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On e-Optimal Design Measures

FriepricH PURELSHEIM !

Summary. A short proof is presented to construct c-optimal measures for designing ex-
periments, and emphasis is laid on the geometry inherent in this problem. A number of
examples and counterexamples are given which relate to other results in the literature.

Key words: Approximate design theory, ErLrvine's Theorem, Singular information
matrices.

1. Introduction and notation

The paper characterizes design measures & which are in a certain sense optimal
for estimating a linear form ¢'f, or testing a linear hypothesis ¢'f =0, where the &k
parameters 8, . . ., §; form the unknown vector f5, and ¢ is some prescribed vector
in R®. With the usual further assumptions as detailed below, the present approach
draws heavily on convex geometry in order to arrive at the desired conclusions.
In Section 2 (Elfving’s Theorem) the classical result of ELrviNg (1952) is rederived
in a way that shortens and clarifies the argument of SiBsox (1974). In Section 3
(Elfving Charts) the transparency thus gained leads to some examples pointing
to possible extensions, and some counterexamples refuting a number of assertions
that can be found in the literature.

In the theory of experimental design one has in mind that the experimenter
can choose a level x in a design space X, and then make uncorrelated observations
having equal variance independent of « and expectation f(x)'s where the regression
function. f is supposed to be known and fixed. A design & specifies the levels = to be
chosen and the proportions &(z) of observations to be drawn at x. A c-optimal
design then ensures smallest possible variance of the least squares estimate for
¢'#, or maximal power of the F-test for ¢'f=0. The textbooks FEDOROV (1972),
BANDEMER u. a. {1977), Homax (1977), or KravrFr (1978) present the full back-
ground and extensive bibliographies on optimal design of experiments. Of the
underlying assumptions we here give only such details as are necessary.

The design space X is supposed to be a measurable space with measurable

ford
=

one-point sets {z}, and & is the set of all probability measures, called design
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measures, £ on X. The regression function f is assumed to be a measurable function
from X into R* such that its image f(X) is compact and spans all of R*. The infor-
mation matriz of a design measure & is defined by

Tnfo (§)= J f(z) f(@)" A&,

fond

and the set of all these matrices is denoted hy Info (5). For a given R¥-vector ¢
considerations of estimability of ¢'g, or testabilitv of ¢/f=0, direct interest
towards the set

W(c)={AcNND() | ccrange A},

i.e., the set of all real symmetric non-negative definite kX k matriees 4 such that
¢=Az for some z¢ R*. Then a design measure & is called optimal for ¢'8 if its infor-
mation matrix M lies in A(c) and minimizes the real funection &(M)=c'Mc.
As usual, a prime stands for transposition, and a g-inverse 4~ means any matrix
satisfving M(M )M =M. On %U(c) the function @ is well defined and positive.

2. Errvine’s theorem

First construet the svmmetrie convex set
R =convex hull of f(X)U —f(X) .

In fact, N is also compact (ROCKAFELLAR, 1970, Theorem 17.2, p. 158), and since
f(X) spans R* the interior of 3 is non-empty and contains 0. Secondly, associate
with every vector ¢€ R* the smallest number =0 such that c is contained in the
regression ball pR={pv | v R}, ie.,
o(c)=inf {u=0]cecuR} .
Thus ¢ is a norm, and R coincides with its unit ball {veR* | p(v)=1} (Rocka-
FELLAR, 1970, Theorem 15.2, p. 131). Because of their close relation to the regres-
sion function f we shall call i the regression ball and o the regression norm.
As a member of the regression ball i the vector ¢/o(c) is a convex combination
of finitely many points in f(X) or —f(X): for every ccRF there exists a natural
number n, and points ;€ X, e;€ { £ 1}, and 2,>0 (i=1,...,n) such that } 4, =1 and

c=o(c) § Aief(x). (2.1)

Although derived from the geometric point of view, representation (2.1) also
contains the solution to the optimal design problem. This will be made precise in
Theorem 1 which dates back to Ernvving (1952); see also KARLIN & STUDDEN
(1966, p. 789). The proof below follows StLvEY’s idea (WynwN, 1972, p. 174; SiBSox,
1974) the set of all cylinders, including ellipsoids, containing the regression ball
R, namely,

eyl (MY={NcNND() | v Nv=1 forall vcR},

rather than the quite arbitrary convex body R alone.
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Theorem 1. Given ccRF, the infimum of ¢’M~c among all M eA(c) Info (5)
is equal to {o(c)}? and is attained. In fact, whenever ¢ is represented as in (2.1) then
the design measure & defined by &(x;)=2; (i=1, ..., n) is optimal for ¢'f.

Proof. The proof is in two steps. First it is shown that ¢’ M ~c=¢'N¢ holds for
two arbitrary members M =1Info (£)€A(c) N Info (£), and N<eyl (R). For when
1=f(x) V]‘( is integrated with respect to & then one arrives at 1=trace MN =

= ﬂ M* N 2. Here |.|| is the norm associated with the Euclidean matrix inner pro-

duct (4, B)=trace A’'B on the space R*** of all real kX % matrices. An ortho-
1

=+ =+
gonal projection is obtained when A ismapped into M* ¢(M?* ¢)* 4, and there-
1 1 1 1

fore || MZN? ’>HJ‘12 ]l/[z e)*M?N?|2 Since MeUA(c), the property A+ =
={A'4)* A’ ofaMoore- Penrose inverse 4+ provesthelast termtobe ¢’ Ne(e! M —¢)™4,
as desired.

The second step follows SiBsox (1974, p. 691) and shows that when M is the
information matrix X 4,f(x;) f(x;) of the measure & defined in the theorem then
there exists some N € ¢yl () with ¢’ M ~c={p(c)}2=c¢'Ne¢, thus proving the assertions.
For let d¢ R* define the hyperplane {u ¢ R* | d’u =1} supporting % in its boundary
point c¢/o(c), i.e., d'v=1=d’c/p(c) for all ve K. From ¢d'f(x;)=1 and (2.1) one gets
g=d'f(x;). With WHITTLE’s (1973, p. 129) quasilinear representation one then
has the following:

c’M~c=sup 2h'c—h'Mh

heRF

=sup 20(c) L Leh'flx;) -2 }.i{k’]‘(xi)}i’
herk

=sup X'7; [{o(c) &} —{o(c) &;—'f(x;)}*]
,’zéRk

={o(c)}2— mf V)Z{( Y d—h)'fx;)}2

heR,

The infimum 0 is attained at A=o(c) d. On the other hand N=dd ¢cyvl (R), and
c'Ne=(c'd)2={o(c)}2. R

Theorem 1 does not extend to linear functions K'g, with a kXxs matrix K of
rank s>1. For K, unlike ¢, does not admit a natural embedding in the space R*
where f takes its values. The formulation that carries over to greater generality is
the following, cf., PUKELSHEIM (1980, Theorems 3, 4).

Corollary 2. Given cc RE, a design measure & with information matriz M is optimal
for ¢'B if and only if M lies in W(c) and there exists some N in cyl (R) such that
¢’ M~c=c'Ne. This equality occurs if and only if f(x) Nf(x)=1 &-almost surely and

MN =c{c’M—c)"1c'N . (2.2)
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Proof. See the proof of Theorem 1. The second part follows from examining
equality in 1=trace MN =c'Ne(¢'M—¢)~t. |

Bounds for the regression norm o can be established from the radii of the
Euclidean balls inscribed in and circumseribing the regression ball &, whose lengths
are r=min {|lv| | o(v)=1} and R=max {|jv| | o(v)=1}, respectively. It is easy to
see that

llell/ B = o(c) = |lc|i/r (2.3)

In fact, as ¢ varies over the Euclidean unit sphere in R* the values o(c) attain
every number between Rt and r~1 The number R also equals max {||f(x)]| | € X},
and this is in many cases easy to compute. Corollary 3 describes what happens
when the upper bound in (2.3) is attained.

Corollary 3. Let ccR” be an in-ball radius of R, i.e., o(c)=1 and ||| =r. Then c is
an. eigenvector associated with eigenvalue r2 of every information matric M that
belongs to an optimal design measure for c’f.

Proof. Because ¢ is an in-ball radius the hyperplane {u € R | ¢'u/r2= 1} supports
R in ¢. By the proof of Theorem 1 equation (2.2) is satisfied for N =cc’/r%, leading
to Mc=r2c. 1

3. Evrving charts

Example 1 was recently proposed by SILVEY (1978, p. 554). Another example
of the same type was put forward by Kierer (1961, p. 309).

Example 1. ’E:{(g), ((1)), (i), (;)}, fx)==, c:((l)); see Fig. 1. The regres-

sion ball R is the quadrangle with vertices i(‘;) and i(;) The prolongation of

¢ that meets the boundary of R is ¢/o(c)=(2/3) (f)—(1/3) (;) , whence p(c)=3/4.
Therefore & (‘:) =2/3, & (3) =1/3 is optimal for ¢'g, its information matrix M is non-

singular, and {g(c)}?=9/16.

It is now easy to give a correct formulation of Korollar 8.3.1 in HuMax (1977,
p- 453): Given z,€ X, the one-point measure &(xo) =1 is optimal for f(z,)'8 if and
only if f(z,) lies on the boundary of the regression ball i. Observe that when
c/o(c) is an extreme point of N then it has a representation &f(x,y) for some zo€ X
and e€{+1}.

Continuing the discussion of Example 1 note that SILVEY (op. cit.) showed that
the one-point measure &;(c) =1 is sub-optimal, in the terminology of HuMAK (1977,
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p. 436). The range of its information matrix 47, is certainly contained in the range
R? of the non-singular matrix M. But at the same time ¢’ M, c=1=>c'"Mc=9/16,
contrary to Satz 8.2.3 in Humax (1977, p. 442).

=

()

!
i

0,
fE]

AI%)

!
i

Fig. 1. The left chart refers to Example 1: the regression ball # is a parallelo-
gram. Although c¢=(1, 0)’ lies in ¥ it differs from the point where the half-ray
{ac | >0} intersects the boundary of 9t, namely c/o(c)=(2/3) (4, 1) —(1/3)
{4, 2)’. Tt is the latter representation which proves the design &((4, 1)')=2/3,
£((4, 2)')=1/3 to be optimal for ¢’B.

The right chart refers to Example 2: %t is a square. Observe that c=(1, 1)’ is
an extreme point of . In case ¢c=(1, 0)” a design & is optimal for ¢’f whenever
f2d&=0. The parallelogram inscribed in R refers to Example 3.

Example 1 also serves as a counterexample for the equivalence theorems of
Section 5.6.3 in BANDEMER u. a. (1977, pp. 220—223). For although &, is not
optimal for ¢'8 one has sup f(x) M c(c'M; c)~1c’ M f(x)=1, when the supremum is

taken over all {z€ X | f(x)€ range Jl[i}:{((l)) ’ (g)} "

Frporov & MALyuTOV (1972, p. 286) employed the Moore-Penrose inverse M+
and conjectured that optimality holds if and only if the supremum of
f@) M*e(c M—c)~1c’ M*f(x), taken over all x€ ¥, is 1. This is not so, in general,
as we illustrate next.

Example2. X=[—1, +1], f(x):(i), c:(i); see Fig. 1. An optimal design

2
measure for ¢'f is & (%): 1, with optimal value {p(c)}2=1. However, for its infor-
mation matrix M one gets f(1)' MFc(c’M—c)~t ' M*f(1)=36/25>1. Note that
this situation is different when c:(l), as in BANDEMER u. a. (1977, p. 217), or
when c:((l)), as in SiLvEy & TrrrErINneTON (1973, Example 4.2, p. 28). Their
Example 4.1 (op. cit.) and ATwooD’s (1969, p. 1581) Example 3.1 are of like shape

as when c:(l), up to a rotation of 45 degrees. ™

1

2 statistics, Vol. 12, No. 1
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Corollary 2 may sometimes be useful in discussing uniqueness of optimal design
measures.

Example 3. X=[—1, 0], f{z) :(;) , c:(i), see Fig. 1. Uniqueness of the opti-

mal design &(—1)=1/3, £(0)=2/3 for ¢'f may be derived as follows. No singular
information matrix is in M(c), and non-singularity of M restricts the matrices N

of Corollary 2 to have rank 1, by (2.2). The only such N is dd’ with d:(;). Then

f(z)" Nf(x) equals 1 if and only if  is —1 or 0, thus determining the support of
the optimal &. The weights 1/3 and 2/3 are easy to compute. =R

The geometric argument is, of course, also useful when one ecannot draw charts
as easily as with k=2 parameters.

7 7
ff'7)-/-77) f(/)-[l])

) T ///J

-f(-1)

/
/[
/[

-ren &

Fig. 2. In Example 4 the regression ball R for quadratic regression f(x)=
=(1, 2, 2?)" on X=[ —1, +1] is needed. The front arc in the picture is the image
—f(%) since its cross-section with first coordinate fixed is a parabola, the mostly
hidden rear arcis f(%). Once it is seen that the triangle with vertices —f(0), f(1),
and f(—1) is a face, its shortest vector ¢ =(1/5) f(1) +(1/5) f(—1) —(3/5) {(0) is a
safe candidate for an in-ball radius of R.
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Example 4. X=[—1, +1], fl)=(1, 2, 2?)’, c=(—1/5, 0, 2/5); see Fig. 2.
Since ¢ equals, (1/5) f(1)+(1/3) f(—1)—(3/5) f(0), it lies in the face generated by
f(1), f(—1), and —f(0), and one has o(¢c)=1. Thus the measure &(0)=3/5, &(—1)=
=§(+1)=1/5 is optimal for ¢’S. Note that £ is also E-optimal for 8, as shown by
KIEFER (1974, p. 868). ®

Tt is not true that a design measure which is E-optimal for § is always optimal
for some ¢’ where ¢ € R* has Euclidean norm 1. This is shown by the final example
which thus disproves Satz 8.3.13 in Huomax (1977, p. 469).

Example 5. xI[_—n/Q’ +7Z/2], ]c(x):(COS.’L'

sSim x

). An E-optimal design measure for
1 1
7 is E(+7/4) =&(—n/4) ==, with information matrix M = =5 I,, and optimal value

Amax{M ) =2. But r 2= 1, since 3t is the Euclidean unit ball. This discrepancy has
nothing to do with multiplicities of eigenvalues, for suppose we change X to ¥(«)=
=[—a, +a]. As « decreases from 7/2 to z/4 the corresponding quantity {r(«)} 2
increases continuously from 1 to 2, whereas & remains E-optimal for §. ™
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Zusammenfassung

Es wird ein kurzer Beweis zur Konstruktion c-optimaler Mafie in der Versuchsplanung ge-
geben, wobei besondere Aufmerksamkeit der diesem Problem innewohnenden Geometrie
gewidmet wird. Eine Anzahl von Beispielen und Gegenbeispielen, welche sich auf andere
Resultate der Literatur beziehen, wird aufgefihrt.

Pearome
HJaercA KOpPETKOE JOKA3aTEINLCTBO K KOHCTPYKIUH C-ONTUMAIHHBIX Mep B INIAHHpPOBAMIM

sxcnepumenrta. Ofpamaercd ocofoe BHUMAHNe TeOMeTpHH »Toii mMpoGaeMul. Dyzmer mpusegeHno
YUCI0 MPHUMEPOR OTHOCANIMXCA K Pe3yibTaraM JINTepaTyphl.
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