 

in complex network structures, considering IT as a challenge and as a chance. 

IV.1 Conclusion 

The embedded papers in this doctoral thesis not only introduce approaches to assess the 

challenges of IT in today’s digital age (Chapters II), but also introduce IT solutions for the 

assessment of systemic risk in supply chain networks as the first step towards the deployment 

of the chances of IT in the management of systemic risk (Chapter III).  

IV.1.1 Chapter II: Systemic Risk in IT Project Portfolios: IT as a Challenge  

Research Paper 1 provides a solution for the monetary assessment of the criticality of each IT 

project in an IT project portfolio (ITPP). First, the paper sets the main requirements for the 

criticality assessment of IT projects in an ITPP. Second, existing methods of criticality 

assessment are evaluated to disclose their shortcomings. Third, the paper assesses the 

applicability of Bayesian network modelling in the criticality assessment of ITPPs. The 

proposed approach considers IT projects and shared resources as nodes, the dependencies 

between them as edges, and interprets the ITPP as a network structure. Further, it quantifies the 

strength of the dependencies based on the probability that one particular project failure causes 

the failure of another project. The quantification is based on a common underlying factor that 

enabled the integration of various types of dependencies and their impacts in the model. Finally, 

applying Bayesian network modelling, along with the with-without principle from risk 

management (Tasche 2008), the paper provides the risk exposure of each IT project as the 

measure of criticality. The monetary assessment of criticality, which is evaluated by means of 

a demonstration example, a sensitivity analysis, and simulations, underlines the applicability of 

Bayesian network modelling for criticality assessment. The result of the method should support 

IT portfolio managers in the assessment of systemic risk which is the first step towards the 

management of systemic risk in ITPPs. 

Furthermore, Research Paper 2 integrates the assessment of systemic risk in a value-based ITPP 

evaluation approach. The proposed approach interprets ITPPs as network structures and 

quantifies the strength of dependencies based on the relative time lag that a particular project 

can cause to another project. The approach applies alpha centrality to investigate the systemic 
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risk in ITPPs. The method uses a pseudo-covariance matrix of IT projects as the exogenous 

factor in the calculation of alpha centrality. This delivers a risk factor for the ITPP which 

includes the transitive effect of dependencies. Combining the alpha centrality with the well-

established methods of IT project and ITPP evaluation (Fridgen et al. 2015; Beer et al. 2013), 

enabled developing a comprehensive value-based ITPP evaluation approach.  

To sum up, Research Papers 1 and 2 provide a comprehensive and thorough insight into the 

topic of systemic risk and its assessment in ITPPs. However, this field has great potential for 

further research that will be addressed in section IV.2.1. 

IV.1.2 Chapter III: Systemic Risk in Supply Chain Networks: IT as a Chance 

So far, we introduced solutions for organizations to handle the challenges of IT. However, the 

organizations which handle the challenges of IT, can profit from IT solutions in the assessment 

of systemic risk. Research Paper 3 focuses mainly on the development of a technical solution 

to enable the assessment of systemic risk in supply chain networks. It also consider how to 

overcome the concerns of organizations about information sharing and risking their strategic 

connections by means of a privacy preserving solution. This paper uses betweenness centrality 

to identify risky organizations, for which the cascading effect of their failure has a high impact 

on the supply chain network’s performance. To determine the risky organizations while 

preserving their privacy, the approach applies secure multiparty computation cryptography 

methods (Yao 1986; Cramer et al. 2010). To benefit from secure multiparty computation 

metohds, a modification of the existing algorithms for calculation of betweenness centrality and 

the shortest paths, are necessary. These modifications enable joint calculation of the results 

based on encrypted private information of each organization. Finally, the developed artifact 

based on the modified algorithms, assesses systemic risk in supply chain networks, preserving 

the privacy of the organizations. Evaluation based on testing, application example, and 

informed arguments (c.f. descriptive evaluation (Hevner et al. 2004)) confirmed the 

completeness, termination, utility and privacy of the artifact for the assessment of systemic risk 

in supply chain networks. Our artifact is an exaptation solution (Gregor and Hevner 2013), in 

that it adopts the existing methods of cryptography and social network analysis to identify risky 

organizations in supply chain networks. 

However, the area of the assessment of systemic risk in supply chain networks still has a great 

potential to benefit from the chances of IT. Section IV.2.2 provides an outlook of further 

research in this field.  
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In all, this doctoral thesis contributes to the field of systemic risk assessment in complex 

network structures. Most notably, the research papers given here in Chapters II and III account 

for the role of IT as a challenge and as a chance as described above in this context. However, 

there is still a great potential for further research in the area of systemic risk assessment and the 

role of IT, respectively. The following section (Section IV.2) details this.  
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IV.2 Future Research 

The following sections highlight possible extensions of these papers, and outline topics for 

further research in the area as a whole.  

IV.2.1 Chapter II: Systemic Risk in IT Project Portfolios: IT as a Challenge  

This section outlines potential for future research in systemic risk assessment within ITPPs. It 

addresses the potential of each research paper’s further development, followed by an outline of 

the overarching aspects of future research.  

The Bayesian network modelling approach for criticality assessment of IT projects in Research 

Paper 1, relies on the ex-ante estimation of the failure probabilities in order to determine the 

risk exposure of each IT project. Its relevant aspects for future research are as follows: 

• The method focused on the assessment of the negative effects of dependencies between 

of IT projects. However, the dependencies between IT projects can have synergistic 

effects. Therefore, it is important to consider the benefits of the dependencies between 

IT projects as well. Consequently, future research should extend the method by 

assessing benefits and integrating both risks and benefits of the dependencies within a 

holistic ITPP evaluation method. 

• The paper relies on an expert estimation of the variables. However, expert estimation 

has a certain degree of intra-person inconsistency (Grimstad and Jørgensen 2007). 

Therefore, further research should develop methods to increase the quality of estimation 

by for example using real-world data and applying methods like fuzzy reasoning. 

Research Paper 2 states a few simplification assumptions in order to develop a holistic approach 

for ITPP evaluation. These assumptions lead to the following aspects for future research: 

• The method relies on linear coherence between the duration of an IT project and its 

assigned resources in order to quantify the dependencies. Although this assumption 

might seem plausible to start out, it is not applicable to all types of resource 

dependencies and especially not to personnel resources. Therefore, further research is 

necessary to develop quantification approaches which are applicable for different types 

of resource dependencies.  

• The method’s evaluation is based on a simulation and an application example. However, 

it is also necessary to evaluate the methods in real-world context. Therefore, further 

research should investigate the result of the approach in real-world scenarios. 

Researchers are further encouraged to benefit from approaches like action design 
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research (Sein et al. 2011) to shape the method in organizational context and increase 

the method’s applicability.  

In addition, three overarching topics can enrich the research area and increase the applicability 

of the methods in practice. First, the proposed approaches mainly regarded the ex-ante 

assessment of systemic risk. However, in a comprehensive ITPP management ex-nunc 

(continual) and ex-post assessments are also important (Blumberg et al. 2012). Therefore, 

further extensions of the methods for ex-nunc and ex-post assessment should be the subject of 

further research.  

Second, in the aforementioned approaches for the assessment of systemic risk in ITPPs, the 

traditional project management methods are the main focus. However, the number of 

organizations that are applying agile project management is increasing. Therefore, it is 

important to analyze the implications of such a shift using the described approaches. Eventually, 

the methods will need further adjustments for suitable application in the context of agile project 

and portfolio management.  

Third, the proposed approaches for the assessment of systemic risk are based on the network 

interpretation of ITPPs. For this purpose, the approaches simplified the complex structure of an 

ITPP, considered IT projects and shared resources as its nodes, and the dependencies between 

the nodes as its edges. These approaches integrated nodes and the edges between them in a 

single-layer (i.e., “monoplex”) network structure. However, ITPPs are more complex, 

consisting of multiple types of internal (e.g. IT projects or resources) and external components 

(e.g. stakeholders or regulatory) and the dependencies between them. Therefore, it is necessary 

to develop methods which model all multiple types of components (nodes) and dependencies 

(edges). A possible approach may be the application of multilayer network approaches. A 

multilayer network has multiple layers representing individual types of interaction (e.g., social 

relationships, business collaborations, etc.) and each layer has its own adjacency matrix 

(Domenico et al. 2013). Furthermore, based on the interaction between the various layers of 

multilayer networks, the layers can be interdependent (Domenico et al. 2013). They enable 

achieving a deep understanding of complex real-world systems (Domenico et al. 2013). In 

recent years, the application of multilayer network approaches in various fields like social 

network analysis, transportation systems analysis or trade network analysis are unfolding 

(Domenico et al. 2013; Boccaletti S. et al. 2014). However, multilayer network approaches, to 

the best of our knowledge, have not yet been applied in the context of ITPP. Therefore, 
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assessing the applicability of a multilayer network approach to model the complex structure of 

ITPPs and evaluate the systemic risk can be the topic of further research.  

IV.2.2 Chapter III: Systemic Risk in Supply Chain Networks: IT as a Chance 

This section outlines the potential for future research in systemic risk assessment within supply 

chain networks, regarding IT as a chance. Firstly, the section addresses the areas of future 

research presented in Research Paper 3, followed by the overarching aspects of future research 

in this area.  

Research Paper 3 proposes a solution for the assessment of systemic risk in supply chain 

networks. Future research topics emanating from this are the following: 

• The paper identifies risky organizations by calculating the betweenness centrality. 

Although betweenness centrality identifies specific types of risky organizations, this 

centrality measure cannot identify all types of risky organizations within the supply 

chain network. For instance, betweenness centrality cannot identify a single source key 

provider which is a last tier supplier (leaf of the supply chain network’s graph). 

Therefore, further research should cover the identification of complementary measures 

which identify further types of risky organizations in supply chain networks.  

• The artifact determines the risky organization within the supply chain network and 

keeps the information about each organization’s positioning in the network as well as 

their identity as private as possible. However, further research should provide concrete 

guidelines on how to use this private information for risk management in supply chain 

networks.  

In addition, further research should cover the development of data-driven approaches to suggest 

suitable reshaping of the supply chain network’s structure in order to reduce the systemic risk 

and improve sustainability. These approaches can benefit from the results of the method 

proposed in this study in combination with additional information from the supply chain 

network properties. 

Last but not the least, further research should account for the influences of new eras like the 

Internet of the Things (IoT), the 4th industrial revolution (Industry 4.0), and the transformation 

towards Cyber-Physical-Cyber-Human Systems (Gimpel and Röglinger 2015) in the context of 

systemic risk assessment. The higher connectivity, complexity, ambiguity and volatility of 

these systems (Gimpel and Röglinger 2015) shape new challenges and chances of IT in the 

context of systemic risk assessment.  
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Finally, this doctoral thesis has adopted methods from other disciplines in information systems 

research, in order to address the current challenges of practice in the assessment of systemic 

risk. The study provides novel approaches to the assessment of systemic risk in ITPPs, in order 

to enable organizations to handle the challenges of IT. In addition, it proposes an IT solution to 

assess systemic risk in supply chain networks. This doctoral thesis sharpens the role of IT in 

the assessment of systemic risk in complex network structures, respectively. Nevertheless, 

researchers should feel challenged to drill down on the assumptions and limitations of this 

doctoral thesis, and to conduct further research in order to bridge the gap between systemic risk 

assessment research and practice. 
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