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On c-Optimal Design Measures

F k i e d r i c h  P t j k e l s h e im  1

Summary. A  short p roo f is presented to construct c-optim al measures for designing e x ­
perim ents, and emphasis is laid on the geom etry inherent in this problem . A  num ber of 
exam ples and counterexam ples are given which relate to  other results in the literature.

K ey  words: A pproxim ate design theory, Ei-FVIsg's Theorem , Singular inform ation 
matrices.

1. Introduction and notation

The paper characterizes design measures | which are in a certain sense optimal 
for estimating a linear form c'/S, or testing a linear hypothesis c'/S =  0, where the k 
parameters /?t, . . ., form the unknown vector ¡3, and c is some prescribed vector 
in R‘ . With the usual further assumptions as detailed below, the present approach 
draws heavily on convex geometry in order to arrive at the desired conclusions. 
In Section 2 (Elfiring's Theorem) the classical result of E lfv tn g  (1952) is rederived 
in a way that shortens and clarifies the argument of S ib s o n  (1974). In Section 3 
(Elfving Charts) the transparency thus gained leads to some examples pointing 
to possible extensions, and some counterexamples refuting a number of assertions 
that can be found in the literature.

In the theory  ̂ of experimental design one has in mind that the experimenter 
can choose a level r  in a design space 3c, and then make uncorrelated observations 
having equal variance independent of x and expectation f(x)'p where the regression 
function. /  is supposed to be known and fixed. A  design £ specifies the levels x to be 
chosen and the proportions f(x) of observations to be drawn at x. A  c-optimal 
design then ensures smallest possible variance of the least squares estimate for 
c’fS, or maximal power of the F-test for c'/3 =  0. The textbooks Fedorov (1972), 
Bandemer u. a. (1977), Hixmak (1977), or Kilyi’KT (1978) present the full back­
ground and extensive bibliographies on optimal design of experiments. Of the 
underlying assumptions we here give only such details as are necessary.

The design space $  is supposed to be a measurable space with measurable 
one-point sets {x}, and 3  is the set of all probability measures, called design
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measures, f  011 3£. The regression [unction f  is assumed to be a measurable function 
from X into I’/  such that its image f(X) is compact and spans all of I’ 7 . The infor­
mation matrix of a design measure f  is defined by 

Info (f) =  f  f(x) f{x)' d£ ,

and the set of all these matrices is denoted by Info (S ). For a given iV'-vector c 
considerations of estimability of c'/j, or testability of c'f> =  0, direct interest 
towards the set

iH(c) =  {A^NND(k)  | e£range A } ,

i.e., the set of all real symmetric non-negative definite /.;X k matrices A  such that 
c =  Az  for some z d R*. Then a design measure | is called optimal for c'/l if its infor­
mation matrix M  lies in 91(c) and minimizes the real function &(M) =  c’M~c. 
As usual, a prime stands for transposition, and a g-inverse A ~  means any matrix 
satisfying M (M ~ )M  =  M .  On 91(c) the function 0  is well defined and positive.

2. Elfving’s theorem

First construct the symmetric convex set 
=  convex hull of /(-£) U —f{£) ■

In fact, 9i is also compact (R ock afe llar , 1970, Theorem 17.2, p. 158), and since 
/(X) spans R fc the interior of is non-empty and contains 0. Secondly, associate 
with every vector c 6 R* the smallest number ;/ 0 such that c is contained in the 
regression ball tuM — {/tv \ v f  >)vJ, i.e., 

o(c)= inf {¡¿ =  0 | cdjuDi} .

Thus g is a norm, and coincides with its unit ball {v c R/,: j o(v) I ; (Rocka­
f e l la r ,  1970, Theorem 15.2, p. 131). Because of their close relation to the regres­
sion function /  we shall call 3v the regression ball and o the regression norm.

As a member of the regression ball i)t the vector e/g(c) is a convex combination 
of finitely many points in /($ ) or —/($ ) : for every cfR * there exists a natural 
number n, and points x(£ X, £ j€ {±  1}, and /.-> 0  (i=  1 , . . n) such that =  1 and

n
c =  o(c) i 7 V i /K ) -  (2-1)

i = i
Although derived from the geometric point of view, representation (2.1) also 
contains the solution to the optimal design problem. This will be made precise in 
Theorem 1 which dates back to Elfving (1952); see also K arlin & Stttdden 
(1966,p. 789). The proof below' follows Silvey ’s idea (Wy n n , 1972, p. 174; Sussex. 
1974) the set of all cylinders, including ellipsoids, containing the regression ball 
9i, namely,

cyl (|R) =  { N eNND(k) | v’Nv  ̂  1 for all v € 9i} , 

rather than the quite arbitrary convex body alone.
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Theorem 1. Given ccR 4, the infimum of c'M~c among all M C %(c) H Info (S) 
is equal to {o(c)}2 and is attained. In fact, whenever c is represented as in (2.1) then 
the design measure f  defined by £(xi)= X i (i=  1, . . n) is optimal for c’$.

P roof. The proof is in two steps. First it is shown that c'M ~c^c'N c  holds for 
two arbitrary members M  =  Info (£)€21(c)HInfo (S’), and N £ ey! (5R). For when 
1 :-~f(x)'Nf(x) is integrated with respect to | then one arrives at 1 istrace M N  =

=  j| M 2N 2 ||2. Here ||.|| is the norm associated with the Euclidean matrix inner pro­
duct (A, B )~trace A ' B  on the space R *x* of all real k X k matrices. An ortho-

i i— -(- ——}-
gonal projection is obtained when A  is mapped into M : c(M 2 r) + A , and there- 

1 1  1 + 1 +  1 1 ,  
fore ||M 2N 2 ||2 =  || M 2 c ( M 2 c)+M 2N  21|2. Since 3i£%(c), the property A  + =  
=  (A'A) +A ' of aMoore-Penrose in verse/I+ proves the last term to be c'Nc(e'M~c)~l, 
as desired.

The second step follows Sibson  (1974, p. 691) and shows that when M  is the 
information matrix E  ?iif(xi)f(xiy  of the measure f  defined in the theorem then 
there exists some N  £ cvl (9v) with c'M~c =  {g(c)}2 =  c'Nc, thus proving the assertions. 
For let d £ R* define the hyperplane {u c R* j d’u =  1} supporting in its boundary 
point c/o(c), i.e., d ' v ^ l —d'c/g(c) for all v £ 3i. From t;d'f(x;) =  1 and (2.1) one gets 
ei =  d'f(xi). With W h i t t l e ’s (1973, p. 129) quasilinear representation one then 
has the following:

c'M~c =  sup 2Ti'c—h'Mh
AcB*

— sup 2e(c) E A ^ h 'fix ^ -E  ^ {h 'ftx jy  

~sup E  ?H [{o(c) £i} 2- { o ( c )  E i - h ' f i X i ) } ^ }

=  {e (c )p -in f  EX i{(o (c )d -h ) 'f {x ^ .
h £ Rfc

The infimum 0 is attained at h =  o(r) d. On the other hand N  =  dd'd cvl ( ) ,  and 
c'Nc=(c'd)- =  {o(c)}2. ■

Theorem 1 does not extend to linear functions K'ji, with a k x s  matrix K  of 
rank s =--1. For K , unlike c, does not admit a natural embedding in the space R* 
where f  takes its values. The formulation that carries over to greater generality is 
the following, cf., Pukelsheim (1980, Theorems 3, 4).

Corollary 2. Given c£R*, o> design measure £ with information matrix M  is optimal 
for c'j3 if and only if M  lies in 91(c) and there exists some N  in cyl (9i) such that 
c'M~c =  c'Nc. This equality occurs if and only if f(x)'Nf(x) =  1 almost surely and

M N  =  c(c'M -c)-ic ’N  . (2.2)
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P roof. See the proof of Theorem 1. The second part follows from examining 
equality in 1 ^trace M N ^ c'Nc(c'31~c)~s. ■

Bounds for the regression norm g can be established from the radii of the 
Euclidean balls inscribed in and circumscribing the regression ball 3i, whose lengths 
are r =  min{]jt’jj | g(w) =  l} and i? =  max {¡jt'jj ¡o(v) =  l}, respectively. It is easy to 
see that

\\c\\/B ^  g(c) ^  \\c\\Jr . (2.3)

In fact, as c varies over the Euclidean unit sphere in li/ the values g(c) attain 
every number between E _1 and r~ T h e  number R  also equals max {|[/(a:)[| | x f  #}, 
and this is in many cases easy to compute. Corollary 3 describes what happens 
when the upper bound in (2.3) is attained.

Corollary 3. Let c£R* be an in-ball radius o f ‘Si, i.e., g(c) =  1 and [|c|] — r. Then c is 
an. eigenvector associated with eigenvalue r2 of every information matrix M  that 
belongs to an optimal design measure for c'fi.

P roof. Because c is an in-ball radius the hyperplane {u £R* j c'u/r2= l }  supports 
in c. By the proof of Theorem 1 equation (2.2) is satisfied for N  — cc'/r1*, leading 

to M c — r2c. ■

3. E lfving charts

Example 1 was recently proposed by Si l v e y  (1978, p. 554). Another example 
of the same type was put forward by K ie f e r  (1961, p. 309).

Example 1. =  ̂ (o) ’ ( o ) ’ ( l ) ’ ( 2) } ’ ^ X) =  X’ C =  (o ) ; see Fig' L The regres' 

sion ball 9Î is the quadrangle with vertices ±  and ±  . The prolongation of

c that meets the boundary of is c/g(c) =  (2/3) 1^1 —(1/3) > whence g(c) =  3/4.

Therefore f  ( ^ J =  2/3, | ( ^ ) =  1/3 is optimal for c'fi, its information matrix M  is non- 
\ / \ /  

singular, and {p(c)}2 =  9/16.
It is now easy to give a correct formulation of Korollar 8.3.1 in Httmak (1977, 

p. 453): Given XqQ.'SL, the one-point measure |(x0) =  l is optimal for f(x^)'(j if and 
only if f(x0) lies on the boundary of the regression ball 9i. Observe that when 
c /q ( c )  is an extreme point of 91 then it has a representation sf{x0) for some 
and e £ { ± l } .

Continuing the discussion of Example 1 note that Sil v e y  (op. cit.) showed that 
the one-point measure c) =  1 is sub-optimal, in the terminology of Humak (1977,
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p. 436). The range of its information matrix M-L is certainly contained in the range 
R 2 of the non-singular matrix M .  But at the same time <■' M . c — 1 M ±c =  9/16. 
contrary to Satz 8.2.3 in Hïïmak (1977, p. 442).

Pig. 1. The left chart refers to  Exam ple 1: the regression ball 91 is a parallelo­
gram. A lthough c =  ( 1, 0 )' lies in 36 it differs from  the point where the half-ray 
{ac | a^ O } intersects the bou n dary  o f  Dt, nam ely c/o(c) =  (2/3) (4, 1 )' —(1/3) 
(4, 2 )'. I t  is the latter representation which proves the design £((4, l ) ' ) = 2 /3 ,  
|((4, 2 )') =  1/3 to be optim al for c'p.

The right chart refers to  E xam ple 2 : 81 is a square. Observe that e =  (1, 1)' is 
an extrem e point o f  3t. In  case c =  ( 1, 0 )' a design £ is optim al for c'fi whenever 
f x d f  =  0. The parallelogram  inscribed in 3c refers to  Exam ple 3.

Example 1 also serves as a counterexample for the equivalence theorems of 
Section 5.6.3 in Bandemeb. u. a. (1977, pp. 220—223). For although £* is not 
optimal for c'/3 one has sup f{x)'M^c(c'M^c)~lc’M^f(x) — 1, when the supremum is

taken over all {x^H | f(x)£ range J f ,} =  j  ,

Feijokov & M alyijtov (1972, p. 286) employed the Moore-Penrose inverse M + 
and conjectured that optimality holds if and only if the supremum of 
f(x)'M+c(c'M~c)~1c 'M +f{x), taken over all x£dc, is 1. This is not so, in general, 
as we illustrate next.

Example2. $  =  [ —1, + 1 ], /(ic) =  , c =  i i j - : see 1 ■ An optimal design

measure for c'/5 is | j  =  1 ’ optimal value {p(c)}2= l .  However, for its infor­

mation matrix M  one gets /( l ) ' M +c(c'M~c)~l c 'Jf+/( l )  =  36/25>-1. Note that

this situation is different when c =  ( ! )> as in Bandemeb  u . a. (1977, p. 217), or 
/l\when c =  (q ) ’ as ™ Silvey  & Tittebistgton (1973, Example 4.2, p. 28). Their 

Example 4.1 (op. cit.) and A twood ’s (1969, p. 1581) Example 3.1 are of like shape 

as when c =  ̂  j , up to a rotation of 45 degrees. ■

2 statistics, Vol. 12, No. 1



Corollary 2 may sometimes be useful in discussing uniqueness of optimal design 
measures.

Example 3. £  =  [ — 1, 0],/(x) =  |^j , c =  ^ j ,  see Fig. 1. Uniqueness of the opti­

mal design f( — l ) = l /3 ,  f (0) =  2/8 for c'fl may be derived as follows. No singular 
information matrix is in 9??(c), and non-singularity of M  restricts the matrices N

of Corollary 2 to have rank 1, by (2.2). The only such N  is dd' with =  . Then

f(x)' Nf{x) equals 1 if and only if a; is — 1 or 0, thus determining the support of 
the optimal £. The weights 1/3 and 2/3 are easy to compute. ■
The geometric argument is, of course, also useful when one cannot draw charts 
as easily as with k =  2 parameters.

1 8 P U K E L S H E IJ I, F.

Fig. 2. In Example 4 the regression ball 8t for quadratic regression ./(.<:) =  
=  (1, x,  x 2)' on 3£ =  [ — 1, + 1 ] is needed. The front arc in the picture is the image 
—/(3£) since its cross-section with first coordinate fixed is a parabola, the mostly 

hidden rear arc is /(X). Once it is seen that the triangle with vertices —/(0 ), /(l) , 
and /( — l) is a face, its shortest vector c =  (1/5) /( l )  +  (1/5) /( — 1) — (3/5) /(0) is a 
safe candidate for an in-ball radius of SR.
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Example 4. $  =  [ — 1, + 1 ], f[x) =  { 1, x, x2)', c =  ( —:1/5, 0, 2/5); see Fig. 2. 
Since c equals. (1/5) /( l)  +  (1/5) / ( — 1) — (3/5) /(0), it lies in the face genei’ated by 
/(l) , /( — l), and — /(0), and one has o(c) =  1. Thus the measure f(0) =  3/5, £( — 1) =  
= ■ f  (+  1) =  1/5 is optimal for c'ß. Note that f  is also E-optimal for ß, as shown by 
Kxefeb (1974, p. 868). ■

It is not true that a design measure which is E-optimal for ß is always optimal 
for some c'ß where c f  R* has Euclidean norm 1- This is shown by the final example 
which thus disproves Satz 8.3.13 in H itmak (1977, p. 469).

/ COS
Example 5. $  =  [ —;r/2, +  n/2 ] , /(*) =  ( . I. An E-optimal design measure for

¡3 is £( +  ti jé) =  |( — .t/4) — i , with information matrix M  — ~ I 2, and optimal value

=  2. But r~- =  1, since 3t is the Euclidean unit ball. This discrepancy has 
nothing to do with multiplicities of eigenvalues, for suppose we change $  to .-E(x) =  
=  [ —a, + a ]. As a decreases from j t/2 to rr/4 the corresponding quantity {r(«)}_2 
increases continuously from 1 to 2, whereas f  remains E-optimal for /?. ■
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Zusammenfassung

E s wird ein kurzer Beweis zur K onstruktion  c-optim aler M aße in der Versuchsplanung ge­
geben, w obei besondere Aufm erksam keit der diesem  P roblem  innewohnenden Geom etrie 
gew idm et wird. E ine Anzahl von  Beispielen und Gegenbeispielen, welche sich au f andere 
Resultate der L iteratur beziehen, w ird aufgeführt.

Pe3H*Me

JJaeTCH Kop©TKoe H0 K a3aTein>CTB0  k  KOHCTpyKipiii c-onTHMajibHBix Mep B rraaHiipoBaHMH 
3KcnepHMeHTa. OßpamaeTCH ocoß oe  BHiiMamie reoMeTpiiH o to ii irpoßjieM ti. E ya eT  npiiB eaeno  
HHCjlO IipHMepOB OTHOCHIHHXCH K p e 3yj!BTaTaM JIHTepaTyptl.
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