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Abstract

It is difficult to draw reliable conclusions about prehistoric cultures due to inher-
ently vague archaeological data. The lack of suitable methods for the quantitative
analysis of settlement patterns in terms of uncertain as well as incomplete data is the
motivation for this research. The aim is to gain the maximum of information about
former settlements with a minimum of previous knowledge. To achieve that goal,
the environmental surroundings in combination with the location are considered in
the analysis. This is based on mainly two assumptions, namely that locations of
settlements are influenced by environmental conditions and that settlements have
different functions within the settlement-network.

Literature research was necessary in order to collect as many excavation site loca-
tions as possible. The result is the largest published collection of former settlement
in the Amazon region. A conceptual data model is developed which fits the require-
ments of the available data and is implemented in a central database on a server
in order to provide the data. This reduces redundancies and provides external ac-
cess over the internet for all interested researchers. Consequently it facilitates the
analysis of intra cultural settlement patterns. Additionally environmental variables
need to be defined which are assumed to be potentially influencing.

A knowledge discovery process is developed which allows to further analyse the
data. A Maximum Entropy Model is performed to see whether an environmental
variable is influencing the outcome of the model. The variables with an ascertain-
able contribution are used for further analysis. The settlement type is determined
using a clustering approach on the basis of the remaining environmental variables.
To avoid that distant variables distort the cluster result, only environmental variables
near the excavation site are considered. The definition of nearness is made using a
rough boundary which is individually set for each parameter. The maximum near-
ness value is randomly selected and used as input for the cluster analysis. Various
cluster runs with changing maximum nearness values are performed and compared
using the consensus clustering approach. An optimal cluster solution as well as a
consensus value are returned as a result which is used in order to calculate settle-
ment function related suitability surfaces. These cost surfaces serve as basis for the
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concluding territory analysis.

The developed methodology allows to derive scenarios of potential functional set-
tlement patterns. The focus is on archaeological records of yet poorly explored
cultures.
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Zusammenfassung

Rückschlüsse über das Siedlungsmuster prähistorischer Kulturen zu ziehen ist auf-
grund der unsicheren archäologischen Daten schwer. Das Fehlen geeigneter Me-
thoden zur quantitativen Analyse von Siedlungsmustern im Kontext von unsicheren
und unvollständigen Datensätzen ist die Motivation für diese Forschungsarbeit. Das
Ziel ist es, ein Maximum an neuen Informationen über frühere Siedlungen bei mi-
nimalem Vorwissen zu gewinnen. Um das zu erreichen, werden die umgebenden
Umwelteigenschaften in Kombination mit dem Siedlungsort analysiert. Dabei wer-
den zwei Annahmen zugrunde gelegt, nämlich erstens, dass die Siedlungsorte durch
die umgebende Umwelt beeinflusst werden, und zweitens, dass Siedlungen inner-
halb des Siedlungsnetzwerks unterschiedliche Funktionen einnehmen können.

Eine Literaturrechere war nötig, um so viele Ausgrabungsorte wie möglich zu lo-
kalisieren. Das Ergebnis ist die größte publizierte Sammlung von früheren Sied-
lungsorten im Amazonasgebiet. Dafür wurde in konzeptionelles Datenmodell ent-
wickelt, welches den Bedingungen der verfügbaren Daten entspricht, und in eine
zentrale, auf einem Server betriebene Datenbank implementiert wurde. Das redu-
ziert redundante Datenhaltung und ermöglicht den externen Zugriff für interessierte
Wissenschaftler über das Internet. Dadurch wird die Analyse intrakultureller Sied-
lungsmuster vereinfacht. Zusätzlich müssen die als einflussreich angenommenen
Umwelteigenschaften definiert werden.

Es ist ein Prozessablauf entwickelt worden (Knowledge Discovery Process), der die
weitere Analyse der Daten ermöglicht. Ein Maximum Entropy Modell wird ange-
wendet, welches die einflussnehmenden Variablen für die Modellausgabe identifi-
ziert. Die Variablen, die einen feststellbaren Einfluss haben, werden für die weite-
re Analyse verwendet. Der Siedlungstyp wird durch eine Clusteranalyse auf Basis
der übrig gebliebenen Umwelteigenschaften bestimmt. Um zu vermeiden, dass weit
entfernte Variablen das Ergebnis der Clusteranalyse beeinflussen, werden nur Um-
welteigenschaften im nähreren Umkreis berücksichtigt. Die Definition der Nähe
erfolgt mit Hilfe einer ungenauen, über Maximum- und Minimumwerte beschrie-
bene Grenze, welche für jeden Parameter individuell festgelegt werden kann. Für
eine Clusteranalyse wird ein Zufallswert maximaler Nähe innerhalb des Grenzinter-
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valls bestimmt. Eine Vielzahl von Clusteranalysen mit wechselnden Zufallswerten
wird durchgeführt und mithilfe eines Consensus Clustering Verfahrens verglichen.
Als Ergebnis wird eine optimale Clusterlösung sowie ein Konsenswert ausgegeben,
welche für die Berechnung der siedlungsfunktionsbezogenen Eignungsoberflächen
verwendet werden. Diese Kostenoberflächen fungieren als Basis für die abschlie-
ßende Analyse der Territorien.

Die entwickelte Methodik ermöglicht es, Szenarien über potentielle funktionale
Siedlungsmuster zu entwickeln. Der Fokus liegt auf archäologischen Aufzeichnun-
gen von bisher kaum erforschten Kulturen.
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1 Introduction

When humans settle in a specific area they interact with the environment surround-
ing them. Settlement decisions in prehistory were determined by the social situation
(e.g. forced by conflict) or environmental criteria in order to fit the peoples’ needs
and capabilities. Thus, the location is a compromise which considers all influences
that may affect a population (Sollars 2004). A major issue was the availability of
food which is limited to the goods which were accessible. The way people interact
with the environment varies according to the availability of necessary goods and the
perceived capabilities of the surrounding space.

The lifestyle of any given community is closely tied to environmental
considerations. (Sollars 2004, p. 258)

Only the findings of excavation sites provide evidence about some of the materials
and goods used and thus give a rough picture of how people perceived and used the
environmental surroundings. However, archaeological data is inherently vague. On
the one hand the number of known excavation sites might not – and probably does
not – correspond to the actual number of former settlements. On the other hand
the excavated findings do not represent a complete range of formerly used goods
and materials. Reasons can be the climate conditions, the soil condition, and other
environmental circumstances such as flooding, as well as the applied archaeological
practice (Funari 1995). Considering the environmental surroundings – including the
topography, as well as the accessibility of water supplies or exploitable resources –
extends the available findings related data.

In the Amazon basin [...] only the comparison of cultural sequences
from a variety of ecological settings can provide new insights for testing
competing models of cultural developments. (Barreto 1998, p. 579).

In terms of Brazilian archaeology political and historical circumstances had an in-
fluence on the archaeological fieldwork. During the military invention in 1964 and
the subsequent military government

Brazilians could no longer profess a different view without being
considered as external enemies. (Rodrigues et al. 1984, p. 226)
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These circumstances led to a predominant archaeological alignment which focused
on descriptive and classificatory practices rather than interpreting the past (Barreto
1998, Funari 1995). Despite an ongoing change towards more problem-oriented
research in Brazilian archaeology since the 1980’s there is still a lack of standard-
ized research methods and knowledge (Neves 2008, Barreto 1998). That also led to
confusing and research depending definitions and nomenclatures of archaeological
cultural divisions and subdivisions. In Amazonian Archaeology a common categor-
ization of cultures is based on differences in ceramic styles (see chapter 2.1.1). It
would be of interest to archaeological research

... if data on ceramic chronology could be matched by more inform-
ation on things such as settlement patterns, site occupation chronology,
intra-site spatial patterns and so forth, but this is not available in the
vast majority of cases. (Schaan 2007 (as cited in Neves 2008, p. 365))

Another settlement pattern related aspect is the existence of functional settlement
types. Settlements differ in size, environmental surroundings, time of occupancy,
etc. which suggest functional related settlement types.

Also, groupings of sites into fragile categories of phases and tradi-
tions often hid other, more informative site classifications, such as site
function. (Barreto 1998, p. 577)

The available information about the former settlements varies considerably. For
some excavation sites only the location and, based on the ceramic findings, the
former culture(s) are known. For other excavation sites the arrangement of buildings
as well as the intra site relationships are known. In order to use as many excavation
sites as possible the settlement patterns should be analysed regardless of the avail-
able information. Therefore, the aim of this work is to develop a method in order to

gain as much information about the functional settlement patterns as possible using

only the location of the excavation site and its surrounding environment. This al-
lows the identification of functional settlement types without additional knowledge
as well as an assessment about the importance and range of each environmental
parameter.

The developed approach is referred to as functional settlement pattern analysis and
is based on the following assumptions.

• The settlements of one observed group (e.g. a specific culture) are seen as a
system of interacting settlements which implies an exchange of goods. Ad-
ditionally, the culture – and thus all settlements – benefits from the functions
(e.g. defence against enemies).
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• Settlements provide different functionalities, and the suitability of a location
depends on the function. This also means that some of the functionalities rely
on the environmental surroundings. E.g. trading functionalities can only be
close to trading routes.

• Certain environmental surroundings are needed in order to serve as suitable
locations. This includes goods required for survival such as drinking water
and food. Whereas the environmental conditions may vary according to the
capabilities and needs of the settling group. It makes a difference whether a
settling culture is able to grow its own food or not.

• The distance to important resources may not exceed a maximum distance but
may vary according to the type of resource. This means that the distance
which a culture is willing to overcome varies according to the resource.

• The relevant resources may vary according to the culture and functionality.
This is due to the varying capability and needs of a culture as well as the
function related specific requirements.

• The location of the settlement allows to draw conclusions about the settle-
ment type. Thus, the specific combination of environmental parameters is
important for the settlement function.

• The suitability of a location can be assessed on the basis of the environ-
mental surroundings. Thus, a minimum number of environmental parameters
is needed in order to be considered as suitable location.

The introduction given above leads to the following research questions:

1. How can the locations of the excavation sites be stored to function as basis
for further analysis?

2. How can environmental information be considered in order to identify spe-
cific functional settlement patterns? How can the influence of the environ-
mental variables be determined?

3. How can knowledge about functional settlement patterns be gained? How
must this knowledge discovery process be designed in order to consider the
various settlement and subsistence strategies?

Based on these questions the following research objectives are derived:

1. A data model shall be created which can store the locations and other avail-
able information of the former settlements.
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2. A model needs to be developed which fits characteristics of Amazonian Ar-
chaeology – namely the inherently vague data – and the specific environ-
mental conditions.

3. A knowledge discovery process shall be developed which allows the identi-
fication, characterisation and analysis of functional settlement pattern. The
developed approach is dynamic to be applicable to all cultures regardless of
the cultures capabilities and needs. Additionally, the method needs to work
with an arbitrary number of archaeological subdivisions of the input loca-
tions (e.g. based on ceramic styles, language groups etc.). Statistical methods
should be applied to underline the relevance (or irrelevance) of the surround-
ing resources. The results should be reproducible, thus subjective input need
to be minimized.

4. This work shall provide a method which allows archaeologists to develop
theories on settlement patterns of the observed culture.

The approach focusses on developing a method which allows functional settlement
pattern analysis despite the variety in data quality.

In order to analyse settlement patterns the location of the excavation site needs
to be known. The sources of archaeological data in the Amazon Basin are mani-
fold. Besides a high number of publications with maps (some including a small de-
scription of the location), the Instituto do Patrimônio Histórico e Artístico Nacional
(IPHAN) provides a database with the known excavation sites (link to the data-
base: http://portal.iphan.gov.br/sgpa/?consulta=cnsa). Unfortu-
nately the database does not contain any coordinates which makes it useless for any
kind of spatial analysis (see A for an excerpt of the database). Thus, reliable data
about the former settlements needs to be collected in order to analyse the functional
settlement pattern of pre-colonial cultures in the Amazon Basin. This implies in-
formation about the location as well as the environmental surroundings. Most of
the excavated settlements are published as paper maps with a brief description of
the location, thus exact coordinates are not known. Therefore, the location of the
excavation sites needs to be identified in a first step.

As soon as the locations are known, the settlements can be analysed. The spatial dis-
tribution of the locations is analysed to make sure that neither a regularly dispersed
nor a random pattern of the location occurs. If a clustered pattern can be identified,
further distinctions into functional patterns can be made. Excavation sites can be
subdivided into several groups (or hierarchies) based on various criteria. This allows
the consideration of site size (which is used as an estimation for the former popula-
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tion size) (e.g. (Drennan and Peterson 2004, Johnson 1977, Blanton 1976)) or other
functionalities (e.g. residence of the chieftain) (e.g. (Steponaitis 1981, Peebles and
Kus 1977)). This requires knowledge or an expert opinion about the settlement
hierarchy or social function in advance. But what if there is no such information
and subjective interpretations should be avoided. For the majority of the excavation
sites in the Amazon only the location and the culture (based on the ceramic styles)
are known. Only few excavation sites have information about the size. In that case
no distinction can be made in advance. An alternative would be to use a data driven,
explorative approach in order to derive more information about the location. This
means that the functions are derived based on the environmental surrounding rather
than on findings or the site itself. Consequently, the environmental parameters as
well as the potential importance of those need to be determined. These results are
used to find agglomeration patterns in order to identify the settlement type. The en-
vironmental variables in combination with the determined settlement function can
then be used for the calculation of the suitability surface for a specific location.
Based on the analysis, the territory with regard to the cultural or functional prefer-
ences can be determined. Due to the data driven approach, the developed method
can be applied to every archaeological record where the location is known. Neither
additional input data – besides the environmental information – nor interpretations
of the data is needed.

The developed approach aims to facilitate settlement pattern analysis based on ar-
chaeological excavation sites. It focuses on locations and their environmental sur-
roundings rather than expert knowledge. Based on the applied model (e.g. con-
sideration of specific cultural characteristics) the presented approach can therefore
be used to verify archaeological hypotheses. Additionally, the resulting suitability
surface may also lead to new hypothesis and might help to identify further former
settlements.

To summarize the above, only very little is known about the settlement patterns of
pre-colonial cultures in the Amazon. The aim is to develop a procedure which gains
knowledge despite the fact that only little information is available. This is done by
considering the environmental surrounding of an excavation site. The presented ap-
proach shows which steps are necessary in order to achieve this goal. However, the
selection of environmental parameters (as well as the classification of these) may
not be sufficient with regards to the analysed culture. Thus this research does not
aim for a comprehensive functional settlement pattern analysis but rather for the
presentation of the developed process.

Chapter 2 provides an overview of archaeological research in the Amazon Basin as
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well as settlement pattern related studies. The third chapter describes the developed
knowledge discovery process. This is applied in a case study using the Konduri and
Guarita culture (grouped by ceramic style) which is presented in chapter 4. The res-
ults are discussed in chapter 5. Chapter 6 provides a conclusion about the developed
approach including the major findings as well as future work.
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2 Theoretical Background

Due to the interdisciplinary nature of this research several aspects are covered in
this dissertation. An overview of the archaeology in the Amazon is given in chapter
2.1. This chapter is subdivided in two sub-chapters. The first focusses on the chro-
nological framework (chapter 2.1.1) whereas the second is about the theories of
settlement history (chapter 2.1.2). The second chapter covers the relevant aspects
of spatial analysis in the archaeological context. This covers research on settlement
pattern analysis (chapter 2.2.1) which is followed by the sub-chapter on site catch-
ment and territory analysis (chapter 2.2.2). The aspects of predictive modelling are
described in the last chapter (chapter 2.2.3).

2.1 Archaeology in the Amazon

Providing a complete review of archaeological research in the Amazon lies beyond
the scope of the presented research. This chapter gives a broad overview of the
pre-colonial cultures in the Amazon. The Amazon Region is a large area cover-
ing a high percentage of northern South America and therefore has a huge variety
in geographical (see chapter 4) as well as archaeological aspects. In contrast to the
cultures of higher complexity (e.g. Inka or Maya in the Andes and Middle America)
there is only very little information about the peoples in Amazonia (Hilbert 1977),
due to multiple reasons. As Barreto (1998) stated by the example of Brazilian ar-
chaeology, the size of the country, the lack of resources and governmental support
and the difficulties due to the climate conditions have influenced the archaeological
work. The humidity in the Amazon Region has decreased the number of materials
which survived the past centuries and can still be found today. Items made of wood,
feathers, leather or other organic material are more likely to be found in arid regions
than in the Amazon Basin (Hilbert 1977). Furthermore, erosion and floodings can
lead to site destruction (Denevan 1996).

The number of archaeological surveys increased in the 1970s (Barreto 1998). That
is the reason why the Brazilian archaeology, in contrast to the Northern Amer-
ican archaeology, remained in what Willey and Sabloff (1993) described as the
classificatory-descriptive stage. The principle goals were classification and descrip-
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tion of excavation sites without any interpretation or explanations (Lewis 1996).
A change in practice was initiated by the work of Clifford Evans and Betty Meg-
gers who defined cultural sequences by dating and analysing ceramics. A group
of archaeologist from Brazil and North America – organized and administered by
Meggers and Evans 1965 - 1971 – have joined forces and initiated a program named
PRONAPA (Programa Nacional de Pesquisas Arqueológicas). Their main goal

was the understanding of the processes by which successive groups
of pre-European immigrants with different subsistence patterns adap-
ted to the diverse environmental conditions within Brazil (PRONAPA
1970, p.1).

That also led to a shift of focus which turned from pre-ceramic sites to ceramic
occupations (Schmidt Dias 1995 (as cited in Barreto 1998)). Evans and Meggers
(1973) stated that the Latin American archaeology

has undergone a tremendous expansion [...] during the past two dec-
ades (Evans and Meggers 1973, p. 257)

with a growing number of fieldworks and publications. Whereas the focus was on
south and central Brazil in the beginning the Amazon was focus of the PRONAPABA
(Programa Nacional de Pesquisas Arqueológicas na Bacia Amazônica) project Amazo-
nian research now has a problem of interpreting the patterns rather than suffering
from a lack of material (Eriksen 2011).

2.1.1 Chronological Framework

With the increasing number of ceramic sites it was possible to develop a chrono-
logical framework for the findings (Hilbert 1977) which was necessary to achieve
the goal of PRONAPA (1970), namely defining cultural sequences by dating and
analysing ceramics.

In his multi-volume works Steward (1947) divided the South American tribes into
four cultural regions:

• the Marginal tribes,

• the Andean civilizations,

• the Tropical Forest tribes and

• the Circum-Caribbean tribes.
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Evidence can be found for all but the Andean civilizations in the Amazon region
although the majority of findings are related to the tropical forest tribes (Hilbert
1977). The Marginal tribes are described as hunters and gatherers with neither
agriculture nor pottery. Arrowheads are usually made out of wood or bones but were
lost due to humid climate conditions, only some stray findings made of stone exist.
The Tropical Forest tribes as well as the Circum-Caribbean tribes had knowledge of
ceramic manufacturing. In volume three of Steward’s Handbook of South American
Indians The Tropical Forest Tribes the theoretical framework of cultural ecology
was introduced. The attempt was to use the adaptions to the local ecology to explain
the social and economic organization (Eriksen 2011). Neves (1998b) mentioned that
the Tropical Forest tribes

were characterized by a curious blend of adaptive traits (Neves 1998b,
p. 625)

which are difficult to apply. Additionally, it reduces a complex culture to environ-
mental variables (Eriksen 2011). The Tropical Forest tribe is typically described
as subsistence farming units with simple technology and with no ability to pro-
duce food surpluses - and therefore economic surpluses. Mainly negative terms
were used to describe their behaviour in order to distinguish the Tropical Forest
Tribes from the Circum-Caribbean tribes (Lathrap 1970). Due to these limitations
they were unable to improve their social structure, political centralization and craft
specialization (Viveiros de Castro 1996) and no cultural complexity was possible
(Lathrap 1970). The tribes of the Circum-Caribbean group are distinguished among
other things by having an influential chiefdom with large communities of about
1000 or more members, developed patterns of warfare, a religious system including
adoration of deities and a professional priesthood (Lathrap 1970).

Findings at the excavation sites are used to further divide the tribes into subgroups
based on pottery styles (Heckenberger and Neves 2009, Hilbert 1968, Meggers and
Evans 1961). The primarily used cultural chronology distinguishes between four
horizons (Neves 2008). Horizon refers to a historical unit which links together con-
temporaneous cultural criteria dependent on the combination of broad spatial and
short temporal dimensions (Willey and Phillips 1958, Willey 1945). It represents a
relative chronology of the former peoples and is based on two fundamental aspects.
One is the similarity among style groups in each horizon (in the Amazon mainly
ceramics), the other is their relative position in the time sequence to facilitate the
temporal allocation of more local styles (Kroeber 1944). Willey and Phillips (1958)
distinguish between horizon style and horizon whereas a horizon style is a narrower
concept of the latter. The authors roughly define a horizon style as
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the wide distribution of a recognizable art style. On the assumption
of historical uniqueness of stylistic pattern, coupled with the further
assumption that styles normally change with considerable rapidity, the
temporal dimension is theoretically reduced to a point where the hori-
zon style becomes useful in equating phases or larger units of culture
in time that are widely separated in space. (Willey and Phillips 1958,
p. 32).

In contrast to the definition of a horizon style concept, the horizon concept does not
presume a level of aesthetic development but can be applied to any kind of archae-
ological evidence that indicates a rapid spread of new ideas over a wide geographic
space (e.g. highly specialized craftwork types) (Willey and Phillips 1958). This en-
hancement facilitates the adaptation of the terminology to the Amazon Archaeology
with the partly absence of artistic elements. As Hilbert (1977) mentioned, handcraf-
ted ceramic products of Circum-Caribbean tribes are more diverse and abundant,
as can be seen from the example of the Tapajó tribe which was assigned to the
Incised-Punctated group. In contrast to that, ceramic findings of other tribes do not
necessarily have to be that manifold, which can be seen in (Simões 1981) by the
example of Mina-ceramics and can be the remains of objects of daily use. Mainly
due to the efforts of PRONAPA and PRONAPABA a standardized terminology was
implemented (Neves 2008, PRONAPA 1966). In PRONAPAs (1966) nomenclature
the term horizon style is not listed but horizon is defined as an association of tradi-
tions which occur in the same temporal dimension and cover various geographical
areas.

The term horizon was discarded in the Amazon Region and is now replaced by the
term tradition (Schaan 2001, Roosevelt 1991b, Meggers and Evans 1983 (as cited
in Neves 2008, p. 365)). One reason was the cultural historical assumption that
all the horizons’ origins were located outside the amazon. The other reason was
the limited time span inherent with the concept whereas tradition was sometimes
defined as counterpoise with a greater temporal dimension. Tradition is a broadly
used word with the absence of a clear definition. Unlike the horizon (or horizon-
style) Willey and Phillips (1958) define a tradition as a unit with a bigger temporal
span which represent

temporal continuity represented by persistent configurations in single
technologies or other systems of related forms (Willey and Phillips
1958, p. 37).

This definition sees pottery development as a long-term process with recognizable
techniques or styles. A more general definition was provided by McGregor (1950).
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He considered a tradition to be some sort of human characteristics or behaviour
which is passed on to the next generation and is mostly technologically orientated
(e.g. pottery, house types, etc.). Goggin (1949) additionally considered environ-
mental factors to identify culture-environment correlations. A tradition according
to PRONAPA (1966) is defined as an element or technique which persists over a
longer time period.

The traditions are further divided into phases and sometimes subphases which are
considered to be equivalent to separate cultural units (Neves 2008). As a result of
PRONAPABA an overview of the increasing number of excavation sites and thus
cultural units were published by Simões (1972). The report includes some radiocar-
bon measurements as well as the assignment to traditions and phases and revealed
the cultural richness of the Amazon Basin. While the term phase was taken into
consideration by PRONAPA (1966), the term subphase is not listed. According
to this report a specific phase is characterized by the similarity of artifacts, sim-
ilar geographical or temporal positions but also residential habits or resemblance of
chieftains. In contrast Willey and Phillips (1958) provide a definition that describes
a phase as an archaeological unit which is distinct from all other units by possess-
ing traits, spatially limited to a region or locality and a relatively short time span.
Additionally they point out that the distinction between these units are independent
of the related culture. This definition extended the definition provided by (Kidder
et al. 1946) in terms of spatial limitations. Meggers (1987b) claims:

When the National Archaeological Programme (PRONAPA) began,
we believed that an archaeological phase was an abstraction without
any ethnographic basis. Now, however, we believe that phases, defined
in terms of sequential series, represent separate entities, while tradi-
tions, defined in terms of phases which share common features, repres-
ent tribal or linguistic entities. (Meggers 1987b, p. 13 as cited in Funari
1995).

Similar to a phase, culture is defined as a collection of culture traits which can be
more or less distinguished from others and whose separate traits are applied by all
or by a selected group of individuals (Taylor 1948). The terms phase and culture
are sometimes used synonymously.

Initially, four traditions were identified based on the different pottery styles. The
four traditions (former horizons) were the following:

• Zone-Hachured (approx. 2500 BP - 1500 BP),

• Incised Rim (approx. 1900 BP - 1200 BP),
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• Polychrome (approx. 1400 BP - 700 BP) and

• Incised-Punctated (approx. 1000 BP - 500 BP)

(Meggers and Evans 1983, Hilbert 1977, 1968, Meggers and Evans 1961). In con-
trast to the subdivision presented by Steward (1947) an epistemological shift to-
wards grouping based only on material grounds was initiated by Meggers and Evans
(Almeida and Neves 2012). For a general idea of the classification procedure see
also table B.01.

The Zone-Hachured tradition is characterized by the use of simple vessels with a
certain scratching technique. The forms on the findings are framed by a broad line.
The form itself is filled with thin parallel or crossed hatching. A broad rim of a
vessel is a characteristic for the Incised Rim tradition. The horizontal or slightly in-
clining rims have carvings on them – some of them enhanced with red color. Both
traditions are assigned to the tropical forest tribes (Hilbert 1977). The combination
of polychrome paintings, incision and anthropomorphic modelling is typical for the
Polychrome Tradition (Roosevelt 1980). Most of the related cultures are classified
as Circum-Caribbean tribes. Besides precise carvings and dottings, ceramics of
the Incised-Punctated tradition were often decorated with animal or human shaped
symbols. This tradition is assigned to the tropical forest tribes, however some cul-
tures such as the Tapajó are categorized as Circum-Caribbean tribes because of their
high quality ceramics (Hilbert 1977). The dates given above are an approximation
and may differ depending on the region due to time lag of the spread which may be
subject to revision with a better knowledge of the chronology (Meggers and Evans
1961 and see also figure C.01). In addition to the four previously defined traditions,
further (earlier) traditions need to be added to the chronology because they were
not identified when the four traditions listed above were classified (Roosevelt 1995,
Simões 1981). Simões (1972) assigned the known phases to the related tradition.
Several phases do not match the criteria for the known traditions and are categorized
as other traditions. However, some of these phases are labelled with either M or T
meaning Mina tradition or Tupiguarani tradition (see table D.01).

In addition to the presented periodizations others were published by e.g. Lathrap
(as cited in Heckenberger et al. 2008) who provided another terminology, Roosevelt
(1997) who brings up a more general historical view (such as Paleo-Indian tropical
foragers, shell-midden peoples etc.) or Heckenberger et al. (2008) who prefers a
more temporal listing with e.g. archaic (pre-3000 BP), regional development and
diversification (2000 BP - 1500 BP) or late prehistoric classic (1500 BP - 1000 BP).

The data used in this dissertation (see chapter 3.1 for a more detailed description
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of the data set and its creation) is a collection of excavation sites based on sev-
eral archaeological publications. Due to the widely applied division into traditions
(former horizon) and cultures (or phases) in these publications, this chronological
framework is used to distinguish between the findings within this thesis. The term
tradition is used to define the superordinate level of similar ceramic styles, which
is subdivided into several cultures. The terms culture and phase are used synonym-
ously, despite the fact that the meaning is not the same. That has no effect on the
results because a culture or phase in this research is a term to label a subgroup of a
specific tradition but with similar traits. No new assignment to a group or subgroup
is undertaken but the given classifications of the data sources are used.

2.1.2 Theories of Settlement History

For more than 10.500 years people have been living in the Amazon (Roosevelt
et al. 1996). While the first people were hunters and gatherers, the first agricul-
tures existed about 6.000 (or more) years ago (Heckenberger and Neves 2009). The
first chroniclers went to the Amazon about 500 years ago – Francisco de Orellana
was the first who travelled from the source to the mouth of the Amazon river in
1541 – and still a lot of knowledge about the living habits of the societies in the
Amazon is based on their observations (Neves 2008). In their reports one can find
descriptions of large settlements, some of them extending over several miles and
chieftain controlled huge territories including several settlements. Some of them
were equipped for military purposes and some had beautiful pottery (Porro 1994,
De Carvajal 1942).

The process of understanding the emergence of domestication, sedentism, and so-
cial stratification, thus reconstructing the Amazon history, caused and continues
to keep alive a debate among researchers (Hornborg 2005). Regrading the Trop-
ical Forest tribes, Lowie’s (1948) opinion was that water was important and gave
cultures the ability to spread their influence over a larger area. Based on this, a
distinction between floodplain (so called várzea), and hinterland (so called terra
firme) societies was made, which Neves (1998b) describes as a "sacred axiom" and
has been characterized as The Standard Model by Viveiros de Castro (1996). Al-
though Steward (1947) recognized different ecological circumstances such as dif-
ferent forest types, the tropical forest was seen as one uniform environment with
unfriendly living conditions and these restricting factors limited the Amazonian
population (Hames and Vickers 1983). The tropical rain forest is often seen as a
symbol for the dominance of nature over humans and for the theory that life was
determined by ecological factors (Whitehead 2010). The suggestion was, that the
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different subsistence, social and demographic patterns were related to the varying
environmental surroundings and the ecological adaptation (Roosevelt 1980). These
assumptions are supported by Meggers who described the Amazon as a counterfeit
paradise (Meggers 1971). She hypothesized that a diffusion of ceramics of early
cultures out of western or northwestern South America into the Amazon had taken
place and in fact does not have its origin in the Amazon (Meggers 1979, 1987a).
One example is the Marajoara phase, which is described as a complex society that
emigrated to Marajó Island and decayed in the poor environment of the island (Meg-
gers and Evans 1957). Based on the current state of research at that time it seems
as if none of the known ceramic complexes had their origin in the Amazon. The
Amazon was said to be a reservoir of different cultural influences rather than a cen-
ter of origin of cultures. Whereas Zone-Hachured and Polychrom cultures appear to
have their origin in the West, the other two horizons seem to have their origin in the
North West of South America (Hilbert 1977). Meggers further identifies Holocene
environmental changes – and their inferior environmental conditions – as a major
limiting factor by linking knowledge gaps in the time line to arid intervals (Meg-
gers 1988 as cited in Neves 1998b). That underlines Meggers’s (1971) theory of
the Amazon as being unsuitable for human life due to the lack of cultivable land
(Roosevelt 1980). The theory is not uncontentious and some critics consider that it
is based

on a blend of monocausal environmental possibilism and diffusion-
ism, modifying some perspectives along the way. Indeed, it has been
such willingness to modify ideas that makes it hard to overlook the ar-
guments [...] (Neves 1998b, p. 626).

Additionally, the cultural differences cannot be explained by the assumed equal en-
vironmental conditions (Roosevelt 1980).

It is worth mentioning, that PRONAPA and PRONAPABA are not without contro-
versy. Funari (1995) criticized that this relatively small group of North American
and Brazilian researchers controlled the excavation, funds, publications, posts, and
spread of different or foreign perspectives and took advantage of their leading posi-
tion. This accusation is supported by Roosevelt (1991a) who claimed that evidence
which disproves the announced theory was often not allowed to be published or
was ignored (as Neves 1998b stated). One example is Miller’s (1992) research in
Rondônia which leads to the assumption that there was a continuous human oc-
cupation in the area from 8320±100 BP. Funari (1995) notes that a non-positivist
approach and archaeology as an experimental science was improper to Brazilian
culture. Other authors state that PRONAPA did not attempt to explain the cultural
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development but that the major cause was the different research focus of PRONAPA
(Barreto 1998). The Standard Model was dominant well into the 1990s although it
has been criticized by several other researchers (cf. Roosevelt 1994, Balée 1993,
Moran 1993, Carneiro 1961).

Another theory is based on the hypothesis that the alluvial floodplains of the trop-
ical forest were a center of cultural development – the so called cardiac model – and
therefore the oldest ceramics should have been found in the central Amazon flood-
plains (Lathrap 1974, 1973b,a). This theory is contrary to Willey’s 1962, where the
Amazon plays only a minor role according to the cultural historical influence. Lath-
rap (1973a) disagrees with the "erroneous" assumption of the tropical forest being a
homogeneous environment and thus disabling long-distance trade networks as well
as with the environmental determinism inherent with the cultural ecology concept
(Eriksen 2011). The cultures were aware of the potential of the environment and
had the capabilities to process materials, such as fibers, oils, woods, etc. and

represent a total and non-destructive mastery of its environmental
settings. (Lathrap 1973a, p. 171).

That also includes the ability to cultivate plants and house gardening (Heckenber-
ger and Neves 2009, Neves 1998b). The confirmation for the presence of cultivated
plants could not be found in the beginning (Lathrap 1970) but subsequent research
provided evidence that several groups were using domesticated plants about 4.000
BP (Whitehead 2010, Heckenberger and Neves 2009, Balée 1994). In addition to
that, research has shown the ability of producing – whether intentionally or not
– and using very fertile soils (so called Amazonian Dark Earth or Terra Preta –
see bellow) (Whitehead 2010). The importance of early agriculturalists and their
dispersal is outlined in a worldwide review by Diamond and Bellwood (2003). Al-
though the theories and proposed models about the shift from food procurement to
food production systems vary, the importance of agriculture is undisputed (Oliver
2008).

Lathrap (1970) claims, that unlike e.g. art style or technology, the primary language
is learned early and is not easily changed. Thus he provided a hypothesis of low-
land distribution based on the two main linguistic stocks, namely the Arawakan and
the Tupi-Guarani, and their common origin in the Amazon floodplain around 5000
BP (see also Neves 1998b). Both linguistic stocks are supposed to have developed
from an "Ancient Amazonian Polychrome Tradition" but radiocarbon analysis for
sherds in the central Amazon (Heckenberger 1998) and in the lower Negro basin
(Neves 1998a (as cited in Neves 1998b)) resulted in younger dates, hence the hy-
pothesis is still disputed (Neves 1998b). Consistent with Lathrap’s (1974) theory
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on early pottery in the Amazon, Roosevelt (1995) dated the beginnings of ceramic
production back to 8000 BP which makes it the earliest known example of pot-
tery in America (Whitehead 2010). Evidence has been provided based on sherds
from Tapérinha (a shellmound near Santarém) and Pedra Pintada (a cave-site near
Monte Alegre). It seems that the findings differ from the Ancient Amazon Poly-
chrome Tradition envisioned by Lathrap and his group (Neves 1998b). In contrast
to Meggers’ and Evans’ (1957) view on the Marajoara phase (see above), Roosevelt
(1991b) hypothesized that the polychrome ceramics were records of a locally de-
veloped chiefdom. Based on the work of early chroniclers and other archaeologists
Roosevelt (1991b) expected the Marajoara and other Amazonian chiefdom to be
complex cultural communities. Some of the described traits are the location along
floodplains, expansionist warfare, intensive agriculture and exploration of aquatic
fauna.

In all theories the environment and its limiting factors are given as main reason for
the migration and emigration processes.

In the end, it seems that, regardless of the differences among their
cultural historical models, Roosevelt employs the same heuristic con-
cepts – rooted in one way or another in some form of ecological de-
terminism – as those previously employed by Meggers and Lathrap in
their explanations (Neves 1998b, p. 630)

and also by (Carneiro 1995, Denevan 1976, Carneiro 1970) and (Denevan 1966)
and others.

Another approach is taken by Denevan (1996) who does not distinguish between
cultures from the floodplain and from the hinterland but rather proposes a com-
bined use. Prehistoric roads and causeways in the Amazon Region underline the
idea of relations between várzea and terra firme and indicate the presence of large
and complex societies (Whitehead 2010, Woods and Glaser 2004). Denevan (1996)
argues, that the floodplain is a high-risk habitat due to potential flooding and there-
fore not suitable as an autonomous settlement site. While Roosevelt (1980) located
agriculture and dense population in the floodplain, Denevan (1996) proposes valley-
side bluffs adjacent to the river channels (as shown in figure 2.1). Meggers (1984)
believed that there were only few camps or fishing stations which were mainly tem-
porary during low water. In Denevan’s (1996) opinion, Meggers was essentially
correct according to the relevance of the floodings but underestimated the import-
ance of bluff zones and their agricultural potential and hence presents an integrated
bluff/várzea strategy.
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Figure 2.1: Representative cross section of the Upper Amazon floodplain near Iqui-
tos showing the main channel, side channel, water levels, natural levees,
bluffs, villages Terra Preta site (Denevan 1996)

With a growing emphasis on environmental diversity it became obvious that this
division between terra firme and várzea is not sufficient due to the pedological,
botanical and zoological variety (Woods and Glaser 2004, Viveiros de Castro 1996,
Moran 1995, 1993, Prance and Lovejoy 1985). The diversity of environmental con-
ditions, and therefore the agricultural expansion, cannot be covered by models us-
ing unified processes of site or trait diffusion. Complex and variable processes
are needed instead (Heckenberger and Neves 2009). In Hornborg’s (2005) opinion
these transformations of material culture and language are the results of cultural
development (Eriksen 2011). The debate on human adaptation to the Amazonian
environment is still ongoing and new research techniques will lead to new insights.
It seems that a shift from Amazonia as false or counterfeit paradise towards a com-
plex environment with various human behaviours is taking place (Eriksen 2011,
Whitehead 2010, Oliver 2008, Woods and Glaser 2004). This view is supported
by the perspective of Historical Ecology with its basic premise that cultures in the
Amazon did not adapt to nature but rather used human creativity, technology and
engineering, and cultural institutions to create the world according to their ideas
and needs (Oliver 2008, Denevan 2001, Balée 1998). The focus lies on the his-
torical landscape which is described as a multidimensional entity with spatial and
temporal characteristics. The landscape has been modified by humans and their
activity so that human behaviour can be inferred from it.

The landscape is like a text, but not one that is readily accessible to
historians’ and epigraphers’ methods because it is not written in a de-
cipherable script, but rather is inscribed in a subtle, physical sense by
learned, patterned behavior and action – what anthropologists tradition-
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ally refer to as culture. (Balée and Erickson 2006, p. 2)

In contrast to other human-environmental approaches such as natural selection,
kin selection or climate change, historical ecology also includes prehistory – with
a landscape as a result of previous occupants – and therefore is anthropocentric
(Oliver 2008, Balée and Erickson 2006). Humans are seen as keystone species
(Mann 2002) whose environmental interferences can lead to various diverse land-
scapes (Balée 1998, Botkin 1990, Connell 1978). The shift towards the historical
ecology is also important in terms of the debate about Terra Preta and its genesis as
most scholars classify Terra Preta as anthrosol (Eriksen 2011). The importance of
house gardening and agriculture is emphasized in many archaeological publications
(Whitehead 2010, Heckenberger and Neves 2009, Woods and Glaser 2004, Neves
1998b, Denevan 1996, Balée 1994). One of the main environmental resources for
a productive agriculture is the soil. The soils in the Amazon Region were long
seen as low in nutrients. Increasing emphasis on the environmental diversity and
a shift from continental or regional depictions to microscale reveals a great variety
in the soil landscape (Woods and Glaser 2004). Besides nutrient poor soils such as
Oxisols, Ultisols, and Acrisols, fertile anthrosols are found (so called Indian Black
Earth, Terra Preta (do índio or Amazonian Dark Earth) (Glaser et al. 2004). Katzer
(1903) assumed that the origin of the Amazonian Dark Earths was cultural in nature
– in contrast to the European Chernozems which developed naturally. Although the
origin of this soil type is not yet clarified, it is known that the cultures – intentionally
or unintentionally – created Terra Preta to increase the carrying capacity (Woods
and Denevan 2009, Woods and McCann 1999, Smith 1980). The soil is character-
ized by its dark color, potsherds, and lithic artifacts (Hornborg 2005, Kern et al.
2004, Kämpf et al. 2003, Neves 1999, Hartt 1885) and is therefore associated with
former sedentary settlements (Woods and Denevan 2009, Hornborg 2005, Woods
and Glaser 2004, Smith 1980, Hilbert 1968). The diversity of ceramics indicate that
at least Incised Rim, Polychrome and Incised-Punctated traditions were aware of
the high fertility of Amazonian Dark Earth (Kern et al. 2004, Myers 2004, Hilbert
and Hilbert 1980). The Terra Preta sites are located in various climatic, geologic,
and topographic areas, usually near rivers, creeks or lakes (Woods and Denevan
2009, Kern et al. 2004, 2003). In contrast to older assumptions, current research
shows, that the distribution of the sites is not limited to the bluffs along major rivers
but can also be found in terra firme habitats (Oliver 2008). Since the occurrence of
Terra Preta is always related to excavation sites, and therefore former settlements,
an understanding of the environmental requirements of Terra Preta genesis is help-
ful to gain knowledge about the distribution patterns of pre-colonial cultures.

The attractiveness of the Amazon Basin as living space also influences the dis-
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cussion about estimated Amazonian population density and distribution (Denevan
1996).

We should begin by rejecting the image of Amazonia as pristine wil-
derness. The physical evidence alone forces us to preconceptualize the
region as in some respects a cultural landscape. Studies in historical
ecology suggest that more than 12% of the supposedly pristine Amazo-
nian rain forest are anthropogenic in origin the sense that they would
not exist in their present form without human intervention (Hornborg
2005, p. 590)

2.2 Spatial Analysis in Archaeology

Archaeology has always had a spatial component (Hodder 1977). The aim to re-
trieve information on archaeological spatial relationships as well as the examination
of spatial consequences of former settlements can be seen as the key elements of
spatial archaeology (Clarke 1977). Clarke (1977) distinguishes between three levels
of resolution of spatial archaeology, namely the micro level (within structures), the
semi-micro level (within sites), and the macro level (between sites). This research
focuses on the inter-site relationships and therefore the macro level which

comprise(s) the non-random or reiterative allocation of artefacts, re-
source spaces, structures and sites to particular relative loci within in-
tegrated site systems and across landscapes. (Clarke 1977, p. 13)

Whereas the author defines a site system as a set of sites where the interconnection
between the sites is greater than the interconnection between sites outside the sys-
tem. That encompasses the exchange of commodities and resources as well as the
reciprocal movement of people.

In order to analyse the spatial factors, such as spatial distribution, intra- or intersite
relationships, appropriate methods are needed. The use of visual interpretation of
distribution maps has been common practice in archaeological research since the
nineteen-twenties (Clark 1957), but the development of spatial studies has been
slow (Baxter 2003, Hodder and Orton 1976). The development of quantitative
methods for pattern analysis helps to reduce the subjectivity of the interpretation
of maps (Hodder 1977, Harvey 1969, Garner 1967). That has been shown by Hod-
der and Orton (1976), who illustrated the possible sources of errors by comparing
different interpretations of randomly dispersed points when working without stat-
istical methods. The use of spatial statistics in order to facilitate spatial archaeology
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was barely used in archaeological practice until the beginning of the 21st century
(Baxter 2003). Until then the work of Hodder and Orton (1976) was referenced and
not superseded (Wheatley and Gillings 2002, Aldenderfer 1998).

Kantner (2008) pointed out that the differences between micro, semi-micro and
macro level (Kantner named it site-focused and region-focused) are not clearly
definable anymore. The author suggested to use the term region-sensitive for human-
human or human-environment relationships instead. Several research fields are as-
sociated with spatial archaeology, in terms of inter-site relationships Clarke (1977)
mentions settlement pattern analysis, and site catchment and territorial analysis.
Settlement pattern studies gained more awareness, after Willey (1953) initiated the
development of methods in American archaeology (Kohler 1988). That led to a
greater understanding of settlement patterns and the environmental determinants.
Inspired by that, Vita-Finzi and Higgs (1970) introduced site catchment analysis,
which tries to identify the rules that determine human spatial behaviour. After the
National Historic Preservation Act in 1966 cultural resource management became
an important issue in America. In order to identify historic property new meth-
ods were developed in order to compare expected and observed site distributions.
That was the basis for data driven predictive modelling (Verhagen 2007). Whereas
predictive modelling and settlement pattern analysis have a lot in common.

Many settlement pattern studies differ from predictive locational mod-
els only in their lack of explicit extrapolation to a spatial population.
(Kohler 1988, p. 19)

The discussion about which set of variables to use for settlement pattern studies, site
catchment and territorial analysis, as well as predictive modelling is still ongoing
(Verhagen and Whitley 2012).

... we have seen that predictive modelling of archaeological resources
may involve consideration of the characteristics of catchments around
potential site locations, of distances to various resource types from po-
tential locations, and of various characteristics of the potential site loc-
ation itself. (Kvamme and Kohler 1988, p. 493)

Many theories exists about the predominant factors which influence the settlement
location. A major distinction can be made between environmental and social factors.
In case of environmental variables (Kvamme 1988) stated, that a typical archaeolo-
gical approach would be to use landform or landform related phenomena and cat-
egorize them into nominal types (e.g. canyon, cliff, plain, or slope). Steepness is
labelled as a relevant factor due to the assumption that steep slopes do not interfere
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with archaeological activities (Kvamme 1988, Roper 1979b, Judge 1973, Williams
et al. 1973). Another variable is the roughness of a terrain due to the higher costs for
daily activities and travel (Plog 1981, Hurlbett 1977). Rivers and lakes are seen as
important not only as water source but also for transportation issues. Roper (1979a)
stated that some resources, such as water, are so basic and so vital that the dis-
tance to obtain them must be minimized. Due to the importance of water a lot of
archaeological settlement studies focused on the distance to different water source
types (e.g. permanent rivers, lakes, springs, or seasonal streams) (e.g. Parker 1985,
Scholtz 1981, Brown 1979, Lovis 1976, Judge 1973). The accessibility of resources
other than water are also examined in spatial archaeology (Kvamme 1988). View is
considered to be important for hunting as well as strategic purposes (Jochim 1976,
Judge 1973). The protection from wind and other environmental influences is an-
other factor for the settlement location, thus the shelter and the quality of shelter
need to be factored in (Kvamme 1988, Jochim 1976). The aspect is often used in
order to take shelter effect into account. Depending on the environmental condi-
tions, the chosen exposure can protect against wind or may offer greater warmth
(Kvamme 1988, Grady 1980). Zhang et al. (2014) chose elevation, slope, distance
to river, distance to road, distance to coast and aspect, as several publications have
pointed out the importance of these variables (Xiao et al. 2013, Zhang et al. 2013,
Su et al. 2011, Goebel 2007, Gonzalez-Abraham et al. 2007). A similar selection
was used by Wei et al. (2013), who factored in slope, aspect, relief degree of land
surface, land use, vegetation index, hydrology and climate. Green (1973) assumed,
that besides environmental properties, the distance to trade routes was relevant for
the settlements and thus settlements were embedded into a larger network. Com-
mon social factors were often related to site density, site proximities, or spacing
(Kvamme 1988). Whitley and Burns (2008) stated that individual decisions and the
spatial knowledge should be considered. Hodder and Orton (1976) mentioned the
following variables as being of importance for locating a settlement: the distance
to water, the type of soil and vegetation cover, the location of other settlements,
the ability to defend a settlement, the distance to suitable building materials, and
the proximity of routes or roads and markets. Verhagen et al. (2013) stated that
accessibility, visibility, and settlement continuity are useful in terms of predictive
modelling. Other studies published similar listings (e.g. Countryman et al. 2010,
Jochim 1976, Chisholm 1973), whereby the predominant factors are always related
to food availability and production capacity (Zhang et al. 2014, Luck 2007, Kirch
et al. 2004). The (geographical) features which define a favourable or unfavourable
location can be interpreted in terms of the underlying cultural differences (Silva and
Steele 2014).
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The consideration of social and cultural variables for prehistoric settlement studies
is very difficult and settlement strategies can hardly be described by means of coded
social rules (Pizziolo 2015). Some studies tried to consider socio-cultural variables
and combined environmental and social factors (Kamermans et al. 2009, Whitley
2005, Stanc̆ic̆ and Kvamme 1999).

But the truly determining factor for the presence of material records
is the so-called śettlement pattern,́ a certain spatial regularity in the
distribution of Human presence within a society. This regularity is itself
also conditioned by natural, cultural, social and economic factors of
undoubtedly deterministic nature.(Garcia 2015, p. 26)

Another aspect which is inherent in site systems is the existence of different set-
tlement types. This means that different settlements of the same culture serve for
different functions (e.g. hunting, trading or defence)

A central assumption in archaeology is that this locations of sites of
different functional categories or chronological periods will represent
responses to different situational contexts, such as environmental cir-
cumstances. (Kvamme 1988, p. 329)

Kvamme (1988) mentioned temporary camps, kill sites or permanent settlement as
examples for different functionalities. Brewster et al. (2003) identified three differ-
ent settlement types for the prehistoric hunter-gatherer settlements in South Califor-
nia, namely Major Residential Bases, Limited Activity Locales, and Dinner Camps.
The distance and the cost of movement to the surrounding parameters (let them be
environmental or not) seem to be a major cause for the settlement location. Brewster
et al. (2003) discovered, that especially the large settlement are located right next
to rivers. The smaller settlements usually are a bit further away but do not exceed
the distance of 700 metres to the closest river (as can be seen in figure 2.2). Binford
(1982) argues that zones of economic activity exist around residential camps. A
foraging radius defines the area which is exploited by the residents who return to
the camp every day. A logistical radius defines the area which is exploited by a
group that stays away from the residential camp but stays in (sometimes temporal)
functional camps (e.g. hunting camp or fishing camp). Drury (1972) distinguishes
between several types of Romano-British settlements (e.g. providing artisan and/or
trading functions). A four-level hierarchy (based on the number of trenches and size
of the site) of settlements in the region of Bunyoro-Kitara, Uganda, was identified
by Robertshaw (1994).

Christaller (1933) presented three different principles of distribution of centres ac-
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Figure 2.2: Distribution of archaeological sites by type site with drainage catch-
ments, sites and 5-km foraging ranges for key drainages (Brewster et al.
2003)
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Figure 2.3: Schematic representation of zones of economic activity around a resid-
ential camp (Binford 1982)
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Figure 2.4: The articulation of sites into hierarchical relationships. (a) Archaeolo-
gical ruins whose contemporaneity has been established; (b) spheres of
domestic activity; (c) local networks; (d) political networks; (e) reli-
gious networks; (bottom right) hierarchies of the inter-relationships in a
to e. (Chang 1972)

cording to the predominate principles: the market, the transport, and the admin-
istrative principle. The relationships between several sites can get complex when
hierarchical relationships are factored in (as shown in figure 2.4). The service area
as well as the centrality vary according to the context (Chang 1972). Regardless
of the model used one aspect remains static, namely the idea that settlements do
not necessarily cover the same functionalities but rather serve different needs. The
following chapters describe the related spatial archaeology topics settlement pattern
analysis, site catchment and territorial analysis, and predictive modelling in greater
detail. A clear distinction between those topics is not always possible , especially
due to the inconsistent use of those terms in the literature. A broad overview is
given in the following chapters.
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2.2.1 Settlement Pattern Analysis

The analysis of settlement pattern is related to spatial – and if possible – temporal
properties and has always been of great interest to archaeologists.

Regardless of their theoretical predispositions, archaeologists have
always asked the simple question as to why an individual or group of
individuals decided to live in a given place instead of another. (Eve and
Crema 2014, p. 267)

Morgan (1881) raised the question of how the remains of former settlements reflect
the social organization, which is still a core issue in settlement pattern studies (Par-
sons 1972). Butzer (1982) pointed out that environmental components characterize
the interactions between prehistoric cultures and their environment. The location se-
lection is influenced by geographical characteristics like topography, water access-
ibility or strategical purposes (e.g. Robinson et al. 2012, Su et al. 2011, Carrión-
Flores and Irwin 2004, Warren 1990, Butzer 1982, Hodder and Orton 1976). In
order to identify settlement patterns, two different approaches are commonly used,
the social perspective and the ecological perspective. The former is used with the
aim to identify behavioural groups because societies are made of interacting local
groups.

[T]ranslated into archaeology that means one has to find the places
with accessible material remains of peoples’ activities. (Kowalewski
2008, p. 227)

The latter approach focusses on the factors governing the distribution and abund-
ance of a culture (Kowalewski 2008).

Willey (1953) defined a settlement pattern

as the way in which man disposed himself over a landscape on which
he lived. It refers to dwellings, to their arrangement, and to the nature
and disposition of other buildings pertaining to community life. These
settlements reflect the natural environment, the level of technology on
which the builders operated, and various institutions of social interac-
tion and control which the culture maintained. (Willey 1953, p. 1)

Another definition was given by Kowalewski (2008) who stated that settlement pat-
terns are the regularities caused by the distribution of settlements or places and
activities, and the relation between each other and the environment. The latter defin-
ition is used in this thesis. In settlement pattern analysis the observed settlements
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(in terms of spatial archaeology often referred to as sites) can either be places of
permanent or temporary habitation. The analysis of the inferences from spatial dis-
tribution and environmental variables helps to understand the settlement patterns
of cultures (Silva and Steele 2014, Zhang et al. 2014, Haggett 2004, Clarke 1977).
Underlying is an ideological shift in archaeology towards the study of relationships
between things rather than the study of things (Binford 1972).

According to Parsons (1972), the beginning of a proliferation of archaeological set-
tlement pattern studies began in the mid-1950s. In 1955 Beardsley published the
results of the so called seminars of Archaeology: 1955 – a series held by the Soci-
ety of American Archaeology. This publication is what Parsons described as

perhaps the first major effort to integrate the concept of settlement
pattern within a general developmental classification of culture. (Par-
sons 1972, p. 129)

Settlement distributions are often described as random, regular or clustered, al-
though these patterns rarely occur so clearly in practice (Bevan and Conolly 2006,
Mayer 2006, Andel et al. 1986). Usually, human settlement behaviour is expected
to be not random (Hodder 1977). That is because the settlement location is an im-
portant factor (Borsdorf and Bender 2010) which is determined by local amenities
such as food availability and production capacity (Zhang et al. 2014, Borsdorf and
Bender 2010, Luck 2007, Sevenant and Antrop 2007, Kirch et al. 2004, Mueser and
Graves 1995). This assumption results in a distribution of settlements which can
be further examined and can contribute to a greater understanding of cultural habits
(Zhang et al. 2014, Willey 1953).

It is the non-randomness which provides information about the dis-
tribution. (Hodder and Orton 1976, p. 53)

The author identified two main criteria for a random dispersion of an observed pat-
tern:

1. a misleading aggregation of sites

2. the pattern of site survival and fieldwork

To clarify what is meant by the first aspects the distribution of hillforts in south-west
England is used as an example. The pattern of the findings appear to be randomly
dispersed at first sight. When the hillforts are classified according to whether they
are univallate or multivallate, another pattern can be identified. This means that the
classification of findings plays an important role when it comes to analysing set-
tlement patterns. The second aspect is about the regional differences which may
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influence whether findings can still be found and excavated or not. Depending on
soil or climate conditions some materials may endure a longer time period in one
region than elsewhere. Identifying a random pattern therefore does not mean that
the processes which produced that pattern were random.

According to the Central Place Theory provided by Christaller (1933), towns of
similar size are uniformly distributed. Christaller (1933) stated, that some places
provide goods for the daily needs and some provide specialized services, such as
hospitals or universities. Assuming an isotropic featureless plain, the settlements
with the same degree of centrality are equidistant from one another in order to min-
imize the effort (e.g. transportation costs) (Christaller 1933). Of course, this model
is based on premises that do not represent the variety of potential geographical
situations, yet some regularities can be identified in archaeological settlement dis-
tributions. Hodder and Orton (1976) confirmed, that in early societies markets were
about 3 - 7 km apart from each other. Similar evidence was provided by Obudho
(1976), Hill and Smith (1972), Smith (1971), who observed several areas in West
Africa and identified a range from 5 to 15 km between markets. Drury (1972) (as
cited in Hodder and Orton (1976)) showed, that certain Romano-British settlements,
namely the ones providing artisan and trading functions, were all located within a
certain distance range to each other. Markets too close to each other, i.e. below a
critical distance, were in competition with each other and would not provide enough
trade for the communities. In that case the establishment will either fail or become
mobile (Fagerlund and Smith 1970). This leads to the assumption that a uniform
pattern indicates some sort of competition between the sites.

A clustered pattern can occur because of various reasons. Especially in archaeology
clustered patterns can also be caused due to uneven fieldwork or site survival (Hod-
der and Orton 1976). In contrast to the previous section, no isotropic conditions
are assumed. Besides that, environmental influences such as soil type or river net-
works can be the reason for clustered settlement patterns. Additionally other factors
such as the distance to bigger agglomerations or spiritual locations can influence the
decision. Furthermore, settlements have specific needs, such as the availability of
food, water, tools, building materials or other resources. However, the influencing
resources vary as shown by Ellison and Harriss (1972) who studied the settlement
and land use in Southern England. Examples for clustered patterns are Bronze
Age barrows around Stonehenge and similar monuments or Romano-British villas
around towns (Hodder and Orton 1976). According to a theory of Hudson (1969)
the agglomeration may also occur because of the spread of settlement. The author
distinguishes two temporal steps of spread. The first step is characterized by a small
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number of settlements in order to colonise an area. This pattern may even be ran-
domly dispersed. In a second stage of spread, additional settlements occur due to
the increasing population. These settlements are located close to the initial center
with the tendency to only move short distances to keep distances short. That pro-
cess leads to a clustered settlement pattern. To examine this model of spread, Wood
(1971) suggested the use of probability distributions. To estimate a probable dis-
tribution, the observed area is subdivided into squares. Based on the total number
of observed settlements, the probability of settlements being within one square is
calculated. The comparison of the observed pattern with the expected pattern al-
lows conclusions about the applied model. A couple of so called contagious models
were used whereas the term contagious indicates an increasing probability of an
occurrence if nearby occurrences exist. Davey (1971) analysed the distribution of
bronzes and identified clustered patterns with regard to natural regions using a χ2

test in order to examine the goodness of fit. Kruk and Machnik (1973) (as cited in
Hodder and Orton 1976) also used a probability function to analyse the settlement
patterns of the early neolithic in the south Polish loess zone. The authors noticed,
that in two of three analysed periods (the authors used the term periods but it seems
to be similar to the term culture which is used in this thesis), the clustered pattern
of settlements is the result of the functional inter-relationships of sites, which con-
firms the theory of contagious spread. In the third period settlements appear to be
randomly dispersed with the tendency to appear closer to rivers. Kruk and Machnik
(1973) assumed, that this pattern was the result of ongoing spread. The problem
of using quadrat counts in order to estimate the probability distribution is, that the
size of the squares has an impact on the result. Harvey (1968) stated that the size of
the square needs to cover a cluster but should not include more than one which also
means that the clusters need to be at a sufficient distance from one another.

Another common approach is the use of nearest neighbour functions in order to
identify a settlement pattern (i.e. Linard et al. 2012, Tian et al. 2012). Nearest
neighbour functions measure the distance(s) to n nearest neighbours and thus refer
to the position of the surrounding settlements (Clark and Evans 1954). One prob-
lem of this method is the potentially misleading influence of edge effects. Another
problem can be the lack of independence, which means that the correlation is 1.0
when two points A and B are each others nearest neighbours (Dixon 2012, Cox
1981) - so called isolated or mutual nearest neighbours (Schilling 1986, Pickard
1982). These problems can be addressed by using edge correction and factoring in
n nearest neighbours.

Bevan and Conolly (2006) criticised that the common approaches focus on neigh-
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Figure 2.5: Multiscalar point patterns (Struever and Houart 1972)

bour distance functions and thus are unable to detect patterns on different scales.
Therefore, the authors present a multiscalar approach in order to detect patterns on
different scales. Figure 2.5 shows an example of 56 hypothetically distributed set-
tlements. Applying a K-means statistic would suggest that the optimum number of
clusters would be eight. Taking a closer look at the left panel of figure 2.5 shows
that there are another 3 clusters (A - C) on a higher-order scale. By including the
resolution of the artefacts at an excavation site (see right panel at figure 2.5) another
scale and thus a third pattern is shown. The authors use the Ripley’s K-function
which allows the analysis of point processes at different scales, further allowing a
multi-scalar analysis. That is an advantage over the commonly used nearest neigh-
bour function which only detects patterns on one scale (Diggle 2014, 2003, Bailey
and Gatrell 1995).

The Ripley’s K function is still commonly used for settlement pattern analysis.
Palmisano (2013) applied the function in order to distinguish between what the
author called first order and second order of effects of settlement patterns. The
properties of the local environment are defined as the first order of effects whereas
the processes based on interaction between settlements are defined as the second
order of effects. Zhang et al. (2014) wanted to analyse the spatial characteristics of
a settlement location rather than only the area, density or shape of settlements. The
case study took place in eastern coastal China. The authors also used the Ripley’s
K function in order to analyse the point patterns of human settlement. Besides the
Ripley’s K function a Monte Carlo simulation was included in order to get more
reliable results with a quantifiable statistical significance. To identify geographical
determinants of the settlement locations the authors employed a regression model.
A stepwise multiple linear regression was performed where the settlement pattern
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category, namely random, clustered, or regular, was used as the dependent variable.
The authors conclude that the settlement pattern relies on the location of the set-
tlement, meaning that clustered patterns more likely tend to occur in interior, hilly
areas and regular and random patterns can be found close to the coastal plain. Fan
et al. (2009) used remote sensing data to compare spatial and temporal expansion
patterns. A similar approach is used by Liu et al. (2005) who used Landsat images
to identify changes in land use. Li et al. (2011) tried to derive an environmental
suitability for human settlement by selecting and analysing natural factors such as
the terrain, hydrology, or vegetation using remote sensing and GIS. The use of re-
mote sensing data in order to compare the changes in land use are only applicable
for the last decades. In terms of archaeological settlement pattern analysis remote
sensing can be used in order to identify new settlements – e.g. due to the detection
of different soil conditions, vegetation types, or topographical characteristics – but
not for some sort of pattern finding. Kirch et al. (2004) tried to identify geographical
influences using linear regression. The authors used the elevation as the dependent
variable and thus ignored any spatial relationships. (See chapter 3.2.1 for a detailed
explanation of the functions mentioned above).

Another option is the use of agent based models which allows the consideration of
human experiences and changing environmental conditions (Paliou 2008). Heck-
bert (2013) published a model of the ancient Maya social-ecological system. This
includes the change of spatial landscape due to climate variation or anthropogenic
impact. Another (earlier) example was given by Axtell et al. (2002) who tried to
model the population growth and collapse of the Kayenata Anasazi culture. Both
models were able to more or less reproduce the varying spatial pattern over time.

In a review article about regional settlement pattern studies Kowalewski (2008)
compared settlement pattern analysis according to their behavioural pattern. The
author classifies the pattern based on the predominant social structure into categor-
ies such as chiefdom, villages and communities, or states. Each category goes along
with specific arrangements of inter-site relationships and specific arrangements of
site locations. Thus, it can be assumed that conclusions about human settlement
behaviour can be drawn by the analysis of site location pattern.

2.2.2 Site Catchment and Territorial Analysis

Other research fields on macro level are site catchment, and territorial analysis. At
some sites (especially in humid conditions) plant and animal remains are poorly
preserved. This means that any assumptions about the economies and agricultural
origins are complicated (Renfrew and Bahn 2005). In order to be able to draw con-
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clusions, the environment was factored in. The term site catchment analysis was
initially introduced by Vita-Finzi and Higgs (1970) in order to describe the analysis
of archaeological sites and the relation to their environmental surroundings (Ren-
frew and Bahn 2005). That means that not only artifacts but also the possibilities
inherent in the location of the site and its surroundings are relevant (Vita-Finzi and
Higgs 1970). The authors defined it as

the study of the relationships between technology and those natural
resources lying within economic range of individual sites. (Vita-Finzi
and Higgs 1970, p. 5)

Thus, a catchment of an archaeological site is defined as the area which is needed
in order to derive its resources (Roper 1979b). The aim is to emphasize parameters
such as the availability or abundance of resources such as plants, animals, or ma-
terials as determinants of the location (Roper 1979b). Roper (1979b) used the term
man-land relationship in contrast to, e.g. the Central Place theory which focusses
more on distances or population density and is therefore labelled as man-man re-
lationship. However, the distinction between those two relationships is not unique
and borders are blurred. It is assumed that the distance to the necessary resources
plays an important role for the site location. There is a close relationship between
the amount of energy that is needed for procurement of resources and the distance
that must be overcome.

Human populations are generally only able to exploit resources that
exist within a certain distance of their occupation site, be this a camp,
cave, village or town. (Jarman 1972, p. 706)

Vita-Finzi and Higgs (1970) stated, that an area is more likely to be exploited the
closer it is to the site. Henshall (1968) presented several research papers that support
the assumption, that distance is directly related to the settlement location (for Africa
by Prothero 1957, and Fortes et al. 1947; for India by Ahmad 1952; for Brazil by
Waibel 1958). Lee (1969) observed the !Kung in southern Africa and found out that
they usually do not go further than 10 kilometres to procure resources. Chisholm
(1973) assumes, that the critical distance normally is even less than 10 kilometres.

It is further assumed that prehistoric peoples were aware of this de-
crease in cost/ benefit ratio and located sites, moved their locations,
and generally played out a settlement strategy that minimized the ratio
of energy expended to energy procured. (Roper 1979b, p. 121)

Another assumption is that a hierarchy of resources exists. That means that people
are willing to cover greater distances for some resources than for others (Roper
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1979b, Jochim 1976). This lead to a division into different zones of the area around
a site whereas the zones cover different resources and thus activities. Von Thünen
(1875) published a model of concentric rings of land use which would occur around
a city. It focusses on agricultural activity and the distances of specific land use pat-
terns. Although the model is based on several premises, such as the existence of
an isolated state, and is therefore only a very simplified description of the reality,
it reflects some important aspects. The model was later modified in order to con-
sider other factors influencing the land use. These factors covered other competing
markets, differences in the productivity as well as rivers, in order to facilitate the
transportation. Even though this model was created in the late 19th century and
therefore is not tailored to archaeological problems, it was found to be applicable
for archaeological needs (Roper 1979b, Hodder and Orton 1976, Chisholm 1973).
It is often used in site catchment and territorial analysis because of the consideration
of distances and the usage of zones based on land use (Renfrew and Bahn 2005).
The size, shape and location of a specific site provides information about the settle-
ment strategy (Christopherson et al. 1999). Steward’s (1938) study about aboriginal
groups showed that different environmental conditions correlate with different set-
tlement strategies. That leads to a basic premise of site catchment analysis: The
location and the site function correlate and inferences about the function can be
made when the location is known (Roper 1979b).

An important distinction is made between catchment and territory. While a territory
is the area which can immediately be accessed, a catchment is the total area from
which contents of a site are obtained (Higgs 1975, Vita-Finzi and Higgs 1970).
Based on this Higgs and Vita-Finzi (1972) suggested to distinguish between site
catchment analysis and site territorial analysis, whereas these techniques are com-
plementary. Site territorial analysis is a more theoretical approach using maximum
walking distance or time values (e.g. 3 hour walking distance or 5 kilometres). In
contrast, site catchment analysis is about locating the nearest source of the materials
which were actually found in the excavation site and therefore a more empirical ap-
proach (Renfrew and Bahn 2005). These distances delineate a maximum movement
radius. Conclusions about the mode of subsistence can be drawn by analysing the
available natural resources within the radius (Ducke and Kroefges 2007). Sites can
have more than one catchment which can differ from each other and also from the
territory (e.g. due to trading relations the economic catchment area can be larger
than the exploited territory). These two approaches are often mixed up and a lot of
the published research on site catchment analysis is in fact site territorial analysis
(Renfrew and Bahn 2005, Roper 1979b).
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Figure 2.6: Different sizes of gardening catchments (Duffy 2010)

In order to identify a sites’ territory, fixed radii or time contours are used (Tiffany
and Abbott 1982, Styles 1981). Other methods are used in order to derive site catch-
ments. Findlow and DeAtley (1974) identified two types of sites and measured the
distance between the settlements. Afterwards these distances were combined with
the distance along and across drainages. The observed spacings were used to derive
size and shape of catchments. A similar approach was used by Browman (1976)
who tried to determine catchment sizes in Peru. Flannery (1976) tried to determ-
ine the catchment area by looking at the findings (plants, animals, and mineral re-
sources) and tried to identify their origin. Duffy (2010) simply created a buffer
around the sites in order to derive the site catchment area. The author used differ-
ent distances to consider different population sizes (see figure 2.6). Cassels (1972)
argues that

the most likely boundary between the two sites is a line equidistant
between them. (Cassels 1972, p. 215)

Several other studies adopted this approach because of the geometric simplicity
(e.g. (Angell and Moore 1984, Danks 1977, Hodder and Orton 1976)). Some prob-
lems occur when a territory is derived by the use of Thiessen polygons. First of
all, no geographical information is considered. Which means that no natural barri-
ers or hydrographic features are taken into account. The results may be misleading
when contemporaneity of sites cannot be assumed. Another problem is the poten-
tial inaccuracy due to an incomplete set of excavation sites. Additionally the results
can be biased due to the extent of the study area. However, it is a commonly used
technique for the segmentation of space into territories (Renfrew and Bahn 2012,
Ducke and Kroefges 2007, Conolly and Lake 2006, Wheatley and Gillings 2002,
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Cormack 1979). Conolly and Lake (2006) tried to overcome some of the short-
comings and additionally considered site weights to get better results. Ducke and
Kroefges (2007) criticised that Thiessen polygons still have drawbacks in terms of
site territorial analysis. Thiessen polygons are always complete which means that
there is no area which is not assigned to a territory. There is no measure of error
because it always provides perfect partitioning. The partitioning usually results in
a division into several pieces with crisp boundaries (which is not always the case).
The shape and size of the polygons is very sensitive to changes in the set of sites.
An alternative to the Thiessen polygons is provided by Renfrew and Level (1979)
who developed the XTENT model. The model is based on the size of the site as
well as the distance to other sites. This is in contrast to the Central Place Theory
and other approaches where the level of hierarchy determines the size of the ter-
ritory (Renfrew and Bahn 2012). In the XTENT model it is assumed that the size
(or importance) of each site is directly proportional to its area of influence. This
leads to bell or bell-tent shaped areas where the height of the tent is related to the
importance of the site and the influence decreases with an increasing distance to
the settlement. If an associated bell is completely covered by a larger area of an-
other site it is considered to be subordinate (Renfrew and Bahn 2012, Ducke and
Kroefges 2007, Renfrew and Level 1979). The XTENT model was defined with the
following equation:

I = f (C)− k ∗d (2.1)

The strength of an area of influence I is determined by two variables, namely the
center size (the weight of a site) C and the distance d. By subtracting these two
values a large center near to another site has more influence (means having a high
I value) than one far away, but a large center can still be dominant. Renfrew and
Level (1979) worked with

f (C) =Ca (2.2)

but theoretically other functions are also possible. The coefficients a and k allow
the user to adjust the two variables. The importance of size increases exponentially,
the importance of distance increases on a linear basis (Ducke and Kroefges 2007).
Other assumptions underlying the XTENT model (besides the correlation of size
and influence) are the following. The territories are continuous and not spatially
interrupted, a piece of land is uniquely assigned to one site or territory and capitals
of an area of influence have a higher weight (usually population size) than subor-
dinate sites (Ducke and Kroefges 2007, Renfrew and Level 1979). There is only a
small number of studies which applied the XTENT model (e.g. Soetens et al. 2003,
Hare 2001, Grant 1986, Scarry and Payne 1986), because the model is very sensit-
ive to changes in the coefficients a and k and needs to be calibrated subjectively for
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each study (Ducke and Kroefges 2007). Ducke and Kroefges (2007) modified the
XTENT model in order to consider hierarchical relationships and maximum territ-
orial reach in advance which makes it easier to control the results. Geographical
features such as the topography are not incorporated into the mathematical model
(Grant 1986, Renfrew and Level 1979). In order to derive more realistic results, the
distance measure could also be replaced by a cost of movement measure (Conolly
and Lake 2006, Wheatley and Gillings 2002).

Sets of distances have often been calculated [...] as a first approxim-
ation, as Great Circle distances (geodesic, in the original sense of that
word). However, if we wish to explore the possibility that geography
influenced directions and rates of spread from some origin point, then
we must obtain sets of distances that reflect the influence of geograph-
ical features. Silva and Steele (2014, p. 611)

Cost surface techniques are most commonly used to obtain such distance estimates
(e.g. Field et al. 2007, Glass et al. 1999). Ullah (2011) calculated catchment area(s)
on the basis of anisotropic travel costs derived from a cost surface. Lönnqvist et al.
(2009) calculated the cost surface based on satellite imagery using Tobler’s hiking
distance (Tobler 1993). This function allows to determine the hiking speed taking
the slope into account. Once a site catchment area is estimated it can be analysed.
Vita-Finzi and Higgs (1970) defined land use capability classes such as irrigated
land, arable, sand dunes, or rough grazing. The percentage of occupation by each
land use class can be calculated within time contours or distance buffers around
each site and thus allows conclusions about the subsistence pattern (see figure 2.7
for an example) (Dibyopama 2010, Pappu and Shinde 1990, Pappu 1988). Other
approaches used multivariate statistics, such as cluster analysis or factor analysis,
to facilitate the interpretation (Roper 1979a, 1974 as cited in Roper 1979b).

2.2.3 Predictive Modelling

The term predictive modelling in archaeological research can be traced back to the
1970s but became more popular at the end of the 1970s and the beginning of the
1980s (Verhagen 2007, Baxter 2003, Sebastian and Judge 1988). One aim of pre-
dictive modelling is the identification of variables which distinguish between sites
and non-sites (Baxter 2003). Another aim is to predict the probability of archaeolo-
gical remains at a specific location (Verhagen 2007). It allows researchers to

formulate expectations about the future state of a system that are
based on our knowledge of such systems or similar ones (Sebastian and
Judge 1988, p. 2).
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Figure 2.7: Site catchment analysis of the Inamgaon site (Pappu 1988)
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Predictive modelling is based on the assumption that human settlements are not
randomly dispersed but rather related to certain characteristics (Verhagen 2007). A
definition was given by Kohler and Parker (1986) who stated that predictive model-
ling tries to predict

at a minimum, the location of archaeological sites or materials in
a region, based either on a sample of that region or on fundamental
notions concerning human behaviour. (Kohler and Parker 1986, p. 400)

Whereas the term predictive might not be clearly defined in general, it clearly in-
dicates the anticipation of the spatial distribution of archaeological records in terms
of spatial archaeology (Garcia 2015). Casarotto (2015) proposed to use the term
location preference modelling rather than predictive modelling. The author argues
that due to inherently vague data, the aim should be to test assumptions, hypothesis
and possible scenarios of ancient settlement and not so much a prediction of those.
Sebastian and Judge (1988) used the terms correlative and explanatory models in
order to distinguish between models based on a sample of the region and models
based on human behaviour. The first is a more inductive approach which identi-
fies and quantifies relationships between settlements (also see figure 2.8) and the
surrounding environment whereas the latter is more deductive and derives mod-
els based on the understanding of human behaviour and cultural systems (also see
figure 2.9). Correlative models can be used to predict where sites might be but are
insufficient for the understanding of subsistence strategies (Kincaid 1988, Sebastian
and Judge 1988). The reason is, that correlations can be detected but no information
about causality is gained. Explanatory models in return are used in order to under-
stand cultural variability and similarity or the cultural stability and change. The
major limitation of explanatory models is the difficulty in creating and validating
such models. In many cases a deductive predictive model is not more than an idea
which can be tested against the observed data (Kamermans and Wansleeben 1999).
Hempel (1970) stated that the aim of predictive modelling should be to derive state-
ments describing certain conditions as well as suitable general laws. These general
laws could then be used in order to predict other locations of prehistoric activity.
Gilman and Thornes (1985) assumed that minimal cost models are the cause of loc-
ational patterns. If that was true a direct relation between settlement location and
environment would exist. The authors applied an analysis of variance in order to
verify this hypothesis. Land use potential (irrigated, dry farming or unfarmed were
used as categories), the distance to other settlements (within or without a 30 minutes
walking distance), rainfall levels, topography and the chronological-cultural period
were considered. This is one of the examples which provided satisfactory results
(Garcia 2015). Most of the time inductive approaches are used because it is im-
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Figure 2.8: The procedure used for inductive predictive modelling. A statistical
comparison of archaeological data and "environmental" variables is
used to create a predictive model. This model is then tested either
through statistical methods using withheld or new data or by means of
peer review (expert judgement). (Verhagen and Whitley 2012)

possible to formulate a deterministic hypothesis (Garcia 2015, Berrocal 2005).

Initially, research focused on the development of statistical and spatial analysis
methods in order to perform data driven predictive modelling (Verhagen 2007). At a
very simple level the location or land parcel is the unit of analysis, which is defined
as either being an archaeological site or not (Kvamme 1988). More statistically
spoken, a dependent variable (in this case of type boolean) is assigned to the unit
of investigation. Either simple environment categories or – which is usually more
sufficient – complex multivariate functions can be assigned in order to predict the
probability of settlements (as shown in figure 2.10). Models can be considered as
suitable if the number of correct predictions is higher than with a random model
(Kvamme 1988). Kvamme (1988) used the following equation in order to measure
the quality of a model and to compare different models.

Gain = 1− (
percentage of total area covered by model
percentage of total sites within model area

) (2.3)

Based on this equation a predictive model performs best when a quite small area is
likely to contain sites and most of the found sites are within that area. This leads
to the following: with a gain statistic close to 1 a model has a good predictive use
whereas a value close to 0 indicates that the model has little or no predictive use.
If the value is below 0 the model has reverse predictive use which can still be of
some use. In this case the areas outside the specified areas are considered to be the
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Figure 2.9: The procedure used for deductive predictive modelling. The model is
created on the basis of hypotheses on site location preferences. In many
cases, these are no more than "educated guesses". The model can easily
be tested with statistical methods as the archaeological data set is not
used for building the model. (Verhagen and Whitley 2012)

areas being modelled. In contrast to simply measuring the percentage of correct
prediction – which can be misleading – this gain statistic facilitates the comparison
of models (Kvamme 1988).

It can be assumed that archaeological sites fulfil different functionalities – such
as residential, hunting, or trading – (e.g. Kvamme 1988, Binford 1982, Hodder and
Orton 1976) which may require different situational contexts. Establishing different
site-type models can be challenging in practice due to difficulties in the assignment
of the type. Often, site-types are assigned based on limited and sometimes question-
able evidence (Kvamme 1988). To avoid incorrect site-type assignments Kvamme
(1985, 1983) suggested to measure the quantity of archaeological activities and in-
vestigate why certain locations were used in the past and others not.

A lot of different approaches exist in order to perform predictive modelling with
logistic regression being the most widespread (Wheatley 2004, Warren 1990). One
commonly used technique is the trend surface analysis, which uses the observed
locations in order to derive trends (Hodder and Orton 1976, Unwin 1975). Roper
1976, Monroe et al. 1980 and Bove 1981 applied this procedure to model a continu-
ous surface of site distribution across a region. Trend surface analysis is a regression
function which tries to estimate the properties at any location based on the proper-
ties of the known locations (Unwin 1975). The analysis is usually about the pres-
ence or absence of sites or site-types or other nominal scaled variables. This can be
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Figure 2.10: End products of cultural resource modelling (A) A simple plant com-
munity mapping in which the communities correspond to different site
densities (after Plog 1983, p. 64). (B) A "site probability surface"
superimposed on a map and derived from a complex multivariate func-
tion of six variables measured in each 50 by 50 m cell (after Kvamme
1980). (Kvamme 1988)
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problematic as most regression analyses need numerical scaled dependent variables
(Kvamme 1988). Another problem is the applied grid size because it influences the
resulting trend surface. Kriging, which is another interpolation technique consid-
ering spatial variance seems to provide better results (Kohler 1988, Parker 1985,
Zubrow and Harbaugh 1978). In order to allow nominal-level categories Wrigley
(1977) developed a logistic trend surface analysis which makes no assumption about
the distributional form (e.g. normal distribution etc.). Depending on the complexity
of the distribution either a linear regression function (first order) or a polynomial
function (2nd, 3rd,...,nth order) can be used. Detailed information about the pro-
cedure can be found in the boxes 1 – 3 in chapter G.

In order to consider locational characteristics, which are often on a nominal level,
Grady (1980) subdivided the observed area into smaller parts and projected the ex-
pected number of sites based on the density estimates derived from observations.
A similar approach was realized by Judge (1973) who focused on continuous site
location information, which allows to consider distances to specific environmental
variables (e.g. x percent of all sites are within a distance y to a river). This approach
allows the consideration of spatial information. Especially since GIS became more
popular, the number of predictive models has been increasing (Casarotto 2015).
A commonly used approach is the reclassification of spatial information such as
soil type or slope in order to derive a land units map (Casarotto 2015). The re-
classification is recommended for some of the environmental parameters (e.g. it is
usually more important if the soil is fertile or not than the exact name of the spe-
cific soil). An important aspect of the analysis is to test the data against sources of
bias. Leonardi (1992) suggests to create a map of geochronological units in order to
identify areas were findings are possible or not. If landslide, erosion or other envir-
onmental influences took place archaeological evidence might have disappeared or
is less likely to be found. By considering such aspects a predictive map can be cre-
ated showing the suitability of locations for former settlements. Rogers and Curdy
(2015) used cost surfaces and least cost paths in order to narrow down the areas
of potential prehistoric activity in the Pennine Alps. By determining the possible
mountain pass routes the archaeological observation areas can be minimized. Egel-
and et al. (2010) also used a cost surface to calculate the least cost path to determine
probable other settlement locations. Countryman et al. (2010) derived a suitability
surface using weighted overlays of seven variables which the authors hypothesized
to be influential. A subsequent field survey was used to revise the former model.
Stanc̆ic̆ and Kvamme (1999) stated that for small sample sizes boolean overlays
should be used because robust multivariate statistical methods cannot be applied.
One major disadvantage of this technique is its inability to quantify the influence
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of each variable. Whitley and Burns (2008) criticised that usually only environ-
mental influences are considered when a probability surface is calculated. Hence,
the authors defined activity-based settlement/subsistence patterns which shall rep-
resent common prehistoric occupations. Based on these categories specific weights
can be assigned to input variables and thus allow a detailed analysis which fits the
preferences of the observed sites. Other approaches are based on artificial neural
networks (ANN). This concept is inspired by biological neural networks, in par-
ticular the brain. It belongs to the artificial intelligence techniques because of its
ability to learn (so called adaptive models) (Abdi 2003, Abdi et al. 1999). ANNs
are built from (several) units, often referred to as neutrons due to the analogy to the
brain. Those units are linked by weighted connections, whereas the learning pro-
cess is often accomplished by modification of the weights (e.g. Deravignone and
Macchi Jánica 2006a, Abdi 2003, Wang 2003, Abdi et al. 1999). A commonly used
architecture in ANN is the multi layer perceptron (see figure 2.11) which is sim-
ilar to multivariate non-linear regression techniques in a statistical framework. A
certain number of units are interconnected from the input to hidden units and from
the hidden units to the output. The training pattern teaches the ANN how to get a
specific output with a certain input (Deravignone and Macchi Jánica 2006a). This
architecture is able to handle fuzzy data because of its ability to use logic paradigms.
It allows to define thresholds and thus regulates the flow based on rules involving
one or more units. Deravignone and Macchi Jánica (2006b) applied this concept to
develop the Grosseto Predictive Modeling Method, which initially focussed on the
districts of Grosseto, Siena and Arezzo but was also applied to other regions (Blank-
holm 2015). The idea is to use the observed presence/absence pattern as output and
environmental, social and/or economic variables as input. The authors developed a
tool which works as a bridge between GIS and ANNs to consider spatial influences.

Figure 2.11: A multi-layer perceptron (Abdi 2003)
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Another statistical approach was applied by McMichael et al. (2014), who used the
maximum entropy model (MEM) in order to predict the occurrence of terra preta
in the Amazon Basin. The aim of maximum entropy modelling is to approximate
an unknown probability whereas that approximation should be used which satisfies
best any constraints that the analyst is aware of (Phillips et al. 2006, Jaynes 1957).
MEMs seem to outperform other statistical approaches especially in the case of
presence only datasets (e.g. Elith et al. 2011, Phillips and Dudík 2008, Elith et al.
2006, Phillips et al. 2006). Presence only datasets only consist of (more or less) re-
liable observed data whereas in contrast presence-absence data also consist of data
which indicate absence. That absence information can be misleading because it is
hard to obtain reliable data (Jiménez-Valverde et al. 2008) and thus may preclude
modelling of potential distributions (Svenning and Skov 2004). While there are a
couple of studies in terms of biology and the behaviour of species there are only a
limited number of archaeological applications. Rivers et al. (2011) tried to determ-
ine networks of Bronze Age Aegean civilizations in order to describe flows between
sites, goods, ideas etc. The authors used the maximum entropy model to identify
the most likely networks. McMichael et al. (2014) tried to identify potential terra
preta findings in the Amazon Basin by applying the maximum entropy model. See
chapter 3.2.2 for a detailed explanation of MEM.

Predictive modelling is still subject of controversial debate (e.g. Van Leusen et al.
2005, Wheatley and Gillings 2002, Wansleeben and Verhart 1997). Reasons are the
inherently vague and incomplete archaeological records and the (sometimes highly)
subjective use of environmental factors. This is also related to the data quality be-
cause usually no historical environmental data is available. Another reason is the
problem of environmental determinism which is often inherent in predictive models
(Wheatley 2004, Kvamme 1997). In contrast Verhagen (2007) stated that indeed the
predictive models are simplistic but can fulfil their need and raised the question if a
predictive model necessarily needs to have full explanatory power. Several studies
aim to reduce the potential area rather than increase model accuracy (e.g Blankholm
2015, Rogers and Curdy 2015).
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3 Methodology

The analysis of functional settlement pattern requires several steps. The main in-
put for the analysis is the location as well as the surrounding environment. Con-
sequently the coordinates of the former settlements – if not yet known – and the
environmental variables need to be determined. Whereas the former is mainly done
based on literature research, the latter requires further analysis. Besides the location
of the former settlement, the storage of this data is a relevant task in order to facilit-
ate research in terms of Amazonian archaeology. A database on a server and a data
model which meets the requirements of the archaeological dataset is created. It can
be assumed that not all environmental variables need necessarily to be analysed (e.g.
air pressure or carbon dioxide content). Additionally, some of the data is missing
for the observed period. Another aspect is the classification of environmental data
(e.g. soil types can be used individually or can be aggregated based on soil proper-
ties such as fertility). Therefore the available environmental data is analysed based
on the relevance for the observed excavation sites. A first overview can be gained
by plotting the measured values for all locations and identify anomalies. Afterwards
the Maximum Entropy Modelling (see chapter 3.2.2 for a detailed explanation) al-
lows to determine the variable importance for the selected settlements. Another
preparatory step is the analysis of the spatial distribution of the observed locations.
The identification of functional settlement pattern requires a clustered pattern. A
test for complete spatial randomness (see chapter 3.2.1) is used to check whether
the settlements are randomly, clustered or regularly dispersed. If this precondi-
tion is true functional settlement patterns can be calculated based on the locations
as well as the environmental variables. This is done using a consensus clustering
approach (see chapter 3.2.3) which compares the results of several cluster runs in
order to determine an optimal cluster solution. Those results can then be used for
the calculation of the suitability surface. Therefore the consensus values for each
settlement function in combination with the determined measures for the environ-
mental variables are combined and used to define a fuzzy membership function (see
chapter 3.2.4). The suitability surface is calculated for each settlement function
individually and form the basis for the final calculation of the territory. The max-
imum cumulative suitability value within a predefined distance is determined and
used as limiting value for the territory (see also chapter 3.2.4). An overview of the
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methodology is given in figure 3.1.

3.1 Archaeological Record

In order to draw conclusions about the functional settlement pattern the surrounding
environment was analysed. Settlement covers a spatial as well as temporal aspect
due to seasonal fluctuations, expulsion or other reasons. Unfortunately, temporal in-
formation (usually radiocarbon measurements) is only available for a limited num-
ber of excavation sites. Thus, the approach focusses on spatial analysis in order
to determine environmental variables. Several input datasets, which are listed and
explained in the following chapter, were used to achieve that goal. The input can be
split into two different types. On the one hand, the archaeological record, namely
the locations of the excavation sites and the settling culture(s), on the other hand the
surrounding environmental parameters which may determine the settlement loca-
tion. The environment is considered because it is known that different cultures
developed different survival or subsistence strategies (e.g in the late Holocene some
cultures developed slash-and-burn as well as semi-intensive agricultural strategies).
Depending on the culture various domesticated and semi domesticated plants were
known Heckenberger and Neves (2009). Some cultures were able to use complex
techniques such as wetland management or fish farming (Schaan 2004, Erickson
2000).

Diverse agricultural strategies were coupled with systems of faunal
exploitation that included a variety of managed species, such as birds
(Muscovy ducks, parrots and macaws, and others), fish and other aquatic
species, including the giant Amazon river turtle (up to 80 cm) and
manatee, or sea cow. (Heckenberger and Neves 2009, p. 253)

Thus it can be assumed that the influencing environmental parameters vary accord-
ing to the capabilities and needs of the culture.

The localization of former settlement locations was a time consuming task due to
the absence of usable digital sources. The process of geocoding of known excava-
tion sites is described in greater detail in chapter 3.1.1. A detailed description of the
used database schema which was developed in order to store the findings is given
in chapter 3.1.2.

3.1.1 Identifying and Locating Excavation Sites

Archaeological data is inherently vague which in this case also implies that not all
the former settlements are known. The archaeological record can be biased due to
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lack of knowledge (e.g. the settlement was in a floodzone and therefore no findings
are available), absent data sources about the former settlement (caused by the high
number of publications in Portuguese, German, Spanish, French, etc. and due to
missing central databases or institutions to administrate or collect these informa-
tion) or missing location information (usually the coordinates are missing because
the exploration of the excavation sites was done before GPS was commonly used).
Lots of archaeological studies in the Amazon focus on a certain (small) area (or
a specific excavation site) in the Amazon and analyse them in greater detail (e.g.
Nunes et al. 2013, Bozarth et al. 2009, Nunes 2009, Py-Daniel 2009, Rebellato
2007, Machado 2005 for the Hatahara site close to Manaus). These studies on
micro-level are used to extract the location and cultural information but cannot be
used in terms of understanding a settlement patterns on a smaller scale. In order
to geocode as many excavation sites as possible, over 60 publications of several
research fields (e.g. archaeology, soil science) were analysed in order to get the loc-
ation information. Some of those contain GPS coordinates whereby most of these
publications only provide maps and descriptions of the specific sites. Additionally,
old maps and reports of the chroniclers helped to relocate some of the excavation
sites which are destroyed or no longer accessible (e.g. due to dam constructions
and reservoirs). However, some of these locations are only an approximate. Based
on the description (or illustration on a map) of the location in combination with
expert knowledge (in this case Klaus Hilbert, who is an archaeologist and special-
ist for Amazonian archaeology) the former location of the settlement is estimated.
This was done using google earth, which is easy to use and provides recent as well
as historical satellite imagery which facilitates the geocoding process. Due to the
availability of older satellite images, location errors due to construction projects
(e.g. dams) and flooding can be minimized. Some problems occurred due to the
used scale. Some authors only used small scale maps which only approximate the
location of a (former) settlement (as shown in figure 3.2). Others provided maps
with a higher resolution, which help to identify the position (as shown in figure
3.3. Mário Ferreira Simões (Simões and Lopes 1987, Simões and Kalkmann 1987,
Simões and de Araujo-Costa 1987, Simões and Machado 1987, Simões and Corrêa
1987, Simões 1983, Simões and Araújo-Costa 1978) and Corrêa, Conceição Gen-
til (Corrêa 1987) published almost one third of all located excavation sites in the
Amazon. The authors provided a map and a detailed description (an exemplary de-
scription of the site AM-DE-01 is given in quotation below of the location which
helped to facilitate the geocoding process. The quotation can roughly be translated
as follows: T̈he former settlement of the ceramic phase Cuaru is located at the left
riverside of the rio Negro below the mouth of the river Demeni. It comprises an
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Figure 3.2: Locations of sites in the Amazon (Neves et al. 2003)

area of 250 * 100 metres parallel to the river bank and is 2 metres above the river
(in september). It is important to point out that the location can be flooded in the
rainy season.̈ The publications of Mário Ferreira Simões are an important source
because the author aimed for a very detailed, consistent and structured description
of the sites.

Sítio-habitação de fase cerâmica Cuaru, localizado à margem es-
querda do rio Negro, abaixo da foz do rio Demeni. Compreende uma
área de 250 * 100m, paralela à margem do rio, com 2m de altura em
relação ao nível do rio (setembro), o que importa ser alagada nas en-
chentes excepcionais do rio. (Simões 1983, p. 23)

Additionally some geographical conditions are considered. Variations in vegeta-
tion and land use can indicate former settlements due to the fertile soil Terra Preta
(an anthrosol). Older clearings are a sign for fertile soils which have been used for
farming for generations. Figure 3.4 shows the outline of the former settlement at the
Hatahara site. Based on the documentation of chroniclers in the Amazon it is further
assumed that the settlements were close to water, not deep in the forest and usually
which huge range of vision but not always visible (e.g. Denevan 1996). Another in-
dicator for a former settlement is an existing settlement. Based on this information,
a potential settlement location is derived which is used for further analysis. This
time consuming work was necessary due to the absence of any useful digital data
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Figure 3.3: Map of the distribution of archaeological sites in the region of the Ji-
Paraná river (Rondonia State) (Kern et al. 2003) based on (Miller and
Caldarelli 1987)
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Figure 3.4: The red line outlines the habitation zone of the Hatahara site (Rebellato
et al. 2009)

sources. There is a database which is hosted by the IPHAN (link can be found in
chapter 1) which provides a huge collection of excavation sites for Brazil. Besides
the information about the cultures which settled there a unique excavation site name
is set which is also used in archaeological publications (and thus needed in order
to match the information with the location). Unfortunately no location information
(coordinates) is given which makes the database useless for spatial analysis. Pardi
(2002) published a map which shows archaeological sites according to their ceramic
tradition. This map cannot be used to relocate the excavation sites manually because
it only provides information about the tradition but not their cultural subgroups (for
a detailed definition of the terms tradition and culture see chapter 2.1.1), the resol-
ution is not good enough and the density of excavation sites in the Amazon Basin
is very low.(WinklerPrins and Aldrich 2010) tried to establish a, what the authors
call, interactive GIS of Amazonian Dark Earths which is basically a google kmz
file which can be downloaded and that provides information about the location (e.g.
the expected data quality, the size, age (if available), etc.) and about the data source
of the points (as shown in figure 3.5). The included sites are not explored by the
authors but are the result of a literature research articles (mainly the ones which are
used in this geocoding process as well) and contains (state 18.08.2014) 505 Terra
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Preta sites. Unfortunately the published link seems to be outdated because the web-
site is no longer available. The authors tried to distinguish between high, medium
and low quality, based on the expected location accuracy level of the excavation
site. Although the locations are enriched with additional data, neither information
about the finding (and thus settled cultures and traditions) nor the unique excavation
site name is given. Therefore the two data sources provided by IPHAN and (Wink-
lerPrins and Aldrich 2010) cannot be matched. Another problem that was noticed
is that the data quality - even of the "high"-labelled features - seems to be not very
reliable. Simões 1983, 1978 often referred to adjacent settlements which facilitate
the verification of a location. Whereas other settlements in the kmz file are located
several kilometres apart of the estimated location. This assumption is underlined by
the fact that some settlements in the dataset from (WinklerPrins and Aldrich 2010)
are several kilometres away from any water source which – based on the archaeolo-
gical literature and the reports of chroniclers – does not seem to be very plausible.
However, this is yet the only (other) known attempt to provide an as complete as
possible collection of Amazonian Dark Earth sites. Other approaches such as the
use of remote sensing techniques (Menze and Ur 2012) or Maximum Entropy Mod-
elling (McMichael et al. 2014) in order to identify potential settlement locations are
not considered. These approaches aim to predict settlement locations but it is not
known whether a settlement existed at that location or not. For now the database
contains 665 excavation sites with 750 findings whereas a finding is not defined by
single artifacts, (which might at first be intuitive) but rather by distinct cultures. If
the database stores three findings for one excavation site it simply means that this
settlement was recolonized by another culture (for a more detailed explanation of
the database schema see chapter 3.1.2). The data set contains 81 different cultures
and 14 traditions and they cover a time span of almost 6000 years. One can assume,
that capabilities and needs vary according to the observed culture/tradition and also
to the time of occurrence.

After analysing the various data sources it turned out, that all excavation sites can be
attributed to 19 archaeologists who are referenced by the other authors. Over 96%
of all located sites were excavated by only 11 archaeologists, almost one third of all
excavations – 183 sites – were supervised by Mário Ferreira Simões (see figure 3.6
and for detailed 3.7 information).

3.1.2 Storage of Excavation Sites

The located excavation sites and additional data about the excavation sites are needed
in order to analyse settlement patterns. To facilitate further analysis this data needs
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Figure 3.5: Example of the provided information for an excavation site in the kmz-
file (WinklerPrins and Aldrich 2010)
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Figure 3.6: All located excavation sites color coded by the supervising archaeologist

Figure 3.7: Frequency of supervised excavations by archaeologist
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to be converted into a spatial data format (such as shapefile, geodatabase, other
spatially enabled database formats, etc.). In this case a spatially enabled database
is used, which provides data on a server and thus makes the use of local storage
devices redundant.

To keep it simple, a table (e.g. Excel file) is used at first to collect the coordinates
and information about the excavation sites, thus no GIS or database knowledge is
needed. An excerpt of the structure of the used Excel file is shown in table 3.1. The
original Excel file contains the following columns:

• Excavation Site ID

• Name

• Archaeologist

• X-coordinate

• Y-coordinate

• Length

• Width

• Depth

• Tradition

• Culture

• Radiocarbon date

• Literature source

In order to provide a simplified overview, some of the fields are not shown in table
3.1. Information for the fields length, width, depth and radiocarbon date are only
available for a little number of excavation sites, which is the reason why they are
not shown in the table. Nonetheless they are imported in the database. This (Excel)
file was imported into the database using a python routine. This script creates the
database entries based on the predefined database schema. The database schema is
tailored to the needs of storing excavation sites and its formerly resident cultures. It
is subdivided into nine tables for it to be normalized and to minimize data redund-
ancy. Some of the information is directly taken from the input Excel file whereas
other information is calculated and written in the database afterwards.

An excavation site can be populated multiple times (so called multi-phased vs.
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Table 3.1: An overview about the located excavation sites and the available inform-
ation
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single-phased if only one settling culture is known). Due to that and in order to
avoid redundancy, the excavation sites and the findings are stored in separate tables.
The table excavation_sites contains optional site relevant information such as the
unique excavation site id, depth, length or width and some foreign keys which refer-
ence other tables. The table findings contains only foreign keys; one which indicates
the excavation site itself and additionally two foreign keys which store the culture
and tradition. The distinction of cultures respectively traditions in the Excel file is
made based and ceramic styles. However, the database schema is designed so that
any kind of distinguishing features can be used. Thus, the approach is independent
from the archaeological discourse about the categorization of findings. This allows
the usage of language groups or other similar traits as classifier. The tables cultures

and traditions are designed in the same way – both provide a column for the name
as well as for the known dates of existence (from and to). The relationship between
cultures and traditions is hierarchical which means that one culture is assigned to
exactly one tradition whereas one tradition usually is assigned to several cultures. A
link table is used to store this hierarchical relationship. Another table is used to store
the radiocarbon data. The radiocarbon data is usually provided in a format such as
year±year (e.g. 1000±50), which is the reason why the plus/minus value is stored
in the database. Additionally, the foreign key of the finding (because the radicarbon
data is assigned to a culture, not to an excavation site) as well as a foreign key to
the laboratory which analysed the sample is stored. Three tables are used to store
the metadata such as the radiocarbon laboratory, the archaeologist who excavated
the site as well as the literature source. An entity relationship model of the database
schema is shown in figure 3.8. A detailed overview of the data model is given in
figure 3.9. As mentioned above, using a database which runs on a server allows
to access the data from the internet, which is used to facilitate further settlement
patterns analysis. A web-based GIS for archaeology in the Amazon is embedded
which provides a small toolbox for further exploratory analysis – a beta version is
already available at http://terrapreta.geo.uni-augsburg.de. The data
format as well as the spatial reference is set in advance. The excavation sites can
be selected (either manually or based on the culture or tradition) for further ana-
lysis and the distance to some environmental variables can be compared in order to
identify pattern or differences. The visualizations are an important communication
tool because the data can be provided so that archaeologists (and other groups of
interest) can use them without necessarily being an GIS expert.
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Figure 3.8: Entity relationship model of the archaeological record

58



Figure 3.9: Detailed data model which is designed to fit the requirements of the
archaeological data
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3.2 Functional Settlement Pattern Analysis

Due to technological and computational improvements various digital datasets are
now accessible (Guo and Mennis 2009, Miller and Han 2003, Norton 1999, Fayyad
et al. 1996b). However, the increasing number of digital information limits the
applicability of traditional analytical methods which are designed for small and ho-
mogeneous datasets (Miller and Han 2003). This leads to the development of new
methods and algorithms to manage and analyse such datasets and their interdepend-
encies (Guo and Mennis 2009, Norton 1999).

There is often much more information in these databases than the
’shallow’ information being extracted by traditional analytical and query
techniques. (Miller and Han 2003, p. 4)

Thus, the extraction of useful information and knowledge is an important task in or-
der to analyse such complex relationships (Fayyad et al. 1996b). An automatic, ex-
ploratory approach for modelling and analysing these large datasets is called know-
ledge discovery from databases (KDD) (Maimon and Rokach 2006b). In contrast
to traditional statistical analysis KDD is more strongly inductive (Miller and Han
2003).

Statistical models are confirmatory, requiring the analyst to specify
a model a priori based on some theory, test the hypotheses and perhaps
revise the theory depending on the results. (Miller and Han 2003, p. 5)

Although knowledge discovery processes usually aim to validate a hypothesis, they
can also be used in order to discover new patterns autonomously (Fayyad et al.
1996b and see figure 3.11).

KDD is interdisciplinary by nature and benefits from intersecting research fields,
e.g. machine learning, pattern recognition, databases, or data visualization (Norton
1999). Whereas the

unifying goal is extracting high-level knowledge from low-level data
in the context of large data sets (Fayyad et al. 1996a, p. 39)

The terms KDD and data mining are often used synonymously but data mining is in
fact only one component in a larger process (as shown in figure 3.10). A commonly
excepted definition of KDD is provided by Fayyad et al.:

KDD is the nontrivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data. (Fayyad et al.
1996b, p. 40)
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Figure 3.10: An overview of the steps of a KDD process (Fayyad et al. 1996b)

That can imply multiple iterations of the steps involving data preparation, know-
ledge evaluation, search for patterns, and refinement. According to Miller and Han
(2003) and Maimon and Rokach (2006b) the KDD process can be subdivided into
nine steps whereas data mining can be seen as the core process. The first step is to
understand the application domain and define the goals. Second is the selection of
relevant data or variables. The third step is about preprocessing and cleaning, such
as handling missing values or outliers. Transformation is done in the fourth step,
which includes dimension reduction or attribute transformation. The next three
steps are all related to data mining. Namely the selection of an appropriate data
mining task, and a matching algorithm as well as the employment of the algorithm.
The eighth step is the evaluation and interpretation of the mined patterns. Using the
discovered knowledge is part of the last step. That means, the knowledge can be
incorporated into other systems which allows conclusions about the effectiveness
of the KDD process (Maimon and Rokach 2006b, Fayyad et al. 1996b). The entire
process involves iterations and can contain loops between any two steps.

The discovery goal of a KDD process can be further subdivided into prediction
and description goals. Whereas the description branch focuses on presentation of
patterns, and thus supports understanding (e.g. by visualizing techniques), the pre-
dictive part aims to build a behavioural model. Fayyad et al. (1996b) pointed out
that the border between these groups is not clearly defined but is helpful in order to
understand the discovery goal. Maimon and Rokach (2006a) provided a taxonomy
of data mining methods in order to get a better understanding of the variety and
usage of methods (see also figure 3.11).
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Verifica2on	   Discovery	  

Descrip2on	  Predic2on	  

Regression	  Classifica2on	  

Neural	  
Networks	  

Bayesian	  
Networks	  

Descision	  
Trees	  

Support	  
Vector	  

Machines	  

Instance	  
Based	  

Goodness of fit 
Hypothesis testing 
Analysis of variance 

Clustering 
Summarization 
Linguistic summary 
Visualization 

Figure 3.11: Data mining taxonomy (adopted from Maimon and Rokach 2006b)

A special case of KDD is the geographical knowledge discovery (GKD) (Miller and
Han 2003). The vast amount of spatial and spatiotemporal data facilitates the under-
standing of more complex relationships, such as human-environment interaction. In
order to extract spatial pattern from geographical data specialized tools are needed
(Rinzivillo et al. 2008, Yuan et al. 2004).

There is an urgent need for effective and efficient methods to ex-
tract unknown and unexpected information from datasets of unpreced-
entedly large size (e.g., millions of observations), high dimensionality
(e.g., hundreds of variables), and complexity (e.g., heterogeneous data
sources, space-time dynamics, multivariate connections, explicit and
implicit spatial relations and interactions). (Guo and Mennis 2009, p.
403f.)

Additionally, in contrast to other information domains in a KDD process – which
can be highly dimensional – geographic information has up to four dimensions
which are interrelated (Miller and Han 2003). Spatial data has specific inherent
properties such as topological relations or distances to other elements (Rinzivillo
et al. 2008, Miller and Han 2003). Another characteristic was published by Tobler
(1970) who suggests the following to be the first law of geography:

[...] everything is related to everything else, but near things are more
related than distant things. (Tobler 1970, p. 236)
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Regarding the GKD process, it is important to factor in these spatial properties in
order to derive new spatial patterns. This can be done by either making the spatial
relationships explicit before or by using specialized algorithms. The advantage of
the first approach is that known data mining techniques can be used. However, the
latter approach allows the dynamic exploitation of spatial features (Rinzivillo et al.
2008). A lot of research is done to address the challenges related to GKD (e.g.
Chawla 2005, Mennis and Liu 2005, Guo et al. 2003, Miller and Han 2003, An-
drienko and Andrienko 1999, Openshaw et al. 1987). The presented methodology
combines various methods in order to gain knowledge about spatial pattern.

As mentioned above (see chapter 2.2, predictive modelling approaches are similar
or identical to settlement pattern analysis (e.g. fitting the findings to a theoretical
distribution) as well as site catchment and territorial analysis (e.g. deriving cost sur-
faces). The idea of extrapolation in order to identify new, yet unknown, prehistoric
settlements (or at least test hypothesis, assumptions, or scenarios of such) makes it
a predictive modelling approach. Moreover, the usage of those terms is not always
consistent. In the following, the terms are used as follows. Settlement pattern ana-
lysis focusses on the point pattern, thus identifying if a randomly dispersed, uniform
or clustered pattern can be assumed. Site catchment and territorial analysis is about
the determination of environmental influences and area(s) of influence. Predictive
modelling tries to predict further suitable, and thus likely, habitats. Functional set-
tlement pattern analysis serves as an umbrella term for all of the terms mentioned
above.

3.2.1 Point Pattern Analysis

Excavation sites can be seen as points which are distributed within a region. This set
of locations is called a spatial point pattern (Diggle 2014). When determining struc-
tured patterning in archaeological (point-like) distributions, point pattern analysis
is used. Other possible spatial patterns are continuous or lattice processes (Bartlett
1974) but are not relevant in this case because the focus is on the locations of the
excavation sites. In terms of point pattern analysis the observed points are often re-
ferred to as events to distinguish between observed points and other arbitrary points
(Diggle 2014). If not specified otherwise, points and events are used synonymously
in this thesis. A point process in this case is a stochastic model which focuses on
the location of events in an area – at least when spatial point processes are analysed
(Cressie 1993). When working with point processes it is not sufficient to only ana-
lyse the data itself. Information from non-data locations (often randomly dispersed
points) should be considered to be able to compare and interpret the data (Badde-
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Figure 3.12: Describing point pattern (adapted from Kariel 1970)

ley 2010). Typical scientific questions are about intensity or interpoint interaction
(see figure 3.12) and the effect of the surroundings (Baddeley 2010). Originally de-
veloped in the field of plant ecology and geography (e.g. Ripley 1987, Pielou 1977,
Goodall 1970, 1952), the usage of methods to analyse the distribution of points in
archaeology increased with a slight delay (Hodder and Orton 1976). Whereas the
use of spatial point pattern analysis can be problematic in terms of intra site rela-
tions, the usage in between-site analysis is more valuable (Hodder and Orton 1976).
Regarding spatial point pattern analysis, summary statistics are a simple and fast
approach to get first insights into the pattern. This includes e.g. the average dis-
tance or the number of points in a certain area. Another common procedure, which
requires more statistical theory, is to test on complete spatial randomness (CSR),
namely to compare the observed pattern to a homogeneous Poisson process (HPP)
(Diggle 2014, Baddeley 2010, Cressie 1993, Bartlett 1974). This means, by apply-
ing HPP – which is referred to as Poisson process as well – the probability of an
event is not influenced by nearby events (Bivand et al. 2013). In the case of spatial
analysis the pattern would be randomly dispersed if geography does not influence a
process. O’Sullivan and Unwin (2010) described this as the

ultimate null hypothesis for any geographer to suggest. (O’Sullivan
and Unwin 2010, p. 98)

Numata (1961) published a dataset containing 65 locations of Japanese black pine
saplings which might be regarded as random (see figure 3.13 a). In contrast, Ripley’s
(1977) (extracted from Strauss (1975)) dataset shows 62 redwood seedlings which
appear to be clustered (see figure 3.13 b). In the case of redwood seedlings it is
known that they agglomerate around redwood stumps, therefore an environmental
influence can be assumed (Diggle 2014). A third example (see figure 3.13 c), also
published by Ripley (1977), shows a more or less regularly dispersed pattern. It is
important to point out that an identification of a pattern does not necessarily explain
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Figure 3.13: Location of a) 65 Japanese black spine saplings in a square of side-
length 5.7 metres (Numata 1961), b) 62 redwood seedlings in a square
of side-length 23 metres (Ripley 1977, Strauss 1975), and c) 42 cell
centres in a unit square (Ripley 1977) (as cited in (Diggle 2014))

anything, but rather helps to interpret a spatial process which leads to that pattern
(Stanislawski 1973).

Our interest in CSR is that it represents an idealized standard which,
if strictly unattainable in practice, may nevertheless be tenable as a con-
venient first approximation.(Diggle 2014, p. 10f)

CSR is helpful in terms of exploring a dataset and formulating hypotheses based
on the resulting patterns. The rejection of CSR is the minimum requirement for
further analysis (Diggle 2014). Baxter (2003) stated that a demonstration of a
departure from complete spatial randomness does not explain the pattern. Davis
(1973) showed that, depending on the used method(s), the result does not neces-
sarily have to be unique. Thus, the distinction between the three pattern categories
random, aggregated (or clustered) and regular is simplified but useful to start with
(Diggle 2014). The careful selection of the study region is important in order to
get satisfactory results. In some cases the region is objectively determined by the
research subject such as settlements on an island. In other cases a – in some sense
– representative subregion is selected from a larger region. Rather than analysing a
single region, a subdivision into a large number of smaller regions, so called quad-
rats, can simplify the analysis. The term quadrat is derived by the Uppsala school
of plant ecologists (Du Rietz 1929 (as cited in Diggle 2014), Greig-Smith 1952).
Quadrats or rectangles are usually used to subdivide the observed region but it is
theoretically possible to use other grids such as hexagons or triangles (Hodder and
Orton 1976). The quadrat location can either be randomly or contiguously dis-
persed over the area and is constrained so that no overlapping is possible (Cressie
1993). Clarke (1946) used this method combined with the Poisson distribution to
determine whether flying-bomb attacks in World War 2 were randomly dispersed
or clustered (see table E.01). The examined region was subdivided into quadrats of
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1
4km2 each. The dispersion is random if every cell has an equal and independent
probability of containing a point. The Poisson function is used to return the prob-
ability that a cell contains exactly x points (King 1968) and the Poisson distribution
represents a randomly dispersed pattern (Diggle 2014).

f (x) =
µxe−µ

x!
(3.1)

with:
x = the number of points and
µ = average number of points per cell (sometimes also referred to as lambda). CSR
for a spatial point pattern is given when the intensity (mean number of points per
quadrat) follows the Poisson distribution and when the points are an independent
random sample from the uniform distribution (Diggle 2014). To evaluate the pre-
dictive quality of a model, a goodness of fit test is used (Rönz and Strohe 1994).
Clarke (1946) used a Pearson χ2 test to compare the estimated Poisson distribution
with the observed data. It tests whether an observed distribution is consistent with
another distribution (null hypothesis) (Pearson 1900). Therefore a χ2-value is cal-
culated, which is compared to the associated critical value (the quantil of the χ2

distribution which is determined by the degree of freedom and the level of signific-
ance).

χ
2 = ∑

( f requencyobserved− f requencyexpected)
2

f requencyexpected
(3.2)

Assuming a significance level of α = 0.05 and the degree of freedom d f = 4, the
critical value is χ2

0.05,d f=4 = 9.488 (see table F.01 for the list of critical values). The
significance level α determines the probability of so called type 1 errors, namely the
probability to incorrectly reject the null hypothesis (Schlotzhauer 2007). The de-
grees of freedom specify the number of parameters which can be varied in a statist-
ical calculation. In the case of a Pearson χ2 test the degrees of freedom are defined
as n− 1 with n = number of classifications. In the example of bomb hits, the null
hypothesis H0 means that the bombs were falling randomly (the Poisson distribution
matches the empirical distribution) which can be rejected if χ2 > χ2

0.01,d f=4 (Schön-
wiese 1992). The critical value in table F.01 leads to the equation 1.17 ≯ 13.277,
therefore the null hypothesis cannot be rejected. For a meaningful interpretation of
the result a p-value can be used which indicates the evidence against the null hypo-
thesis. The smaller the p-value the stronger the evidence against H0. The p-value
can be calculated as follows:

p = 1−F(x) (3.3)
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where F(x) correspond to the cumulative distribution function (CDF) which is defined
as:

F(x) =
∫ x

0

x
v
2−1e−

x
2

2
v
2 Γ
( v

2

) =
γ
( k

2 ,
x
2

)
Γ
( k

2

) (3.4)

with:
Γ(x) = (x−1)! for all real numbers.

Greig-Smith (1952) used the same approach and tested it against different sizes
of quadrats and possible patterns. The cell size is important in order to identify
the pattern and can lead to wrong conclusions if incorrectly chosen (Diggle 2014,
2003, Greig-Smith 1952) and therefore is a point of criticism. Other possibilities to
optimize the grid number were published by Greig-Smith (1983), Moellering and
Tobler (1972). The suggestion according to Greig-Smith (1952) is to test varying
sizes and to include a relative variance test in addition to the χ2 test. An overview of
additional quadrat method indeces can be found in table E.02. The relative variance
relvar is defined as

relvar =
s2

x̄
(3.5)

with s2 = variance and x̄ = mean and was used by Clapham (1936) to compare the
observed pattern with the Poisson distribution. The variance equals the mean in a
Poisson distribution and therefore indicates a random pattern. If the null hypothesis
can be rejected, the measurement of the so called departure from CSR is the next
step (Cressie 1993). A clustered pattern can be assumed when the ratio is greater
than 1, a more or less regularly dispersed pattern when the value is less than 1. Other
points of criticism are the necessity of having a rectangular grid (Hodder and Orton
1976), or the alternation of results in a sequence of quadrat sizes (Pielou 1969), es-
pecially in terms of archaeological excavations (King (1968) and Stiteler and Patil
(1971) (as cited in Hodder and Orton 1976)) point out that the shape of a quadrat
itself can be misleading.

Diggle (2014) stated that the quadrat sampling method still remains popular but
can be impractical. That leads to the development of a number of distance meth-
ods focussing on the distance to adjacent features, which are more appropriate for
most archaeological studies (Hodder and Orton 1976). A common approach was
presented by Clark and Evans (1954) who compared the ratio between the expected
and the observed mean nearest neighbour distances. In the beginning, the distance
to the nearest neighbour for each point has to be measured. The sum of distance
values r is divided by the total number of observed points n to get the mean nearest
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neighbour distance r̄o.

r̄o =
∑r
n

(3.6)

The expected mean nearest neighbour distance r̄e of a random distribution of points
is only dependent on the density ρ of the point and can be defined as

r̄e =
1

2
√

ρ
(3.7)

where ρ is calculated as follows:

ρ =
n−1

A
(3.8)

with A= size of the region. The distribution is random if the ratio R= 1, a value less
than 1 indicates an aggregated, a value greater than 1 a regularly dispersed pattern.
Again, a goodness of fit test can be used to test if the observed distribution differs
significantly (Clark and Evans 1954, Hodder and Orton 1976).

R =
r̄o

r̄e
(3.9)

This distance method can be extended in order to include nth nearest neighbour
(Greig-Smith 1983, King 1969) and therefore reduces the risk of falsely identifying
clustered patterns. Another modification was given by Washburn (1974) who sug-
gested the use of the median nearest neighbour distance r̄m rather than the mean,
especially when only few very large distances are known. Several other distance
methods were published in order to fit special research or data source related re-
quirements (e.g. Getis and Franklin 1987, Holgate 1965, Catana 1963, Pielou 1959,
Cottam and Curtis 1949). The selection of the investigated area may influence the
result of nearest neighbour methods, because the boundaries are often subjectively
determined (Kariel 1970, Getis 1964). In the case of Clark and Evans’s 1954 R

value, the area is needed to calculate the density ρ and therefore has influence on
the expected mean nearest neighbour distance r̄e. The need of a boundary may lead
to errors due to lack of data at the border area. A potential nearest neighbour may
occur just outside the chosen boundary and is therefore not factored in the calcula-
tion (Diggle 2014, 2003, Hodder 1971, Clark and Evans 1954). To minimize this
boundary effect, a buffer zone can be used (Hodder and Hassall 1971), points are
only used if the nearest neighbour is closer than the boundary (Dacey 1963) or an-
other weight is assigned to points close to the border (Getis and Franklin 1987).

Both the quadrat method as well as the distance method are helpful to identify the
intensity of a spatial point pattern. The presented methods are good to get a first
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impression of the empirical data. In order to get a more precise overview of the
spatial variations, several methods are available to analyse the observed distribution
on CSR in more detail. The most common functions for stationary point processes
are presented in the following. Namely the

• G-function (nearest neighbour distribution function),

• F-function (spherical contact distribution function),

• K-function (Ripley’s K-Function).

In contrast to the summary statistics described above, these methods can be used to
identify certain thresholds. One example is given by Diggle (2014) who stated that
the G-function can be used to objectively specify the minimum area of trees needed.
The author argues that trees usually need sunlight and nutrients and therefore a cer-
tain area for their roots and crowns is required. By applying the G-function the
small inter-event distances can be identified and used as a threshold.

The nearest neighbour distribution function (G) is defined as the probability distri-
bution of the distance of one point pi of a point process X and the nearest neighbour
pnn and pi, pnn ∈ X . Thus, this function (also called event-to-event or inter-event
distribution) describes the probability of other events occurring within a certain dis-
tance of an event (Diggle 2014, 2003, Baddeley 1998, Cressie 1993). The estimated
distribution function (EDF) can be described as follows:

Ĝ(r)≡

n
∑

i=1
I(ri,A ≤ r,di > r)

n
∑

i=1
I(di > r)

,r > 0 (3.10)

with:
I being the indicator function which is either 1 (true) or 0 (false),
ri,A indicating the distance from a point pi to the nearest neighbour pnn – the nearest
neighbour distance,
di meaning the distance from point pi to the nearest boundary, and
r the observed distance (Cressie 1993)
which can be reduced to

Ĝ(r)≡ n−1 ∗ I(ri,A ≤ r) (3.11)

with:
n = the total number of points ∈ X

if a boundary effect can be eliminated (Diggle 2014). The distribution of the nearest
neighbour distances of a homogeneous Poisson process cannot be expressed in
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closed form due to the edge effects. The approximate distribution function under
CSR is

G(r) = 1− exp(−λπr2),r ≥ 0 (3.12)

where λ = intensity (expected number of points). The empty space function for the
Poisson process is identical to the equation above. An easy way to compare the two
distributions is by simply plotting them (e.g. see figure 3.14 a). Rather than using
the approximate distribution function, a sample mean Ĝ(r) can be computed using
randomly dispersed points. If the line of the EDF Ĝ(r) equals the line of the approx-
imate distribution function G(r), a randomly dispersed pattern can be assumed. The
observed locations are assumed to be closer to each other with a clustered pattern,
thus values Ĝ(r)> G(r) indicate a clustered, Ĝ(r)< G(r) a regularly dispersed pat-
tern (Baddeley 2010) (see also plots on the left in figures 3.14 - 3.16).

The G-function is often used in combination with the F-function. While the G-
function measures the distance between events, the F-function measures the dis-
tance between a random point rp and an event pi where rp /∈ X . This means a point
in this case is not equal to an event but a randomly dispersed point which is not in
X . Thus it is the probability distribution of the distance between a random point rp

and its nearest neighbour event pi. The EDF F̂(r) looks similar to the G-function.
In contrast to the G-function the F-function measures the empty spaces in the area
A which can be useful in exploratory analysis to determine the sizes of the gaps in
the point process.

F̂(r)≡ m−1 ∗ I(ri,R ≤ r) (3.13)

with:
m meaning the number of randomly dispersed points, and
ri,R indicating the distance from a random point rp to the nearest neighbour event
pi.

The same approximate distribution function that was used for G(r) can be used
to derive F(r), whereas the interpretation of the F-function is reverse. Clustered
patterns are expected to be further away from random points than randomly dis-
persed points. This means that F̂(r)> F(r) indicates a regularly dispersed pattern,
F̂(r)< F(r) a clustered pattern (see also plots in the middle of figures 3.14 - 3.16).

The third function is the Ripley’s K-function (sometimes also called reduced second
moment function). It measures the number of events within a specified distance and
describes the point process at various scales (Dixon 2002, Ripley 1977) which is
the main difference between the K-function and the G-, respectively F-function. A
point process can show a combination of patterns according to the scale (e.g. trees
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can be regularly dispersed at small scale but may be clustered in large scale). The
K-function allows to identify these characteristics.

K(r)≡ λ
−1E(nextra),r ≥ 0 (3.14)

where nextra = number of extra events within distance r of an arbitrary event. In
other words the K-function means that λ K(r) equals the expected number of addi-
tional events within the distance r. Let s1,...,sN be all events in the study region so
that s1,...,sN ∈ X then the EDF K̂(r) can be defined as follows:

K̂(r) = λ̂
−1

n

∑
i=1

n

∑
j=1

I(||si− s j|| ≤ r)/n,r ≥ 0, i 6= j (3.15)

Several other EDFs were published in order to factor in the edge effects (Baddeley
1998, Ripley 1988, Ohser 1983, Ripley 1976). The true value for a homogeneous
Poisson process is

K(r) = πr2 (3.16)

which is used to compare it with K̂(r) for inferential purposes. Similar to the G-
function values close to K(r) indicate a random pattern whereas K̂(r)< K(r) indic-
ate a regularly dispersed distribution and K̂(r) > K(r) a clustered pattern (see also
plots on the right in figures 3.14 - 3.16).
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Figure 3.14: From left to right: Applied G-function, F-function and K-function to
the longleaf dataset. The blue dashed line indicates the Poisson distri-
bution whereas the other lines symbolize varying EDFs.
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Figure 3.15: From left to right: Applied G-function, F-function and K-function to
the redwood dataset. The blue dashed line indicates the Poisson distri-
bution whereas the other lines symbolize varying EDFs.
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Figure 3.16: From left to right: Applied G-function, F-function and K-function to
the cells dataset. The blue dashed line indicates the Poisson distribu-
tion whereas the other lines symbolize varying EDFs.

As shown in figures 3.14 - 3.16, the functions give a good impression of the ob-
served point process. Random patterns have a high variability and observed random
processes will never match the Poisson Distribution perfectly. A common proced-
ure to make this result statistically reliable is to perform a Monte Carlo simulation.
Barnard (1963) pointed out that even with simple case studies a test of significance
of the model – the use of Monte Carlo simulations – is reasonable. The aim of a
Monte Carlo simulation is to simplify a hard combinatorial problem by selecting a
statistical sample in order to approximate the initial problem (Andrieu et al. 2003).
The idea is to rank the observed data value against a set of randomly generated val-
ues and thus determining the significance level of the selected test statistic (Besag
and Diggle 1977). This is possible because the principle of Monte Carlo simulations
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is based on the law of great numbers (Graham and Talay 2013). By performing s

simulations from the null hypothesis, the variation inherent in random processes can
be depicted (Baddeley 2010). Metropolis and Ulam (1949) introduced the Monte
Carlo simulation and illustrated its advantages by the example of the game solitaire.

To calculate the probability of a successful outcome of a game of
solitaire (we understand here only such games where skills plays no
role) is a completely intractable task. [...] Obviously the practical pro-
cedure is to produce a large number of examples of any given game
and then to examine the relative proportion of success. (Metropolis and
Ulam 1949, p. 336)

The authors point out that the result of a Monte Carlo simulation only allows con-
clusions about the probability of an occurrence. Therefore the estimation is not
an exact certainty, but rather a significance measure if the number of trials is great
enough. Hope (1968) tested various examples of simulations in order to show the
validity of the Monte Carlo approach. The author concludes that s = 100 is adequate
for a significance level of 5%. Monte Carlo simulations are particularly applicable
when data is sparse (Besag and Diggle 1977) or the calculation is unsolvable (Met-
ropolis and Ulam 1949). Ripley (1981), Besag and Diggle (1977), Ripley (1977)
and Besag and Clifford (1989) adapted the methods for spatial statistics. Cliff and
Ord (1981, 1973), ? used this approach in order to analyse spatial autocorrelation
and its validity for small sample sizes. Besag and Diggle (1977) presented several
use cases of Monte Carlo simulations for spatial patterns, such as pattern similarity,
space-time interaction or – which is important in this thesis – spatial point pattern.
The Monte Carlo simulation – as the test of CSR in general – is

...rarely to be treated as an end in itself, its purpose being more usu-
ally as an aid in suggesting further hypothesis and relevant data collec-
tion. (Besag and Diggle 1977, p. 327)

Generally spoken, if u1 is an observed value of U and ui : i = 2, ...,s are randomly
selected values of U and u( j) represents the jth largest value of ui : i = 1, ...,s – note
that here, ui includes u1 – the probability that ui equals u( j) is s−1.

P{u1 = u( j)}= s−1, j = 1, ...,s (3.17)

Therefore the probability if u1 ranks kth largest or higher can be exactly determined
by k

s . That value can be used to reject or accept a null hypothesis H0 by comparing
it to the observed rank (Diggle 2014). The equation 3.17 is only valid, if the values
ui are all unique and it is only a one-sided test. In terms of CSR the test is usu-
ally a two-sided test which is testing whether the values range within an envelope,
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Figure 3.17: From left to right: Applied G-function, F-function and K-function to
the longleaf dataset. The red dashed line indicates the theoretical, the
black line the observed distribution, and the grey area indicates the
simulated envelope.

formed by maximum and minimum values, depending on the level of significance
(Baddeley 2010). These boundaries can formally be described as follows:

L(ui) = min(F(ui)) (3.18)

as lower boundary, and
U(ui) = max(F(ui)) (3.19)

as upper boundary where F(ui) describes a function such as the G-, F-, or K-
function. If the values are outside of the envelope defined by L(ui) and U(ui)

the null hypothesis needs to be rejected. A more detailed information about the
point process is provided if applied to the datasets above (as can be seen in fig-
ures 3.17 - 3.19). The black line < f unctionletter >obs (r) equals the variable

ˆ< f unctionletter >(r). The red line indicates the theoretical distribution and the
grey area indicates the simulated envelope. The shown tests are necessary in order
to get a first impression of the pattern. A clustered pattern may not be surprising
because human movement behaviour is expected to be constrained and determined
by certain parameters (Hodder 1977).

3.2.2 Maximum Entropy Modelling

One fundamental step in cluster analysis is the selection of variables which determ-
ine the clustering result (e.g. Ketchen and Shook 1996). Clustering methods do not
rescale the input variables (like PCA does), in order to minimize correlation effects.
Ketchen and Shook (1996) distinguishes three different ways to determine the input
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Figure 3.18: From left to right: Applied G-function, F-function and K-function to
the redwood dataset. The red dashed line indicates the theoretical, the
black line the observed distribution, and the grey area indicates the
simulated envelope.
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Figure 3.19: From left to right: Applied G-function, F-function and K-function to
the cells dataset. The red dashed line indicates the theoretical, the black
line the observed distribution, and the grey area indicates the simulated
envelope.
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variables. One possible approach would be to consider as many variables as possible
(inductive approach), because it is not known in advance which variables differenti-
ate among the items (Ketchen and Shook 1996, McKelvey 1978, 1975). Hambrick
(1983) used this approach in order to develop a taxonomy of mature industries. The
author used ten environmental variables whereas no a priori expectations about the
likely nature of the resultant types were made. When the number and suitability
of variables are strongly tied to theory, a deductive approach is used (Ketchen and
Shook 1996, Ketchen et al. 1993). Punj and Stewart (1983) suggest to use a de-
ductive approach because cluster algorithms derive the most internally consistent
groups across all variables and thus can cause a deterioration of a solution’s valid-
ity (as mentioned in Ketchen and Shook 1996). Similar to the inductive approach
the cognitive approach avoids to make theory-based predictions. In contrast to the
inductive approach, the cognitive approach considers expert knowledge and relies
on perceptions of expert information (Ketchen and Shook 1996). As mentioned
above (see chapter 2.2.3) this thesis aims for a data driven approach, therefore the
inductive way is used. To avoid deterioration of the clustering result the influences
of the variables is determined. Only relevant variables are used in the next step
(the clustering). To achieve that, a MEM is used. One reason for choosing this
model is that no dependent variable is needed, which does not exist in this case.
Due to the inductive approach, no assumptions about dependencies or independ-
encies are made and only the location serves as input and is tested against other
(e.g. environmental) variables. The MEM tests, whether the variables are important
predictors or not (McMichael et al. 2014). Another advantage is the ability to use
presence-only data rather than presence/absence data (Elith et al. 2011). In the case
of spatial archaeology, presence data would indicate known former settlements. In
contrast, absence data would be the information about locations where definitely no
settlement existed. Due to the lack of absence data in many datasets and in order
to provide a method which can easily be applied to other study areas presence-only
data serves as input data. Another advantage is the ability to provide reasonable
results even when dealing with small sample sizes or biased samples (McMichael
et al. 2014, Phillips et al. 2006). Additionally it can utilize continuous as well as
categorical data (Phillips et al. 2006). In this thesis the software MaxEnt (Version
3.3, https://www.cs.princeton.edu/ schapire/maxent/) is used which was developed
for species distribution analysis.

Whereas the concept of maximum entropy is very old (Berger et al. 1996 stated,
that it can be traced back to Biblical times) it is only applied to real world problems
since computers are powerful enough (Berger et al. 1996). Jaynes (1957), a more
recent pioneer of the MEM stated that the maximum entropy estimate is based on
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partial knowledge.

...the fact that a certain probability distribution maximizes entropy
subject to certain constraints representing our incomplete information,
is the fundamental property which justifies use of that distribution for
inference; it agrees with everything that is known, but carefully avoids
assuming anything that is not known. (Jaynes 1991, p. 1)

It is a commonly used predictive modelling technique in machine learning (espe-
cially in natural language processing), image reconstruction, signal processing or
statistical physics and is one of the most popular tools in species distribution mod-
elling approaches (Merow et al. 2013, Elith et al. 2011, Franklin 2009, Phillips and
Dudík 2008, Elith et al. 2006, Phillips et al. 2006, 2004, Berger et al. 1996).

Maximum Entropy Modelling aims for estimating a target probability distribution
by identifying the probability distribution of maximum entropy (Phillips et al. 2006).
Berger et al. (1996) explained the method using the example of automatically trans-
lating a word from English to French. The author aims to model the decisions of an
expert translator concerning the English word in. Lets assume, that the translator al-
ways used one of the following five french words (dans,en,à,au cours de,pendant).
The probability model π assigns an estimate π(x) for each word x in a finite set X

(in terms of spatial analysis x is usually a finite number of points in a study area) so
that it is constrained as follows:

π(dans)+π(en)+π(à)+π(au cours de)+π(pendant) = 1 (3.20)

This equation has an infinite number of models π , so how can either of these dis-
tributions be justified? The idea of maximum entropy modelling is to identify the
most uniform π satisfying the given constrains. To stick with the example given
above lets further assume that either dans or en are chosen 30% of the time.

π(dans)+π(en) = 3/10

π(dans)+π(en)+π(à)+π(au cours de)+π(pendant) = 1
(3.21)
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The most uniform (most evenly allocation of probabilities) model π is achieved
with the following assignments:

π(dans) = 3/20

π(en) = 3/20

π(à) = 7/30

π(au cours de) = 7/30

π(pendant) = 7/30

(3.22)

Lets further assume that the expert chooses either dans or à in half the cases. This
complicates the identification of the most uniform π which satisfies these con-
straints.

π(dans)+π(en) = 3/10

π(dans)+π(en)+π(à)+π(au cours de)+π(pendant) = 1

π(dans)+π() = 1/2

(3.23)

That leads to the main question, what is the best approximation when modelling
an unknown probability (Phillips et al. 2006)? Jaynes (1957) stated that the best
distribution is the one which satisfies any constraints that one is aware of and has
the maximum entropy. The entropy H(π̂) (where π̂ is the approximation of π) is
defined as follows:

H(π̂) =−∑
x∈X

π̂(x)lnπ̂(x) (3.24)

The resulting entropy is non-negative and its maximum is the natural logarithm
of all x ∈ X . Shannon (1948) stated that entropy measures the choice which is
involved in the selection of an event. The more choices the higher the entropy
of the involved distribution (which means that it is less constrained). Therefore a
maximum entropy is achieved by applying the approximate probability distribution
π̂ with no unfounded constraints (Elith et al. 2011, Phillips et al. 2006). A constraint
is defined by k features f and can be defined as follows:

f ( j) =

1 tranlated to en and April follows in

0 otherwise
(3.25)

where 1≤ j ≤ k

π̂( f ) = π( f ) (3.26)

where π̂( f ) describes the expected probability value whereas π( f ) describes the
observed probability value with regard to the constraint. The equation 3.26 determ-
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Primal Dual
problem argmaxp∈P	  H(p) argmaxλ	  Ψ(λ)
description maximum	  entropy maximum	  likelihood
type	  of	  search constrained	  optimization unconstrained	  optimization
search	  domain p∈P real-‐valued	  verctors	  {λ1,λ2,...}
solution p* λ*

Kuhn-‐Tucker	  theorem:	  p*	  =	  Pλ*

Table 3.2: The duality of maximum entropy and maximum likelihood (adapted from
Berger et al. 1996)

ines that the constraints of the expected distribution need to match the observed
distribution. In terms of maximum entropy it is recommended to use p∗ which is
defined as follows (e.g. Ratnaparkhi 1998, 1997, Berger et al. 1996):

p∗ = argmaxp∈P(H(π̂))

P = {π̂|π̂( f ) = π( f ), j = {1...k}}
(3.27)

This constrained optimization problem find p∗ ∈ P which maximizes H(π̂) can be
solved using the mathematical theory of convex duality (Della Pietra et al. 1997).
The main idea is that π̂ can alternatively be described, considering all probability
distributions of the form

qλ (x) =
eλ∗ f (x)

Zλ

(3.28)

with:
λ as vector of n real-valued feature weights (on other words a Lagrange multiplier
λi is assigned to each feature fi) ,
f as vector of all k features
Zλ as normalizing constant so that qλ sums to 1 (Phillips et al. 2006).

The convex duality shows that these so called Gibbs distributions (which maximize
the likelihood) are equal to the maximum entropy probability distribution π̂ (see
also table 3.2).

This duality is appealing, since p∗ as a maximum likelihood model,
will fit the data as closely as possible, while as a MEM, will not assume
facts beyond those in the constraints. (Ratnaparkhi 1997, p. 8)

Therefore the MEM is solved by determining the distribution qλ which maximizes
the likelihood of the sample points (Berger et al. 1996). To calculate the optimal
parameter values λi for each feature fi, an iterative scaling algorithm (of Darroch
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Figure 3.20: Decreasing number of possible models p∗ by using a nested sequence
of subsets C(S1)⊃C(S2)⊃C(S3) which delimits the initial set P cor-
responding to an increasing set S1 ⊂ S2 ⊂ S3 (Berger et al. 1996)

and Ratcliff (Darroch and Ratcliff 1972)) is used which is tailored to the needs of
the maximum entropy problem. In order to determine the constraining features fi

a subset S containing all active features is introduced. The collection of potential
candidate features can be large and does not need to be relevant. S is defined as an
empty set /0 which is subsequently filled in an iterative process. Each step selects the
fi which maximizes the gain in the log-likelihood of the training data and is added
to S afterwards. Thus, the size of S increases with every step whereas the number
of potential models p∗ decreases (see also figure 3.20). When MEM is applied to
spatial data, the landscape of interest L can be described as background containing
all possible location l ∈ L. The features f (and thus the constraints) can be defined
as the probability density across L. Let z denote a vector of (environmental) para-
meters and y = 1 indicates presence, y = 0 indicates absence, than f1(z) describes
the probability of (environmental) conditions across L. In order to derive the feature
functions, either linear or nonlinear (e.g. hinge or threshold values) fitted functions
are possible (see table H.01 for a detailed description of available fitting functions
in MaxEnt). The result is a model which maximizes entropy and additionally as-
signs a variable importance to each input parameter (as shown in figure 3.21). This
allows the use of as many input variables as possible in the beginning but minimizes
the deterioration of the following cluster analysis.
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Figure 3.21: Partial dependence plots showing the marginal response to four vari-
ables (with the assigned variable importance below each graph) (Elith
et al. 2011)

3.2.3 (Spatial) Clustering

Do not forget that clusters are, in large part, on the eye of the be-
holder. (Estivill-Castro 2002, p. 65)

It is a common assumption among archaeologist that settlements of the same culture
serve different functionalities.

It is a common observation that there are fewer larger places than
smaller ones in a region and that the larger centres provide a greater
number and variety of goods than the small places do (Garner 1967, p.
322)

Observations of Bronze Age settlements underline this assumption. Bronze Age
hillforts are supposed to represent the highest hierarchy of settlement types for
that time (Stanc̆ic̆ and Kvamme 1999). Dalton (1969) presented a model of socio-
economic transactions which is based on the hierarchical idea of settlement con-
cepts (see also figure 3.22). Struever and Houart (1972) tried to derive a multi-
scaled interaction between Illinois Middle Woodland sites. Different settlement
types were built which represent the interaction range (from intra-local to inter-
regional interaction) as can be seen in figure 3.23. Another example was provided
by Chang (1972) (see also figure 2.4) and chapter 2.2.1) who showed, that the hier-
archical structure and functionalities can be very complex. The Central Place The-
ory (Christaller 1933) and other theories which seek to explain human settlement
patterns also expect various functionalities and settlement types. It is for this reason
that one premise of this thesis is the existence of at least two different settlement
types. Other studies made use of different building types (e.g. hillforts) in order
to distinguish between settlement functions, but this information is not necessarily
given in an archaeological record. As mentioned in chapter 2.2, the location of a
settlement itself is an important information.
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Figure 3.22: Socio-economic transactions in the primitive economy within a cent-
ralised political system (Dalton 1969)

Sites in unexpected locations, or having distinctive archaeological
features and catchments compared to other sites in similar locations,
might indicate use for purposes other than subsistence – for defence,
for the procurement of valuable raw materials, for the control of trade
routes or markets, for social aggregation or for ceremonial and ritual.
(Renfrew and Bahn 2005, p. 173f.)

Thus, another approach needs to be developed, which allows the identification of
settlement types (or at least the distinction of such). The cluster analysis is a prom-
ising approach in order to find similarities in a given dataset and group similar
objects, whereby each object is assigned to exactly one group. In this case, the
environmental properties of the locations are compared in the cluster analysis and
locations similar environmental conditions are grouped together. If the methods
described in the chapter above (chapter 3.2.1) indicate a clustered pattern, further
analysis can be done in order to gain detailed information about the clusters. The
clustering process is unsupervised which makes it a commonly used technique for
data mining approaches (Han et al. 2001). The aim is to group objects into clusters,
so that the properties of objects within one cluster have a high similarity whereas
the objects in other clusters are dissimilar (Bahrenberg et al. 2003, Han et al. 2001).
Thus, a cluster analysis would allow to identify the different settlement function-
alities based on the given input variables. Each entity (in this case settlement) is
assigned to exactly one cluster (Bahrenberg et al. 2003). Cluster analysis differs
from classification analysis which uses a predefined number of groups (Rencher
and Christensen 2012). The use of thresholds is one possibility in classification
analysis to subdivide the objects into different classes. Cluster analysis is an induct-
ive approach which searches for similar properties of the (multivariate) observations
without knowing the number of groups in advance (Rencher and Christensen 2012,
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Figure 3.23: A hierarchy of interaction networks illustrated by specific Illinois
Middle Woodland sites believed to exemplify the various settlement
types involved (Struever and Houart 1972)
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Bahrenberg et al. 2003). With regard to excavation sites, this concept can be used
to identify groups of former settlements with similar (environmental) surroundings.
The input data matrix can be written as follows:

Y =



y1
1 y1

2 y1
3 . . y1

i . . y1
n

y2
1 y2

2 y2
3 . . y2

i . . y2
n

y3
1 y3

2 y3
3 . . y3

i . . y3
n

.

.

y j
1 y j

2 y j
3 . . y j

i . . y j
n

.

.

yp
1 yp

2 yp
3 . . yp

i . . yp
n


, (3.29)

where yi is an observation and y j the used variable (e.g. the distance to some-
thing). The aim is to cluster n rows into g clusters whereas g is not previously
known (Rencher and Christensen 2012). A high number of different clustering
methods exists and cluster analysis functions as an umbrella term for all the dif-
ferent approaches (Estivill-Castro and Yang 2000). The various algorithms differ
in the sensitivity to small perturbations, the sensitiveness towards the order of the
data, and the definition of similarity between clusters (Meilă 2007, Wagner and
Wagner 2007, Bahrenberg et al. 2003). The similarity of objects (the cluster model)
is often based on some kind of distance measure – which is not necessarily an eu-
clidean distance measure. Other clustering techniques use cluster centroids as a
basis – and try to minimize the mean distance of the objects to the cluster center
–, compare the within and between-cluster variability or use the correlation of vari-
ables (Rencher and Christensen 2012). Several factors should be considered when
it comes to choosing the cluster algorithm, such as the application goal, the charac-
teristic of the data, or the tradeoff between quality and speed (Han et al. 2001). Two
common approaches are the hierarchical clustering and partitioning (Rencher and
Christensen 2012, Manly 2004), Han et al. (2001) additionally mentioned density
based methods, grid based methods, and constrained based cluster analysis. Hier-
archical clustering can be subdivided into bottom-up (sometimes also referred to
as agglomerative) and top-down (sometimes also referred to as divisive) methods
which differ in the starting situation. It either starts with n clusters (meaning, each
observation is a cluster of its own) and ends up with all entities being in one cluster
(bottom-up), or all objects initially belong to one cluster and are further divided
(top-down) (Rokach and Maimon 2005). A similarity measure is needed in order
to detect the most similar clusters (thus the two clusters which are merged to one
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cluster in a next step). Three different measures are common, namely the single
linkage, the complete linkage, and the average linkage clustering (Rokach and Mai-
mon 2005, Bahrenberg et al. 2003, Jain et al. 1999). The single linkage clustering
uses a pairwise comparison of objects and uses the minimum distance of any ob-
ject of one cluster and any object of the other cluster to determine the distance of
clusters.

dCr,Cs = Min{d jk, j ∈Cr,k ∈Cs} (3.30)

with:
Cr and Cs as two clusters
dCr,Cs as the distance between the two clusters

The complete linkage clustering is similar to the single linkage clustering but uses
the maximum instead of the minimum distance between the objects.

dCr,Cs = Max{d jk, j ∈Cr,k ∈Cs} (3.31)

The average linkage clustering uses the average distance between all objects of one
cluster and all objects of the other cluster (Rokach and Maimon 2005, Bahrenberg
et al. 2003).

dCr,Cs =
1
nr
∗ 1

ns
∑

j∈Cr
∑

k∈Cs
d jk (3.32)

The single linkage clustering is the so called chaining effect, which results in few
relatively large (in comparison to the total number of objects) clusters. The average
linkage clustering tends to split elongated clusters and merge neighbouring elong-
ated clusters (Rokach and Maimon 2005). More compact clusters are derived when
the complete linkage clustering is used. Rencher and Christensen (2012) also men-
tions other approaches such as the centroid clustering, median clustering, Ward’s
method, and flexible beta method. Typically, the result is a dendrogram (see figure
3.24) where the built clusters and its containing objects can be seen for each step
(Rencher and Christensen 2012, Manly 2004, Han et al. 2001, Tryfos 1998). By
cutting the dendrogram at the desired similarity level, the clustering result is ob-
tained. The advantage of the hierarchical clustering approach is the result is not
one partition of g clusters but multiple nested partitions. Disadvantaged are the
computing costs and the disability of back-tracking (Rokach and Maimon 2005).
In contrast, partitioning arbitrarily chooses g centres or starts with an initial parti-
tioning and reallocates the observations based on some optimality criterion Rencher
and Christensen (2012). The most popular clustering algorithm which is based on
partitioning is the k-means clustering algorithm (Rokach and Maimon 2005). Be-
sides the input data (sometimes referred to as feature vectors) the number of clusters
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Figure 3.24: Example of a dendrogram as a result of a hierarchical clustering pro-
cess. It shows the first six observations of a city crime dataset. Single
linkage clustering is used. (Rencher and Christensen 2012)

(referred to as k in this case) needs to be given. In an initial step, a random solu-
tion as vectors of means is created. The input data needs to be assigned to one of
the k clusters based on a distance measure. This allocation can be used to compute
new cluster centres based on the mean of all objects belonging to that cluster (the
midpoint). These steps are repeated as long as the result improves (Rokach and
Maimon 2005). The k-means algorithm is very fast and thus can be applied to large
databases, but has some disadvantages, e.g. the sensitivity towards outliers (Han
et al. 2001, Estivill-Castro and Yang 2000). That is why alternative partitioning
algorithms such as the expectation maximization algorithm (uses a probability dis-
tribtution) or the k-medoids methods (uses the medoids instead of the mean) were
developed (Han et al. 2001).

Whereas most clustering algorithms are based on the distance between objects, the
density based methods use density estimators. Regions of high density are separ-
ated from those of low density which is useful in the case of noise filtering (Rencher
and Christensen 2012). Additionally, the identification of arbitrary-shaped clusters
is possible with this approach (Rokach and Maimon 2005, Han et al. 2001).

The efficiency of density based methods is related to the number of dimensions. To
enhance the efficiency, the space can be transferred into a grid structure. This res-
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ults in a fast processing time which is usually independent of the number of objects.
These so called grid based methods only depend on the grid size (the number of
cells) in each dimension (Han et al. 2001).

In order to factor in spatial constraints (such as mountains or rivers), constrained
based methods were developed (Han et al. 2001). This is only a small excerpt of
existing clustering approaches, whereas partitioning and hierarchical clustering are
commonly used approaches (Rencher and Christensen 2012). Based on the nature
of the input data, the input for a specific algorithm, and the size of the input dataset
an appropriate approach can be chosen. Some techniques need numerical values as
input whereas others only handle categorical values. Depending on the algorithm,
varying information is required in advance, such as the number of clusters for a
k-means clustering, or the specification of distance or similarity measures.

A clustering process aims at generalizing the dataset based on similarities. In other
terms, the grouping of all objects into one single cluster is the complete general-
ization of the input data – which is usually not required. Thus, the selection of an
optimal number of clusters (the resolution of generalization) is an important task
in terms of cluster analysis (Bahrenberg et al. 2003). The aim is to determine the
value for g which fits the data best (Rencher and Christensen 2012). A rule of thumb
which can be used with hierarchical as well as partitioning methods is the following
(Mardia et al. 1979):

g =

√
n
2

(3.33)

Another common approach is the so called elbow method which uses the percent-
age of variance explained by a cluster solution. If the additional cluster does not
noticeably increase the variance value, the number of clusters should not be in-
creased. This point can easily be identified when plotting the percentage of variance
explained against the number of clusters. The percentage of variance explained
is defined as the ratio between-group variance to the total variance (Rencher and
Christensen 2012). However, this point is can not always be unambiguously iden-
tified (Ketchen and Shook 1996). Other possible methods use the information cri-
teria, such as Akaike information criterion (AIC), Bayesian information criterion
(BIC), or the Deviance information criterion (DIC), which can compare the res-
ults of different clustering outputs in order to determine the optimal value g. In a
stepwise clustering approach, such as the hierarchical methods, the distances (or
similarities) between a cluster can be useful measures. Mojena (1977) presented a
formalization:

a j > ā+ ksa,J = 1,2, ...,n (3.34)
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where:
a1,a2, ...,an are the distance values for stages with n,n−1, ...,1 clusters,
ā is the mean of the a’s,
sa is the standard deviation of the a’s,
k is a constant.

A k-value between 2.75 and 3.5 is recommended by the author, whereas Milligan
and Cooper (1985) suggested a value of 1.25. Another possibility is the use of
a partitioning around medoids clustering, which estimates the number of clusters
by optimum average silhouette width. The clustering technique is similar to the
k-means clustering (it also is a partitional algorithm) but in contrast to k-means
medoids instead of centroids are used. It determines the optimal cluster number
based on silhouettes (Kaufman and Rousseeuw 1990).

Several other approaches exist (e.g. Calinsky criterion or Affinity propagation)
which are not explained in greater detail. Bahrenberg et al. (2003) recommends
to use more than one approach in order to find the best compromise between in-
formation loss and generalization.

A non-hierarchical clustering approach (k-means) is used in this thesis. The k-
means algorithm is used because it is efficient in terms of computing time (Rokach
and Maimon 2005). The aim is to develop an approach for determining settle-
ment functions which is applicable to various kind of datasets. This implies data
on a small scale as well as huge areas. Additionally the input variables should be
interchangeable and of varying quantity, thus it needs to be a data driven work-
flow with only very limited user interaction. Whereas the latter condition is not
hard to achieve (the clustering does not have any limitations in the number of input
variables), the former can be a bigger challenge. In a first attempt the measured
distance values are used as input for the cluster analysis. Regardless of the clus-
tering method (hierarchical or partitioning) some excavation site are separated into
different clusters although the same settlement type can be assumed. That happens
due to environmental variables in greater distance which still influence the cluster-
ing result even if they are several hundred kilometres apart. As shown in figure
3.25 the excavation sites close to the whitewater lake are assigned to two different
clusters, namely cluster 1 and cluster 6. The same happens with the excavation sites
close to the blackwater lakes where either cluster 2 or cluster 6 is chosen. Obvi-
ously other, more distant environmental parameters are influencing the result. The
number of variables – which equals the number of influencing parameters in this
study – can have influence on the processing time (Modenesi et al. 2007). Due to
that reason, the initial aim was to reduce the number of variables using a principle
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Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and
the GIS User Community
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Figure 3.25: Excerpt of the Konduri clustering result if raw distance values are used

component analysis (PCA). PCA is a technique which allows the reduction of vari-
ables. It transforms the variables into a smaller set of uncorrelated variables, the
so called principle components (Kabacoff 2011, Bahrenberg et al. 2003). The prin-
ciple components are derived by identifying the line through the data set which has
the largest possible variance, and thus accounts for as much variability as possible,
whereas the lines have to be orthogonal to the previous components. This makes the
PCA an orthogonal linear transformation which derives a new coordinate system in
which the data is transformed (see figure 3.26 for a better understanding). Besides
the decrease of input variables the PCA also reduces potentially correlated variables
to solely uncorrelated variables (Kabacoff (2011). The resulting principle compon-
ents are used as input for the cluster analysis. The problem is, that the reduction of
variables can lead to an unintentional split into two or more clusters. The excava-
tion sites which are far away from any bigger water source (in the western part of
figure 3.27) are divided into two clusters. The input data for the PCA were only the
distances towards water sources (not all the considered environmental variables),
thus a common cluster for all distant locations would be expected. By rescaling the
raw distance measures, the influence of distant environmental parameters can be
limited. The distance measures were rescaled by applying the following equation

distrescaled = 1/dist ∗ x (3.35)
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Figure 3.26: Dimensions can be reduced using PCA. As can be seen on the right,
there is almost no loss of information if only the first principle com-
ponents is used in further analysis. (Powell and Lehe 2015)

Figure 3.27: Excerpt of the Konduri clustering result if a PCA is applied
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Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and
the GIS User Community
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Figure 3.28: Excerpt of the Konduri clustering result if distance measures are res-
caled. A value of x = 1.5 is used.

where x is a coefficient which can be varied.

The difficulty was to determine an appropriate value for x. By using a small value
the same problems occur as with the raw distance values. If a too high value is
chosen, the difference of only a few metres led to a different cluster solution. An-
other disadvantage is that this attempt needs a (possibly subjective) interpretation
of the clustering result in order to determine the b̈estc̈oefficient value x. The fig-
ures 3.28 and 3.29 are created using the equation 3.35 whereas figure 3.28 uses s
coefficient of x = 1.5 and the figure 3.29 uses x = 0.5. As can be seen, the result
is highly dependant on the coefficient. While a coefficient of 1.5 leads to a cluster
result where almost all excavation sites are summarized in one cluster (83 of 88
findings are assigned to cluster 3), the coefficient of 0.5 produces different results.
The excavation sites in figure 3.30 are all within a 350 metres distance to the black-
water lake and are seemingly assigned to the same cluster, but are actually assigned
to three different clusters. Whereas the excavation site of cluster 7 is within 30
metres of the lake, the excavation sites of cluster 5 are up to 300 metres away. The
excavation site which is assigned to cluster 6 is about 350 metres away from the
lake. It is probably possible to find an optimal value x but it needs to be determined
for each selection of excavation sites. In order to develop a data driven approach
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Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and
the GIS User Community
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Figure 3.29: Excerpt of the Konduri clustering result if distance measures are res-
caled. A value of x = 0.5 is used.

neither principle components nor rescaled values can be used.

One premise in this thesis is that the influence of resources have influence on the
functional settlement pattern analysis and that the differences in resource availabil-
ity refer to different settlement functionality. If the resource r1 is needed at all the
settlements but is only available near settlement S1 it can be assumed, that settle-
ment S1 supplied that specific resource r1 and has some kind of trading functional-
ity. Clustering settlement locations and their surrounding (not necessarily environ-
mental) resources can cause problems due to the influence of distant resources. The
assumption is that several settlements of the same culture are dispersed along two
rivers, whereas the one river is full of fish and the other is not and all other influ-
ences are the same across the study area (as can be seen in figure 3.31 on the left).
If a common – and it does not matter if a partitioning or hierarchical – clustering
method is used, the three agglomerations are separated into three clusters (in this
case indicated by the colours green, orange and gray as can be seen in figure 3.31
on the right). This result might be satisfying if different agglomerations are to be
identified. In order to derive the different settlement types the surrounding paramet-
ers are relevant, thus should be grouped into one cluster. In the example of figure
3.31 the scale is important for the assessment of the result. If the river in the south
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Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and
the GIS User Community
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Figure 3.30: Excerpt of the Konduri clustering result if distance measures are res-
caled. A value of x = 0.5 is used. Problem of sensitivity towards small
variances in distance.
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Figure 3.31: Problem of clustering analysis in the case of functional settlement pat-
tern analysis. The left picture indicates possible settlement of one spe-
cific culture, the right a possible clustering result.

is within a certain threshold distance and can therefore be seen as food source for
all settlements, the river should be considered in the clustering. At a smaller scale
this might not be the case. A river which is 100 kilometres away probably had no
influence in the settlement decision and thus should not influence the clustering res-
ult. It can be assumed that only the resources which were n̈earẗo the settlement were
relevant, whereas the meaning of near can vary according to the resource (see also
chapter 2.2.2). In order to avoid the unintentional influences of parameters, a max-
imum distance value maxnear is used which determines whether a resource is near
or not. Thus the aim is to cluster excavation site specific surroundings. This means
that everything between the settlement and the maximum distance is considered to
be near. But how exactly can nearness be defined and does the perception of near-
ness vary according to the resource or the abilities of a culture? It is assumed that
different needs and capabilities lead to different distance values why this value can
be individually set for each parameter. As mentioned above (see e.g. chapter 2.2.2
research about cultures and their willingness to overcome distances exists. Never-
theless, it is a very complicated and sometimes impossible task to determine which
maxnear to use. Due to this the methodology can be applied various times in order
to calculate different scenarios. It is further assumed that the distance varies accord-
ing to the resource as well as the settling culture. Due to the lack of information
about the maxnear values an inner and outer boundary (maxnearouter and maxnearinner)
of maxnear values is used. This allows a range of maxnear values rather than just
one single value. The methodology also allows to set these values individually for
each culture. This allows the assignment of varying maxnearouter and maxnearinner

values for the same location but different settlement periods (also see table 3.3).
These boundary values now determine whether a resource ri within a specific dis-
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Table 3.3: Table which defines the inner and outer boundary values maxnearouter and
maxnearinner for the clustering analysis. The field culture_id_fk determines
the culture for which the values are set.

tance should be considered in the cluster analysis for this settlement. One example
is given in figure 3.32 where maxnearouter and maxnearinner are symbolized with two
different buffer sizes. If maxnearinner is chosen as maximum distance, only the river
close to the settlement is considered in the cluster analysis. In contrast to that, the
second river (which is rich in fish) is factored in if maxnearouter is used. Based on the
used values the results of the cluster analysis vary. A boolean value serves as input
for the cluster algorithm, the measured distance is either near (within 0 and maxnear)
or not ( > maxnear). In order to derive the most likely clustering solution maxnearouter

and maxnearinner are used as approximate values. A high number of clustering ana-
lyses (e.g. 1000 times) is performed using a random value between maxnearouter and
maxnearinner for each parameter (and settlement and culture if specified). Several
cluster comparison methods exists, but can vary according to the focus of the com-
parison. Asymmetric measures are used if clustering results should be compared
in relation to an optimal clustering solution (e.g. the Meila-Heckermann-Measure
(Meilă and Heckerman 2001)). The Fowlkes-Malows Index (Fowlkes and Mallows
1983) or the adjusted Rand Index (Hubert and Arabie 1985, Rand 1971) compare
a cluster solution to its expected value under the null hypothesis. Strong assump-
tions are made for the null hypothesis – such as the fixed number of cluster sizes –
which can be violated if compared with the result of a clustering algorithm (Wagner
and Wagner 2007). In this case, the consensus clustering approach is used, which
does not return one similarity value but rather information about quality measure for
each item and cluster. Consensus clustering was initially invented by Monti et al.
(2003) to unsupervised estimate the number of classes. Regardless of the used clus-
tering algorithm consensus clustering allows the comparison of several clustering
runs (Wilkerson and Hayes 2010). It is based on a consensus matrix mcons which
stores,
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Figure 3.32: Based on the inner and outer boundaries maxnearouter and maxnearinner ,
the river in the south is factored in or not

for each pair of items, the proportion of clustering runs in which two
items are clustered together. (Monti et al. 2003)

The matrix mcons is a N ∗N matrix, whereas N represents the number of items
in a dataset and is based on the average of all connectivity matrices mconn. Each
connectivity matrices mconn represents the result of one clustering run and is defined
as follows:

mh
conn(i, j) =

1 if items i and j belong to the same cluster,

0 otherwise.
(3.36)

where:
h h-th cluster run,
i and j two items (settlements in this case).

An additional indicator matrix mindi – which is also a N ∗N matrix – is used to
properly normalize the values of the connectivity matrices mconn. It is defined as
follows:

mh
indi(i, j) =

1 if both items i and j are present in the Dataset Dh,

0 otherwise.
(3.37)
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Figure 3.33: Visualization of mcons combining a dendrogram and color coded values
of mcons with two (on the left) respectively three (on the right) clusters.
A value closer to one (dark blue) indicates that this entry (i, j) is often
grouped in the same cluster. The colors below the dendogram show
the cluster membership. (Wilkerson and Hayes 2010)

whereas Dh is the used dataset in the h-th run. The indicator matrix mindi is im-
portant if not all items of one dataset are included in all cluster runs. Based on the
matrices mconn and mindi the consensus matrix mcons can be calculated.

mcons =

∑
h

mh
conn(i, j)

∑
h

mh
indi(i, j)

(3.38)

That means that the entry (i, j) in the consensus matrix mcons counts how often i
and j are clustered together and divides the value by the total number of times both
are selected (Monti et al. 2003). The term consensus index refers to the entry (i, j)

in mcons. To facilitate the analysis of the consensus clustering process, the entries
in mcons can be arranged so that the items of one cluster are adjacent to each other
(see also figure 3.33). More generally spoken, the result is good if non-overlapping
blocks of value one (always together in the same cluster) are surrounded by zeros
(never together in one cluster). In the case of a singleton clustering (a clustering
where the number of clusters equals the number of items) would – based on the
definition above – also be considered to be a good clustering solution, which is
usually not the desired result since one aim of clustering is to reduce the number of
variables. Two additional values help to assess the clustering result, namely the item
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Figure 3.34: Visualization of the item consensus values for two (on the top) respect-
ively three (on the bottom) clusters. The coloured asterisks indicate the
associated consensus cluster. (Wilkerson and Hayes 2010)

consensus value and the cluster consensus value. The former is the average value
(also referred to as consensus value) between an item and members of a cluster
(also referred to as consensus cluster). This allows to determine the cluster with the
highest value (and thus are highly representative for a cluster), as well as identify-
ing items which have mixed cluster association (see also figure 3.34). In contrast,
the cluster consensus value is defined by the average pairwise item consensus of
items in a consensus cluster. This allows to assess the impact of a new clusters
on the cluster consensus values of existing clusters (Wilkerson and Hayes 2010).
Due to these values consensus clustering allows to validate the clustering results
and gain confidence about the significance of them. The consensus clustering is
adapted in order to compare the results of the many cluster analyses of the settle-
ments. Thus mconn counts the pairwise clustered items for all cluster runs (and not
different cluster numbers) and is normalized using mindi. This allows to identify the
clustering solution with the highest consensus for all settlements. This clustering
solution with the highest consensus value can then be used in order to determine
approximate settlement type related nearness values.

3.2.4 Territorial Analysis

Site catchment as well as territorial analysis are the two archaeological concepts
in order to identify former areas of influence (see chapter 2.2.2). Site catchment
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Figure 3.35: Comparison of different cluster runs using the cluster consensus value
(Wilkerson and Hayes 2010)

analysis is an empirical approach which is based on the findings whereas territorial
analysis is a theory driven approach (Renfrew and Bahn 2005). Site catchment
analysis needs more detailed information about the excavation sites and the avail-
ability of resources, which are not existent for each data set. One major goal of
this research is to maximize the number of usable datasets (by limiting the needed
information) and to minimize expert interaction (by using statistical methods rather
than expert knowledge). It is for that reason that a territorial analysis rather than a
site catchment analysis is performed.

Common GIS packages will offer at least two basic tools useful in
territorial modeling: geometric partitioning using Voronoi diagrams
and the calculation of cost surfaces. These are the basic tools for cre-
ating territorial GIS models from the ground up. (Ducke and Kroefges
2007, p. 247)

In the case of functional settlement pattern analysis modelling geometric partition-
ing methods have some disadvantages, especially when working with incomplete
datasets (see also chapter 2.2.2). Therefore a cost surface modelling approach is
used which better matches the needs. Various approaches for creating a cost surface
exist. A commonly used approach is to simply use the slope and derive the cost
attribute based on time (e.g. based on the walking speed which is influenced by
the slope) (e.g. de Smith 2006, De Silva and Pizziolo 2001, Van Leusen 1999). A
more advanced approach is to implement a transportation network in order to derive
the accessibility (e.g. Ueberschär 2013, Delamater et al. 2012, Huerta Munoz and
Källestâl 2012, Schuurman et al. 2006, Tanser et al. 2006). As mentioned before, it
is assumed that some resources were more important than others and people were
more likely to overcome greater distances for these specific resources than for oth-
ers. That means that the cost surface methods given above are not sufficient and
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other – more complicated – techniques need to be used. In this case, the cost sur-
face that should be based on the influence of such resources in combination with
a distance measure rather than only on walking distances (or other cost attributes).
Multi-criteria evaluation (MCE) (sometimes also referred to as multi-criteria ana-
lysis) techniques can be used in order to derive such a suitability surface (Carver
1991). The idea is to combine multiple criteria in order to identify a suitable solu-
tion (Janssen and Rietveld 1990). In terms of spatial analysis this approach allows
to classify suitable areas based on the input parameters (criteria). The different
input parameters are used as (weighted) overlays and are merged (Bonham-Carter
1994). In terms of data driven (and more inductive) analysis MCE has a drawback.
Depending on the chosen merging method, it is required to assign weights or fuzzy
membership values to the input parameters. This is usually done by experts which
would be opposed to to the inductive approach. In this case another way must be
used.

Besides the importance of environmental parameters the variation of these influ-
ences based on the settlement function should be considered. Therefore the item
consensus values in combination with the related distances to the variables is used.
The distances of the relevant variables of all excavation sites are measured and as-
signed to a fuzzy membership function based on the item consensus value (as shown
in figure 3.36). A fuzzy membership function indicates the strength of a member-
ship to a set with values between 1 and 0. The strength of membership decreases
with a decreasing membership value. This means, the higher the item consensus
value, the the stronger the membership of the specific environmental variable for
that specific cluster and distance. It is assumed that the distance values increase
or remain the same with an decreasing item consensus value. Therefore multiple
buffers are assigned around each environmental parameter whereas the distance is
derived based on the fuzzy membership function. Additionally, the item consensus
value is assigned to the buffer. Based on this buffers, a suitability surface is created
for each cluster resulting in a collection of settlement function related suitability
surfaces. Those are built using the variable importance values of the MEM in com-
bination with all the settlement type related fuzzy membership functions. This is
done using map algebra (Tomlin 1991).

The suitability surfaces Sclust can then be used in order to calculate the territory of
the observed culture. In order to calculate this area, a maximum distance Distmax

needs to be set, which determines the maximum cost CDmax. The maximum dis-
tance a culture is willing to overcome in order to exploit the resources vary depend-
ing on the analysed culture (as described in chapter 2.2.2). The Distmax value is de-
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Figure 3.36: Applying item consensus values to the excavation sites based on the
settlement function and distance measures. The values indicate the
item consensus values whereas the different buffer sizes are the meas-
ured distances regarding the item consensus value.
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Figure 3.37: Left: Calculation of the cost distance value CDmax. Right: Calculation
of the territory based on the maximum cost of CDmax. (adapted from
von Groote-Bidlingmaier et al. 2014a,b)

termined by the maximum distance towards an influencing environmental variable.
In order to determine the maximum cost value CDmax and calculate the territory, the
following steps have to be performed:

1. Buffering each excavation site with its maximum distance value Distmax.

2. Calculating the least cost path between the excavation site and the outline of
the buffer.

3. Get the maximum least cost path value of all excavation sites for the specific
cluster. The resulting maximum accumulated least cost path value equals the
value CDmax (as shown in figure 3.37).

4. Creating the territories based on the cost surface Sclust . Therefore the cumu-
lative cost value CDmax is used as maximum cost value.

5. Merging the results to represent the (sometimes connected) territories of a
culture.
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4 Case Study – Gaining Knowledge

Based on the Environment

4.1 The Amazon Basin and its Environment

The largest socio-geographic division in Brazil is the Amazônia Legal which con-
tains nine states. Besides the seven states of the North Region (namely Acre,
Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins) it also covers parts
of Mato Grosso and Maranhão. The division contains all states of the Brazilian
part of the Amazon basin. Its main characteristic are the tropical climate (hot and
humid) and vegetation types, i.e. the tropical rain forest. The Amazon basin is
bordered by the Brazilian Highlands (in the south), the Guiana Highlands (in the
north) and the Andes (in the west) (Sioli 1983). Tertiary sediments of the Amazon
sink cover the area in between these two shields. The geological history leads to an
unequal distribution of stones.

Due to the region’s heavy rainfall some areas are regularly flooded in the rainy
season. The Amazon river has shallow banks and its riverbed is located within
an alluvial plain (várzea) which is usually completely flooded in the rainy season
(Meggers 1984). Three different river types can be distinguished in the Amazon
basin, namely the whitewater, clearwater and blackwater river types. Due to differ-
ences in the chemical composition, based on the different headwaters, these types
differ in the availability of food (because of the different availability of nutrients).
The whitewater rivers, basically the Amazon river and some tributaries, are rich
in nutrients whereas the clear- and blackwater rivers are nutrient-poor. Although
differences between clear- and blackwater rivers exists, those two types are often
treated equally (e.g. Heckenberger and Neves (2009) only distinguishes between
white and clearwater river systems). A similar distinction is used within the scope
of this research.

The Amazon region has two different landscape types, várzea and terra firme. Meg-
gers (1984) stated, that the terra firme consists of all land between the rivers and
covers about 98% of the Amazon. Most of the terra firme is covered with tropical
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rain forest and is not exposed to the changes in water level (Sioli 1983).

4.2 Archaeological Model – Expected Settlement

Patterns of the Observed Cultures

Archaeological research, as well as every scientific discipline, is based
on the dual intellectual process of observation and description. It is
through observation and integration into models that human knowledge
is developed.(Deravignone and Macchi Jánica 2006a, p. 121)

As mentioned in chapter 2.2 the environmental parameters used in archaeological
settlement pattern studies vary. The focus usually is on parameters which are re-
lated to food availability and production capacity. Table I tries to categorize these
parameters based on previous archaeological settlement pattern studies. Some pub-
lications do not specify the variables in detail which made classification difficult
(e.g. climate can be measured in various ways and cannot be described in one vari-
able). Based on the commonly used variables and in agreement with Klaus Hilbert
the following parameters are chosen:

• white water rivers,

• black water rivers,

• tributaries,

• white water lakes,

• black water lakes,

• waterfalls,

• difference in altitude to closest river,

• slope,

• precipitation,

• vegetation type,

• relief type,

• soil condition and

• soil type.
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Whereas the last items are quite common in other analysis, the various water types
were used in order to see if there is a difference in the functional settlement pattern
according to the water type. The assumed importance of rivers in the Amazon is un-
derlined by two drawings published by Koch-Grünberg (1923) which depicts rivers
and its tributaries drawn by two Indians. Both maps show a detailed overview of
the river networks and indicate that the knowledge about the network is important.

As mentioned above, white water is rich in food and thus is assumed to be more at-
tractive. Lakes usually have a higher availability of food. Additionally they provide
protection because they are usually not visible from the main river network. An-
other reason is the importance of rivers for transportation and connectivity. Even
though some settlements were connected by paths which were used for generations
(Nimuendaju 1952, Koch-Grünberg 1923) the river network was used as a trans-
portation route (e.g. Denevan 1996, Koch-Grünberg 1923). Settlements usually
were located next to the main channels or at least close to rivers which were con-
nected to the main channel (Denevan 1996). In order to consider these differences
in settlement location selection, the distance to tributaries is a separate variable. The
waterfalls are important due to the availability of stones which are not ubiquitous
in the Amazon. Long journeys were necessary to get to the waterfalls (they are
located at the bounding Guiana and Brazilian highlands) (Hilbert 1977). Various
authors assumed (e.g. Denevan 1996, Koch-Grünberg 1923) that the excavation
sites are located on the bluff zones adjacent to the river. Thus, the altitude between
the excavation site and its closest river is important.

Most of the data is provided by the Instituto Brasileiro de Geografia e Estatística
(IBGE). The waterfalls were located manually using aerial images because IBGE
does not provide the data. The slope is derived using a digital elevation model
(DEM) , which is based on SRTM (Shuttle Radar Topography Mission) data. The
river network is provided by IBGE but the classification into the different categor-
ies needed to be done manually due to the absence of river type information. The
relevant water type can be seen on aerial photographs and can even sometimes be
identified based on the river name (e.g. Rio Negro). The classifications of soil type,
soil condition, temperature, precipitation, relief and vegetation are inherent in the
data – provided by IBGE – and are not changed (see figures 4.1, 4.2 and 4.3 for the
classification). Changes in the input data were made only in case of reservoirs and
dam constructions. The units Average and Indiscriminate in figure 4.3 were ori-
ginally referred to as média and indiscriminado. Média is used in case of a mainly
mixed soil condition with no predominant type. Indiscriminado is used for not pre-
cisely determined soil conditions. The original soil taxonomy is maintained but a
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Figure 4.1: Overview of used climate data in the Amazon (source IBGE (2016))
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Figure 4.2: Overview of used relief and vegetation data in the Amazon(source IBGE
(2016))
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Figure 4.3: Overview of used soil data in the Amazon (source IBGE (2016))
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reference to other taxonomies is possible (a more detailed description is given in
da Costa and Nanni 2006). The unit Complex Underground is initially referred to
as embasamentos em estilos complexos. It can be seen as bedrock in manifold, com-
plex forms. The unit Campinarana is not translated due to a missing counterpart. It
can be described as an open park like landscape with a small number of trees.

As can be seen in figure 4.1, the temperature is classified as hot with an average tem-
perature above 18 C◦year-round for all excavation sites. It can safely be assumed
that the temperature was not influencing the functional settlement pattern, therefore
this dataset can be ignored in further analysis.

As mentioned in chapter 2.2 the environmental variables do not necessarily need
to be located at the settlement itself but can be a few metres/kilometres apart. It is
important to know the resources at the settlement location as well as close to it. Due
to that, the distances to each environmental variable (except altitude, precipitation
and slope) are measured and assigned to the excavation site.

It can be assumed that different subsistence strategies led to differences in the ex-
ploitation of resources and thus afford varying environmental parameters. Due to
that, the case study uses the Konduri culture as well as the Guarita culture as an
example. One reason is a relatively high number of findings (88 findings which are
assigned to the Konduri culture and 69 finding which are assigned to the Guarita
culture). Another reason is the period of occurrence as well as the assigned tradi-
tion. Both cultures lived roughly at the same time from about 900 BP until the first
contact with the Europeans (Heckenberger and Neves 2009, Heckenberger et al.
1999), whereas Konduri is part of the Incised-Punctate tradition and Guarita is part
of the Polychrome tradition (Heckenberger 2008, Heckenberger et al. 1999, Hilbert
1968). Besides the differences in ceramic styles the spatial distribution is different.
Konduri sites are typically located at the Rio Trombetas and Rio Jamundá whereas
Guarita sites are located more to the west at the Rio Negro and Rio Madeira and
seem to cover a greater area.

4.3 Technical Setup

As mentioned in chapter 3.1.2, a database is used to store the data. In this case a
PostgreSQL database with its spatial extension PostGIS is used. The data is kept
on a server and thus avoids the use of local storage. The use of a database server
has the following advantages. The data can be accessed from every computer which
has the permission to access the server. This also means that the data can easily be
provided on a website. The usage of proprietary data formats (such as the file and
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personal geodatabase from esri) obliges the usage of a specific GIS (ArcGIS in the
case of the mentioned formats), whereas the usage of spatially enabled databases
allows the use of any GIS, if a connection to a database is supported. In the case of
PostGIS many geoprocessing functions are embedded in the database and theoretic-
ally no additional software is needed. There are two reasons why an additional GIS
software is used in combination with the database. The first reason is that no spatial
data viewer is embedded within the database – only the attributes can be seen. By
establishing a database connection in a GIS the data can be displayed. The other
reason is that some of the raster functionality is not provided in the used PostGIS
Version (PostgreSQL version 9.3.5 with the PostGIS extension version 2.1.4). Due
to that, Quantum GIS (version Ẅien2̈.8) is used as a viewer and Grass GIS is used
(version 6.4) for raster processing. The statistical analysis is done using the statistic
software R (version 2.15.1).

The whole process (which comprises all database interactions, geoprocessing as
well as the analysis of geodata) is controlled using python (see figure 4.4 for a
schematic representation). This requires a couple of python packages which extend
the functionality of the python library. The Geospatial Data Abstraction Library
(GDAL) package (version 1.11) is a python package for geospatial raster and vec-
tor data manipulation. In order to read data from an (Excel-) file the xlrd-package
(version 0.9.2) is used. The communication between python and the PostgreSQL
database (including the spatial extension PostGIS) is done with the python package
psycopg2 (version 2.4.5). The communication between python and R is done using
rpy2 (version 2.4.4). Grass GIS as well as Quantum GIS have an embedded python
library, thus those libraries are available after the installation of the software.

4.4 Finding settlement patterns – A Statistical

Analysis

One assumption in detecting settlement patterns is that various settlements of one
culture which occur simultaneously fulfil different functions (as was already men-
tioned in chapter 3.2.3). This may be due to the availability of resources, trading
relations, defence strategies, rituals, etc.

It is anticipated that one of the most important cultural variables that
can be used is the logistic position of the archaeological site itself. It
has been shown by many researchers that the position of a settlement
in a logistic network determines to a large degree its size and duration
of occupation (Verhagen et al. 2007, p. 207)
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Figure 4.4: The geoprocessing workflow. The excavation sites are stored in a Ex-
cel file and imported into a PostGIS enabled PostgreSQL database. The
geoprocessing as well as the database handling is controlled using py-
thon scripts.

Thus the environmental variables and its variations near the locations are further
analysed.

The figure 4.7 shows a boxplot of all observed excavation sites. Each environmental
variable is shown on the x-axis whereas the distance towards these environmental
variables is plotted on the y-axis. The cultures Konduri and Guarita are plotted in
two different colors. The figure 4.8 is similar to the figure 4.7 but only the environ-
mental variables within a 50 kilometres distance are depicted. The figure 4.9 differs
from the others. This figure shows two plots, namely a histogram and a boxplot of
the slope distribution as well as the altitude distribution.

Figure 4.5 shows the locations and distribution of the known Konduri settlements.
An overview of all variables and their distances to the excavation sites is given in
figure 4.7. Many of the considered variables occur only in distant areas. When look-
ing at the minimum distances a gap can be identified. Variables are either within
a 50 kilometre distance (at least a few excavation sites) or are at least 220 kilo-
metres away. Based on this 18 of the initial 42 environmental distance measures
are excluded from further analysis (see figure 4.8 for the boxplot of the selected
variables). The overview of the settlement distribution of the Guarita culture is
given in figure 4.6. The distances towards the environmental parameters is shown in
figure 4.7 and 4.8. As with the Konduri culture some variables seem to be within a
certain distance whereas the other environmental parameters are further away. The
environmental parameters within a distance of 50 kilometres are very similar to the
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Figure 4.5: Overview about the locations and distribution of the Konduri culture

Figure 4.6: Overview about the locations and distribution of the Guarita culture
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ones from the Konduri culture. A major difference is the absence of lakes close to
settlements of the Guarita culture. 25 of the initial 42 variables are used for further
analysis. Both cultures seem to prefer settlements which are located above the water
level of the rivers. Differences can be identified according to the height. Whereas
the known sites from the Guarita culture mainly are found 5 to 20 metres above
water level settlements from the Konduri culture are mainly located 15 to 30 metres
above water level. These first simple plots already allow first drawbacks about the
settlements and facilitate the comparison of various cultures. Some of the selec-
ted distance measures correlate. The figures 4.10 and 4.11 visualize the correlation
between the environmental variables. Red colors indicate a negative correlation
whereas blue colors indicate a positive correlation whereas the color intensity and
size are proportional to the correlation coefficients. Some soil types and conditions
are correlated (or negatively correlated) as well as soil types and/or conditions with
the vegetation and water/river type. Additionally some water types are correlated
(e.g. whitewater lakes are always located next to white water rivers). This is not
surprising because of the interdependencies of these variables. Vegetation depends
on the availability of water as well as on the soil and climate. The soil condition,
respectively the soil type is influenced by the availability of water as well as the
availability of nutrients.

4.4.1 Determining the importance of environmental variables

The figures above (figure 4.7 and figure 4.9) allow the elimination of some envir-
onmental parameters. In order to further identify the importance of each variable,
the MEM approach is used. All environmental parameters within 50 kilometres,
precipitation as well as the slope and altitude above water level are used as input
for the MEM. Some properties need to be set in advance before running the model.
The dataset provides a collection of presence data but does not include reliable ab-
sence information. In order to create so called pseudo absences, MaxEnt randomly
selects background samples. They are needed in order to estimate the distribution
of environmental parameters across the model extent. The extent is limited to the
extent of the excavation sites plus a 100 kilometre buffer to ensure that the back-
ground sample has the same bias like the presence locations. In case of the Guarita
culture a buffered convex hull is used to assure a coherent area. In order to test
the model variability, the model can perform replicate runs which can be compared.
This parameter is set to ten in order to determine the variability and get a more reli-
able (average over ten runs) output.

In order to evaluate the model performance, several output files are created by the
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Figure 4.10: Overview of the correlations between the distance measures (Konduri)
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Figure 4.11: Overview of the correlations between the distance measures (Guarita)
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Figure 4.12: The average omission and predicted area for the Konduri culture

MaxEnt program. The potential sample bias is analysed using the omission rate.
The graph depicts the relationship between predicted habitat suitability values and
the occurrence sample. Thus, it shows the number of locations that do not occur in a
suitable habitat. Unless the prediction is biased, the omission rate should be close to
the predicted omission, hence a 1 : 1 relationship. The figures 4.12 and 4.13 show
the omission rate for the model runs of both the Konduri and the Guarita model.
Whereas the mean omission (green line) is close to the predicted omission (black
line, which is overlaid in figure 4.12) for the Konduri model, the mean omission
is above the predicted omission for the Guarita model. The model performance
is tested using the area under the receiver operating characteristic (ROC) data – or
area under the curve (AUC) data) – value. It compares the predicted occurrences
to a random selection of points. A mean value of 0.5 indicates that the perform-
ance is not better than random whereas a mean value close to 1.0 suggest a good
model performance. This allows the comparison of multiple models (Hanley and
McNeil 1982). As shown in the figures 4.14 and 4.15 the average AUC value for the
Konduri model is 0.967 with a standard deviation of 0.018 which indicates a good
model performance whereas the performance for the Guarita model run is slightly
worse with an average AUC value of 0.931 and a standard deviation of 0.069. How
much each variable effects the model is determined using response curves. They
are derived in two different ways:

• only varying one environmental variable whereas all other environmental
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Figure 4.13: The average omission and predicted area for the Guarita culture

Figure 4.14: The graph of the ROC for the Konduri model
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Figure 4.15: The graph of the ROC for the Guarita model

variables keep their mean sample value

• creating a model using only the corresponding variable

The marginal response curves are difficult to interpret if the correlation between
variables is high. Due to the high correlation of some of the environmental vari-
ables (as shown in figures 4.10 and 4.11) the second approach is used. The response
curves show its value (in most cases the distance) of the environmental variable on
the x axis and probability of presence (logistic output) on the y axis. The results of
the first approach can be found in the appendix (figures H.16 and 4.16). Two tables
with the calculated importance weights are displayed, namely the percent contri-
bution and the permutation importance. Both provide an estimate of the relative
contribution of the environmental parameters to the model. In order to determine
the percent contribution the increase in gain is added to the contribution of the cor-
responding variable for each iteration. The permutation in contrast is determined by
permuting random values for training presence and background data. The resulting
drop in the training AUC is used for the permutation importance. The displayed
values are averages over the various model runs (see figures 4.18 and 4.19 for the
results of the models). As with the response curves the percent contribution is diffi-
cult to interpret if the correlation is high. Based on the partly strong correlations the
permutation importance is used for determining the variable weight. Another out-
put is a suitability surface which considers the locations of the former settlements
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Figure 4.16: The response curves for all environmental variables derived using only
the corresponding variable as model input. This is the result for the
Konduri model.122



Figure 4.17: The response curves for all environmental variables derived using only
the corresponding variable as model input. This is the result for the
Guarita model. 123



Figure 4.18: The variable contributions as percent contribution as well as permuta-
tion importance for the Konduri model
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Figure 4.19: The variable contributions as percent contribution as well as permuta-
tion importance for the Guarita model
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Figure 4.20: Three different kinds of density plots (2D density plot on the left, 3D
density plot in the middle and contour lines on the right) for the Kon-
duri culture

as well as the input parameters. Additionally, summary rasters with the standard
deviation, minimum, maximum and median are provided. Further outputs are the
results of the jackknife test in order to test the variable importance. Jackknife is
a resampling technique to identify bias and variance in the model. Two properties
are depicted in the figure, namely the training gain without the corresponding vari-
able and with only the corresponding variable. Whereas the former indicates the
usefulness of the information itself, the latter describes which variable has the most
information which is not present in the other variables. All outputs can be found in
the appendix (chapters H.1 and H.2).

4.4.2 Identifying the settlement types and their predominant

environmental variables

The results from the maximum entropy modelling process are derived using all loc-
ations of the observed cultures (namely Konduri or Guarita). Thus the results such
as the suitability surface are general and do not distinguish between functional set-
tlement types. Due to that only the variable importance is used for further input to
built the suitability surface. Before the suitability calculation can be performed, a
clustering process is needed in order to determine the various settlement types. The
clustering process requires a point pattern analysis to assure a clustered pattern. If a
random or regularly dispersed pattern is identified, a clustering analysis is mislead-
ing. Consequently, it needs to be clarified if the locations show a clustered pattern.
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Figure 4.21: Three different kinds of density plots (2D density plot on the left, 3D
density plot in the middle and contour lines on the right) for the Guarita
culture

4.4.2.1 Check for Clustered Patterns

A first impression of the distribution can be gained by looking at a density plot.
The figures 4.20 and 4.21 show three different types of density plots, namely a 2D
heatmap, a 3D surface as well as a contour lines plot. The plots suggest that a
clustered pattern is present. A more detailed analysis of the settlement pattern can
be derived using the G-, F- and K-function. The graphs in the figures 4.22, 4.23
and 4.24 respectively 4.25, 4.26 and 4.27 show the results of the three functions.
The black line < f unctionletter >obs (r) equals the variable ˆ< f unctionletter >(r)

which is mentioned in chapter 3.2.1. The red line indicates the theoretical distri-
bution and the grey area indicates the simulated envelope. These figures indicate a
strongly clustered pattern for both observed cultures. An observed distribution func-
tion Ĝ(r)> G(r) (Ĝ(r) equals Gobs(r) in figure 4.22) indicates a clustered pattern.
In contrast, the F-function indicates a clustered pattern if F̂(r)< F(r) (F̂(r) equals
Fobs(r) in figure 4.23). The K-function allows to identify pattern changes at differ-
ent scales. This is useful if a point pattern is random in small scale but clustered in
large scale. Similar to the G-function, a value K̂(r)> K(r) (K̂(r) equals Kobs(r) in
figure 4.24) indicates a clustered pattern. If a pattern change occurs, the relationship
between K̂(r) and K(r) would vary. Additionally, a Monte Carlo simulation was
implemented. Figure 4.28 shows an exemplary result of the Monte Carlo simula-
tion with the increasing number of excavation sites on the x-axis and the distance
towards the environmental parameter on the y-axis. The black line depicts the low-
est distance between all excavation sites and blackwater lakes. The same amount of
points as observed excavation sites (namely 88 random points in the case of Kon-
duri and 69 in the cas of Guarita) were randomly created in the same spatial extent
and the minimum distance towards blackwater lakes is measured. This process was
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Figure 4.22: G-function for Konduri settlements

Figure 4.23: F-function for Konduri settlements
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Figure 4.24: K-function for Konduri settlements

Figure 4.25: G-function for Guarita settlements
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Figure 4.26: F-function for Guarita settlements

Figure 4.27: K-function for Guarita settlements
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Figure 4.28: Results of the Monte Carlo simulation. The excavation sites are shown
on the x-axis and the distance is shown on the y-axis. The black line
indicates the distance (sorted in ascending order) from the excavation
sites to the environmental parameter whereas the envelope depicts the
minimum and maximum distances (sorted in ascending order) of the
randomly dispersed points. This example shows the distance of black-
water rivers to the excavation sites of the Konduri culture.

repeated several times – 1000 times in total in this case.The red envelope shows
the minimum and maximum measures of all Monte Carlo runs (the results for all
environmental parameters can be found in the appendix J). If the black line is within
the red envelope, the measured distances do not differ from the randomly created
location measures. In the case of blackwater lakes it can clearly be seen, that the
black line is almost completely below the red envelope. That means that most of the
excavation sites are closer to blackwater lakes than randomly dispersed locations in
the same spatial extent. Therefore, the Monte Carlo simulation provides detailed
information about the environmental preferences of former settlements. The Monte
Carlo simulation is applied to all excavation sites. Those results can be seen as an
additional gain of knowledge but – due to the absence of spatial information – have
no influence on the further process.
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4.4.2.2 Determine the number of different settlement types

As assumed, the settlement functionalities (at least partly) rely on the environmental
surroundings. Thus, the number of clusters – with the environmental data as input
data – determines the number of settlement functions of the observed cultures. In
order to identify the clusters, all variables with an permutation importance value > 0
are used. As explained in chapter 3.2.3 a table provides the outer (maxnearouter) and
inner (maxnearinner) maximum nearness boundary. This allows to set individual val-
ues for various environmental variables as well as cultures. A value within that
boundary is chosen randomly for each environmental variable and used for the
cluster analysis. This process is repeated many times (1000 times in this case),
which leads to a collection of different clustering results with different maximum
nearness values. The k-means clustering algorithm needs a predefined number of
clusters which can be determined in several ways and varies according to the used
approach. In order to develop a preferably automated workflow, it is important
to choose a method which needs no interpretation from the user (such as the el-
bow method, which uses a graph to facilitate the user’s decision). As mentioned in
chapter 3.2.3, the consensus clustering approach was initially developed to determ-
ine the number of classes unsupervised (Monti et al. 2003). This is used to avoid
additional methods to determine the number of clusters. The consensus clustering
value can be used for the comparison of different cluster results. Thus the value
cannot only be used in order to estimate the best cluster solution but also to com-
pare different cluster runs with varying cluster numbers k. The consensus cluster
values for the varying cluster numbers are shown in figure 4.29. As can be seen, the
optimal cluster number for both cultures is five.

4.4.2.3 Calculation of Settlement Function Related Environmental

Influences

After determining the optimal number of clusters, the identification of environ-
mental influences can be made based on the settlement function. Therefore, the con-
sensus clustering process is performed which is set up with the following distance
settings. All environmental variables except the distance to waterfalls is defined
using 500 metres as maxnearinner and 5000 metres as maxnearouter . The maxnearouter

is extended to 15000 metres for the distance to waterfalls. This values are used
to present the methodology bur can be set individually. The result for five cluster
numbers and 1000 cluster runs can be seen in the following figures (figures 4.30 –
4.39). The figures 4.30, 4.31, 4.32 and 4.33 show the item consensus values for each
cluster and excavation site. The x-axis shows the excavation site id in all four plots.
The difference between the figures 4.30, 4.31 and 4.32, 4.33 lie in the different scale
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Figure 4.29: Comparison of various cluster numbers using the mean consensus
cluster value

on the y-axis. Whereas the values in the figures 4.30 and 4.31 are the cumulative
item consensus values, the values of 4.32 and 4.33 are normalized to fit 100 per-
cent. As can be seen, some excavation sites have at least one cluster with a high
item consensus value (e.g. the items on the left of figure 4.30 which are assigned to
cluster two (red) and have an item consensus value ≥ 0.8). Other excavation sites
do not have a high item consensus value in any of the clusters (e.g. excavation site
number 42 in the middle of the figure 4.30). These values have influence on the
cluster consensus values. Figures 4.34 and 4.35 show the cluster consensus results
with the cluster numbers on the x-axis and the cluster consensus values on the y-
axis. If many items with relatively low item consensus values are assigned to one
cluster, the cluster consensus value will also be low (e.g. cluster 3 in figure 4.34).
The figures 4.36 and 4.37 give additional information about the consensus cluster-
ing result. These graphics are heatmaps of the consensus matrix mcons whereas the
color intensity ranges from dark blue (always clustered together) to white (never
clustered together). The dendrogram on top shows the clustering hierarchy and the
color coded values below show the cluster result for a cluster number of 5. The res-
ults can be used to further define the environmental conditions of specific functional
settlement pattern. The consensus clustering process returns item consensus values
which defines the most likely cluster and its consensus value for each excavation
site. This cluster solution can be applied to the observed excavation sites which is
shown in the figures 4.38 and 4.39. An excerpt of the output can be seen in table 4.1.
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In the next step the item consensus values for each excavation site and its optimum
cluster are extracted and used for further analysis. In a second step, the measured
distance values are used to determine the environmental properties of the settlement
type. Therefore, the item consensus values are normalized so that the values range
between 1 and 0 (as shown in 4.2). The distance measures are used as values of truth
in a fuzzy membership function which is computed for each environmental variable
and cluster (as shown in figure 4.40). The results of the clustering process show
that only a small set of environmental variables is influencing the settlement type.
This can be used to define pattern specific properties. Cluster 4 is built based on the
distances towards blackwater rivers, the soil Latossolo and the soil type average. In
the case of Konduri settlements the number of predominant environmental variables
(item consensus value > 0.8) are listed in table 4.3. They can be reduced to 11 out
of the initial 42 input variables. In the case of Guarita 15 out of 42 variables can be
identified.

4.4.2.4 Calculation of the Suitability Surface and Territory

The fuzzy membership function in combination with the optimal cluster solution
for each excavation site allows to determine a settlement function related suitability
surface. This is done by applying the distance and item consensus values for each
environmental parameter of the same cluster to the environmental variables. The
result are multiple buffers which can than be used to calculate a settlement type
(i.e. cluster) related suitability surface. Therefore, the various resulting multiple
buffers are combined cluster-wise using the permutation importance from the MEM.
Subsequently, the assigned suitability values are normalized between 1 and 100.
The resulting suitability surfaces Sclust (as shown in figure 4.42 – all surfaces can be
found in the appendix K) can be seen as a surface of settlement likelihood for the
observed culture and functional settlement pattern.

Sclust can then be used to calculate the territory of the observed culture. The Distmax

value is determined by the maximum distance towards an influencing environmental
variable. E.g. cluster 3 of the Konduri culture is described by the distances toward
several variables (as shown in table 4.3), whereas the distance of almost 10.000
metres towards the waterfalls is the maximum distance, therefore Distmax for cluster
3 is set to 10.000 metres. The method has the advantage that the Distmax value can
be individually set based on the settlement type rather than setting the same Distmax

value for all settlements.

The result for the functional settlement pattern of cluster 1 of the Guarita culture is
shown in figure 4.43 (the results of all territories can be found in the appendix L).
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Figure 4.30: The item consensus values for each excavation site of the Konduri cul-
ture and cluster. The higher the bar of one color the higher the con-
sensus value for that cluster for a specific excavation site.
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Figure 4.31: The item consensus values for each excavation site of the Guarita cul-
ture and each cluster. The higher the bar of one color the higher the
consensus value for that cluster for a specific excavation site.
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Figure 4.32: The same plot (Konduri) as in 4.30 but as a 100 percent plot
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Figure 4.33: The same plot (Guarita) as in 4.31 but as a 100 percent plot
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Figure 4.34: The cluster consensus values for the five clusters of the Konduri culture

Figure 4.35: The cluster consensus values for the five clusters of the Guarita culture
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Figure 4.36: Visualization of mcons combining a dendrogram and color coded values
of mcons for the Konduri settlements. A value closer to one (dark blue)
indicates that this entry (i, j) is often grouped together in the same
cluster.
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Figure 4.37: Visualization of mcons combining a dendrogram and color coded values
of mcons for the Guarita settlements. A value closer to one (dark blue)
indicates that this entry (i, j) is often grouped together in the same
cluster.
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Figure 4.38: Assigning the cluster with the highest item consensus value to the ex-
cavation site for the Konduri culture

Figure 4.39: Assigning the cluster with the highest item consensus value to the ex-
cavation site for the Guarita culture
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Table 4.1: Output of the consensus clustering. The item consensus values are plot-
ted for each cluster and excavation site (item).
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Table 4.2: All relevant environmental properties and their distance values for cluster
2 based on the item consensus values
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Figure 4.40: Example of a fuzzy membership function. The strength of membership
is plotted on the y-axis whereas the x-axis shows the related distance
of the environmental parameter.
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Figure 4.41: Assigning the distances to each excavation site according to the op-
timal cluster, environmental parameter and item consensus value. The
item consensus related distances to blackwater rivers for a specific set-
tlement type are shown.
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Table 4.3: Cluster numbers and its predominant environmental variables (item con-
sensus value between 1 and 0.8) for the Konduri and Guarita cultures
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Figure 4.44: Calculated territory of the Konduri culture. The settlement function
related territories are merged together to get a final territory.

Figure 4.45: Calculated territory of the Guarita culture. The settlement function
related territories are merged together to get a final territory.
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5 Results and Discussion

The presented methodology is a combination of statistical methods in order to gain
more knowledge about the functional settlement patterns of pre-colonial cultures in
the Amazon Basin. It relies on statistical measures in order to minimize user inter-
action and subjectivity. The following figure 5.1 depicts the developed methodology
scheme. There is still a lot of uncertainty according to the archaeological theories
about functional settlement patterns. Due to that, a mainly data driven approach
is developed in order to avoid expert knowledge which may lead to misleading as-
sumptions. Nevertheless some input parameters need to be set manually. This also
allows the testing of various scenarios and the identification of influencing paramet-
ers.

The data is stored in a spatially enabled database which allows to avoid proprietary
data formats. The storage in a database reduces the memory due to the minimiz-
ation of redundancies. Additionally the data can easily be provided on a website
and can be accessed from other computers by running the database on a server in-
stead of using local storage. Another advantage of using a database combined with
server technology is the reduction of data loss in case of hardware failures. A data-
base easily allows to mirror the tablespaces (e.g. the database tables) in order to
have an identical copy of the database as a backup. Using a database implies on
the one hand, that a data model is needed which is tailored to the characteristics
of archaeological data and on the other hand that an import routine needs to be
developed which facilitates the usage of the database. The data model is very im-
portant in order to fit the needs of database normalization, namely the reduction of
data redundancies and the improvement of data integrity. Consequently, the import
routine needs to convert the data (which is collected using an Excel file) so that
the constraints of the data model are taken into account. The presented data model
(which is described in chapter 3.1.2) is designed to fit the needs of the 3NF (third
normal form).

In order to consider environmental data in the analysis, statistics as well as spatial
analysis is used. The selection of environmental variables is based on literature re-
search and archaeological expert knowledge. It is important to point out that the
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chosen data is used in order to be able to test the developed approach. As described
in chapter 2.2, the influencing parameters vary according to the spatial, temporal
and cultural differences and thus are difficult to estimate generally. This research
does not claim to use the perfect parameter set for functional settlement pattern
analysis in the Amazon. However, the chosen data allows to show the potential
of the developed approach. To avoid biased results due to environmental variables
the presented methodology allows to reduce the number of input datasets based
on statistical methods. The usage of boxplots is still an interpretative – therefore
subjective – method but helps to get a first impression. In contrast, the MEM is
an automated process which additionally allows to determine a variable contribu-
tion value for the environmental parameters. These values determine the influence
of each variable for the resulting predictive model of the MEM. In order to avoid
subjective interpretations, the variable contribution values are used as approximate
importance values of the environmental variables. The environmental parameters
also function as input for the consensus clustering and thus, the result is depending
on them. As mentioned in chapter 3.2.3, only parameters within a specific distance
are considered. This is necessary to avoid that distant variables bias the identi-
fication of settlement functions. The maximum distance is defined as a range of
boundary values which allows to use a rough boundary rather than a crisp bound-
ary. This approach allows to reduce the subjectivity and considers – to some extent
– the inherently vague data but complicates the further analysis. Due to the range of
distance values several cluster runs with randomly determined values – within the
range of maximum distance values – need to be performed and compared in order
to determine the optimal cluster solution. The results of the consensus clustering
allow to draw conclusions about the quality of the clustering process. These results
can be used to characterize the settlement functions based on its environmental sur-
roundings. This is done by combining the distance measures and the item consensus
values in order to define a fuzzy membership function. Thus every settlement func-
tion can be described by its distances towards environmental variables as well as its
values of truth (see also chapter 3.2.4). Further analysis of the functional settlement
patterns is done by calculating suitability surfaces depending on the fuzzy mem-
bership functions and the importance of the environmental variables. This leads to
settlement function related cost surfaces which are the basis for the calculation of
the territory.

The results of the statistical methods return precise values and serve as input for
the analysis. This leads to precise boundary values or weights (e.g. distance to
waterfalls for a settlement type or weights of the suitability surface), which can
be misleading. Due to the inherently vague archaeological data, the output values
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should not be seen as exact values but rather as approximate values. However, these
precise output values are used because the change of these values (e.g. due to round-
ing) would lead to a falsified result.

The methodology allows to perform iterative runs which changing input variables
and parameters in order to develop theories on (functional) settlement patterns.
However, some drawbacks exist, due to the methodology or due to the data quality.
They are explained in greater detail in the following chapters.

5.1 Archaeology

The archaeological record can be biased due to several reasons. Hilbert (1968)
stated that the findings were sent back to Belem by ship whereas the expedition was
continued. That means that no archaeologist was on board to take care of the ceram-
ics. Some of the bags with findings got lost or were damaged which lead to loss of
information. Other problems occur because of the environmental conditions. The
areas close to the water (rivers or lakes) are usually easier to access than others loc-
ated in the tropical rain forest. Additionally the visibility of archaeological remains
is limited in the densely forested areas which leads to insurmountable sampling bias
(Barreto 1998, Meggers and Evans 1957). Due to the humid climate only certain
materials can be found whereas others (e.g. feathers, wood) were not preserved.

Due to erosion and sedimentation processes, the prehistoric evidence
in mountains and sedimentary basins are often underestimated. (Pizzi-
olo 2015, p. 13f)

Unfortunately, there is no temporal information assigned to most of the sites. This
leads to the inability to distinguish whether settlements existed at the same (or an
overlapping) time period or not. Due to the missing temporal information no sub-
division was made. The assumption that all settlements of one culture persisted
over the time of the cultural existence is probably wrong. This may cause a biased
representation of subsistence strategies as well as settlement densities. Bias due to
modern building activity or ploughing is another source of error for archaeological
research. The so-called conventional surface (usually about 2 metres deep) is often
heavily affected by human intervention (Casarotto 2015). The Amazon basin is still
a scarcely populated area and only a limited number of regions are affected (e.g.
the areas around the cities Manaus, Santarem or Belem). Another reason can be the
sampling strategy and survey intensity of the observed settlement (Casarotto 2015).
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Further errors occur due to different survey techniques. The limited number of su-
pervising archaeologists (as shown in figure 3.6) reduces the bias due to different
survey strategies.

Unfortunately, modern models of pre-Columbian ethnic boundar-
ies and political units have shown frequent misuse of historical data,
haphazard treatment of source (including the use of secondary instead
of available primary sources), and misconceptions about social, cul-
tural, and demographic change brought by early colonial contact.(Porro
1994, p. 80)

These variations in data quality are not considered by the presented methodology.
If the bias (the inaccuracies based on missing data) is known, it can be considered
in the MEM by using a biased background sample. The available dataset has no in-
formation about absent or wrongly assigned findings, hence a consistent bias across
the observation area is assumed. That also means that the bias due to the limited
visibility and accessibility of dense forest areas is not considered. It is not known
whether the available collection of excavation sites is a proper representation of the
former settlement density or whether a shift towards the terra firme would be more
realistic.

Nimuendaju (1952) as well a Koch-Grünberg (1923) observed that some settlements
were connected by paths or roads (1 - 1,5 metres wide). More detailed information
is not available, therefore the course and location of the paths cannot be considered
in this approach. If – e.g. due to remote sensing techniques – the path course can
be reconstructed, it can be factored in by assigning different weights to those tracks
which allow better accessibility.

One aim of this research was the consideration of different functional settlement
patterns. It can be assumed that the relevant environmental variables vary accord-
ing to the capabilities and needs of the culture. Consequently not all excavation sites
should be analysed in one step. Because of that argument, a distinction into cultures
and traditions is used. Here, this is based on the variations in the ceramic pattern
(see also chapter 2.1). As mentioned above, this division is only one way to sub-
divide the different findings into groups. Other distinctions consider the language
or other behavioural aspects. Clark et al. (2005) criticised the

site- and artifact-centered European Paleolithic studies and the lack
of thinking about regional social systems (Kowalewski 2008, p. 232)

155



Thus, the database schema is designed so that another distinction can easily be
implemented and used in the analysis. The table cultures (and similarly the table
traditions) are not limited to a distinction based on ceramic styles (no underlying
value table limits the possible values). The only input needed is the name of the
specific group or system. This means that the input excel-file which is used to
collect the archaeological record in a first step can be used. It only differs in the
values which are used in the column culture. After the import of the excel file the
new cultural division is stored in the database. Further calculations are based on the
database records, hence no further modification is needed.

5.2 Functional Settlement Pattern

The presented approach tries to identify culture and settlement type related differ-
ences based on potentially influencing parameters. One important task is the se-
lection of relevant variables. Whereas the methodology allows to limit the number
of variables based on statistical measures, it cannot assure that all relevant influ-
ences are considered. It is possible that (yet unknown) other factors influenced the
positioning. Some information may be lost such as the existence and position of
sacred sites or knowledge about the necessity of a specific resource. Even if all
relevant parameters are considered, no conclusions about the causality of those and
the location can be drawn.

Successful applications of data mining are not common, despite the
vast literature now accumulating on the subject. The reason is that,
although it is relatively straightforward to find pattern or structure in
data, establishing its relevance and explaining its cause are both very
difficult problems. Furthermore, much of what can be ’discovered’ may
well already be common knowledge to the expert. (Yuan et al. 2004, p.
367f)

Similarly, a clustered pattern towards environmental variables might not be very
surprising to the archaeologist. Nevertheless, it is an important preprocessing step
in order to derive reliable results. A point pattern analysis can only indicate if a
pattern is random, clustered or uniform. As long as it needs to be assumed that the
known location are biased no concrete proposition can be made. It is not certain
whether the known locations form a representative pattern. As mentioned above,
the bias may be due to the lack of visibility and accessibility of the archaeological
findings, also implying an irregularly dispersed bias. Additionally no validation of
the results are made which delimits the validity of the developed method.

156



The analysis of functional settlement pattern focusses on environmental resources
which are assumed to be important for a settlement. The choice for a specific loc-
ation is usually far from being random but rather characterized by the variables
of the place (Barceló et al. 2015, Deravignone et al. 2015). Several theories exist
about how people’s decisions are determined by environmental influences whereas
the environment is a dynamic system which changes permanently.

However, for a variety of reasons, including geomorphic change, cli-
matic change, fluctuations in sea level, and drastic changes in resource
distribution with the introduction of modern land use practices, modern
data may be highly unreliable. (Roper 1979b, p. 127)

This is confirmed by Van Leusen et al. (2011) who stated that prehistoric landscape
is often a hidden landscape. The used environmental data is static and neither sea-
sonal nor other changes (due to climate change, human interference, etc.) are con-
sidered. As mentioned above, the collected data includes a time span of about 6000
years and the environment is changing during such a time period. Therefore one
problem is the lack of environmental data (digital as well as analogue). No reliable
historic geographical data is available. However, it can easily be considered within
the methodology if existent. The environmental data is stored as shapefiles (and can
be uploaded to the database if wanted) and can easily be exchanged or extended. A
bigger problem is the consideration of variation within the occurrence of one obser-
vation period. For now only one static environmental set of input data is used. This
is probably without any problems for environmental variables such as soil type, soil
condition or slope, but it definitely has an influence on the distance to water (due to
flooding) or precipitation. Especially the fluvial plain várzea is an area with varying
usage possibilities based on seasons. It is known for some cultures that they estab-
lished complex strategies of wetland management (Heckenberger and Neves 2009).
A possible solution would be to additionally consider dynamic variables. However,
those variables could only be used as one static value (e.g. precipitation in the wet
season, or the distance to the várzea).

Here, as elsewhere, failure to record relevant biological information
limit the conclusions which can be drawn from a statistical analysis
(Diggle 2014, p. 2)

Most of the used environmental variables are used as distance measures between
the settlement and the variable itself. This is not surprising due to the necessity of
environmental conditions close to the site (availability of food, soil conditions or
tools). In this case Euclidean distances are used. A more realistic measure might
have been some sort of cost distance (e.g. travel costs), because the consideration
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of existing (e.g. river) networks would be possible.

Edge-effects occur, if processes are part of a larger area than the observed one. As a
result, possible interactions with the unobserved areas can usually not be taken into
account properly (Diggle 2014). In order to avoid edge effect of the statistical meth-
ods, an extended area is analysed. A buffer distance of 100 kilometres is used. This
does not necessarily mean that the cultures never overcame this distance (e.g. for
trading purposes) but it is assumed that the distant resources had no influence on the
settlement location. Another aspect might be the influence of existing settlements
nearby.

Altschuh is clearly correct when he says, in the next chapter of this
volume, that "magnet sites" may significantly affect settlement dens-
ity in their neighborhoods, presumably for reasons that go far beyond
factors of the physical and biotic environments. [...]. And yet, it is pos-
sible to find examples in the archaeological record where precisely the
opposite effect has been documented. (Kohler 1988, p. 20)

The distances to neighbouring settlements is not yet considered. It might be an
interesting variable to look at because the presented approach identifies variables
that seem to be relevant and discards the irrelevant ones. Thus the "magnet sites"
can possibly be identified in one or more settlement types.

5.2.1 Maximum Entropy

A limitation of the presented approach is the lack of absence data. The effect on
sample bias is stronger, if no reliable absence information is available. Especially
geographic features, such as roads or (in this case probably more relevant) river
networks often lead to a sample bias (as mentioned above). A main alternative in
order to limit the effects of sample bias is to use background data with similar biases
or a bias grid (Elith et al. 2011). Besides the input locations a suitable set of features
is important in order to develop the ecological model.

Indeed, the constraints imposed by the features represent our eco-
logical assumptions, as we are asserting that they represent all the en-
vironmental factors that constrain the geographical distribution of the
species.(Phillips et al. 2006, p. 237)

The results of the MEM only indicate potentially influencing variables but cannot
determine the causal relationship between those variables and the settlement loca-
tion. Other statistical methods may lead to different results and for now it is not
possible to test which of the statistical models returns the most reliable results. A
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Figure 5.2: The maximum entropy model compared to other predictive modelling
techniques (Elith et al. 2006)

comparison of several predictive modelling techniques and case studies show that
maximum entropy modelling performs well when averaged across species and re-
gions (Elith et al. 2006). As shown in figure 5.2 maximum entropy modelling ranges
among the highest-performing methods for most species. The figure on the left plots
the mean AUC versus the correlation. The correlation is similar to the AUC but ad-
ditionally carries information about how far the prediction varies from the observa-
tion (Murphy and Winkler 1992). The figure on the right uses the chance-corrected
measure kappa which is commonly used in ecological predictive modelling. The
index considers omission as well as commission errors (Cohen 1960). The models
perform best if the variance of maximum kappa is low whereas the value itself is
high (top right of right figure 5.2). The results compare the model accuracy accord-
ing to predictive modelling, which is not the considered in the used methodology
in this study. Nevertheless, a high performance of the model is necessary in order
to use the results as input values for further analysis. As shown in chapter 4.4.1
both case studies have a high performance, whereas the Konduri model has a higher
performance.

5.2.2 Clustering

Only the variables with a permutation importance value > 0 are used in the clus-
tering analysis. The clustering is used in order to determine similar groups, namely
different settlement types. The result is the identification of groups which are sim-
ilar (based on a similarity measure) based on the given input data. The reliability of
cluster results depends on the quality of the input data. It is assumed that the set-
tlement type is based on geographical characteristics which meet the requirements
of the settlement function. Due to that, a combination of statistics and literature
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review (which is the consideration of expert knowledge) is used in order to derive a
decisive set of input variables. It is difficult to consider social or religious influences
(such as ritual habits or the distance to sacred places) due to two reasons. The first
reason is the lack of knowledge for most of the observed groups. The other reason
is more related to the presented approach. It can be assumed that those influences
vary according to the observed culture. Thus an expert needs to identify potential
influences beforehand. This means, if those habits can be described in discrete or
continuous values (e.g. distance to next settlement, type of ritual habit, spoken lan-
guage, etc.) they can be considered in the analysis. This allows the expert to test
various scenarios and see which variables have influence on the functional settle-
ment pattern.

In this case study a partitioning clustering algorithm, namely k-means, is used in or-
der to determine the settlement functions. This is a commonly used algorithm with
some drawbacks. The result of the clustering process does not necessarily return the
best result but it is a very fast algorithm. Due to the consensus clustering approach
and the associated high number of cluster runs, the processing time is a relevant
aspect. The result of a single k-means cluster run depends on the selection of the
starting points. In order to avoid misleading results, the clustering process should be
repeated several times using varying starting points, which is done in the consensus
clustering. Another influencing parameter is the number of clusters k. Choosing an
unsuitable value for k may lead to an unintuitive solution. The consensus cluster-
ing was initially designed for the comparison of clustering results using a different
number of clusters. Although this research adapts the consensus clustering in order
to identify the most likely clustering result, it can also be used for the determination
of the optimal cluster number. The consensus clustering, when used to determine
the optimal number of classes, can lead to over-interpretation of cluster stability
(Şenbabaoǧlu et al. 2014). In order to avoid that, the decision about the optimal
number of clusters can be determined using other methods (e.g. optimum average
silhouette width).

Other disadvantages are the disability to identify outliers and hierarchical clusters
(clusters within a cluster). Whereas the latter aspect is not relevant in the case of
settlement types of prehistoric cultures, the former can lead to misleading results.
In order to avoid this, a noise reduction can be applied beforehand, or another al-
gorithm needs to be used. The consensus clustering function which was adapted to
the specific needs of the settlement type and nearness detection is able to use vari-
ous clustering algorithms.

The results rely on the chosen maximum and minimum boundary values maxnearouter
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and maxnearinner . Those are determined based on previous archaeological research
but vary according to the spatial, temporal and cultural properties. Thus a change
of those values can lead to a new assignment of settlement types.

5.2.3 Suitability Surfaces and Territories

The result of the least cost path relies on the underlying cost surface. Thus the cal-
culation of the cost surface is an important task. The suitability values of cluster
two of the Konduri culture are either very high or very low. This is caused by a high
difference of the used parameter weight. This leads to predominant environmental
variables whereas others are not influencing the suitability values even though they
were selected as influencing parameters in the consensus clustering process. A sim-
ilar effect can be seen in cluster 4 of the Konduri culture. In this example a few
excavation sites are located in unsuitable areas due to the high weight of the other
environmental parameters. Thus the least cost path lead to very high maximum cost
value CDmax.

The cost surfaces are also the basis for the territorial analysis. This means that
wrongly assigned suitability values lead to errors in the resulting territory. The
calculation of the cost surface is based on the results of the MEM as well as the
consensus clustering. Thus inaccuracies in one or both methods lead to a mislead-
ing output in the end.

The cost surface shows whether a location in the study area provides suitable envir-
onmental properties or not. It does not provide information about the willingness
and ability to overcome unsuitable areas in order to have access to suitable areas.
The environmental variables are another aspect which may distort the analysis. As
mentioned above, some cultures had the abilities to use the wetlands for agricultural
purposes. This means that for some cultures the várzea can be – to some extent –
suitable for farming. Due to the fact that only one settlement of the observed Kon-
duri culture is close to this fluvial plain, the várzea is not considered to be suitable in
that case. Due to the small sample size of one excavation site no meaningful state-
ment about the suitability can be made. Only assumptions about the influencing
and preferred variables can be made. Thus the method facilitates archaeological re-
search and allows to develop new scenarios or supports existing settlement theories.
However, expert knowledge is still required, not only to set some input parameters
but also for the interpretation of the results.

The territories are sometimes not connected. That does not mean, that no relation-
ships with other settlements occurred but rather that their territories (the exploited
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areas) are not connected. Another reason can be the lack of data. Only one former
Konduri settlement is located south of the Amazon river. Because of the low suit-
ability of the river and the várzea (due to the floodings), the territory seems to be
isolated from the others. A similar situation can be identified with the settlements
further away from the rivers. Due to the lack of a supposedly suitable environment,
only small isolated territories were calculated. In this case the used input dataset is
important. Those settlements are all located next to (sometimes small) rivers which
are not represented in the river network used for this study. This means that the res-
ulting clusters rely on the quality and integrity of the input data. As can be seen in
figure 4.44 especially the results for Konduri seem to cover almost the whole extent
of the study area. This is mainly caused by the suitability surfaces of cluster two
and cluster four. Three main reasons can lead to an overestimation of the territory:

1. At least one excavation site is located in an unsuitable area. This leads to a
very high CDmax value.

2. A high weight is assigned to one environmental parameter. Thus the pres-
ence of this specific environmental parameter determines whether an area is
suitable or not.

3. Only a few item consensus values (e.g. only 1.0 and 0.1) are influencing the
calculation of the suitability surface. The abscence of medium values leads
to an either high or low suitability.
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6 Conclusion

6.1 Summary

The aim of the research is to develop a methodology which allows to gain inform-
ation about functional settlement pattern of precolonial cultures. The approach can
be subdivided into four major subsections, namely the location allocation and stor-
age of the archaeological record, the identification of environmental parameters and
their influence, the determination of functional settlement patterns and the calcula-
tion of the settlement function related territories.

The locations of the former settlement serve as basis for the approach – which is
designed to be mainly data driven in order to avoid subjective interpretations. There-
fore a first goal was to establish a data basis with reliable location information of
the former settlement. The settlement locations are derived from research articles
where either a coordinate or – which is mostly the case – a description and/or a
map of the location is given. This means, that only a point is (more or less exactly)
known after the location allocation process. The coordinates were mainly determ-
ined by expert knowledge (namely Klaus Hilbert who is an expert in Amazonian
Archaeology). The manual processing is necessary due to the lack of reliable di-
gital data sources. The database which is provided by IPHAN does not have any
coordinates and can therefore not be used. The database presented by WinklerPrins
and Aldrich (2010) provides coordinates but neither the unique excavation site name
nor information about the former cultures or traditions. A database is used to store
the data. Consequently a data model was developed which is tailored to the needs
of the manually recorded and located data. The database is running on a server
which allows easy access from other computers (and therefore also websites) if the
permission is given. The server technology is an optimal solution if sharing and
providing data to others is an important goal and in this case is preferable to cli-
ent based storage concepts. Another aspect is the reduction of data redundancies,
avoidance of proprietary data formats and the improvement of data integrity. Due
to that, a database is used which – if database normalization is applied – reduces the
redundancies. The decision for a PostgreSQL database was made, because it is an
open source project which stores the geometries in an OGC (Open Geospatial Con-
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sortium) compliant format. In order to collect as many former settlement locations
as possible – which can be accessed and used for the analysis – only the location
(as a point coordinate) is marked as mandatory field and additional information is
optional.

It cannot be determined whether a causal relationship between the surrounding en-
vironmental and the settlement location exists. Due to the fact that some environ-
mental conditions are necessary in order to survive (e.g.enough water and food) –
especially in an archaeological context – it can be assumed that the environment
is an important factor in order to determine how suitable a specific location might
be. If assumed that humans tend to optimize the suitability, the environmental vari-
ables at existing locations allow to draw conclusions about the needs of the people
who settle(d) in that region. The identification of environmental variables is based
on archaeological research and is used as the most likely set of parameters. This
approach allows to perform several iterative model runs with a varying set of input
parameters, which is important to function as a knowledge discovery process. This
allows to test for several scenarios in order to validate a specific theory or develop
new settlement theories. This implies a changing set of input locations (e.g. to
check whether ceramic styles or other aspects such as language have influence on
the result) as well as changing environmental variables (e.g. to test for other en-
vironmental influences). The focus is on the settlement locations of a group rather
than inter-site relationships, in other words a macro scale approach. The Maximum
Entropy Model is used in order to determine the importance of each environmental
parameter. It is a commonly used approach in terms of predictive modelling of spe-
cies environmental requirements and geographic distributions. The variable contri-
bution values for the predictive model are an important outcome of the Maximum
Entropy Model. Other techniques in order to determine the influence of variables
would be statistical methods such as the (multiple) linear regression or a Principal
Component Analysis. A disadvantage of using a linear regression is that only lin-
ear dependencies are recognised which cannot be guaranteed. Another problem
may occur due to outliers which have impact on the result. A Principal Component
Analysis reduces the number of input variables by merging variables to principle
components in order to get the best approximate of the input dataset. The idea of
the presented methodology is to derive information about the functional settlement
patterns based on the environment which is assumed to be an important resource
and influencing factor. The disadvantage of the Principal Component Analysis is
that further analysis is based on the principle components and not on the environ-
mental variables itself. This complicates statements about the influence of specific
variables.
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The traditional tools used by archaeologists include, respectively, lin-
ear or logistic regression and nearest neighbour or quadrat analysis, but
each of these raises methodological problems. The first two have the
capacity to mislead in contexts where spatial dependence can be shown
to exist (i.e., most geographic contexts: Fotheringham et al., 2002:162
– 166), and the last two are insufficient for detecting multiscalar spatial
patterns. (Bevan and Conolly 2006, p. 218)

It is assumed that settlements of one culture fulfilled specific functions (such as
trading, defence or agricultural purposes) which can be distinguished based on the
environmental conditions surrounding the site. The methodology is designed so
that settlement function related results can be provided. Most of the environmental
variables are determined by using their distance to the excavation sites, e.g. dis-
tance towards nearest blackwater river. Temperature and precipitation are provided
as categorized variables by the IBGE, thus the categories are used as input. The
various continuous and categorized values (e.g. distance measures or classes of
precipitation ranges) and the observed excavation sites serve as input. In order to
identify settlement types, a cluster analysis is performed. Due to the big extend of
the area, the cluster result was influenced by variables in greater distances which
can be misleading. A river which is more than 100 kilometres apart was probably
not decisive for the determination of the settlement location. A boundary value is
set which defines nearness. An environmental parameter within the given boundary
value serves as potentially important resource for the specific settlement strategy. In
order to consider dynamic nearness values, the boundary value is individually set for
each environmental variable and culture. To stick with the data driven approach a
rough boundary is defined by a range of minimum and maximum values. The cluster
analysis is performed many times (1000 in this case) whereby the nearness values
for each environmental variable are randomly set for each cluster run (based on the
predefined boundary range). A data driven definition of resource related nearness
can be made by comparing the clustering results. The results of the various cluster
runs are compared using a consensus clustering approach. This approach counts
how often each excavation sites pair is within the same cluster and derives an item
consensus value which reflects the goodness of the cluster assignment for each ex-
cavation site. The consensus cluster value describes the goodness of a cluster itself
(which basically is the mean of item consensus values for all excavation sites which
are assigned to this cluster). The item consensus value is used to define the fuzzy
membership function and thus the degree of truth for the resource related nearness.

Suitability surfaces for each cluster are calculated based on the fuzzy membership
function. The results are suitability surfaces which are based on the assumed im-
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portance of the surrounding resources considering the settlement functions. Those
suitability surfaces can then be used to calculate the settlement function related ter-
ritories. This – in a last step – is achieved by calculating the least cost path as well
as the accumulated suitability value which is used as a maximum value in a cost
distance calculation. In contrast to other territory analysis approaches, the presen-
ted approach allows to consider the settlement functions. The MEM also returns
a suitability surface, which can be used as a basis for the territorial analysis, but
calculates the suitability based on all observed excavation sites. In contrast to that,
the presented approach calculates several suitability surfaces – one for each cluster.
This leads to settlement function related territories which are calculated only on the
basis of the settlement function related suitability surface. Other approaches use
geometrical techniques such as Thiessen polygons (e.g. the XTENT model). This
implies that the whole observed area is subdivided into territories and geographical
boundaries are difficult to consider.

6.2 Major Findings

An important outcome of this thesis is the database which is located on a server and
provides access to all the allocated locations which were found in previous pub-
lications. This database is far from being complete but – for now – is the biggest
collection of excavation sites which has coordinates as well as the official unique
excavation site id (which is commonly used among archaeologists in Brazil). An
export routine was developed which allows to export the database content into a
shapefile. Consequently, the data can both be easily exchanged and be used for fur-
ther spatial analysis in a GIS. Due to the usage of the official unique excavation site
id this database can – in contrast to the one published by WinklerPrins and Aldrich
(2010) – easily be enriched with additional information from data sources which
use the id (e.g. IPHAN). Since the database is located on a server it can be con-
figured so that it is accessible via the internet. This allows access to the data and, as
a result, facilitates further research.

In case of archaeological data it is difficult to determine the settlement related in-
fluencing parameters, because it is difficult to validate the result. The ability to
approximate the influence based on the variable contribution values is an objective
statistical way to derive these settlement related parameters. The MEM, which is
used to determine the variable contribution values, derives those values based on the
locations, thus no other dependent variables are needed. The comparison of these
values can be done by applying various scenarios with a varying set of potentially
influencing variables.

166



One aim of the methodology was to gain knowledge about the settlement patterns.
In order to analyse the former settlements and their environmental surroundings, a
Monte Carlo simulation can be applied. This allows to test the locations against
all potentially influencing variables individually. By creating randomly dispersed
points within the same spatial extend a comparison of the results with the ones from
the excavation sites is possible and patterns can be identified which occur only for
some excavation sites. The use of a Monte Carlo simulation as well as the con-
sensus clustering ensures statistically reliable results. The high number of model
runs within a Monte Carlo simulation allows to draw conclusions about the reliab-
ility of the point pattern process. Because the Monte Carlo simulation is difficult to
interpret in terms of spatial relations a clustering approach is performed addition-
ally in order to identify settlements with similar environmental surrounding. The
variation of environmental conditions (e.g. presence or absence of stones) helps
to identify the settlement types. As a result, each settlement function is described
by a combination of environmental variables which serve as a settlement function
specific description. Additionally, the derived cluster can be assigned to each excav-
ation site and allow to see the spatial distribution of the various settlement functions.

Based on the gained information suitability surfaces can be calculated which con-
sider the specific set of environmental conditions relevant for the settlement func-
tion. In contrast to other approaches not one single suitability surface which serves
as basis for further analysis is calculated but one for each settlement function to con-
sider the settlement function related characteristics. The variable contribution val-
ues of the MEM are used as weights for the calculation. If suitability optimization
can be assumed for cultures, this surface allows the identification of potential other
settlements. These suitability surfaces serve as a basis for the concluding calculation
of the territory. In order to consider previously gained insights, a new method was
developed, which uses the results of the clustering (namely the maximum distance
measures of each settlement function) in combination with the suitability surface.
The result is a cumulative distance value which serves as a maximum cost distance
value for the territory analysis.

The functional settlement pattern analysis is based on the results of the cluster ana-
lysis. Therefore, a test for complete spatial randomness needs to be done in advance.
In this case a combination of R-, F- and K-functions is used. In order to get sat-
isfying results for the cluster analysis, it was necessary to delimit the maximum
distance towards the environmental variables. Neither a PCA nor a re-scaling func-
tion provided reasonable results. In order to minimize subjectivity, not a crisp value
but rather a rough boundary is used. A high number of cluster runs with varying,
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randomly selected maximum distances (within the range of the rough boundary)
were applied in order to get a statistically reliable result. A consensus clustering
approach is used for the comparison of the cluster runs. As a result, a measure of
robustness, thus the goodness of fit for each cluster as well as for each excavation
site is returned. Those robustness measures can then be used for the fuzzy member-
ship functions, i.e. that the uncertainty can be considered in the presented approach.
This fuzzy membership function can additionally be applied to the calculation of the
suitability surface and consequently has influence on the territory analysis.

Only very little user interaction is required. On the one hand environmental vari-
ables need to be chosen (such as water source, soil type etc.), on the other hand
the definition of the boundary range values, namely the minimum and maximum
assumed distance which a culture is willing to overcome in order to exploit a spe-
cific resource need to be set. Default values are set for each variable but if those
need to be adjusted, expert knowledge, and therefore user interaction is required.
This means that a default set of parameters is used to allow a complete automated
data driven approach, but expert knowledge might be useful in order to gain more
reliable results or test for various settlement scenarios.

6.3 Future Work

The presented approach is data driven which means the data quality of the input
data is relevant. A representative sample of settlement locations is required in order
to calculate reliable results. This means that the validation of the input data as well
as the results is necessary. Therefore the location accuracy needs to be checked as
well as the existence of yet unknown further settlements. Additionally, the collec-
tion of reliable absence data might improve the output, due to the assumed sample
bias. This would lead to a dynamically improving model which adapts the presence
and absence information and thus an iterative knowledge discovery process.

Another aspect which is related to the data quality is the considered set of envir-
onmental variables. In future analysis additional or other variables should be con-
sidered, which includes non-environmental information (e.g. distance to other set-
tlements or sacred places). The water, respectively river network is far from being
complete. The whole area is crossed by small channels or rivers (some of which are
only active during the rainy season) and water seems to be an important resource.
This is not only the case with water resources. The categorisation and resolution of
all the environmental variables influence the result. Resolution in this case means
not only the spatial resolution (e.g. the pixel size) but also the temporal resolution.
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Figure 6.1: Interpretation of the settlement functionalities based on the cluster ana-
lysis. This functionality type describes settlements of clusters which
are mainly located close to blackwater rivers. The colors indicate the
category. Blue means it’s a economic function, green is for social func-
tionalities and red for food related functionalities.

Maybe the settlement location is influenced by seasonal changes which can only be
identified if such variables are are considered. Additional temporal information for
the excavation sites allows the analysis of movement behaviour and the identifica-
tion of simultaneously settled sites. Thus, the usage of more detailed data (which
also includes more computing time due to the size of Amazon basin) can lead to
other – and probably more reliable – results.

In order to validate the presented approach, it should be applied to other datasets
either of well researched archaeological cultures or recent cultures. The methodo-
logy can easily be adapted for other datasets. The only things that probably need
to be adjusted are the (environmental) input variables as well as the assumed rough
boundary values for each variable. For now, some methodologies require some data
preparation steps in order to work properly (e.g. the MaxEnt software only works
with CSV- and ASC-files). The needed conversion tools are developed in Python
but smaller modifications are needed (e.g. other in- and output paths) in order to
work properly with other datasets.

In cooperation with archaeologists, the various settlement types can be interpreted
in order to define their specific functionalities. A prototype of a possible interpret-
ation of the Konduri settlement type was made by Prof. Klaus Hilbert in 2014 (un-
published) as exemplarily shown in figure 6.1. Therefore four categories, namely
economy, social, food and religion were defined and all the various functionalities
are assigned to those groups. For communication as well as for further research
purposes a visualization and communication platform would be helpful. It allows
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to provide a collection of publications and thus a kind of Amazonian archaeology
related knowledge database. Additionally, the locations and other datasets (e.g. the
environmental variables) can be provided. A webgis can be implemented in or-
der to facilitate further research. This is done in a beta version which is online
already (link: http://terrapreta.geo.uni.augsburg.de). Some explor-
atory tools are implemented, such as the comparison of distances towards environ-
mental parameters for the selected sites. For now only the water resources such
as waterfalls, tributaries, whitewater rivers or lakes and blackwater rivers or lakes
are considered. Further tools and environmental datasets would help to build a
helpful exploratory analysis platform for functional settlement pattern analysis (von
Groote-Bidlingmaier et al. 2015).

For now no comparison of different functional settlement pattern analysis is imple-
mented. Thus, only a visual interpretation of various settlement types, territories
and suitability surfaces is possible whereby the comparison of territories is difficult.
This is due to the lack of crisp boundaries as well as the locational differences. A
possible approach would be to consider the underlying suitability surface but this
is still work in progress. It would be interesting to be able to compute different
functional settlement pattern based on the calculated output.
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A IPHAN Database Output

 - CNSA AM00002 -  
Nome do sítio: AM-UR-9: Nova Estrela
Outras designações e siglas: AM-UR-9 CNSA: AM00002
Município: Itapiranga UF: AM
Descrição sumária do sítio: Sítio-Habitação localizado entre a margem direita do rio Uatumã e a esquerda do igarapé
Caiuazinho.
Sítios relacionados:

Comprimento: 200m Largura: 90m Altura máxima: 39m (a partir do nível do solo)

Área: 0m2 Medição  Estimada  Passo  Mapa  Instrumento 
Unidade geomorfológica: Andulado
Compartimento topográfico: Topo de Colina
Altitude: 0m(com relação ao nível do mar)
Água mais próxima: Igarapé Caiuazinho
Distância: 0m
Rio: Uatumã
Bacia:

Vegetação atual

 Floresta ombrófila  Savana (cerrado)

 Floresta estacional  Savana-estépica (Caatinga)

 Campinarana  Estepe

 Capoeira Outra: Mata

Uso atual do terreno

 Atividade urbana  Pasto

 Via pública  Plantio

 Estrutura de fazenda  Área devoluta
Outro:

Propriedade da terra  Área pública  Área privada  Área militar  Área indígena
 Outra:
Proteção legal  Unid. de conservação ambiental

Em área tombada  Municipal  Estadual  Federal  Patrim. da humanidade

Categoria

 Unicomponencial
 Multicomponencial  

 Pré-colonial
 De contato
 Histórico

Tipo de sítios:
Forma: Elipsoidal
Tipo de solo:

Estratigrafia:

Contexto de deposição  Em superfície  Em profundidade  

Exposição  Céu aberto  Abrigo sob rocha  Gruta  Submerso
  Outra:  

* Em atendimento ao determinado na Lei nº 3.924 de 26 de julho de 1961, que dispõe sobre os monumentos arqueológicos e pré-históricos.
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Cadastro Nacional de
Sítios Arqueológicos*

  
Sist. Nac. de Patrimônio Cultural - SNPC - CNSA AM00002 - Centro Nacional de Arqueologia - CNA

Estrutura

Área de refugo Canais tipo trincheiras,
valetas

De lascamento Círculos de pedra

De Combustão
(fogueira, forno, fogão)

Estacas, buracos de
Fossas

Funerárias Fossas

Vestígios de
edificações

Muros de terra, linhas
de argila

Vestígios de
mineração Palafitas

Alinhamento de pedras Paliçadas

Manchas pretas Concentrações
cerâmica - quant.:

Outras:

Artefatos

 Lítico lascado  Cerâmico

 Lítico polido  Sobre concha

 Sobre material orgânico

Outros vestígios líticos:

Material histórico:

Outros vestígios orgânicos:

Outros vestígios inorgânicos:

Arte rupestre:  Pintura:  Gravura:  Ausente:

FILIAÇÃO CULTURAL
Artefatos líticos: Tradições: 

Fases: 
Complementos: 
Outras atribuições: 

Artefatos cerâmicos: Tradições: Regional Saracá
Fases: Uatumã
Complementos: 
Outras atribuições: 

Artefatos rupestre: Tradições: 
Estilos: 
Complementos: 
Outras atribuições: 

Datações Absolutas:
Datações Relativas:
Grau de integridade  mais de 75%  entre 25 e 75%  menos de 25% 
Fatores de destruição  Erosão eólica

 Erosão pluvial
 Construção de estrada

  Erosão fluvial
 Atividades agrícolas
 Construção de moradias

 Vandalismo

Outros fatores naturais:
Outros fatores antrópicos: Atividade agrícola e as queimadas
Possibilidades de destruição: Sim
Medidas para preservação:
Relevância do sítio  Alta  Média  Baixa 
Atividades desenvolvidas no local  Registro

 Coleta de superfície
 Sondagem ou Corte estratigráfico
 Escavação de grande superfície
 Levantamento de grafismo rupestre

Nome do responsável pelo registro: Mário F.Simões, Conceição Corrêa e Ana L. Maroja
Data do registro: 22/11/1979 Ano do registro:

* Em atendimento ao determinado na Lei nº 3.924 de 26 de julho de 1961, que dispõe sobre os monumentos arqueológicos e pré-históricos.
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Cadastro Nacional de
Sítios Arqueológicos*

Sist. Nac. de Patrimônio Cultural - SNPC - CNSA AM00002 - Centro Nacional de Arqueologia - CNA

Nome do projeto:

Documentação produzida (quantidade)

Mapa com sítio plotado:  10 Foto preto e branco:  20

Croqui:  0 Reprografia de imagem:  0

Planta baixa do sítio:  0 Imagem de satélite:  0

Planta baixa dos locais afetados:  0 Cópia total de arte rupestre:  0

Planta baixa de estruturas:  0 Cópia parcial de arte rupestre:  0

Perfil estratigráfico:  0 Ilustração do material:  0

Perfil topográfico:  0 Caderneta de campo:  0

Foto aérea:  0 Video / Filme:  0

Foto colorida:  0 Outra:  0

Bibliografia
Simões, Mário F. 1979. Pesquisas Arqueológicas nos rio Urubu, Uatumã e Jatapu. Relatório Preliminar. Belém-Pa, Museu
Paraense Emílio Goeldi, 101 p. il.

Simões, Mário F. 1978-1982. Pesquisa e Cadastro de Sítios Arqueológicos na Amazônia Legal Brasileira, Publicações Avulsas do
Museu Pa. Emílio Goeldi. Belém-Pa, 100 p.

Simões, Mário F. e Corrêa, Conceição G. 1987. Pesquisas Arqueológicas no Baixo Uatumã-Jatapu (AM). In: Revista de
Arqueologia, Belém, Vol. 4, nº 1, p. 29-48. il.

Responsável pelo preenchimento da ficha: Ana Lucia Machado

Data: 09/07/1997 Localização dos dados: Acervo do Museu Emílio Goeldi

Atualizações:

Assinatura

* Em atendimento ao determinado na Lei nº 3.924 de 26 de julho de 1961, que dispõe sobre os monumentos arqueológicos e pré-históricos.
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Table B.01: The experimental formulation of four horizon styles based on 22 pot-
tery complexes (adapted from Meggers and Evans 1961)
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C Chronological Sequence of

Horizon Styles in the Tropical

Forest Area

Estimated Time Scale Horizon Style Guess Dates 

500	  BP	  

2000	  BP	  

1000	  BP	  

1500	  BP	  

2500	  BP	  

Incised-Punctated  
1000 BP – 500 BP 

Polychrome 
1400 BP – 700 BP 

Incised Rim 
1900 BP – 1200 BP 

Zone Hachure 
2500 BP – 1500 BP 

Figure C.01: Chronological sequence of horizon styles in the Tropical Forest Area.
Dividing lines are drawn diagonally to suggest the possibility of time
lag because of size of the geographical area over which each horizon
style spreads. Dates are approximations that may be subject to revision
when the absolute chronology becomes better known (adapted from
Meggers and Evans 1961)
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D Overview of the Known Phases

and Traditions in the Amazon in

1972
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Table D.01: Overview over the known archaeological traditions and phases in the
Amazon Basin in 1972 (adapted from Simões 1972)
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E Quadrat Methods in Point

Processes

No.	  of	  flying	  bombs	  per	  
square

Expected	  no.	  of	  
squares	  (Poisson) Actual	  no.	  of	  squares

0 226.74 229
1 211.39 211
2 98.54 93
3 30.62 35
4 7.14 7

5	  and	  over 1.57 1
576.00 576

Table E.01: Table showing the expected and actual number of flying bombs per
square (adapted from Clarke 1946)
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Index Estimator Reference

I S2

X̄
Fisher et al. (1922)

ICS S2

X̄
−1

David and Moore (1954)

ICF X̄2

S2− X̄
Douglas (1975)

Ẋ
X̄+ S

2

X̄
−1

Lloyd (1967)

IP Ẋ
X̄

Lloyd (1967)

Iδ
n∑
i=1

n

X i(X i−1)

n X̄ (n X̄−1)

Morisita (1959)

Table E.02: Table showing optional indices for quadrat count data (adapted from
Cressie 1993). Xi is the number of observed objects in a quadrat, X̄ is
the sample mean of the quadrat counts and S2 the sample variance.
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F Statistical Tables

df χ0.005 χ0.010 χ0.025 χ0.050 χ0.100 χ0.900 χ0.950 χ0.975 χ0.990 χ0.995
1 -‐-‐-‐ -‐-‐-‐ 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169

α	  -‐	  1

Table F.01: Table showing the critical values of the χ2 distribution (α−1)
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Table F.02: Table showing the critical values of the F-distribution for an signific-
ance level of α = 5% (Kreyszig 1968)
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G Testing the Significance of

Regression Functions

BOX 1
The R2 value is defined as follows:

R2 = 1− residual sum of squares
total sum of squares

(G.1)

where the residual sum of squares is defined as

∑
i=1

(yi− fi)
2 (G.2)

and the total sum of squares as

∑
i=1

(yi− ȳ)2 (G.3)

with:
yi: examined values of the locations

ȳ: mean of the values
fi: used regression function

The result is a value between 0 and 1. (Unwin 1975)

BOX 2

The F value (sometimes referred to as F ratio) is based on the R2 value but
needs the percentage (thus a number between 0 and 100). This can simply be
achieved by multiplying the R2 by 100 which is represented by the variable

%R2. The F value is defined as follows:
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F =
%R2/d f1

(100−%R2)/d f2
(G.4)

with:
d f1: degrees of freedom associated with the surface. They equal the number

of coefficients of the used regression function minus 1
d f2: degrees of freedom associated with the residuals. They are equal to the
number of observations (total degrees of freedom) minus those degrees of
freedom associated with the surface (d f1) minus 1: d f2 = d ft−d f1−1

(Unwin 1975)

BOX 3

The F value (sometimes referred to as F ratio) is based on the R2 value but
needs the percentage (thus a number between 0 and 100). This can simply be
achieved by multiplying the R2 by 100 which is represented by the variable

%R2. In this case trend surface of order n and order n+1 are compared. The
modified F value is defined as follows:

F =
%R2

extra/d f3

(100−%R2
n+1)/d f2n+1

(G.5)

with:
%R2

extra: the difference between %R2 of order n+1 and %R2 of order n, which
is the extra %R2 given by the surface of order n+1

d f3: degrees of freedom associated with the added components (3 for a
quadratic over a linear function, 4 4 for a cubic over a quadratic, etc.)

d f2n+1: degrees of freedom associated with the residuals of the order n+1
function. They are equal to the number of observations (total degrees of

freedom) minus those degrees of freedom associated with the surface (see box
2)

(Unwin 1975)
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H Maximum Entropy Modelling

Table H.01: Details about the features in MaxEnt (Elith et al. 2011)
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H.1 Konduri

Figure H.11: The mean suitability surface for the Konduri model.
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Figure H.12: The minimum suitability surface for the Konduri model.
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Figure H.13: The maximum suitability surface for the Konduri model.
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Figure H.14: The median suitability surface for the Konduri model.
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Figure H.15: The standard deviation of the suitability surface for the Konduri
model.
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Figure H.16: The marginal response curves for all environmental variables derived
using mean values for all but the corresponding variable as model in-
put. This is the result for the Konduri model.
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Figure H.17: Jackknife test of regularized training gain for Konduri.
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H.2 Guarita

Figure H.28: The mean suitability surface for the Guarita model.
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Figure H.29: The minimum suitability surface for the Guarita model.

Figure H.210: The maximum suitability surface for the Guarita model.
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Figure H.211: The median suitability surface for the Guarita model.

Figure H.212: The standard deviation of the suitability surface for the Guarita
model.
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Figure H.213: The marginal response curves for all environmental variables derived
using mean values for all but the corresponding variable as model
input. This is the result for the Guarita model.
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Figure H.214: Jackknife test of regularized training gain for Guarita.
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Table I.01: Environmental properties used in archaeological settlement pattern ana-
lysis.

242



J Monte Carlo Simulation
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Figure J.01: Results of the Monte Carlo simulation. The excavation sites are shown
on the x-axis show and the distance is shown on the y-axis. The black
line indicates the distance (sorted in ascending order) from the excav-
ation sites to the environmental parameter whereas the envelope de-
picts the minimum and maximum distances of the randomly dispersed
points.
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K Suitability Surfaces
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Figure K.11: Suitability surface for cluster 1 – 5 for the Konduri culture. The raster
values are normalized whereas a high value indicates a high suitability.
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Figure K.22: Suitability surface for cluster 1 – 5 for the Guarita culture. The raster
values are normalized whereas a high value indicates a high suitability.
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L Territory Analysis
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Figure L.11: Territory for cluster 1 – 5 for the Konduri culture. The raster values
are based on CDmax whereas a high value indicates a higher cost.
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L.2 Guarita
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Figure L.22: Territory for cluster 1 – 5 for the Guarita culture. The raster values are
based on CDmax whereas a high value indicates a higher cost.
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