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Abstract 

Soil organic carbon (SOC) is the largest terrestrial carbon (C) pool and has been identified 

as a cornerstone for the global C cycle. Alterations in the soil-atmosphere flux have sub-

stantial implications for climate change and can be an atmospheric C sink or source. Over 

the past decades, global estimates on the role of soil erosion on SOC dynamics have 

shown conflicting results. Some studies showed that soil erosion leads to a global atmos-

pheric C source, where other studies indicated an erosion-induced C sink. These conflict-

ing results are partly caused by insufficient input data and oversimplifications on process-

level in soil erosion modelling.  

This study aims at detecting and assessing potential uncertainties for soil erosion and SOC 

redistribution modelling based on input data and missing processes. Therefore, rainfall 

kinetic energy (KE), as the main driver initiating interrill erosion, was investigated by 

state-of-the-art optical disdrometers. A water erosion model was used to compare devia-

tions in sediment delivery between directly measured and derived rainfall KE based on 

32 theoretical rainfall kinetic energy-intensity (KE-I) relationships. To understand the 

role of event size on SOC delivery by water erosion, the process-based multi-class sedi-

ment transport model and C dynamics (MCST-C) model was applied on a long-term 

(100-yrs) high temporal resolution (10-min) rainfall series in an arable catchment of the 

Belgian loess belt. To analyse the effect of single processes on SOC dynamics, the 

MCST-C model was applied in two arable catchments of different characteristics. The 

study assesses variations induced by the implementation and variation of different water 

and tillage erosion processes to the model. As tillage erosion is an important process in 

soil and SOC redistribution, a plot experiment to determine the uncertainty of different 

measuring techniques for tillage erosion was finally carried out.  

The results of this PhD-project suggest that modelling soil erosion-induced SOC dynam-

ics are subject to large uncertainties originating from input data limitations and missing 

representation of process-level control mechanisms. (i) Substantial variations in simu-

lated sediment delivery were shown for different KE-I relations. Furthermore, a distinct 

overestimation of the KE-I relations compared to directly measured KE was detected, 

which is not systematic for high KE events. Hence, especially KE predictions of extreme 

events are subject to large uncertainties. (ii) The majority of delivered sediments and as-

sociated SOC is mostly driven by rare extreme events, which was also shown by the 

measurements used in this study. However, small events need to be taken into account 

due to the preferential transport of SOC and corresponding SOC enrichment processes in 
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delivered sediments. (iii) Soil aggregation reduces interrill erosion and transport distances 

of SOC due to the encapsulation of highly mobile SOC-rich fine particles into rather im-

mobile soil aggregates. (iv) Tillage erosion substantially alters vertical C fluxes with a 

large SOC sequestration potential. (v) The intra-field catchment connectivity controls 

sediment delivery and corresponding SOC enrichment processes. Catchments with re-

duced sedimentological connectivity show enhanced SOC enrichment in delivered sedi-

ments due to depositional processes. (vi) Large uncertainties were found for different 

tillage erosion measurement techniques that may largely influence model parametriza-

tions.  

Zusammenfassung 

Organischer Bodenkohlenstoff (SOC) stellt den größten terrestrischen Kohlenstoffspei-

cher dar und wurde als bedeutsamer Bestandteil des globalen Kohlenstoffkreislaufes er-

kannt. Hierbei haben Änderungen in den Austauschraten zwischen Pedosphäre und 

Atmosphäre direkten Einfluss auf den CO2-Gehalt der Atmosphäre. Während der vergan-

genen Jahrzehnte wurden gegensätzliche Abschätzungen zur Rolle der Bodenerosion auf 

die Bodenkohlenstoffdynamik veröffentlicht, welche sowohl auf eine erosionsinduzierte 

Kohlenstoffsenke als auch Quelle hingewiesen haben. Die gegensätzlichen Ergebnisse 

resultieren unter anderem aus unzureichenden Eingangsdaten und Vereinfachungen von 

Erosionsprozessen in den verwendeten Modellansätzen. 

Ziel des Promotionsprojektes ist es potenzielle Unsicherheiten in der Bodenerosions- und 

SOC-Umsatzmodellierung, welche auf Schwächen in den Eingangsdaten und Prozessver-

einfachungen basieren, zu erfassen und analysieren. Hierfür wurde die kinetische Energie 

(KE) des Niederschlags, welcher der Hauptantrieb der flächenhaften Erosion ist, mittels 

optischer Distrometer analysiert. Um die Unterschiede zwischen der direkt gemessenen 

und der aus 32 unterschiedlichen kinetischer Energie-Intensitäts (KE-I) Gleichungen auf 

den simulierten Sedimentaustrag miteinander zu vergleichen, wurde die gemessene und 

abgeleitete KE in einem Wassererosionsmodell angewendet und gegenübergestellt. Für 

ein tiefergehendes Verständnis der Bedeutung der Erosionsereignisgröße auf den SOC-

Austrag, wurde das prozessbasierte Wassererosionsmodell multi-class sediment transport 

and carbon dynamics model MCST-C mit einer 100-jährigen, zeitlich hochauflösenden 

(10 Minuten) Niederschlagszeitreihe in einem Ackerlandeinzugsgebiet angewendet. Zu-

dem wurde das MCST-C Modell mit einem Bearbeitungserosions- und Kohlenstoffum-

satzmodell gekoppelt und auf zwei Ackerlandeinzugsgebiete unterschiedlicher 
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hydrologischer und sedimentologischer Konnektivität angewendet. Die Studie analysiert 

dabei gezielt einzelne Erosionsprozesse und deren Auswirkungen auf die Einzugsgebiets-

kohlenstoffdynamik. Messunsicherheiten unterschiedlicher Messverfahren der wichtigen 

aber unterrepräsentierten Bearbeitungserosion wurden in einem Versuch gegenüberstellt 

und analysiert. 

Die Ergebnisse weisen auf große Modellunsicherheiten der erosionsbedingten Kohlen-

stoffdynamiken hin, welche sich aus Eingangsdatenlimitationen und fehlender Prozes-

simplementierung ergeben. (i) Es wurden substanzielle Unterschiede des simulierten 

Sedimentexports für verschiedene KE-I Gleichungen festgestellt. Es konnte gezeigt wer-

den, dass die KE-I Gleichungen die KE Direktmessungen deutlich überschätzen, was je-

doch nicht ausnahmslos auf große Ereignisse zutrifft. Daher sind insbesondere große 

Erosionsereignisse Gegenstand von hohen Unsicherheiten. (ii) Die Modellierung konnte 

zeigen, dass der Großteil des SOC Exports durch wenige starke Erosionsereignisse ver-

ursacht wird, jedoch führen Anreicherungsprozesse des präferentiellen SOC-Transports 

zu einer deutlichen Bedeutungszunahme von kleinen Erosionsereignissen für den Koh-

lenstoffexport und damit die Einzugsgebietskohlenstoffbilanz. (iii) Die Bodenaggregie-

rung bedingt eine Reduzierung der flächenhaften Erosion sowie der Transportdistanzen 

von SOC-reichem Sediment. Dies ist bedingt durch den physischen Zusammenschluss 

der mobilen SOC-reichen Feinkornfraktion zu Aggregaten geringerer Erodier- und Trans-

portierbarkeit. (iv) Die Bearbeitungserosion bewirkt eine deutliche Änderung der verti-

kalen Kohlenstoffflüsse und weist ein hohes Kohlenstoffsequestrierungspotenzial auf. 

(v) Die Einzugsgebietsdurchgängigkeit ist ein wichtiger Steuerungsmechanismus für die 

Kohlenstoffanreicherungsprozesse im ausgetragenen Sediment. Eine geringere sedimen-

tologische Konnektivität führt durch Depositionsprozesse zu einer höheren SOC-Anrei-

cherung im ausgetragenen Sediment. (vi) Die Bestimmung der Bearbeitungserosion 

unterliegt großen Unsicherheiten und kann einen bedeutenden Einfluss auf Modellpara-

metrisierungen haben.  
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1 Introduction 

The role of soil erosion on the carbon cycle 

Soil organic carbon (SOC) is the largest terrestrial carbon (C) pool with approx. 

1400 Pg C stored in the upper soil meter and approx. 700 Pg C in the upper 0.3 m 

(Hiederer and Köchy, 2011). Hence, it exceeds the atmospheric and living biomass pools 

by far (Houghton, 2007; Jobbágy and Jackson, 2000; Schlesinger, 1990). SOC has been 

identified to be a cornerstone for the global C cycle (Amundson et al., 2015; Sanderman 

and Berhe, 2017) as the soil-atmosphere exchange rates are highly sensitive to anthropo-

genic manipulations such as land use change and agricultural management. Therefore, 

adjustments in agricultural management strategies (e.g. no-till farming) allow for the se-

questration of atmospheric C in soils (Franzluebbers, 2010) and has received great polit-

ical attention (e.g. Lima Paris Action Agenda: 4‰ initiative; Kyoto protocoll: Article 3.4; 

IPCC, 2013) due to its climate change mitigation potential (Chabbi et al., 2017; Lal, 

2007). To understand and quantify the efficiency of management strategies for SOC se-

questration, global model projections are needed. However, global projections of the C 

cycle, particularly the component of anthropogenic land cover change, are subject to large 

uncertainties (Wang et al., 2017). The anthropogenic land cover change is highly related 

to accelerated soil erosion and corresponding feedback processes on SOC dynamics. Soil 

erosion has been recognized as an important process for the C cycle (Chappell et al., 2016; 

Quinton et al., 2010; Wang et al., 2017), but is not represented in current C cycle-climate 

models. Hence, C dynamics of the terrestrial pool are still not sufficiently represented in 

global projections and their uncertainties are likely to increase if erosion-induced SOC 

dynamics are taken into account.  

Soil systems under natural conditions are usually in a sustainable equilibrium that equals 

soil loss by lateral redistribution and soil production by weathering (Montgomery, 2007; 

Verheijen et al., 2009). Due to land use conversion from natural soil cover to agricultural 

land, soil erosion substantially increases and disturbs this equilibrium (Montgomery, 

2007). In erosion-affected landscapes, soil redistribution can lead to pronounced spatial 

patterns in soil nutrients such as SOC (Dlugoß et al., 2010; Gregorich et al., 1998; Nadeu 

et al., 2012; Wang et al., 2010). SOC dynamics show substantial response to soil erosion 

and have been identified as a controlling process for the soil-atmosphere C flux 

(Sanderman and Berhe, 2017). However, studies on the global role of soil erosion on the 

C cycle showed conflicting results of a global erosion-induced C sink or source in the 
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same order of magnitude (±1 Pg yr-1; for recent reviews see Doetterl et al., 2016; Kirkels 

et al., 2014). These large variations are caused by different data sources and/or modelling 

approaches used to derive global estimates. Global estimates of erosion-induced C dy-

namics are commonly based on sediment delivery measurements of river systems or 

model simulations driven by plot experiments. Extrapolations that are based on the sedi-

ment delivery of mayor river systems (Lal, 2003; Smith et al., 2005) miss on-site redis-

tribution processes, which cause high uncertainties as large quantities of eroded topsoil 

are deposited within the terrestrial system (De Vente et al., 2007) or mineralized during 

transport within river systems before entering lakes or oceans (Aufdenkampe et al., 2011; 

Battin et al., 2009; Tranvik et al., 2009; Walling and Webb, 1996). In contrast, spatially 

distributed soil erosion and C dynamics modelling of the terrestrial C cycle enables the 

representation of on-site redistribution processes. However, input data (e.g. rainfall, land 

use, yield, soil management and properties) with an appropriately high spatio-temporal 

resolution is not available on global scale. In consequence, global soil erosion models are 

mostly parameterized based on experimental plot extrapolations (Doetterl et al., 2012b). 

These small-scale studies are to some extent biased as these experiments are mostly car-

ried out in eroding landscape positions and underrepresent depositional processes 

(Auerswald et al., 2009; Doetterl et al., 2016). Hence, even on field scale the feedbacks 

between redistribution processes and their effect on C dynamics are still not sufficiently 

understood (Doetterl et al., 2016).  

A comprehensive landscape analysis to strengthen the understanding of erosion-induced 

C dynamics on arable land is in the focus of the TERENO northeast subproject TEROS 

(Tereno ERosion Observation System; Fig. 1). To understand the anthropogenic impact 

on soil erosion over the course of increasing mechanization, a chronostratigraphical anal-

ysis of colluvial deposits and corresponding C stocks is part of the landscape analysis. 

Vertical fluxes of dissolved organic carbon (DOC) can be an important component of the 

C balance on arable land (Kindler et al., 2011) that interacts with the erosion-induced 

changes in soil physical properties and crop yield (Herbrich et al., 2017), which are con-

tinuously monitored by lysimeter monoliths. This PhD-project deals with the role of epi-

sodic short-term processes of lateral soil redistribution on long-term C dynamics. 

Therefore, lateral redistribution and export of sediment and SOC by water and tillage 

erosion is monitored and modelled in four highly erosion affected field scale catchments 

of northeast Germany. The new insight given by the monitoring has the goal to improve 
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soil erosion and C dynamics models for a better representation of the erosion-induced 

impact on the C cycle. 

 
Figure 1: TEROS project schematic overview for vertical and lateral fluxes of sediment and soil or-
ganic carbon against the background of the landscape erosion history. The subjects of this PhD-pro-
ject are highlighted in black. 

Relevant processes in soil erosion and C dynamics modelling 

Event size and the conflict of temporal scales 

A major challenge for process-oriented SOC redistribution and turnover models is the 

conflict of different temporal scales (Doetterl et al., 2016) as short-term erosion events 

have long-term effects on C dynamics. To account for these long-term effects, most ero-

sion models that were coupled to C turnover models are based on USLE-type long-term 

mean annual erosion rates (e.g. CENTURY/EDCM: Liu et al., 2003b; SPEROS-C: Van 

Oost et al., 2005b). However, catchment monitoring studies have shown that water ero-

sion and sediment delivery are largely controlled by rare extreme events (Fiener and 

Auerswald, 2007b; Fiener et al., 2008; Steegen et al., 2000). A number of processes are 

largely controlled by event size and are associated to high uncertainties such as dynamics 

in rainfall kinetic energy (Angulo-Martinez et al., 2016; Montero-Martinez and Garcia-

Garcia, 2016), SOC enrichment in delivered sediments (Fiener et al., 2015; Quinton et 
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al., 2001; Wang et al., 2010) and deep burial of SOC by deposition (Fiener et al., 2015; 

Van Hemelryck et al., 2011; Wang et al., 2014b). 

 

SOC enrichment in delivered sediments 

The assumption of most coupled water erosion and C turnover models is that the C con-

centration of delivered sediments equals the mean C concentration of the parent soil. 

However, this assumption leads to biased estimates of lateral SOC delivery and redistri-

bution and its effect on vertical C fluxes (Fiener et al., 2015). Experimental and modelling 

studies have pointed out that erosion preferentially removes and delivers SOC (Kuhn et 

al., 2010; Polyakov and Lal, 2004b; Schiettecatte et al., 2008a b). The preferential 

transport originates from a heterogeneous SOC distribution throughout the soil structure, 

consisting of several fractions, characterized by differences in particle density and size 

(Doetterl et al., 2015). The major proportion of SOC is associated to the fractions of (i) 

silt and clay primary particles, (ii) soil aggregates and (iii) a mineral-free particulate or-

ganic matter (POM) fraction of a much lower density (John et al., 2005; Von Lützow et 

al., 2007). SOC-rich fine and low density particles are preferentially transported due to 

selective interrill erosion and cause enriched SOC concentrations in delivered sediments 

compared to the parent soil (Kuhn et al., 2010). Rill erosion, driven by concentrated flow 

with much higher transport capacities is able to detach and transport the entire soil matrix. 

Therefore, extreme events, which are dominated by rill erosion, show similar SOC con-

centrations of delivered sediments compared to the parent soil (Kuhn et al., 2010; 

Polyakov and Lal, 2004b; Quinton et al., 2001; Schiettecatte et al., 2008b). The deposi-

tional properties of fines and POM are mainly different from water stable aggregates as 

SOC associated to water stable aggregates deposits faster compared to their encapsulated 

primary and POM particles (Hu and Kuhn, 2014). Hence, soil aggregation is an important 

soil property that can control SOC enrichment processes. Recent research has pointed out 

that neglecting event based C enrichment processes leads to a substantial underestimation 

of delivered SOC (Fiener et al., 2015; Quinton et al., 2001; Wang et al., 2010). 

 

SOC burial and dynamic replacement 

Just 10-30% of eroded soil is subsequently delivered to lakes or oceans via major river 

systems (De Vente et al., 2007; Walling and Webb, 1996). Hence, large quantities of 

SOC-rich topsoil redistribution is not exported from catchments and is deposited in the 

terrestrial system (Stallard, 1998). As decomposition rates typically decrease with depth, 
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topsoil deposition buries SOC-rich sediments into slow C turnover environments 

(Doetterl et al., 2016). Thus, the C stocks of depositional soil profiles are higher compared 

to undisturbed sites (Doetterl et al., 2016; Gregorich et al., 1998; Smith et al., 2001; Smith 

et al., 2005). Numerous studies have shown that SOC burial can act as an important C 

sink function (Polyakov and Lal, 2004a b; Van Hemelryck et al., 2011; VandenBygaart 

et al., 2015; Wang et al., 2014a b). 

At erosional sites, subsoil of low SOC concentration is uplifted to the rhizosphere and the 

plough layer. Therefore, new reactive mineral surfaces are exposed to C input from roots 

and litter, which leads to higher C sequestration rates compared to undisturbed sites 

(Berhe et al., 2008; Doetterl et al., 2016; Harden et al., 1999; Quine and Van Oost, 2007). 

The studies of Rosenbloom et al. (2001) and Doetterl et al. (2012a) showed for moderate 

eroded soil profiles (2-4 m soil loss since start of agriculture) that the topsoil SOC content 

does not substantially differ between eroded and undisturbed profiles. This indicates that 

C sequestration can have the same rate as SOC removal by erosion and is dynamically 

replaced (Doetterl et al., 2016). However, dynamic C replacement is largely controlled 

by environmental feedbacks and conditions that go back to erosion-induced yield reduc-

tions and physicochemical properties of newly exposed subsoil (Doetterl et al., 2016). 

 

SOC protection by soil aggregation 

SOC can be physically protected from mineralization by soil aggregation. The formation 

and stability of soil aggregates is complex due to interacting processes. Water stable ag-

gregates that resist disruption during detachment and transport of erosion processes are 

hierarchically formed within clusters of labile aggregates (Tisdall and Oades, 1982). The 

breakdown of labile soil aggregate clusters is driven by erosion-induced splash and 

transport processes (Lal, 2003; Van Hemelryck et al., 2010) and furthermore shows a 

distinct annual seasonality due to freeze-thaw and dry-wet cycles (Angers and Mehuys, 

1988; Coote et al., 1988; Six et al., 2004; Wang et al., 2010). Furthermore, soil aggrega-

tion is subject to pronounced spatial patterns related to soil nutrients, moisture, grain size 

distribution, management practices, erosion and soil biota (Denef et al., 2002). Soil ag-

gregates encapsulate SOC-rich fines (clay and silt particles) and POM, which physically 

separates SOC from decomposers (Doetterl et al., 2016; Tisdall and Oades, 1982) and 

encapsulates SOC in oxygen limited environments (Sexstone et al., 1985). Furthermore, 

soil aggregation alters the grain size distribution of the soil and reduces the transport dis-
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tance of aggregated SOC fractions (Hu and Kuhn, 2014; Hu and Kuhn, 2016). Fine par-

ticles and POM have slow settling velocities and show longer transport distances com-

pared to coarser particles. Soil aggregation encapsulates these highly mobile SOC 

fractions into larger particles, consisting of faster settling velocities, which substantially 

reduces the transport distance. Soil aggregation leads to large uncertainties concerning 

the general soil erodibility and transport distances of SOC.  

 

On-field redistribution by tillage 

Compared to rapid landscape changes by event driven water erosion, tillage erosion takes 

place on a regular basis and continuously levels the landscape topography. Therefore, 

tillage erosion is not as visible as linear water erosion and it may take decades until envi-

ronmental (e.g. soil texture and nutrients, and crop yields) or topographical (e.g. tillage 

banks at field borders, hilltop levelling) patterns become visible. Tillage erosion leads to 

different redistribution patterns compared to water erosion. While water erosion is most 

effective along areas of high flow accumulation (e.g. thalwegs), tillage erosion is strong-

est at convex hilltops and deposits in concave structures such as thalwegs (Govers et al., 

1999; Van Oost et al., 2006). Therefore, tillage erosion mobilizes soil from landform po-

sitions of minimum water erosion to regions of highest water erosion (Govers et al., 1999; 

Van Oost et al., 2006). Under mechanized agriculture, tillage erosion is at least in the 

same order of magnitude compared to water erosion (Van Oost et al., 2006). Nevertheless, 

the effect of tillage erosion on C dynamics has not yet received great attention, although 

a representation has been accounted for in few modelling studies (Dlugoß et al., 2012; 

Fiener et al., 2015; Lacoste et al., 2015; Van Oost et al., 2005b). Tillage erosion is an on-

field process that is limited to field borders without sediment and SOC delivery. Hence, 

dynamic C replacement at erosional sites and stabilisation by deep burial at depositional 

sites may lead to a high SOC sequestration potential of tillage erosion. 
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Objectives and structure of the thesis 

The overall aim of this thesis is to detect and assess potential uncertainties related to soil 

erosion and corresponding SOC dynamics modelling on arable land. The main aims of 

this study are 

 

• To improve the understanding of uncertainties related to erosion processes and their 

corresponding measurement techniques. 

• To implement relevant processes in a coupled water and tillage erosion and C turno-

ver model to assess the role of short-term erosion processes on long-term C dynam-

ics. 

 

This PhD-thesis consists of four articles addressing uncertainties related to input data and 

missing processes in soil erosion and C dynamics modelling. 

Article I, deals with rainfall kinetic energy (KE), which is a widely used input data for 

soil erosion modelling. As direct measurements of KE are mostly not available, numerous 

relationships between rainfall KE and intensity (KE-I relations) were developed for dif-

ferent meteorological regions. However, recent research indicates that KE-I relations are 

not well represented by meteorological regions due to large dynamics between and during 

rainfall events (Angulo-Martinez et al., 2016). To assess these dynamics, five optical dis-

drometers were used to compare direct measurements against derived rainfall KE based 

on 32 published KE-I relations. The analysis compares measured drop size and fall ve-

locity distributions against traditional models of Marshall and Palmer (1948) and Gunn 

and Kinzer (1949). Furthermore, the deviation between measured and derived KE was 

assessed on different temporal resolutions (minute, event and year). Subsequently, devi-

ations in sediment delivery between measured and derived KE were quantified using a 

RUSLE based water erosion model. The article provides novel insight on the direct effect 

of different KE-I relations for soil erosion modelling and inter and intra event dynamics 

of drop size distributions. 

Article II addresses the long-term effect of event-size on sediment and C delivery. There-

fore, the grain size specific sediment and associated SOC delivery was modelled, using 

the process-oriented MCST water erosion model. The model was driven by a unique 

100-yrs high-resolution rainfall data set in a field scale catchment of the Belgian loess 

belt. The novelty of the study is the long-term simulation of C enrichment processes with 
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a process-oriented model that takes the grain size selective transport on a physical basis 

into account.  

Article III is a follow-up modelling study that implements additional erosion processes to 

strengthen the understanding of relevant processes for different catchment characteristics. 

The MCST model was enhanced for the representation of tillage erosion, different soil 

physical properties (soil aggregation, interrill vs. rill erosion) and coupled to a C turnover 

model. Subsequently, the model was used to exclude and alter processes to understand 

and quantify the effect of sediment redistribution on C dynamics in two catchments of 

different hydrological and sedimentological connectivity. The study gives novel insight 

on the relevance of distinct soil erosion processes on SOC dynamics against the back-

ground of catchment properties. 

Article IV deals with uncertainties in determining tillage erosion as Article III has shown 

a high sensitivity to varying tillage transport coefficients on simulated C fluxes. There-

fore, various tracer and topographical measuring techniques were applied in a plot exper-

iment and compared to each other. The study provides new insight on uncertainties that 

are related to different tillage erosion measuring techniques. 
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Article I 

Uncertainties in rainfall kinetic energy-intensity relations for soil ero-
sion modelling 

Florian Wilken1,2, Martin Baur1, Michael Sommer2,3, Detlef Deumlich2, Oliver Bens4 and 
Peter Fiener1.: Uncertainties in rainfall kinetic energy-intensity relations for soil erosion 
modelling, Catena (in review). 
1Institute for Geography, Universität Augsburg, Germany 
2Institute of Soil Landscape Research, Leibniz-Centre for Agricultural Landscape Re-
search ZALF e.V., Germany 
3University of Potsdam, Institute of Earth and Environmental Sciences, Germany 
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Article abstract 

For bare soil conditions, the most important process initiating interrill erosion is the de-

tachment of soil particles via raindrop impact. Splash erosion is mainly controlled by 

rainfall characteristics, which are essentially determined by the drop size and fall velocity, 

leading to a specific kinetic energy of rainfall. In consequence, the kinetic energy of rain-

fall is often directly or indirectly included in erosion models to calculate detachment via 

splash erosion. Therefore, numerous theoretical functions have been developed for the 

estimation of rainfall kinetic energy from available rainfall intensity measurements. The 

aim of this study is to analyze the uncertainties inherent in these theoretical rainfall kinetic 

energy-intensity (KE-I) relationships and their implications for soil erosion modelling. 

We compare 32 KE-I relations against measured rainfall energies based on optical dis-

drometer measurements carried out at five stations. These allow for the direct measure-

ment of rainfall kinetic energy from a detailed spectrum of measured drop sizes and 

corresponding fall velocities. To quantify the effect of different KE-I relations on sedi-

ment delivery, we apply the erosion model WATEM/SEDEM (as implemented in 

SPEROS-C) to four catchments of NE-Germany. We found a distinct overestimation of 

the KE-I relations compared to the measured kinetic energy. However, for events of high 

kinetic energy the estimations are highly dynamic and do not show a systematic offset. 

This implies that estimating soil erosion of rare extreme events is subject to high uncer-

tainties when estimating rainfall kinetic energy from rainfall intensity. 
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2.1 Introduction 

Soil erosion on arable land is one of the major threats for a sustainable use of soil re-

sources (Morgan, 2005). Therefore, measuring and modelling soil erosion processes has, 

for a long time, been an important element in several scientific disciplines including soil 

science, agronomy, hydrology, geomorphology etc. The process of water erosion is tra-

ditionally subdivided into a number of sub-processes, ranging from splash induced inter-

rill erosion to surface runoff based rill erosion processes. The initial process of interrill 

erosion is closely related to the kinetic energy (KE) of raindrops destroying soil aggre-

gates and leading to splash erosion. The associated change in soil surface (soil sealing 

and crusting) generally reduces infiltration capacity and hence indirectly governs surface 

runoff generation and initiation of rill erosion (Morgan, 2005). 

Due to these direct and indirect implications of the KE of raindrops on several erosion 

processes KE is widely used as an important input parameter in erosion models. It is 

implemented in conceptual models, especially the USLE (Wischmeier and Smith, 1960) 

and its derivatives (RUSLE: Renard et al., 1996; WaTEM/SEDEM: Van Oost et al., 

2000a) as well as in physically-oriented models (LISEM: De Roo et al., 1996; 

EUROSEM: Morgan et al., 1998). 

The assessment of rainfall KE started more than a century ago with the pioneer work of 

Wiesner (1895) and Bentley (1904) who introduced the filter-paper and fleur pellet 

method to measure drop size distributions. Later, Laws and Parsons (1943) and Marshall 

and Palmer (1948) found an exponential relation between drop size distribution (DSD) 

and rainfall intensity and furthermore Laws (1941) and Gunn and Kinzer (1949) devel-

oped a model for the terminal velocity of different drop sizes used to calculate drop size 

specific fall velocities. Linking the models of DSD and terminal velocity provided the 

necessary information to calculate KE as a function of rainfall intensity. The most prom-

inent KE-I relation in erosion research was published by Wischmeier and Smith (1958). 

The authors used a relation between DSD and intensity from Laws and Parsons (1943) 

with a combined approach of Laws (1941) and Gunn and Kinzer (1949) of drop size spe-

cific fall velocities to calculate rainfall KE. Based on the calculated KE, a regression 

equation between KE and intensity was derived and used as the basis for the first erosivity 

index of the Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1960). Later, 

other combinations of DSD and drop size specific fall velocities were used to calculate 

rainfall kinetic energy, whereas the DSD of Marshall and Palmer (1948) is the most fre-
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quently used (Renard et al., 1997). Based on new rainfall measuring techniques that ena-

ble the continuous and simultaneous recording of drop sizes and fall velocities (e.g. opti-

cal disdrometer), it was shown that drop size and fall velocity distributions can have 

complex patterns between different storm events (Sempere-Torres et al., 2000), and also 

vary during different phases within a rainfall event (Angulo-Martinez et al., 2016). To 

date, a few KE-I relations are based on continuous measurements of drop size distribu-

tions (e.g. Cerro et al., 1998; Petan et al., 2010; Sanchez-Moreno et al., 2012), but almost 

no KE-I relation is based on both continuously measured drops size and fall velocity dis-

tributions. Instead, continuous DSD measurements are linked to terminal velocity models 

(except for Lim et al., 2015). Nonetheless, recent research shows that a large amount of 

drops is not well represented by terminal velocity models, which might have large impli-

cations for deriving rainfall KE from intensity (Angulo-Martinez et al., 2016; Larsen et 

al., 2014; Montero-Martinez and Garcia-Garcia, 2016).  

The aim of this study is (i) to use state of the art measuring techniques to directly calcu-

late/measure KE from measured drop sizes and fall velocities, (ii) to analyze the potential 

differences between measured and theoretically derived KE from a large number of ex-

isting KE-I relations and (iii) to use the different KE results as inputs in a RUSLE based 

water erosion model to quantify the ‘erosion-uncertainty’ associated with different KE 

approaches. 

2.2 Materials and Methods 

2.2.1 Rainfall, drop size distribution and fall velocity data  

Rainfall intensity, drop size distribution and drop size specific fall velocity are available 

at five stations equipped with optical laser disdrometers (Laser Precipitation Monitor: 

Thies-Clima, Germany). The disdrometers are mounted at a height of one meter and rec-

ord the full spectrum of drop size and fall velocity distributions. Technically, the shade 

of a falling hydrometeor passing a flat laser beam (228 x 20 mm) is measured. The cor-

responding amplitude of signal reduction is used to measure the drop diameter, whereas 

the duration of signal reduction determines the fall velocity of the drop (Thies-Clima, 

2011). Each raindrop is measured individually and classified into 22 particle size classes 

ranging from 0.125 to 8 mm (largest class ranges from 8 mm to infinity) and 20 fall ve-

locity classes from 0 to 20 m s-1, respectively. Therefore, all the required information is 

available to directly calculate the rainfall KE (in Joule) as 

𝐾𝐾𝐾𝐾 = 1
2

𝑚𝑚𝑣𝑣2 (2.1) 
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where 𝑚𝑚 is the drop mass (kg) and 𝑣𝑣 is the fall velocity (m s-1). The device corrects for 

the drag force induced deformation of a falling drop and returns the corresponding drop 

diameter for a perfectly round spheroid. Therefore, 𝑚𝑚 can be calculated as 

𝑚𝑚 = 4
3

𝜋𝜋𝜋𝜋𝑟𝑟3 (2.2) 

 where 𝑟𝑟 is the radius in meter and water density (𝜋𝜋) is assumed to be 1 Mg m-3. KE 

calculated from drop size and fall velocity based on measurements of the optical disdrom-

eter are subsequently referred to as measured KE. 

 For comparison against the measured KE 

we used 32 published KE-I relations 

(Fig. 2.1; Table 2.1) to derive rainfall KE 

from intensity (subsequently referred to as 

derived KE). The selection of equations 

cover the most common KE-I relations 

representing all equation types published 

(linear, logarithmic, exponential and 

power functions; reference see Table 2.1). 

Both measured and derived KE are calcu-

lated based on optical disdrometer meas-

urements of the same devices. For full 

comparability of the measured rainfall 

amount, the rainfall intensity, which is the input for the KE-I relations, is based on the 

corresponding drop volume that is also used for the direct measurements of the KE. All 

KE-I relations are validated against the reference, which is based on measured KE that is 

directly calculated from drop size and fall velocity values.  

 

 
Figure 2.1: Rainfall kinetic energy-intensity (KE-
I) relations based on the equations given in Table 
2.1. 
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Table 2.1: Table of theoretical relationships for rainfall kinetic energy (J m-2 h-1) and rainfall intensity 
(I: mm h-1; see Figure 2.1). Equations based on measured drop size distributions (DSD) are indicated 
by a geographical region. Majority of equations are harmonized according to Salles et al. (2002).      

Original reference Equation Data base 

Logartithmic 
Wischmeier & Smith 1958 I(11.9 + 8.73 log10I) if I ≤ 76 mm h-1 Theoretical DSD 
Zanchi & Torri 1980 I(9.81 + 11.25 log10I) Italy 
Kinnell 1981a I(17.124 + 5.229 log10I) USA (Florida) 
Onaga et al. 1988 I(9.81 + 10.6 log10I) Japan (Okinawa) 
Brandt 1990 I(8.95 + 8.44 log10I) Theoretical DSD 

Exponential 

McGregor & Mutchler 1976 I(27.3 + 21.68 e-0.048I - 41.26 e-0.072I) USA 
Kinnell 1981b 29.31 I(1 - 0.281 e-0.018I) USA (Florida) 
Rosewell 1986a 29 I(1 - 0.596 e-0.0404I) Australia (NSW) 
Rosewell 1986b 26.35 I(1 - 0.669 e-0.0349I) Australia (Queensland) 
Brown & Foster 1987 29 I(1 - 0.72 e-0.05I) USA 
Coutinho & Tomás 1995 35.9 I(1 - 0.559 e-0.034I) Portugal 
Cerro et al. 1998 38.4 I(1 - 0.538 e-0.029I) Spain 
Jayawardena & Rezaur 2000 36.8 I(1 - 0.691 e-0.038I) China (Hong Kong) 
Fornis et al. 2005 30.8 I(1 - 0.550 e-0.031I) Philippines 

Intensity power 

Park et al. 1980 21.1069 I1.156 USA 
Smith & De Veaux 1992a 13 I1.21 USA (Oregon) 
Smith & De Veaux 1992b 11 I1.23 USA (Alaska) 
Smith & De Veaux 1992c 18 I1.24 USA (Arizona) 
Smith & De Veaux 1992d 11 I1.17 USA (New Jersey) 
Smith & De Veaux 1992e 10 I1.18 USA (North Carolina) 
Smith & De Veaux 1992f 11 I1.14 USA (Florida) 
Uijlenhoet & Stricker 1999a 7.20 I1.32 Theoretical DSD 
Uijlenhoet & Stricker 1999b 8.53 I1.29 Theoretical DSD 
Uijlenhoet & Stricker 1999c 8.46 I1.17 Theoretical DSD 
Uijlenhoet & Stricker 1999d 8.89 I1.28 Theoretical DSD 
Uijlenhoet & Stricker 1999e 10.8 I1.06 Theoretical DSD 
Uijlenhoet & Stricker 1999f 7.74 I1.35 Theoretical DSD 
Steiner & Smith 2000 11 I1.25 USA (Mississippi) 
Shin et al. 2016 10.3 I11/9 Theoretical DSD 

Others 
Carter et al. 1974 11.32I + 0.5546 I² - 0.5009 * 10-2 I³ + 

0.126 * 10-4 I4 
USA (south central) 

Usón & Ramos 2001 23.4 I - 18 Spain 
Nyssen et al. 2005 36.65 (I - 0.6/I) Ethiopia 

 

The data set covers disdrometer measurements over 13 yrs. and 1.9 x 105 min of meas-

urements during erosive events (Table 2.2). Two stations are located in the Uckermark in 

the Northeast of Germany (Fig. 2.2), representing a relatively dry and continental climate 

(mean annual precipitation 483 mm and temperature 8.7 °C; Aldana-Jague et al., 2016). 

The stations are mounted both in close proximity (300 m distance between stations) to 

the small catchments that are modelled (see section 2.2.2). Furthermore, three stations are 
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located in the Rur catchment in Western Germany (Fig. 2.2), representing a relatively wet 

and oceanic climate. The distances between the stations are much larger compared to the 

Uckermark stations (13 km minimum distance), where two stations are located in the hilly 

Eifel region (Rur1 and Rur2: mean annual precipitation up to 1300 mm, Graf et al., 2014, 

and temperature 8 °C) and the third station is located in flat and intensively used arable 

land close to the village of Selhausen (Rur3: mean annual precipitation 700 mm and 

temperature 10 °C; Reichenau et al., 2016). 

 
Table 2.2: Descriptive statistics of observed annual rainfall data. Fol-
lowing Schwertmann et al. (1990), an erosive rainfall event was classi-
fied according to the exceedance of 10 mm total rainfall or 5 mm 
rainfall within 30 min. Individual events are separated by 6 h without 
observed rainfall (Max I30: maximum 30-min rainfall intensity). 

Station Year 
Sum of erosive 

events [mm] 

Erosive 

events [n] 

Max event 

sum [mm] 
Max I30 

Uck1 2015 173 15 28.2 15.4 
2016 203 12 38.0 73.7 

Uck2 2015 199 15 35.8 19.6 
2016 238 12 47.7 92.5 

Rur1 2015 578 20 91.5 22.3 
2016 545 16 46.6 39.9 

Rur2 
2013 396 19 49.0 22.5 
2015 461 16 67.0 40.9 
2016 193 10 38.9 50.1 

Rur3 

2013 328 19 34.9 52.1 
2014 95 6 39.1 78.1 
2015 357 21 51.3 20.5 
2016 219 12 36.2 21.6 

 

For general differences between the meteorological stations in the Uckermark and the Rur 

region see Table 2.2. The heaviest precipitation event (maximum 30-min rainfall intensi-

ties: I30) of the dataset occurred at the Uckermark stations in June 2016 (Uck1 I30: 

73.7 mm h-1; Uck2 I30: 92.5 mm h-1; Table 2.2). However, the Rur stations recorded 

higher rainfall amounts and larger numbers of erosive rainfall events per year, whereas 

I30 are higher at the Uckermark stations. 
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2.2.2 Erosion modelling 

Test site 

The modelling test site consists of four 

small catchments (0.3 to 1.5 ha) located in 

the proximity of the disdrometer stations 

in the Uckermark (Fig. 2.2). The small 

catchments surround and drain in a closed 

depression (kettle hole), which represents 

a typical situation for the young, hum-

mocky ground moraine landscape of 

Northeast Germany. Due to different sizes 

and slope characteristics, these catchments 

possess heterogeneous sediment delivery 

ratios into the kettle hole. The typical crop 

rotation is rape (Brassica napus L.) – win-

ter wheat (Triticum aestivum L.) - winter 

barley (Hordeum vulgare L.) – winter bar-

ley, cultivated without cover crops. The 

soils are developed from glacial till and 

vary with respect to their location in the 

landscape. Extremely eroded Calcaric Regosols (IUSS, 2015) are located at the summit 

due to high tillage erosion,  moderately to strongly eroded Luvisols can be found along 

the slopes and Colluvic Regosols, partly influenced by groundwater, at concave 

downslope areas (Gerke et al., 2010; Sommer et al., 2008). The closed depression itself 

is built up by degraded Histosols and covered by a thin colluvial layer of mineral soil (10-

40cm). Between 7 and 11 erosive rainfall events per year take place (Deumlich, 1999). In 

the region, maximum intensities up to 103 mm h-1 (per 30-min interval) were recorded 

during an extreme event in June 2007 (Vogel et al., 2016).  

WaTEM/SEDEM 

We utilized the water erosion module WaTEM/SEDEM (Van Oost et al., 2000a; Van 

Rompaey et al., 2001) as implemented in SPEROS-C (Fiener et al., 2015; Nadeu et al., 

2015; Van Oost et al., 2005c) model. WaTEM/SEDEM is a widely used grid based water 

erosion model, which spatially implements the Revised Universal Soil Loss Equation 

 

Figure 2.2: Location of rainfall stations in the 
Uckermark and Rur region and topography of the 
modelled kettle hole catchments (C1 – C4). 
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(RUSLE: Renard et al., 1996). Where erosion is calculated according to a slightly modi-

fied RUSLE approach, transport and deposition is based on the grid cell specific local 

transport capacity 𝑇𝑇𝑇𝑇 (kg m–1 a–1), which multiplies the RUSLE equation by the transport 

capacity coefficient (𝑘𝑘𝑘𝑘𝑘𝑘; in meter) 

𝑇𝑇𝑇𝑇 = 𝑘𝑘𝑘𝑘𝑘𝑘 𝑅𝑅 𝑇𝑇 𝐾𝐾 𝐿𝐿 𝑆𝑆  (2.3) 

where 𝑅𝑅, 𝑇𝑇, 𝐾𝐾, 𝐿𝐿 and 𝑆𝑆 are the RUSLE factors (see Renard et al., 1996): The model input 

rainfall-runoff erosivity (𝑅𝑅) factor and cover-management (𝑇𝑇) factor are directly or indi-

rectly related to the rainfall KE. The annual 𝑅𝑅 factor is calculated following Renard et al. 

(1996) 

𝑅𝑅 = ∑ (𝐾𝐾𝐼𝐼30)𝑖𝑖
𝑗𝑗
𝑖𝑖=1  (2.4) 

where 𝐾𝐾 is the rainfall KE of event 𝑖𝑖 (kJ m-2). As the product of 𝐾𝐾𝐼𝐼30 is the event based 

rainfall erosivity. The C factor is calculated from daily rainfall erosivity proportions 

(based on 1-min KE values) and the average daily soil cover of the applied crop rotation. 

The average soil cover is derived from Schwertmann et al. (1990). 

Model implementation 

The model applies 13 years of rainfall measurements from the different stations individ-

ually to a generalized four year crop rotation (rape – winter wheat - winter barley – winter 

barley; see section 2.2.1) in the four catchments (Fig. 2.2). This results in 52 yrs of refer-

ence model runs driven by measured KE. In the next step, the 32 KE-I relations (Table 

2.1) are used as model input, which leads to a total number of 1664 model runs. 

All model parameters except for the R and C factor remain constant throughout all model 

runs to isolate the effect of different KE-I relations upon sediment delivery. The model 

operates on a 5 x 5 m grid resolution. Topographic information is based on an airborne 

laser scanning digital elevation model aggregated to 5 x 5 m resolution. With respect to a 

detected optimum transport capacity of 150 m under arable land and similar resolution, 

we followed Van Oost et al. (2003). According to measurements of Gerke and Hierold 

(2012) at a nearby (9 km east) located study area, the topsoil bulk density was set to 

1550 kg m-3. According to BGR (2014) a RUSLE K factor of 0.25 (Mg h) (ha N)-1 was 

applied. The P factor was set to 1 as no soil conservation measures are applied at the test 

site. 
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2.3 Results 

2.3.1 Drop size and terminal velocity distributions 

Comparing the measured DSD against the theoretical DSD model of Marshall and Palmer 

(1948; MP) indicates rainfall intensity specific differences (Fig. 2.3). (i) For minutes of 

low rainfall intensities (4-6 mm h-1, Fig. 2.3a), the MP-DSD substantially overestimates 

the proportion of small drops (< 0.25 mm), but underestimates the amount of all other 

drop size classes. (ii) For moderate rainfall intensities (20-30 mm h-1) the MP distribution 

predicts the proportion of the smallest drops size class and furthermore large drops ap-

propriately (> 1mm, Fig. 2.3b). (iii) However, the proportions of large drops are system-

atically overestimated by the MP distribution for high intensities (40-60 and 

100-150 mm h-1, Fig. 2.3c and 2.3b).  

 
Figure 2.3: Measured drop size distributions for minutes of a specific rainfall intensity range (I; 
boxes) compared to the drop size distribution model of Marshall and Palmer (1948). The variation 
of the Marshall-Palmer distribution for the analysed intensity ranges is small and covered by the 
diameter of the red marker circles. Exemplarily shown for station Uck1. 

Comparing measured drop fall velocities against the theoretical fall velocity model of 

Gunn and Kinzer (1949; GK) also indicates pronounced deviations (Fig. 2.4). Particularly 

for the highly erosive rainfall event (Fig. 2.4a), small drops were measured at almost all 

fall velocities, where for the low erosive rainfall event (Fig. 2.4b) the range of measured 
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fall velocity is somewhat smaller. A large proportion of small measured drops show 

higher fall velocities than predicted by the terminal velocity model by GK. For larger 

drops, the GK distribution describes more or less the measured fall velocities, but a sub-

stantial number of large drops show smaller fall velocities. As these large drops are highly 

relevant for the KE, assuming the GK model leads to an overestimation of KE. The com-

parison of measured and theoretical drop size and fall velocity distributions indicates that 

both lead to KE overestimations for large drops. 

 
Figure 2.4: Measured proportions of individual drops and rainfall kinetic energies of specific drop 
size and fall velocity classes. Exemplarily shown for (a) a heavy erosive rain event (sum: 38 mm; I1: 
253 mm h-1, I10: 162 mm h-1 I30: 74 mm h-1) and (b) a moderate erosive rain event (sum: 11 mm; I1: 
3 mm h-1, I10: 1.8 mm h-1, I30: 1.5 mm h-1) at the study site Uck1 (see Fig. 2.2). Terminal velocity 
according to Gunn and Kinzer (1949) is represented in black triangles. 

2.3.2 Comparison of measured vs. derived kinetic energy 

We analysed the deviation between measured and derived KE by 32 KE-I relations. The 

majority of KE-I relations show an overestimation of cumulative KE with a large variety 

of results (Fig. 2.5). The deviation was not uniformly distributed throughout the course 

of increasing measured KE. In general, there are mainly three kinds of behaviour of the 

KE-I relations: (i) an exponentially increasing overestimation, (ii) a pronounced underes-

timation of the strongest 10% of rainfall minutes. (iii) A number of relations do show a 

conservative behaviour and lead to a constant overestimation (without exponential devi-

ation at high energies) throughout the course of different energy levels (Fig. 2.5). The 

minutes of highest KE are proportionally more relevant for the total KE of the data series 

at the Uckermark stations compared to the Rur stations (Fig. 2.5). Hence, 90% of the total 
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KE was achieved by 13.5% and 14.7% of rainfall minutes for Uck1 and Uck2, respec-

tively (Rur1: 23.3%, Rur2: 20.8%). In contrast, the largest contribution of heavy precipi-

tation minutes was found for station Rur3 (12.6%).  

 
Figure 2.5: Cumulative deviation, increasingly sorted according to measured kinetic energy (KE), 
between measured and derived KE by 32 different rainfall kinetic energy-intensity relations (see Ta-
ble 2.1). Vertical dashed line shows 10% of cumulative measured KE sum. 

On an annual aggregation level, all years at all stations show a mean overestimation of 

the 32 KE-I relations compared to the measured KE (Table 2.3). The highest annual de-

viations are found for the stations Rur1 and Rur2, which are located in the hilly Eifel 

region. The highest mean deviation of 71% for a measured total annual KE sum of 

4.4 kJ m-2 was found at station Rur2 in 2015. The lowest annual deviation was shown for 

station Rur3 with a relative mean deviation of 1% for a total KE sum of 2106 J m-2. 
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Table 2.3: Annual deviation of 32 kinetic energy-intensity rela-
tions to measured kinetic energy over 5 stations and a total of 
13 years (see Table 2.2). Relative deviation (%) is given in 
brackets behind absolute deviation (J m-2). Positive values indi-
cate an overestimation and negative values an underestimation 
of the measured kinetic energy. 

Station Year 
Measured  Δ measured KE 

KE [J m-2] Mean Median 

Uck1 
2015 2152 788 (36.6) 635 (29.5) 
2016 3203 870 (27.2) 700 (21.9) 

Uck2 
2015 3173 462 (10.9) 273 (8.7) 
2016 4247 742 (8.2) 568 (6.5) 

Rur1 
2015 6278 3036 (48.4) 2531 (40.3) 
2016 5519 1845 (33.4) 1416 (25.7) 

Rur2 
2013 4236 1810 (42.7) 1370 (32.3) 
2015 4444 3134 (70.5) 2738 (61.6) 
2016 3133 963 (30.7) 883 (28.2) 

Rur3 
2013 5846 283 (4.8) -11 (-0.2) 
2014 1604 906 (56.5) 790 (49.2) 
2015 2106 22 (1) -66 (-3.1) 

 

2.3.3 Measured vs. derived kinetic energy affecting event erosivity 

Analysing event differences for measured and derived KE in relation to erosivity, shows 

distinct differences between the Uckermark and Rur stations. Uck1 and Uck2 are domi-

nated by events with low rainfall erosivities < 5 N h-1, while the Rur stations show regu-

larly occurring events of higher rainfall erosivities between 5 and 20 N h-1 (Fig. 2.6). 

Events of long duration (> 2.5 days) can accumulate large quantities of KE but do not 

have high rainfall intensities and therefore low erosivities. A long duration event at Rur1 

shows the largest 95% confidence interval for the 32 KE-I relations, ranging from 1.3 to 

3 kJ m-2. Surprisingly, this large range does not cover the measured KE (1.2 kJ m-2; Fig. 

2.6). As already shown by the analysis of minute-wise data, the derived KE distinctively 

overestimates the measurements, which is indicated by the median PBIAS (average over 

or underestimation between derived and measured KE values in percent) of all KE-I re-

lations, ranging from 10 to 54% (Table 2.4). KE-I relations originally developed for Spain 

(Usón and Ramos, 2001) and North Carolina (USA: Smith and De Veaux, 1992e) 

matched the events of the Uckermark stations best, where KE-I relations theoretically 

developed from DSDs (Uijlenhoet and Stricker, 1999b) performed best for Rur1 and 

Rur2. The heavy event at the stations Uck1 and Uck2 in 2016 (Fig. 2.6a) contributes only 

with 11% and 17% to the total KE but with 46% and 60% of the total rainfall erosivity, 
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respectively. Although single events have limited impact on the total KE sum of a time 

series, the relevance of single events for the total rainfall erosivity is high. The Uckermark 

stations are located 300 m apart, but show substantial differences (Table 2.4). The good-

ness of fit parameters for the Uckermark stations indicate better estimates compared to 

the Rur station (Table 2.4). Removing heavy events with a median derived KE greater 

than 1 kJ m-2 does not show high sensitivity for the goodness of fit parameters. Neverthe-

less, poor estimate quality for the stations Rur1 and Rur2 are indicated by low and par-

tially negative (worse than mean of observations) model efficiency coefficients (Nash and 

Sutcliffe, 1970).  

 
Figure 2.6: Event based kinetic energy derived by 32 different kinetic energy-intensity relations (box-
whiskers). Error bars indicate the 95% interval of confidence. The blue circles show the measured 
kinetic energy. 
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Table 2.4: Goodness of fit parameters for the median value of 32 ki-
netic energy-intensity relations against measured kinetic energy. The 
sensitivity of extreme events is shown in brackets, as events of a de-
rived kinetic energy > 1 kJ m-2 are excluded from calculation. Root 
mean square error (RMSE), model efficiency coefficient (MEC), per-
cent bias (PBIAS) and number of observed erosion events (n). 

Station RMSE  
[J m-2] MEC PPIAS 

[%] n 

Uck1 105 (57) 0.45 (0.77) 24 (17) 26 (25) 
Uck2 78 (55) 0.88 (0.81) 11 (9) 26 (25) 
Rur1 431 (197) -2.19 (0.01) 54 (42) 36 (33) 
Rur2 178 (178) 0.15 (0.15) 42 (42) 45 (43) 
Rur3 190 (194) 0.36 (0.35) 14 (15) 57 (55) 

 

2.3.4 Modelled differences in sediment delivery 

Appling the WaTEM/SEDEM model with altered R and C factors in relation to different 

rainfall KE-I relations shows high variations in sediment delivery (Fig. 2.7). Where the 

reference runs (based on measured rainfall KE), show for the larger catchments (C1 to 

C3; Fig. 2.2) moderate sediment delivery (< 4 Mg ha-1 yr-1), the highly connected catch-

ment 4 shows annual sediment delivery up to 18 Mg ha-1 yr-1. Catchment 2, which is the 

largest catchment that consists of erosional and depositional structures (Fig. 2.8), shows 

the lowest reaction on different KE-I relations. Contrary to that, the smallest and mainly 

erosion dominated catchment 4 shows the highest 95% confidence interval in response to 

alterations in the derived KE from 13 up to 27 Mg ha-1 yr-1. Interestingly, the model runs 

of highest sediment delivery show conflicting results in relation to the corresponding ref-

erence runs. The year of highest sediment delivery (Rur3, 2013) shows a median under-

estimation of 5 Mg ha-1 yr-1, where the second highest year (Rur2, 2015) has a median 

overestimation of 5.9 Mg ha-1 yr-1 in catchment 4. Substantial sediment delivery was 

solely simulated for rainfall data of the Rur stations (Fig. 2.7). The extreme event at the 

Uckermark stations in 2016 occurred in times of high soil cover and does not cause sub-

stantial simulated sediment delivery. Highest sediment delivery of the crop rotation is 

caused by rape cultivation followed by the first year of winter barley. 
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Figure 2.7: Modelled (WaTEM/SEDEM) uncertainty in annual sediment delivery related to 32 dif-
ferent theoretical rainfall kinetic energy-intensity (KE-I) relations (see Table 2.1), altering the R 
(rainfall erosivity) and C (management) factor of the RUSLE. The blue circles indicate the modelled 
absolute sediment delivery, whereas the boxes (25 and 75%) and whiskers (5 and 95%) show the 
deviation between the reference model run and the KE-I relation model runs. The model applies 
13 yrs of rainfall data of 5 station to a complete crop rotation in four catchments (see Fig. 2.2; rp: 
rape, wb: winter barley, ww: winter wheat, ww2: winter wheat second year).  

2.4 Discussion 

Optical disdrometers have potential error sources e.g. splash from device arm into the 

sensor, two drops detected as a single drop, horizontal moving drops by wind (Angulo-

Martinez et al., 2016). Nonetheless, optical disdrometers enable the continuous observa-

tion of rainfall KE dynamics on high temporal resolution. Due to dynamics in DSD ac-

cording to the type of rainfall, the KE-I relationship is not static for different events and 

furthermore throughout different event phases (Angulo-Martinez et al., 2016). However, 

almost all KE-I relations are explicitly developed for one typical DSD of a single distinct 

meteorological region, rainfall type and utilize static drop size specific fall velocities. 

Therefore, combined measurements of DSD and corresponding fall velocities by optical 
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disdrometers are assumed to be the most accurate and available source to measure and 

analyse rainfall KE dynamics.  
 

2.4.1 High resolution analysis 

The minute based analysis shows pro-

nounced deviations in reaction to different 

rainfall KE-I relations (Fig. 2.5). A few KE-

I relations match the total sum of measured 

KE after the complete time series well, but 

nonetheless do have a large absolute error, 

caused by high deviations over the course of 

different KE levels. The majority of KE-I 

relations show a distinct overestimation 

(Fig. 2.5), which is likely to be caused by a 

large number of drops falling at velocities 

conflicting common models of terminal ve-

locity (Gunn and Kinzer, 1949; Hinkle et 

al., 1987; Laws, 1941). We observed a large 

quantity of small drops (< 0.75 mm) falling 

at extraordinarily high velocities (Fig. 2.4). 

These super-terminal drops are reported in 

literature and are likely to be caused by 

wind effects (Montero-Martinez and Garcia-Garcia, 2016) and fragmentation of fast and 

large drops (Larsen et al., 2014). Since super-terminal drops have higher energies than 

estimated from theoretical terminal velocity models, they cause an underestimation of 

KE-I relations. However, Figure 2.4 shows that the amount of KE caused by drops smaller 

than 0.75 mm is rather limited for the overall KE estimation. Furthermore, we observed 

drops falling at substantially lower velocities than expected from terminal velocity mod-

els (Fig. 2.4), which were also observed in other studies (Angulo-Martinez et al., 2016; 

Cerro et al., 1998; Montero-Martinez and Garcia-Garcia, 2016; Petan et al., 2010). Sub-

terminal drops cause an overestimation for KE-I relationships and mainly occur in the 

drop diameter class contributing to the highest amount of rainfall KE (Fig. 2.4). There-

fore, sub-terminal drops and the overestimation of large drops in case of high rainfall 

intensities (Fig. 2.3) are likely to be the reason for the disagreement between measured 

 
Figure 2.8: Cumulative soil erosion (negative val-
ues) and deposition (positive values) by water of 
all 56 reference model runs based on measured 
rainfall kinetic energy. 



Uncertainties in rainfall kinetic energy-intensity relations 25 

 

and theoretically derived KE. This general overestimation of KE-I relations is in line with 

recently published results of Angulo-Martinez et al. (2016). With similar methodology, 

they reported a minute based positive bias for the KE-I relations compared to optical dis-

drometer based measured KE. 

2.4.2 Regional conditions for event based model input 

The most common use of KE-I relations in soil erosion modelling, is to provide event 

based kinetic energies. Considering the median of all 32 KE-I relations, a distinct positive 

bias for all stations can also be found on event resolution (Table 2.4). Interestingly, the 

best matching KE-I relations are not necessarily developed for similar regions or envi-

ronmental conditions. One could argue that the good performance for Uck1 and Uck2 of 

the KE-I relation developed for Spain (Usón and Ramos, 2001) is attributed to meteoro-

logical similarities, such as convective rainfall of high intensities. However, Usón and 

Ramos (2001) developed this relation based on data with a maximum rainfall intensity of 

20 mm h-1. Since our rainfall records consist of measurements of much higher rainfall 

intensities (up to 300 mm h-1), the good agreement cannot be attributed to meteorological 

reasons due to heavy uncertainties by extrapolation.  

We found regional differences in estimate quality. The predictions for the Uckermark 

stations were better compared to the Rur stations (Table 2.4), which is potentially caused 

by less variation in rainfall types. In contrast to the predominantly cyclonic rainfall in the 

maritime climate of the Rur stations, the short and heavy convective rainfall in the sub-

continental climate of the Uckermark might have less variation in DSD, which leads to a 

better predictability of static KE-I relations. Furthermore, the stations Rur1 and Rur2 are 

located in the hilly Eifel region that may cause larger dynamics in rainfall types and cor-

responding DSD, which may to some extent explain the poor estimate quality at these 

two particular stations (Table 2.3 and 2.4). Therefore, it is suggested to select the utilized 

KE-I relation on event level in relation to the rainfall type and not only for a distinct 

meteorological region. 

2.4.3 Soil erosion modelling 

The parsimonious WaTEM/SEDEM model showed its reliability in predicting soil ero-

sion estimates in numerous studies for different environments (e.g. Bakker et al., 2008; 

De Vente et al., 2008; Dlugoß et al., 2012; Nadeu et al., 2015; Van Rompaey et al., 2005; 

Verstraeten et al., 2002). Due to the artificial input data, a rigorous validation was not 

possible. However, with respect to the study aim of quantifying the range of possible 
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uncertainties induced by a variety of KE-I relations and focusing on relative differences, 

the model performance is assumed to be sufficiently good.  

Sediment delivery is substantially affected by the seasonal distribution of rainfall KE oc-

currence. For the year of the highest KE and R factor, low sediment delivery was simu-

lated because the largest energy proportion occurred during a period of full vegetation 

cover. Thus, pronounced sediment delivery was solely simulated for the rainfall data of 

the cyclonic Rur stations due to a higher event frequency. An altered seasonal rainfall 

distribution would cause much higher sediment delivery and thus our estimates are rather 

conservative. Soil erosion by water is a highly episodic process, driven by single events 

(Fiener et al., 2015; Wilken et al., 2017a) and requires a combination of environmental 

conditions. Unfortunately, extreme events show the highest variation and uncertainty of 

the KE-I relationship. Figure 2.7 illustrates that the positive bias is not constant through-

out all years of highest sediment delivery and can either over or underestimate the refer-

ence run considerably. This implies for water erosion modelling, that KE derived from 

rainfall intensity underlies large uncertainties for rare and highly important extreme 

events. This is particularly true for physically-oriented models that apply KE-I relations 

on high temporal resolution. In contrast, on long time scales, the error might to some 

extent average out when utilizing conceptual models that were originally developed for 

the prediction of long-term average soil loss such as the USLE (Wischmeier and Smith, 

1960). 

The majority of environmental studies utilize tipping bucket rain gauges, which have a 

known underestimation problem of high intensity rainfall (Humphrey et al., 1997; 

Marsalek, 1981; Shedekar et al., 2016). Since most KE-I relations were developed to be 

applied on tipping bucket rain gauges, the positive bias might intentionally compensate 

the mechanically caused underestimation. Petan et al. (2010) showed that the derived KE 

from tipping bucket rain gauges is distinctively lower compared to the measured KE 

based on two optical laser disdrometers (Thies-Clima and OTT). However, this would 

suggest that traditional KE-I relations need to be calibrated for an application on intensity 

measurements of modern ombrometers. Further research is needed to show the effect of 

an overestimation by KE-I relations and underestimation by tipping bucket rain gauges.  

2.5 Conclusions 

We applied various rainfall kinetic energy-intensity (KE-I) relations on five optical dis-

drometers to assess (i) deviations between measured and theoretically derived kinetic en-

ergy (KE), (ii) variations throughout different energy and temporal aggregation levels and 
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(iii) implications for soil erosion modelling. For all analysed aspects (minute KE, erosive 

event KE and modelled sediment delivery), a distinct overestimation by the KE-I relations 

compared to measured KE was found. However, the overestimation is not a systematic 

offset and shows large variations for high rainfall intensities. Therefore, the prediction of 

KE causes substantial uncertainties for the simulation of rare and highly important ex-

treme events of soil erosion modelling. 

A geographical region is not necessarily the best predictor to determine the most adapted 

KE-I relation for a study area with heterogeneous rainfall characteristics. Therefore, an 

event specific selection according to rainfall types is suggested. Our findings demonstrate 

a need for rainfall type explicit KE-I relations and calibration coefficients of KE-I rela-

tions for application on modern optical disdrometers. 
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Article II 

Modelling a century of soil redistribution processes and carbon delivery 
from small watersheds using a multi-class sediment transport model 
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iment transport model, Earth Surface Dynamics, 5, 113-124, https://doi.org/10.5194/-
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1Institute for Geography, Universität Augsburg, Germany 
2Chair of Soil Protection and Recultivation, Brandenburg University of Technology Cott-
bus-Senftenberg, Germany 
3Institute of Soil Landscape Research, Leibniz-Centre for Agricultural Landscape Re-
search (ZALF) e.V., Germany 
4Earth & Life Institute/TECLIM, Université catholique de Louvain, Belgium 

Published in the journal Earth Surface Dynamics. 

Article abstract 

Over the last few decades, soil erosion and carbon redistribution modelling has received 

a lot of attention due to large uncertainties and conflicting results. For a physically based 

representation of event dynamics, coupled soil and carbon erosion models have been de-

veloped. However, there is a lack of research utilizing models which physically represent 

preferential erosion and transport of different carbon fractions (i.e. mineral bound carbon, 

carbon encapsulated by aggregates and particulate organic carbon). Furthermore, most of 

the models that have a high temporal resolution are applied to relatively short time series 

(< 10 yr-1), which might not cover the episodic nature of soil erosion. We applied the 

event-based multi-class sediment transport (MCST) model to a 100-year time series of 

rainfall observation. The study area was a small agricultural catchment (3 ha) located in 

the Belgium loess belt about 15 km southwest of Leuven, with a rolling topography of 

slopes up to 14%. Our modelling analysis indicates (i) that interrill erosion is a selective 

process which entrains primary particles, while (ii) rill erosion is non-selective and en-

trains aggregates, (iii) that particulate organic matter is predominantly encapsulated in 

aggregates, and (iv) that the export enrichment in carbon is highest during events domi-

nated by interrill erosion and decreases with event size. 
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3.1 Introduction 

Numerical models of soil detachment, transport and deposition are important tools for 

improving our understanding of soil systems and the linkages between the terrestrial and 

aquatic ecosystems. At present, a wide range of erosion models are available. Conceptual 

models, such as the RUSLE (Römkens et al., 1997), focus largely on the prediction of 

long-term sediment production under various environmental and management conditions. 

In parallel, physically-oriented models have been developed to simulate the routing of 

soil over complex topographies, taking hydrological and sediment-sorting processes into 

consideration (e.g. LISEM: De Roo et al., 1996; WEPP: Nearing et al., 1989; EROSION-

3D: Schmidt, 1991). These models operate over relatively short timescales, typically one 

to several events, and are concerned with modelling the detachment and movement of 

mineral particles. Over the last few decades, they have been instrumental in improving 

our understanding of erosion processes and currently serve as tools for landscape man-

agement.  

Erosion-induced changes in biogeochemical cycles, in particular carbon (C) fluxes be-

tween soils, the aquatic environment and the atmosphere, have received considerable at-

tention over the past two decades (Quinton et al., 2010; Renwick et al., 2004; Stallard, 

1998). However, large uncertainties and conflicting results remain (Kuhn et al., 2009; 

Lal, 2003; Van Oost et al., 2007), and this has spurred renewed interest in the application 

of soil erosion models. To date, few soil and SOC erosion models integrate detailed 

transport processes. There have been attempts to address this issue using single-point 

models with varying degrees of complexity (Billings et al., 2010; Harden et al., 1999; Liu 

et al., 2003a; Manies et al., 2001). These models apply prescribed SOC erosion and/or 

deposition rates and simulate the resulting effects on the soil organic carbon (SOC) profile 

using CENTURY (Parton et al., 1988) parameterizations. Recently, spatially explicit 

models that combine erosion models with models of SOC dynamics have been developed 

(e.g., Changing Relief and Evolving Ecosystems Project (CREEP): Rosenbloom et al., 

2001; Yoo et al., 2005; SPEROS-C: Van Oost et al., 2005c; Fiener et al., 2015). Both 

CREEP and the model presented by Yoo et al. (2005) focus on long-term landscape de-

velopment (i.e. millennial scale) and diffusive geomorphic processes that occur on undis-

turbed grasslands. The CREEP model also simulates textural differentiation and 

preferential transport of the finer fractions by surface wash. Compared to CREEP, 



Long-term carbon delivery modelling 30 

 

SPEROS-C focuses on shorter timescales (i.e. years to decennia) and agricultural land-

scapes. It includes spatially distributed water and tillage erosion and dynamically couples 

SOC turnover (Dlugoß et al., 2012; Van Oost et al., 2005c). 

Although these model concepts have facilitated an improved qualitative understanding of 

SOC erosion and erosion-induced changes in SOC storage, they are largely based on un-

verified assumptions and simplified process descriptions: First, SOC erosion is mostly 

approximated as being proportional to the bulk carbon:sediment ratio of topsoils. How-

ever, both experimental and modelling studies have clearly shown that erosion preferen-

tially removes and exports SOC (Kuhn et al., 2010; Polyakov and Lal, 2004b; 

Schiettecatte et al., 2008a, b). This preferential transport results from the fact that SOC is 

not distributed uniformly throughout the soil, but instead consists of several fractions, 

characterized by different densities and particle sizes. For example, some SOC is bound 

to the fine mineral fraction, some is encapsulated in soil aggregates, while another SOC 

fraction exists as mineral-free particulate organic matter (POM) and has a much lower 

density (John et al., 2005; Von Lützow et al., 2007). This differentiation is particularly 

relevant for the C cycle, since for example the C fraction with the highest potential mo-

bilization and transport capacity (i.e. POM due to its low density) is also a very labile 

fraction (Haynes, 2005). Thus, SOC erosion models should always consider the differen-

tial behaviour of sediment particles and SOC fractions when simulating erosion and 

transport processes. Second, SOC erosion simulation models need to consider relatively 

long timescales, i.e. several years to decades, as SOC erosion fluxes are relatively small 

when compared to rates of SOC turnover (Fiener et al., 2015). Current models addressing 

erosion (e.g. EDCM: Liu et al., 2003a; CENTURY: Parton et al., 1988; WaTEM: Van 

Oost et al., 2000a; EPIC: Williams, 1995) use a constant average annual soil erosion rate 

by assuming uniformity. However, empirical observations indicate that soil erosion and 

sediment delivery are to a large extent controlled by extreme events (Fiener and 

Auerswald, 2007b). This calls into question whether the effects of erosion on biogeo-

chemical cycles can reasonably be derived from continuous average long-term erosion 

rates. Event size also influences the extent to which selective transport takes place in 

erosion processes. For example, interrill erosion, which is a selective process (Kuhn et 

al., 2010), is more pronounced during smaller erosion events. As a result, there is more 

enrichment of fine soil fractions, including SOC associated with clay particles, during 

small events compared to large ones. It is therefore important that SOC erosion models 

correctly represent the different processes that control selectivity. Furthermore, analysis 
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on the relative contribution of low intensity (but high frequency) and more extreme (but 

low frequency) erosion events is required to understand the long-term effect on SOC dy-

namics. An important limitation of current approaches is therefore the frequent use of the 

USLE (Wischmeier and Smith, 1978) as a basis for erosion prediction. The USLE was 

not designed to estimate frequency distributions of soil erosion but is in fact designed to 

average out variability but is widely used on an annual (Erol et al., 2015; Ligonja and 

Shrestha, 2015) or monthly (Galdino et al., 2016) resolution. 

The main objective of this paper is to use a physically-oriented erosion model the multi-

class sediment transport (MCST) model (Fiener et al., 2008; Van Oost et al., 2004) in a 

numerical experiment to improve our mechanistic understanding of sediment and SOC 

delivery. To this end, the MCST model is modified to incorporate the natural long-term 

variability of soil and SOC erosion. Existing empirical observations will be used to assess 

the model behaviour and to identify potential deficiencies in model process descriptions. 

Finally, the long-term role of event size on soil and SOC erosion will be evaluated and 

discussed.  

3.2 Methodology 

The MCST model (Fiener et al., 2008; Van Oost et al., 2004) combines a soil infiltration 

component with a kinematic wave routine to produce continuous series of runoff events. 

The event-based soil erosion component describes detachment as a function of rainfall 

characteristics, slope and discharge, while transport and deposition are simulated using 

the Hairsine and Rose (1992b, b) equations. The two-dimensional implementation in a 

regular grid (1m x 1 m to 5m x 5 m) uses a digital elevation model to route overland flow 

and sediment redistribution. A detailed model description can be found in Van Oost et al. 

(2004) and Fiener et al. (2008); here we focus on its main features and modifications 

made in order to continuously simulate long-term (up to centuries) soil and SOC erosion.  

3.2.1 Modelling surface runoff 

The model calculates rainfall excess at a fine temporal resolution (minutes to hours) using 

a modified curve number approach. The original version of the MCST model simulates 

single rainfall events but is converted into a continuous simulation model as follows. The 

input of the model is a continuous rainfall series with a time resolution of 10 min. A 

rainfall-runoff event is identified as a period (i) in which rainfall depth exceeds 2 mm in 

24 h (<1% of total runoff excluded) and (ii) which is separated by at least 72 h without 
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rainfall. Accordingly, a rainfall-runoff event is not necessarily defined by a single hydro-

graph, but might contain multiple runoff peaks. A moving window of 24 h is used to 

estimate cumulative rainfall (Pi,cum) and cumulative abstractions for each time step 𝑖𝑖 (i.e. 

initial abstraction (Ia,cum) and continuing abstraction (Fa,cum) of the curve number method). 

The excess rainfall hyetograph (Ri) at time step 𝑖𝑖 is calculated as 

𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐 −  𝑅𝑅𝑖𝑖−1,𝑐𝑐𝑐𝑐𝑐𝑐  (3.1) 

and 

𝑅𝑅𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑃𝑃𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐼𝐼𝑎𝑎,𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐹𝐹𝑎𝑎,𝑐𝑐𝑐𝑐𝑐𝑐�𝐼𝐼𝑓𝑓 , (3.2) 

where 𝑃𝑃𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐 (mm) is the cumulative excess rainfall during the last 24 h. 

 

 𝐼𝐼𝑓𝑓  is a scaling factor for rainfall intensity which is calculated as: 

𝐼𝐼𝑓𝑓 = �𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚10
10

�
0.9

 (3.3) 

where 𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎𝑚𝑚10 is the maximum 10-minute rainfall intensity (mm h-1).  

 

Flow discharges for each grid cell and time step are calculated by numerically solving the 

kinematic wave equations (Van Oost et al., 2004). For sheet flow, cross-sectional flow 

area is calculated assuming a homogeneous flow depth for each raster cell, while for con-

centrated flow, a relationship between discharge and cross-sectional flow area is used 

(Govers, 1992). To distinguish between sheet and concentrated flow, a critical shear ve-

locity of 3.5 cm s-1 for rill initiation, based on flume experiments conducted by Govers 

(1985), is used. The model keeps track of changes in the pattern of concentrated flow and 

rill network development. Finally, sediment movement is described by utilizing an event-

based steady-state sediment continuity equation proposed by Yu et al. (1997). 

3.2.2 Modelling erosion and deposition 

Experimental research has shown that the Hairsine-Rose model provides a physically 

based description of sediment transport and deposition for multiple sediment classes that 

differ in terms of settling velocities (Beuselinck et al., 2002a, b). Transport of soil by 

overland flow is characterized by simultaneous re-entrainment and deposition (i.e. tem-

porary settlement) of sediments: 

𝑑𝑑𝑖𝑖 − 𝑟𝑟𝑟𝑟𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑇𝑇𝑖𝑖𝑣𝑣𝑠𝑠𝑖𝑖 − 𝛼𝛼𝑖𝑖𝐻𝐻𝐻𝐻
𝑔𝑔

𝛿𝛿𝑖𝑖
(𝛿𝛿𝑖𝑖−𝜌𝜌)

(Ω−Ω𝑐𝑐𝑐𝑐)
𝐷𝐷

𝑀𝑀𝑑𝑑𝑖𝑖
𝑀𝑀𝑑𝑑𝑑𝑑

 (3.4) 
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where 𝑑𝑑𝑖𝑖 is the mass rate of deposition per unit area of size class 𝑖𝑖 (kg s-1 m-2), 𝑟𝑟𝑟𝑟𝑖𝑖 is the 

rate of sediment re-entrainment for settling velocity class 𝑖𝑖 (kg s-1 m-2), 𝑇𝑇𝑖𝑖 is the mean 

sediment concentration (settling velocity class 𝑖𝑖; kg m-3), 𝛼𝛼𝑖𝑖 is the ratio of the sediment 

class concentration of flow related to the local sediment class concentration of the parent 

material, 𝑣𝑣𝑠𝑠𝑖𝑖  is the settling velocity of sediment size class 𝑖𝑖 (m s-1), 𝐻𝐻 is the fractional 

shielding of the soil by the deposited layer, 𝐹𝐹 is the fraction of stream power used for re-

entrainment, 𝑔𝑔 is gravity (m s-2), 𝛿𝛿𝑖𝑖  is the sediment density of settling velocity class 𝑖𝑖 

(kg m-3), 𝜋𝜋 is the water density (kg m-3), Ω is the stream power (W m-2), Ω𝑐𝑐𝑟𝑟 is the critical 

stream power (W m-2), 𝐷𝐷 is the depth of the water flow (m), 𝑀𝑀𝑑𝑑𝑖𝑖is the mass of sediment 

class 𝑖𝑖 in the deposited layer (kg m-2), 𝑀𝑀𝑑𝑑𝑑𝑑 is the total mass of the deposited layer per unit 

area (kg m-2). 

 

If the local stream power (Ω) is less than a critical threshold (Ω𝑐𝑐𝑟𝑟), re-entrainment does 

not occur and deposition of size class 𝑖𝑖  is a function of its specific settling velocity 

(Beuselinck et al., 1999; Hairsine et al., 2002). If the local stream power exceeds this 

threshold value, a shielding factor 𝐻𝐻 is calculated to decide whether net erosion or depo-

sition occurs (Hairsine and Rose, 1992a): 

𝐻𝐻 = (𝛿𝛿−𝜌𝜌)𝑔𝑔 ∑ 𝑣𝑣𝑖𝑖𝐶𝐶𝑖𝑖
𝛿𝛿𝐻𝐻(Ω−Ω𝑐𝑐𝑐𝑐)  (3.5) 

If H ≥ 1, then net deposition, characterized by steady state flow and re-entrainment of 

previously deposited sediment, occurs. If 𝐻𝐻 < 1, net erosion occurs, and soil detachment 

is modelled as: 

𝐷𝐷𝑟𝑟 = 𝑎𝑎𝑆𝑆𝑠𝑠𝑠𝑠𝑟𝑟𝑄𝑄𝑑𝑑𝑠𝑠 + 𝑏𝑏𝑆𝑆𝑠𝑠𝑠𝑠𝑖𝑖  (3.6) 

𝐷𝐷𝑖𝑖𝑟𝑟 = 𝑏𝑏𝐼𝐼2𝑆𝑆𝑆𝑆 (3.7) 

where 𝐷𝐷𝑟𝑟 and 𝐷𝐷𝑖𝑖𝑟𝑟 are the rill detachment rate and the interrill sediment transport to the rill 

(kg m-2 s-1), respectively, 𝑎𝑎 is the rill erodibility factor, 𝑏𝑏 is the interrill erodibility factor, 

𝑄𝑄 is the rill discharge (m3 s-1), 𝑆𝑆 is the local slope gradient, 𝐼𝐼 is the maximum 10 min 

rainfall intensity, 𝑆𝑆𝑆𝑆 is a slope factor and 𝑠𝑠𝑠𝑠𝑟𝑟, 𝑑𝑑𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑖𝑖 are calibration exponents.  

 

Rill erosion is considered to be unselective, i.e. the sediment particle size distribution of 

the eroded material equals the distribution of the source material at the source location. 

In contrast, interrill erosion is simulated as a selective process: assuming steady state flow 
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conditions, Eq. (3.4) is used to estimate the particle size distribution of the sediment de-

tached by interrill erosion and Eq. (3.7) is used to estimate the transport for sediment 

delivered to the rill network (or that leaves a grid cell when there is no incised rill). This 

approach is consistent with empirical observations showing that the enrichment of finer 

sediment particles and SOC in suspended sediment is mainly controlled by the transport 

capacity of the flow (Schiettecatte et al., 2008b). To represent the amount of primary 

particles vs. soil aggregates of suspended sediments, the model interpolates the settling 

velocity for each particle class and grid cell according to the proportion of particles de-

tached by interrill or rill erosion. 

The MCST model keeps track of spatio-temporal changes in particle size distribution of 

the eroded and deposited topsoil sediment within 10 different size fractions. However, 

the particle size distribution is spatially homogenous and constant throughout the 

100-year modelling period.  

3.2.3 Model implementation 

For our modelling based analysis, we combined data from different sources into a virtual 

catchment data-set: (i) All basic data (i.e. digital elevation model, soils) were taken from 

a small first-order catchment in central Belgium, located about 15 km southwest of Leu-

ven. The site has a size of 3 ha with a mean and maximum slope of 7% and 14%, respec-

tively. The catchment consists of diverging convex hillslopes and a central concavity 

where ephemeral gullying and sediment deposition are frequently observed (Fig. 3.1; 

Desmet and Govers, 1997). Soils in the catchment are loess-derived, silty-loamy Luvi-

sols, with a clay, silt and sand content of 14%, 82% and 4%, respectively (Desmet and 

Govers, 1997). (ii) For the 100-year. modelling period, high resolution rainfall data 

(1898-1997; 10-min intervals), measured in Ukkel (Brussels-Capital Region), were used 

(Fig. 3.1; Verstraeten et al., 2006). 
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Modelling parameters were derived from 

earlier studies: (i) We assumed continuous 

maize cropping, where monthly Curve 

Number values range between 83 and 89 

(Van Oost et al., 2004) to account for sea-

sonal changes in crop cover and soil crust-

ing. This range resulted in runoff volumes 

that are consistent with field observation 

(Gillijns et al., 2005). (ii) Two annual tillage 

operations are assumed to erase the network 

of rills and ephemeral gullies which may 

have evolved during preceding erosion 

events. Apart from removing rills, tillage 

erosion is not taken into account. (iii) The 

rill and interrill erodibility parameter values, 

as well as the slope and discharge exponents 

(Eq. 3.6 and 3.7), were assumed to be con-

stant over time and space. Therefore, spatio-

temporal variability of soil moisture is not 

accounted for. The parameter values are 

taken from flume and plot-scale experi-

ments, conducted using soils from the Bel-

gium loess belt (Table 3.1; Van Oost et al., 

2004). With these parameters, MCST has al-

ready shown to be able to predict the spatial 

patterns and rates of sediment detachment 

and transport in the test catchment (Van 

Oost et al., 2004).  

 
Figure 3.1: Topography and location of the test 
catchment, location of the Ganspoel and 
Kinderveld runoff and sediment observation 
stations and the rain gauge of Ukkel, Brussels-
Capital Region. 
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Table 3.1: Parameter description and model setup. 

Symbol Description Unit Range/value 

Static parameters 

𝛿𝛿  

sediment density kg m-3 2600 

aggregate density kg m-3 1300 
particulate organic matter density kg m-3 1000 

𝜋𝜋 water density kg m-3 1000 

Ω𝑐𝑐𝑟𝑟  threshold of re-entrainment W m-2 0.6 

𝑔𝑔 gravity m s-2 9.81 

𝑣𝑣𝑠𝑠𝑖𝑖  settling velocity for class i m s-1 2.6 x 10-7 - 5.0 x 10-3 

Dynamic parameters   

𝑅𝑅𝑖𝑖 excess rainfall at hyetograph at time step i mm  

𝑃𝑃𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐 cumulative excess rainfall of past 24 h mm  

Ia,cum initial abstraction mm  

Fa,cum continuing abstraction mm  

𝑑𝑑𝑖𝑖 mass rate of deposition for class i kg s-1 m-2  

𝑟𝑟𝑟𝑟𝑖𝑖 rate of sediment re-entrainment for class i kg s-1 m-2  

𝑇𝑇𝑖𝑖 mean sediment concentration for class i kg m-3  

Ω stream power W m-2  

𝐷𝐷 depth of water flow m  

𝑀𝑀𝑑𝑑𝑖𝑖 sediment mass of deposited layer for class i kg m-2  

𝑀𝑀𝑑𝑑𝑑𝑑 total sediment mass of deposited layer kg m-2  

𝐷𝐷𝑟𝑟  rill detachment rate kg m-2 s-1  

𝐷𝐷𝑖𝑖𝑟𝑟  interrill sediment transport to the rill  kg m-2 s-1  

𝑄𝑄 rill discharge m3 s-1  

𝐼𝐼 maximum 10 min rainfall intensity mm h-1  

𝛼𝛼𝑖𝑖 sediment:parent-material ratio for class i -  

𝐹𝐹 stream power fraction for re-entrainment -  

𝐻𝐻 shielding by deposits -  

𝑎𝑎 rill erodibility factor -  

𝑏𝑏 interrill erodibility factor -  

𝑆𝑆 local slope gradient -  

𝑆𝑆𝑆𝑆  slope factor -  

 

In simulation studies, the particle size distribution is typically derived from dispersed 

sediment samples and therefore reflects the settling velocities of the primary particles of 

the sediment. However, sediment transport and deposition can also occur in the form of 

aggregates, particularly for fine textured soils, as is the case in our study area (Beuselinck 

et al., 2000). Therefore, we considered the particle size distributions of both aggregated 

soil and primary particles in our simulations. We considered two erosion scenarios. In 
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erosion scenario 1, both detachment by rill and interrill erosion leads to aggregate break-

down and soil is transported and deposited following the settling velocity classes of pri-

mary particles (Fig. 3.2). Furthermore, particulate organic matter (POM) is an individual 

free floating particle class. In erosion scenario 2, interrill erosion still breaks down aggre-

gates and transports primary particles. In contrast, detachment by rill erosion does not 

lead to aggregate breakdown and entrains aggregated soil, following the settling velocity 

classes of aggregated soil (Fig. 3.2). For aggregated soil POM is assumed to be encapsu-

lated in soil aggregates and is not treated as an individual class. Following detachment, 

the model simulates the transport and deposition of primary particles or aggregated soil 

based on the erosion type of detachment that they underwent. The particle size distribu-

tions of primary particles and aggregated soil were taken from direct measurements 

(n=81) in the Belgian loess belt conducted by (Beuselinck et al., 1999). The grain size 

distribution for aggregated soil represents the relative difference between fully dispersed 

and non-dispersed soil in 10 different diameter classes. For these classes, the correspond-

ing settling velocities were calculated according to the model of Dietrich (1982), using a 

density of 2.6 and 1.3 kg m-3 for primary particles and aggregates, respectively. The den-

sity of primary particles is assumed to be close to quartz, whereas a pore space of 50% is 

assumed for aggregates. The settling velocity distributions (Fig. 3.2) show that the aggre-

gated sediments are dominated by fractions with settling velocities between 10-4 and 

10-3 m s-1, i.e. silt-sized particles. In contrast, erosion scenario 1, which solely considers 

primary particles, shows very low settling velocities relative to aggregated sediments 

(Fig. 3.2). This results from differences in particle size between the two fractions: aggre-

gated soils contain fewer clay and silt-sized particles, because particles of this size tend 

to be occluded in aggregates. As a result, aggregates have larger particle sizes and faster 

settling velocities. 
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The implementation of SOC characteris-

tics in the model is based on a SOC frac-

tionation study that was carried out with 

similar soils (Luvisols) from the Belgian 

loess belt (Doetterl et al., 2012a). In the 

study of Doetterl et al. (2012a), soil sam-

ples were taken at 11 locations along a 

topographic gradient, from non-eroded to 

eroding and depositional sites. The results 

showed that 85% (±10%) of the total SOC 

was associated with the mineral fraction 

(clay and silt size), while the remaining 

15% (±3%) was POM. To our knowledge, 

no detailed information is available on the 

allocation of SOC in particle size fractions 

from 2 to 63 µm. In terms of simplicity, 

and given the constraints imposed by the model structure, we considered two types of 

SOC for both primary particles and aggregated soil: (i) mineral-bound SOC, which rep-

resents 90% of the total and is associated with the finest sediment class (< 2 µm) and (ii) 

a POM fraction, which represents 10% of total SOC and is considered a separate class in 

the model, with a particle size of 250 µm and a density of 1000 kg m-3. Hence, SOC is 

represented in different particle classes but the model does not account for geochemical 

processes. 

3.2.4 Model evaluation 

We evaluated the performance of the model by comparing the predicted characteristics 

with those that were continuously observed in the Kinderveld and Ganspoel (Table 3.2) 

agricultural catchments for two observation periods of 3 years each (6 years total 

observation; Van Oost et al., 2005a). The two catchments are situated approx. 15 km from 

our study site and are larger but very similar to our site in terms of soil properties and 

geomorphology. We were unable to directly apply our model to these two agricultural 

catchments, as our model has high data requirements, which could not be met due to large 

uncertainties in input data, or in some cases because the data were simply not available. 

Rather than providing an evaluation on an event-basis, we evaluated the model perfor-

mance by looking at the characteristics of sediment and SOC delivery, in response to a 

 

Figure 3.2: Measured cumulative proportion of 
settling velocity distributions for primary parti-
cles and aggregated sediments (n=81). The grey 
area represents the range of possible settling ve-
locities related to different proportions of primary 
particles or soil aggregates. Right Y-axis shows 
the settling velocity classes as implemented in the 
model for primary particles and aggregates 
(based on particle size distribution measurements 
conducted by Beuselinck et al., 1999). 

10-7 10-6 10-5 10-4 10-3

1
2
3
4
5
6
7
8
9
10

Settling velocity (m s-1)

M
od

el
in

pu
tc

la
ss

es

Primary particles
Aggregated soil

10-7 10-6 10-5 10-4 10-3
0

20

40

60

80

100

Settling velocity (m s-1)

Cu
m

ul
at

ive
pr

op
or

tio
n

(%
)

Primary particles
Aggregated soil



Long-term carbon delivery modelling 39 

 

range of erosion event-sizes. This provides a first, but stringent, test of model structure 

and assumptions.  
Table 3.2: Area, topographic characteristics, land use and soil of 
the study area and the two evaluation catchments. 

  Study area Kinderveld Ganspoel 

Area [ha] 3 250 117 
Elevation [m] 12 61 39 
Mean slope [°] 4.4 3.8 3.4 
Arable [%] 100 80.5 76.9 
Forest &  
pasture [%] 0 16.7 9.0 

Other [%] 0 2.8 14.1 
Clay [%] 14 7-18 
Silt [%] 83 70-80 

 

3.2.5 Frequency analysis 

For an analysis of event-based recurrence intervals, we follow the rainfall event definition 

given in section 3.2.1 (72 h window). Thereby, some events may contain multiple runoff 

peaks. The recurrence interval (𝑇𝑇) is related to the frequency (𝑃𝑃) with which soil erosion 

(𝑆𝑆𝐿𝐿) exceeds the value 𝑋𝑋: 

𝑇𝑇 = 1
𝑃𝑃(𝑆𝑆𝑆𝑆≥𝑋𝑋). (3.8) 

The recurrence interval is expressed in years when 𝑇𝑇 is multiplied by the number of 

modelled years. 

To calculate the frequency of exceedance, monthly soil erosion values were ranked in 

increasing order, and a rank 𝑚𝑚 is given to each modelled soil erosion event. The exceed-

ance probability for event 𝑚𝑚 is given by: 

𝑃𝑃(𝑆𝑆𝐿𝐿 ≥ 𝑋𝑋)𝑚𝑚 = 𝑐𝑐
𝑛𝑛+1

, (3.9) 

where 𝑛𝑛 is the total number of events during the period.  

3.3 Results and Discussion 

3.3.1 Rainfall/runoff 

Application of the rainfall/runoff model over a period of 100 years resulted in 792 indi-

vidual rainfall/runoff events. The temporal variability of rainfall events is relatively low, 

as more than 70% of total rainfall is associated with events with a recurrence interval of 



Long-term carbon delivery modelling 40 

 

less than 1 year. Extreme rainfall events do occur, but their relative contribution to total 

rainfall is limited (i.e. events with a recurrence interval ≥ 2 years contribute less than 18% 

of total rainfall). The model simulates that, integrated over the period of simulation, about 

10% of the total rainfall does result in surface runoff. This is consistent with field obser-

vations in the study area, where an average of 8% was reported by Steegen et al. (2000, 

2001). In contrast, the simulated temporal variability in runoff is high, and events with a 

larger recurrence interval, i.e. ≥ 2 years, make up more than 36% of total runoff. The 

variability in runoff is higher than that of rainfall because it is controlled by multiple 

factors, including rainfall amount and intensity, vegetation characteristics, soil surface 

conditions and the presence and/or absence of a rill/ephemeral gully network at the be-

ginning of an event. 

3.3.2 Interrill and rill/ephemeral gully erosion 

In the study area, erosion can be found in the mid-slopes, whereas a depositional area is 

located in the valley bottom (Fig. 3.3). Interrill erosion, modelled here as a function of 

slope and rainfall intensity, accounts for 14% of total sediment mobilization over a 

100-year period. Rainfall intensity is the main factor controlling interrill erosion and ex-

plains about 70% (p < 0.001) of its variability. In contrast, incised (i.e. rill/ephemeral 

gully) erosion was modelled as a function of slope and discharge and is therefore mainly 

controlled by surface runoff (R² = 88%; p < 0.001). The simulated relative contribution 

of interrill erosion depends on the suspended 

sediment concentration (SSC) and the sedi-

ment delivery ratio (SDR), which is the frac-

tion of eroded soil that is transported to the 

catchment outlet. For events with low values 

for SSC and SDR, the contribution of interrill 

erosion can account for up to 100% of total 

sediment mobilization, but this contribution 

declines rapidly with increasing SSC and 

SDR (Fig. 3.4). This reflects the role of event 

size, whereby only larger events produce sig-

nificant amounts of concentrated erosion 

once the hydraulic threshold for rill initiation 

is exceeded. This large contribution of rill 

 
Figure 3.3: Spatial patterns of total soil erosion 
and deposition after hundred years of simula-
tion. Negative values indicate erosion and pos-
itive values deposition. 
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erosion for sediment delivery was also observed by Wang et al. (2010) in the Kinderveld 

and Ganspoel catchment. In a modelling study, Wilken et al. (2017b) tested the effect of 

different rill initiation characteristics on SOC delivery in a catchment of similar loess-

derived soils. The results showed that rill erosion widely controls sediment and SOC de-

livery in catchments with high connectivity. 

 

Figure 3.4: Event proportion of interrill erosion contributing to suspended sediment concentration 
(a) and the sediment delivery ratio (b). 

 

3.3.3 Sediment and carbon mobilization and export under different scenarios 

We evaluated two erosion scenarios where different assumptions about particle size dis-

tribution are made: erosion scenario 1, where soil is transported and deposited as primary 

particles and POM is an individual class, and erosion scenario 2 where rill erosion de-

taches, transports, and deposits aggregated soil and POM is encapsulated in soil aggre-

gates (see section 3.2.3). The simulated long-term enrichment ratio of the deposits for the 

fine fraction (< 2 μm), which results from selective transport and deposition processes, 

was found to be 0.02 and 0.6 for erosion scenario 1 and 2, respectively. For erosion sce-

nario 1, this implies that the deposition of clay particles and POM is virtually non-existent 

and also suggests a very efficient export of clay minerals and POM from first-order catch-

ments. However, these results are not consistent with field observations. Data derived 

from the Belgian Soil Map (Baeyens, 1959) show only small differences between the 

primary particle size distributions of colluvial and non-eroded agricultural soils in the 

study area. The reported enrichment ratio for the clay fraction of colluvial soils is 0.8 

(Baeyens, 1959). The colluvial sediment is thus only slightly depleted in clay when com-

pared to the source material. Based on this analysis, we consider the results of the simu-

lations for erosion scenario 1 to not be physically valid. In contrast, the results of erosion 

scenario 2 are qualitatively similar to the observations (Baeyens, 1959), which suggests 
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that erosion scenario 2 more accurately depicts erosion processes in our study area. This 

implies that the assumptions made for erosion scenario 2 are appropriate, i.e. interrill ero-

sion detaches and transports primary particles, whereas rill erosion is unselective and de-

taches and transports soil aggregates. The concept of particle size-selective interrill and 

non-selective rill erosion which detaches and entrains the entire soil matrix has been doc-

umented in numerous studies (Kuhn et al., 2010; Polyakov and Lal, 2004b; Quinton et 

al., 2001; Schiettecatte et al., 2008b). Following non-selective splash erosion (Parsons et 

al., 1990; Poesen, 1985; Poesen and Savat, 1980), selectivity is caused by particle size 

specific deposition differences, where coarser and heavier particles settle out earlier than 

finer and lighter particles (Schiettecatte et al., 2008a). The model tends to slightly under-

estimate the deposition of the finest fractions (enrichment of colluvial sediments: 

0.6 model versus 0.8 field observations).  

The clay enrichment ratios at the outlet of the catchment (i.e. clay exported sediment / 

clay source material) for the simulated events range between 1 and 4.8 (Fig. 3.5). These 

ratios are strongly related to the SSC: high enrichment ratios occur when SSC is low, i.e. 

during small events with a low recurrence interval. In contrast, low enrichment ratios (i.e. 

close to 1) are associated with events characterized by a high SSC. These findings are in 

line with other studies (Schiettecatte et al., 2008a, b; Wang et al., 2010) and emphasize 

the importance of event size. The contribution of interrill erosion is higher for small 

events and, since interrill erosion is modelled as the detachment and export of individual 

sediment particles, this results in a higher clay enrichment ratio. Vice versa, the contribu-

tion of interrill erosion is small for large events, resulting in enrichment ratios close to 1, 

since concentrated erosion is assumed to be unselective. The simulated range of enrich-

ment ratios and the relationship between those ratios and SSC are both very similar to 

that which was observed at the Kinderveld and Ganspoel catchment (Fig. 3.5; Wang et 

al., 2010).  
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However, over a simulation period of 100 

years, the flux-weighted predicted clay 

enrichment ratio in exported sediments 

was found to be 1.4, which is lower than 

the field-observed ratio of 1.5 - 2.6 for a 

6-year period for the Ganspoel and 

Kinderveld catchments (Wang et al., 

2010). We assume that this discrepancy 

results from difference in sedimentologi-

cal connectivity, whereas a cascade of se-

lective erosion and deposition processes 

in the larger catchments lead to stronger 

enrichment in the delivered fines. In con-

trast, an earlier study applying MCST in 

catchments of similar scale (0.7 and 3.7 

ha; Fiener et al., 2008) showed a good 

representation (R² = 0.93) of the modelled 

transport of fines compared to 8 years of 

observations  

The simulated enrichment of SOC is directly related to the preferential export of the clay 

fraction through by interrill erosion. The simulated SOC enrichment ratios are higher than 

the clay enrichment ratios previously discussed and range between 1 and 9 (Fig. 3.5b). 

Exported sediment is more enriched in SOC than it is in clay due to the fact that the clay 

fraction is itself enriched in SOC relative to the bulk soil. The simulated relationship be-

tween SSC and SOC enrichment is similar to what was found for clay enrichment, i.e. 

enrichment is higher when SSC is low. This is again consistent with the Kinderveld and 

Ganspoel field observations (Wang et al., 2010).  

It should be noted that the enrichment of exported clay and SOC was simulated assuming 

that interrill erosion resulted in the detachment of primary particles while concentrated 

erosion resulted in the detachment of aggregates. Alternatively, clay and POM fractions 

could be considered as individual classes in the model. However, due to very low settling 

velocities, nearly the entire mobilized clay and POM fractions are exported from the 

 

Figure 3.5: Clay (a) and carbon (b) enrichment ra-
tios with respect to simulated and observed (Wang 
et al., 2010) suspended sediment concentrations 
(observed n=clay 50/carbon 49). Error bars of 
measurements represent the 95% confidence inter-
val. 

0 50 100 150
0

2

4

6

8

Suspendedsediment concentration(g L-1)

Ca
rb

on
en

ric
hm

en
tr

at
io

(-)

(a)

(b)
0

2

4

6

8

Cl
ay

en
ric

hm
en

tr
at

io
(-)

Simulated
Observedn

1711 10
4 1

1
2

1
1 1

17
12 10

4
1

1 2 1 1 1



Long-term carbon delivery modelling 44 

 

catchment when this is simulated. This is not in line with field observations or with ex-

periments that show that the transport of fine-textured sediments mainly occurs in the 

form of aggregates (Beuselinck et al., 2000; Wang et al., 2013b). 

3.3.4 Frequency and magnitude of erosion and delivery of soil constituents 

Based on the 100-year modelling period, we analysed the effect of event-based frequency 

and magnitude of erosion on mobilisation and delivery of bulk sediment, clay and SOC 

(Fig. 3.6). We found that for within catchment erosion, a large number of relatively small 

events (recurrence interval < 1.5. yrs.) account for about half of the cumulative erosion, 

while larger events (> 10 yrs. recurrence) account for only about 15%.  

The SDR was 0.18 over the 100-year 

simulation period, while the mean ero-

sion rate was 12.5 Mg ha-1 yr-1. Figure 

3.6 clearly shows that larger events play 

a more important role in determining 

SDR than they do in determining soil 

erosion. Approximately 57% of the total 

sediment delivery comes from events 

with a recurrence interval less than or 

equal to 10 years (Fig. 3.6). This is ex-

plained by the fact that sediment delivery 

is not linearly related to runoff amount: 

once the hydraulic threshold is exceeded 

(i.e. an extensive network for concentrated flow is established) the sedimentological con-

nectivity is highly enhanced and SDRs can be very large. The simulation of hydrological 

and sedimentological connectivity requires the introduction of (i) differentiated hydro-

logical behaviours for sheet and concentrated flow, (ii) rill/ephemeral gully network de-

velopment tracking and (iii) the rill/ephemeral gully network connectivity to the outlet of 

the catchment. Our simulations show that the highest export rates occurred when the 

rill/ephemeral gully network was already well established at the beginning of an event. 

The important role of a rill/ephemeral gully network for the catchment connectivity was 

also pointed out in other studies (Lopez-Vicente et al., 2013; 2015). However, structures 

which interrupt the rill/ephemeral gully network potentially reduce the sedimentological 

connectivity to the outlet and reduce the SDR substantially (Wilken et al., 2017b). 

 
Figure 3.6: Cumulative erosion as well as sediment, 
clay, and SOC delivery related to event-based recur-
rence intervals. 
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The importance of event size for simulating clay and SOC delivery is also shown in Fig-

ure 3.5. Compared to bulk sediment, the delivery of clay and SOC is less driven by rare, 

large events, since small events with more interrill erosion already deliver relatively large 

amounts of clay and SOC. In general, the model results underline the importance of a 

more process-oriented analysis of SOC redistribution, as the effects of small erosion 

events, e.g. upon aquatic ecosystems, are underestimated when modelling only mean bulk 

erosion rates. 

In order to qualitatively evaluate our predicted temporal patterns for sediment delivery, 

we compared our results to studies that continuously measured export from small catch-

ments. In one such study, which was carried out in small agricultural catchments in the 

Belgian loess belt, Steegen et al. (2000) measured sediment delivery over a 3-year period 

in two first-order streams. The authors found that a single event contributed to more than 

40% of the total sediment delivery during the observation period and that the sum of rare 

and extreme events accounts for 46%. Even more extreme results were reported from a 

small loess catchment (3.7 ha) in Southern Germany, where a short-term series of single 

runoff events accounted for up to 67% of total sediment export (> 0.5 mm runoff) over 

an 8-year period (Fiener et al., 2008). Although a quantitative comparison of the model 

results with these empirical observations is not possible, as empirical observations in cen-

tral Europe typically cover far fewer than 100 years, this analysis strongly indicates that 

the mechanisms incorporated into the MCST model (i) allow for a quantitative represen-

tation of the relative importance of both small and large events and (ii) account for event 

size related sediment and SOC delivery. 

3.4 Conclusions 

In this study, we incorporated preferential erosion and transport of sediment and soil or-

ganic carbon (SOC) fractions into a numerical model of surface runoff and sediment 

transport. In doing so, we were able to predict the export of these different classes of 

sediment and SOC from small hilly watersheds, located in a temperate region with fine-

textured soils. The model predictions were only consistent with field observations when 

(i) interrill erosion was simulated as a process that entrains primary particles, (ii) rill ero-

sion is unselective and (iii) low-density POM is encapsulated within soil aggregates and 

cannot be entrained by interrill erosion. These results suggest that carbon enrichment at 

the outlet of small watersheds occurs as a result of the selective interrill transport of clay 

and fine-silt associated carbon. Based on the application of the model over a period of 

100 years, we conclude that sediment delivery is a highly episodic process. Our results 
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show that 63% of the total sediment delivery was caused by 20 single events with a rain-

fall recurrence > 5 years. This highlights the need to consider sufficiently long timescales 

when addressing the impact of lateral fluxes of sediment and nutrients on soil processes. 

However, the dominance of large events is less pronounced in the case of SOC delivery, 

where only 44% of total delivery is caused by extreme events. This reduced importance 

is associated with the selective process of interrill erosion and transport. This study high-

lights the need for an event-based analysis of carbon erosion and delivery in order to 

assess the overall effect of SOC redistribution on the terrestrial carbon balance. 
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Article abstract  

Coupled modelling of soil erosion, carbon redistribution, and turnover has received great 

attention over the last decades due to large uncertainties regarding erosion-induced car-

bon fluxes. For a process-oriented representation of event dynamics, coupled soil-carbon 

erosion models have been developed. However, there are currently few models that rep-

resent tillage erosion, preferential water erosion and transport of different carbon fractions 

(e.g. mineral bound carbon, carbon encapsulated by soil aggregates). We couple a pro-

cess-oriented multi-class sediment transport model with a carbon turnover model 

(MCST-C) to identify relevant redistribution processes for carbon dynamics. The model 

is applied for two arable catchments (3.7 and 7.8 ha) located in the Tertiary Hills about 

40 km north of Munich, Germany. Our findings indicate the following: (i) redistribution 

by tillage has a large effect on erosion-induced vertical carbon fluxes and has a large 

carbon sequestration potential; (ii) water erosion has a minor effect on vertical fluxes, but 

episodic soil organic carbon (SOC) delivery controls the long-term erosion-induced car-

bon balance; (iii) delivered sediments are highly enriched in SOC compared to the parent 

soil, and sediment delivery is driven by event size and catchment connectivity; and (iv) 

soil aggregation enhances SOC deposition due to the transformation of highly mobile 

carbon-rich fine primary particles into rather immobile soil aggregates. 
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4.1 Introduction 

Soil organic carbon (SOC) is the largest terrestrial carbon (C) pool and has been identified 

as a cornerstone for the global C cycle. Globally, approx. 1400 Pg C is stored in the upper 

meter of soil, with approx. 700 Pg C in the upper 0.3 m (Hiederer and Köchy, 2011). As 

a result, exchange rates between soil and the atmosphere are a major concern with regards 

to climate change (Polyakov and Lal, 2004a). Earth system model-based estimates for 

terrestrial C storage in the year 2100 vary widely, ranging from a sink of approx. 

8 Pg C yr-1 to a source of approx. 6 Pg C yr-1 (Friedlingstein et al., 2014). This large un-

certainty might even increase if process levels that are at this point not yet implemented 

in current models are taken into account (Doetterl et al., 2016). One such process is the 

lateral redistribution of SOC via erosion processes and the effect this has on vertical C 

fluxes. Global estimates of erosion-induced C fluxes show conflicting results, ranging 

from a source of 1 Pg C yr-1 to a sink of the same magnitude (for recent reviews see 

Doetterl et al., 2016; Kirkels et al., 2014). The main reasons for these large differences 

are a lack of appropriate data (Prechtel et al., 2009), oversimplified modelling approaches 

that ignore important processes, and differences in measuring approaches, e.g. extrapo-

lating from arable plots (Hooke, 2000; Myers, 1993; Pimentel et al., 1995) vs. measuring 

continental delivery in river systems (Berhe et al., 2007; Wilkinson and McElroy, 2007).  

Most challenging in developing and especially testing models that couple process-ori-

ented SOC redistribution with SOC dynamics are the different spatial and temporal scales 

of the processes at play (Doetterl et al., 2016). Process-oriented erosion models need 

event-based data to be validated, while SOC dynamics can hardly be observed on time-

scales smaller than several decades. Consequently, most existing models that couple soil 

erosion and SOC turnover processes are based on long-term, USLE-type erosion models 

that ignore event dynamics. The most widespread of these is SPEROS-C, which was ap-

plied on scales ranging from micro- to mesoscale catchments (Fiener et al., 2015; Nadeu 

et al., 2015; Van Oost et al., 2005c).  

The conventional approach to modelling coupled soil erosion and SOC turnover is to treat 

SOC as a stable part of the bulk parent soil and statistically model (long-term) erosion. 

However, this approach is likely to lead to biased estimates of both water-erosion-induced 

SOC redistribution and its effect on vertical C fluxes. Numerous studies have shown that 

the transport of SOC is selective (Schiettecatte et al., 2008b), controlled by event charac-

teristics (Sharpley, 1985; Van Hemelryck et al., 2010) and soil aggregation (Hu and Kuhn, 

2014; 2016). The enrichment of SOC during transport has been explicitly addressed by a 
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few modelling studies, using different approaches (Fiener et al., 2015; Lacoste et al., 

2015). The effects of tillage erosion on vertical C fluxes have not yet been evaluated in 

detail, although a representation has been accounted for in some modelling studies 

(Lacoste et al., 2015; Van Oost et al., 2005b). 

The aim of this study is to couple a spatially distributed, process-oriented and event-based 

water erosion model with a tillage erosion model and a SOC turnover model in order to 

analyse the importance of individual erosion processes in the erosion-induced C balance 

of agricultural catchments. The study intends to identify relevant processes that should be 

implemented in less data-demanding, more parsimonious models. 

4.2 Materials and Methods 

4.2.1 Test site 

The test site is located about 40 km north 

of Munich in the Tertiary Hills, an inten-

sively used agricultural area in southern 

Germany. The site consists of two small 

arable catchments (48°29´ N, 11°26´ E; 

Fig. 4.1), catchments C1 and C2, covering 

an area of 3.7 and 7.8 ha, respectively. The 

rolling topography ranges from 454 to 

496 m above sea level with a mean slope 

of 4.2° (±0.6°) for catchment C1 and 5.3° 

(±1.7°) for catchment C2. The soil land-

scape is characterized by Cambisols and 

Luvisols (partly redoximorphic), both de-

veloped from loess. Furthermore, Collu-

vic Regosols have developed in 

depressional areas due to long-term soil 

translocation processes. In both catch-

ments, the dominant topsoil textures are 

loam and silty loam with a median grain 

size diameter between 12.5 and 16.0 µm 

(Sinowski and Auerswald, 1999). The av-

erage SOC content of the Ap horizons is 

 
Figure 4.1: Land use, topography and tillage direc-
tion for modelled catchments C1 and C2. In catch-
ment C2, a grassed waterway (GWW) is located 
along the thalweg, while vegetated filter strips 
(VFS) are located along the upslope and downslope 
field borders. 
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3.7 kg m-2. The mean annual temperature and precipitation is 8.4°C and 834 mm, respec-

tively (measured 1994 to 2001). Agricultural management at the research farm is dedi-

cated to soil conservation: the main cropping principle is to keep soil covered by 

vegetation or residues as long as possible (Auerswald et al., 2000). The crop rotation 

during the project was winter wheat (Triticum aestivum L.) – maize (Zea mays L.) – win-

ter wheat – potato (Solanum tuberosum L.). This crop rotation allowed for the cultivation 

of mustard (Sinapis alba L.) cover crops before each row crop (i.e. potato and maize). 

For implementation, potato ridges were formed before mustard sowing and, later, potato 

was directly sown into the ridges covered by winterkilled mustard. Maize, on the other 

hand, was directly sown into the winterkilled mulched mustard (Auerswald et al., 2000). 

For the established mulch tillage system, the main soil tillage operation was performed 

with a chisel cultivator (tillage depths approx. 0.2 m). To avoid soil compaction and de-

pressions, which could potentially induce concentrated runoff, wide and low-pressure 

tires were used on all farming machines (e.g. Fiener and Auerswald, 2007b). Catchment 

C1 drains one large field with an approx. 2-3 m wide grass filter strip along its downslope 

border, whereas catchment C2 consists of two fields draining into an approx. 300 m long 

and 30-40 m wide grassed waterway (Fig. 4.1). 

4.2.2 Model description 

For our study, we coupled three different models: (i) the process-oriented Multi-Class 

Sediment Transport Model (Fiener et al., 2008; Van Oost et al., 2004; Wilken et al., 

2017a), a spatially distributed and event-based water erosion model with a specific em-

phasis on grain size selectivity using the Hairsine and Rose equations (Hairsine et al., 

1992; Hairsine and Rose, 1991), (ii) a tillage erosion model following a diffusion-type 

equation adopted from Govers et al. (1994), which derives tillage erosion from topogra-

phy and tool-specific tillage erosion coefficients, and (iii) the Introductory Carbon Bal-

ance Model (ICBM; Andrén and Kätterer, 1997; Kätterer and Andrén, 2001), which 

models SOC turnover. The ICBM calculates yearly SOC dynamics using two SOC pools 

(“young” and “old”) and four C fluxes (C input from plants, mineralisation from the 

young and the old pool, and humification). Both the tillage erosion and ICBM model were 

adapted from SPEROS-C, which couples annual water erosion (based on the RUSLE; 

Renard et al., 1996), tillage erosion and SOC turnover (Fiener et al., 2015; Nadeu et al., 

2015; Van Oost et al., 2005c). In the following, we describe only those features of the 

coupled MCST-C model (Multi-Class Sediment Transport and Carbon dynamics model) 
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that had to be adapted in order to couple the models or for the introduction of SOC-spe-

cific transport mechanisms. An overview of the main model concepts of MCST-C is given 

in Fig. 4.2. For more details regarding the three coupled models and processes modelled 

therein, we refer the reader to the original publications (see above). 

4.2.3 Representation of grain-size-specific soil and associated SOC 

The representation of soil texture and SOC in the model is three-dimensional. The hori-

zontal distribution of grain-size-specific soil and SOC is grid-based, while the vertical 

distribution is represented by ten 10 cm layers. The two uppermost layers are assumed to 

be homogeneously mixed due to tillage. The grain size distribution is represented in 14 

primary particle classes, described by class median particle diameter, particle density and 

the class proportion relative to the bulk soil (kg kg-1). The median class diameter is cal-

culated by a logarithmic function that takes grain diameter class boundaries into account 

(Scheinost et al., 1997). The standard procedure (e.g. sieve-pipette method; Casagrande, 

1934; DIN, 2002) to determine grain size distributions destroys soil aggregates in a pre-

processing step and therefore only represents the primary particle distribution. However, 

soil aggregation has a large effect on the fall velocity distribution of soils and reduces the 

transport distance of SOC-rich material (Hu and Kuhn, 2014; 2016). Therefore, to ac-

count for soil aggregation, two water-stable aggregate classes have been introduced fol-

lowing the hierarchy model of Oades (1984), which describes microaggregate formation 

inside macroaggregates: silt-sized small microaggregates (6.3 – 53 µm, median diameter 

(D50): 18 µm; Tisdall and Oades, 1982) and microaggregates (53 – 250 µm, D50: 

115 µm; Six et al., 2002). In model parametrization, the small microaggregates are exclu-

sively formed out of primary particles with diameters less than 6.3 µm, whereas mi-

croaggregates are formed from those with diameters less than 53 µm (i.e. the lower 

diameter boundary of the aggregate class). As a result, aggregation causes a certain num-

ber of primary particles to be moved into the aggregate classes. Hence, the absolute 

amount of soil aggregation is controlled by the availability of fine primary particles, i.e. 

sandy soils are less aggregated compared to clayey soils. Macroaggregates (250-

2000 µm) are neglected since they are rather immobile during selective interrill erosion 

and are assumed to break into smaller aggregates during extreme events with high-pre-

cipitation kinetic energies (Legout et al., 2005; Oades and Waters, 1991; Tisdall and 

Oades, 1982). Furthermore, particulate organic matter (POM) is not treated as an individ-

ual class, as POM is assumed to be predominantly encapsulated within soil aggregates 

(Beuselinck et al., 2000; Wang et al., 2013a; Wilken et al., 2017a).  
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SOC transport is associated with various primary particle and aggregate classes. Based 

on the literature (Doetterl et al., 2012a; Von Lützow et al., 2007), it is assumed that min-

eral bound SOC is primarily attached to fine particles (< 6.3 µm) or included in soil ag-

gregates. To keep the mass balance, SOC in water-stable aggregates is allocated based on 

the SOC content of the primary particles that form these aggregates. This leads to a con-

servative estimate of SOC in aggregates, as measurements show that aggregates tend to 

encapsulate more C than found attached to mineral primary particles (Doetterl et al., 

2012a). As small microaggregates in the model consist solely of primary particles with 

diameters less than 6.3 µm, their C content equals that of the fine primary particles. Mi-

croaggregates show a somewhat smaller C content, since the larger primary particles from 

which they are also made tend to have less associated SOC.  

4.2.4 Continuous tracking of catchment dynamics 

In its original version, the MCST model treats events individually without considering 

changes caused by previous events. For a continuous application, the water erosion mod-

ule of MCST-C simulates single events and keeps track of the following redistribution 

related changes in the catchment: spatial and vertical changes in (i) the grain size distri-

bution and (ii) SOC content and (iii) the development of a rill network, which remains 

until the next tillage operation. A layer-specific mixture module continuously updates for 

spatial changes in the vertical grain size distribution and its associated SOC content, 

changes which are caused by selective redistribution of water and non-selective tillage 

erosion. In the case of net deposition, new material with a different grain size distribution 

is added to the top of the plow horizon (layer 1 and 2). Subsequently, the grain size dis-

tribution of the plow layer is mixed and assumed to be homogeneous. Furthermore, dep-

osition leads to an upward movement of the layer borders such that soil material from the 

plow layer becomes incorporated into the subsoil layers. Any C content moving below 

1 m depth is summarized and assumed to be stable in time. In contrast, erosion lifts new 

material from the subsoil horizons upwards. Assuming that the deepest horizon represents 

the original loess, the properties of uplifted subsoil remain constant, delivering infinite 

material of the same grain size distribution and C content. 

4.2.5 Model validation 

For a truly rigorous validation of MCST-C, there are numerous long-term data require-

ments: event-based data for surface runoff, sediment delivery and SOC delivery, long-

term data regarding changes in spatially distributed SOC stocks, spatially distributed C 
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loss and gain due to crop harvesting, and C input via plants and manure application. In 

addition to these validation data requirements, model input data would also be required 

over decades for a long-term validation. The research project (Auerswald et al., 2000), 

which is the basis of this study provided a very comprehensive database. However, con-

tinuous monitoring was ‘only’ carried out for 8 years (1994 to 2001), and SOC inventories 

span roughly a decade (first inventory in 1990/91, second in 2001). Therefore, measured 

changes in SOC stocks are too small to be used for a long-term model validation (requires 

approx. 50 years; see implementation).  

In consequence, we only use the measured continuous event-based surface runoff and 

sediment delivery from catchment C1 to validate the modelled erosion. The runoff was 

collected at the lowest point of the catchment (Fig. 4.1), which was bordered by a small 

earthen dam. From the dam, the runoff was transmitted via an underground tile outlet 

(diameter 0.29 m) to a measuring system consisting of a Coshocton-type wheel runoff 

sampler (for details regarding the procedure and the precision of the measurements see 

Fiener and Auerswald, 2003). Corresponding precipitation was measured using a tipping 

bucket rain gauge of 0.2 mm volume resolution. To determine single erosion events, the 

precipitation data are filtered in two steps: first, all events with cumulative precipitation 

> 5 mm and without a 6 h gap in recorded precipitation are considered single erosion 

events. Second, we included all the largest events accounting for 90% of total observed 

runoff. The model is not able to predict erosion under soil frost; hence, winter events, 

indicated by air temperatures below zero, are removed. 

As the original MCST model was previously tested in catchment C1 (Fiener et al., 2008), 

we did not explicitly calibrate the surface runoff and erosion model. Instead, observed 

runoff and sediment delivery data was used to test whether our changes to the model still 

result in a reasonable model performance.  

4.2.6 Model implementation 

To run and test MCST-C, a variety of measured input data and parameters are required. 

This input data are partly calculated from measured data at the research farm and partly 

taken from literature (Table 4.1; Fig. 4.2).  



Drivers of erosion-induced carbon fluxes 54 

 

Table 4.1: Main input data and parameters used in the Multi-Class Sediment Transport and Carbon 
dynamics model (MCST-C). 

Description Unit Temporal resolution Range / value 

Digital elevation model m static (5 x 5 m) 454 - 496 
Land use - daily - 
Soil cover % biweekly 0 - 100 
Curve number per crop to be modified 
by cover and soil crusting - daily 38 - 88 

Tillage roughness and direction m vegetation period 0 - 0.25 
Hydraulic roughness arable land s m-1/3 biweekly 0.016 - 0.101 
Hydraulic roughness grass strip s m-1/3 static 0.20 
Yield kg m-2 at harvest 0.6 - 4.3 
Manure  kg C m-2 at fertilisation 0 - 0.13 
Tillage operation - daily - 
Soil bulk density kg m-3 static 1350 
Initial texture µm static 0.04 - 2000 
Primary particle density kg m-3 static 2650 
Small microaggragate density kg m-3 static 1300 
Microaggragate density kg m-3 static 1300 
Small microaggragate median  
diameter µm static 18 

Microaggragate median  
diameter µm static 115 
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Figure 4.2: Modelling scheme of the Multi-Class Sediment Transport and Carbon dynamics model 
(MCST-C) 

To model surface runoff and erosion, the most important input data requirements are 

(i) precipitation, measured at two meteorological stations about 100 to 300 m from the 

catchments using 0.2 mm tipping buckets, (ii) a lidar 5 m x 5 m digital elevation model, 

(iii) soil data taken from a 50 m x 50 m raster sampled during the soil survey in 1990/91 

(Sinowski et al., 1997), and (iv) soil cover data, measured biweekly during the vegetation 

period, monthly in autumn and spring, and before and after each soil management opera-

tion (1993-1997). A tillage transport coefficient (ktil) of 169 kg m-1 yr-1 was utilized for 
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contour tillage by a chisel, following Van Muysen et al. (2000). For SOC redistribution 

and modelling of vertical C fluxes, the most important model inputs were yields and ma-

nure application, a topsoil SOC map (12.5 m x 12.5 m; Sinowski et al., 1997) and as-

sumptions regarding the allocation of C to different texture classes and in different 

aggregates. As texture and aggregate C allocation was not measured, we took measured 

data from Doetterl et al. (2012a) and scaled these measurements according to the available 

bulk SOC (see Section 4.2.3: Representation of grain-size-specific soil and SOC). The 

parameters for the C turnover model are taken from Dlugoß et al. (2012), who worked 

under similar environmental conditions with loess-derived soils in a small catchment in 

western Germany. The C turnover decline with depth was determined by an inverse mod-

elling approach and found a mean turnover rate of 0.268 year-1 for the young pool and 

0.002 year-1 for the old pool over the 1 m soil profile. Further details regarding the mon-

itoring data are given in Fiener and Auerswald (2003, 2007b) and Fiener et al. (2008). 

As indicated above, it is difficult, if not impossible, to identify erosion-induced changes 

in SOC and vertical C fluxes if measurements or modelling efforts do not cover decadal 

time spans. Therefore, a 50-year synthetic input data set and parameter set was created 

for MCST-C in order to analyse C dynamics. This data set is based on the 8 years of 

measured data used to validate the erosion component of the model. First, a time series 

of precipitation was established by randomly choosing the data of one of the eight meas-

ured years (see Section 4.2.5: Model validation) and applying it for the first 42 years of 

the time series. This was followed by the original 8 measured years to reach the total of 

50 years. Next, this precipitation time series was combined with synthetic land use and 

soil management data representing two full crop rotations (1994 to 2001), which were 

repeatedly used for all 50 years. This combination leads to a wide variety of precipitation 

events (time step 1 min) occurring for different daily soil covers by vegetation as a major 

driver of soil erosion. In contrast to the erosion dynamics, C inputs via plants and manure 

are repeated every 8 years, which ignores any potential change in management and yields 

within the modelling period. The synthetic input data were applied for both catchments 

for the purpose of comparability. 

4.2.7 Analysis of process-specific, erosion-induced C fluxes  

Various model setups were chosen (Table 4.2) to analyse the effects of different erosion 

processes upon lateral SOC redistribution and the resulting vertical C fluxes. All of these 

model runs were compared to the 50-year reference run that was validated for the 8-years 

monitoring phase at the research farm (1994-2001). In general, we tested the effect of a 
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number of water erosion processes and compared the relevance of water vs. tillage ero-

sion. Firstly, the critical shear stress of rill initiation (τcrit) was varied by ±50% in com-

parison to its reference run value (0.9 Pa) in order to change the proportion of interrill vs. 

rill erosion, whereas interrill erosion is a selective SOC transport process and rill erosion 

is unselective. The reference run value for τcrit was derived from flume experiments in 

loamy, loess-derived soils (Giménez and Govers, 2002) similar to those found at the test 

site. Next, the aggregation level was varied in an analogous way to modify the allocation 

of soil primary particles into the small microaggregate and microaggregate classes (Fig. 

4.3). In another model run, grain size selectivity was switched off in order to produce a 

similar behaviour to more parsimonious models, which only erode bulk soil (Table 4.2).  

 
Table 4.2. Model parameterisation to analyse the effects of different erosion processes upon C fluxes. 
Model runs are abbreviated as follows: reference run (Ref), without tillage erosion (Tiloff), water ero-
sion without grain size selectivity (GSoff), high threshold for rill initiation (Rillo), low threshold for rill 
initiation (Rilhi), without soil aggregation (Aggoff), low soil aggregation (Agglo), high soil aggregation 
(Agghi), without water erosion (Waoff), low tillage erosion (Tillo), and high tillage erosion (Tilhi). 

Processes Parameter 
[unit] Ref Tiloff GSoff Rillo Rilhi Aggoff Agglo Agghi Waoff Tillo Tilhi 

Water erosion             

with vs. w/o tillage 
[-] +# - + + + + + + + + + erosion 

with vs. w/o grain 
size selectivity [-] + + - + + + + + + + + 

varying rill/interrill 
erosion τcrit

ⱡ [Pa] 0.9 0.9 0.9 1.35 0.45 0.9 0.9 0.9 0.9 0.9 0.9 

varying small micro 
& microaggregates  [%] 60 60 60 60 60 0 30 90 60 60 60 

Tillage erosion             

with vs. w/o water 
erosion [-] + + + + + + + + - + + 

varying tillage  
intensity 

ktil
* 

[kg m1 yr-1] 169 0 169 169 169 169 169 169 169 85 254 
#

 + and - indicates if a process is modelled or not; ⱡ critical shear stress for rill initiation; * tillage erosion coefficient. 

 

To analyse the sensitivity of C fluxes to water and tillage erosion, we first compared 

model runs with pure water or pure tillage erosion. Secondly, we varied the reference run 

ktil coefficient of 169 kg m-1 yr-1 by ±50%. All model runs altered only a single parameter, 

with all other parameters retaining their reference run values. Parameter variations and 

the abbreviations for each of the model runs are given in Table 4.2.  
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4.2.8 Analysis of erosion-induced C fluxes 

To compare vertical C fluxes from erosional 

and depositional sites, the corresponding to-

tal and mean C flux was calculated on an an-

nual basis. To isolate the C fluxes that result 

solely from erosion processes, we first cal-

culate all vertical C fluxes excluding ero-

sion processes and then subtract these from 

the vertical C fluxes including erosion pro-

cesses. In the following results section, pos-

itive C fluxes indicate an erosion-induced C 

gain for the catchment (input to the soil), 

while negative fluxes indicate an erosion-in-

duced loss (from soil to the atmosphere or 

SOC delivery from the catchment by run-

off). Subsequently, erosional and depositional sites were spatially subdivided and an av-

erage vertical C flux in kg C m-2 was calculated. Finally, the erosion-induced C balance 

of the catchment was calculated as the sum of the total vertical C flux and laterally deliv-

ered SOC.  

4.3 Results 

4.3.1 Validation 

A number of goodness-of-fit parameters 

(Table 4.3) indicate a sufficient model 

performance to simulate event runoff and 

sediment delivery for the 8-year observa-

tion period. The Nash-Sutcliffe effi-

ciency and coefficient of determination 

for runoff (NSE = 0.83; R2 = 0.94) and sediment delivery (NSE = 0.92; R2 = 0.95) are 

particularly satisfactory. However, a root mean square error of 165 kg ha-1 for sediment 

delivery indicates difficulties in predicting some small events. 

 

Figure 4.3: Median class diameter distribution 
(14 primary particle and 2 aggregate classes) in 
the plow layer assuming different aggregation 
levels, as described in Table 4.2. 

Table 4.3: Model performance, as described by the 
Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 
1970), root mean square error (RMSE), coefficient 
of determination (R²), and Spearman’s rank corre-
lation coefficient (RHO). 

  NSE RMSE R² RHO 

Runoff 0.83 5.6 mm 0.94 0.89 
Sediment delivery 0.92 165 kg/ha 0.95 0.71 
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4.3.2 Long-term erosion-induced C fluxes 

The simulated tillage and water erosion shows distinct spatial patterns (Fig. 4.4). The 

highest rates of tillage erosion are found along the upslope boundaries of the arable field 

and on hilltops. The main areas for tillage-induced deposition are at the downslope arable 

field boundaries and in concavities (Fig. 4.4). Due to the well-established soil conserva-

tion system, water erosion takes place over a much smaller spatial extent and is limited 

to the main hydrological flow path, while deposition is dominantly found in the vegetated 

filter strips and grassed waterway (Fig. 4.4). 

 
Figure 4.4: Spatial patterns of tillage and water erosion for the 50-year simulation period of the ref-
erence run. 

The reference run (validated against sediment delivery in catchment C1, 1994-2001) 

shows positive vertical C fluxes at erosional sites over the 50-year simulation period, with 

a cumulative flux of 40 g m-2 (50 yr)-1 in C1 and to 59 g m-2 (50 yr)-1 in C2 (Fig. 4.5: 

Ero1, Ero2). The depositional C fluxes show a cumulative C loss of -27 g m-2 (50 yr)-1 

and -30 g m-2 (50 yr)-1 for C1 and C2, respectively (Fig. 4.5: Dpo1, Dpo2). Lateral SOC 

delivery is mainly driven by three heavy erosion events causing 58% and 53% of the total 

SOC delivery in C1 and C2, respectively. The total SOC delivery in C1 

is -15.6 g m-2 (50 yr)-1 and in C2 is -6.5 g m-2 (50 yr)-1 (Fig. 4.5: Del1, Del2). In C1, the 
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source function of lateral SOC delivery exceeds the sink function of vertical SOC seques-

tration and leads to a net C loss of -5.7 g m-2 (50 yr)-1 (Fig. 4.5: Bal1, Bal2). In contrast, 

catchment C2 is a net C sink of 4.6 g m-2 (50 yr)-1. 

 
Figure 4.5: Simulated cumulative vertical C fluxes for erosional (Ero1, Ero2) and depositional (Dpo1, 
Dpo2) sites, lateral C delivery (Del1, Del2) and catchment C balance (Bal1, Bal2) for catchment C1 
and C2. For details regarding the model runs and corresponding abbreviations see Table 4.2. 

The event-based SOC enrichment in delivered sediments, compared to parent soil, ranges 

from 1.1 to 2.7 (2.4 mean) for C1 and from 2.5 to 2.7 (2.7 mean) for C2 over the 50-year 

time span (Fig. 4.6). Subdividing the events into tertiles (33% parts) according to sedi-

ment delivery, the mean enrichment in C1 is 2.5 (n=67) for the low tertile (i.e. smallest 

33% of all event-specific sediment delivery masses), 1.4 (n=6) for the middle tertile and 

1.2 (n=2) for the high tertile (Fig. 4.6). In contrast, more or less no variation in SOC 

enrichment was modelled for C2 (Fig. 4.6). 
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Figure 4.6: Event-size-specific simulated mean SOC enrichment in delivered sediments of catchment 
C1 and C2. Error bars indicate one standard deviation. Panels A, B, and C represent the smallest, 
middle, and largest 33.3% of all event-specific sediment delivery masses. For details regarding dif-
ferent model runs and abbreviations see Table 4.2. 

4.3.3 Importance of individual erosion processes for long-term erosion-induced C 
fluxes 

Vertical C fluxes show a large response to changes in the ktil coefficient but a negligible 

response to varying levels of water erosion (Fig. 4.5: Ero1, Ero2, Dpo1, Dpo2). Cumula-

tive C flux at erosional and depositional sites is found to be lowest when no tillage (Tiloff) 

is simulated and highest for strong tillage (Tilhi). When pure tillage erosion is simulated 

(Waoff) in catchment C1, a C sequestration of 7 g m-2 (50 yr)-1 is simulated (Fig. 4.5: Bal1). 

The majority of processes in catchment C2 lead to an erosion-induced C gain for the 

catchment. The highest C sequestration in catchment C2 is found for high tillage erosion 

(Tilhi: 10.3 g m-2 (50 yr)-1). In contrast, catchment C2 acts as a source when there is no 

tillage (Tiloff: -4.8 g m-2 (50 yr)-1), as well as when tillage erosion is low 

(Tillo: -0.4 g m-2 (50 yr)-1; Fig. 4.5: Bal2). 

Lateral SOC delivery is solely caused by water erosion. The model shows its smallest 

levels of lateral SOC delivery when grain size selectivity is ignored (GSoff), and delivered 

sediments therefore have the same SOC concentration as the parent soil 

(C1: -10 g m-2 (50 yr)-1; C2: -2.4 g m-2 (50 yr)-1). This effect is less pronounced for catch-

ment C2 (Fig. 4.5: Del1, Del2). Catchment C1 shows the largest SOC delivery when the 

threshold for rill initiation is low (Rilhi: -26.3 g m-2 (50 yr)-1). In catchment C2, the highest 

lateral SOC delivery is achieved when there is assumed to be no soil aggregation (Aggoff: 

-13.0 g m-2 (50 yr)-1). If water erosion is taken into account, catchment C1 is a net C 
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source ranging from 1.3 (GSoff) to 14.2 (Rilhi) g m-2 (50 yr)-1. In contrast, the tillage-in-

duced sequestration potential of catchment C2 exceeds SOC delivery in most water ero-

sion model runs, leading to a positive erosion-induced C balance (sink) as long as soil 

aggregation is included (Aggoff: -1 g m² (50 yr)-1; Fig. 4.5: Bal1-Bal2). 

Variations in SOC enrichment of delivered sediments is generally rather small for all 

model runs (Fig. 4.6). The most pronounced effect on SOC enrichment results from dif-

ferent aggregation levels (Aggoff, Agglo, Agghi). However, differences in SOC enrichment 

were much more pronounced between the catchments. While C2 show high enrichment 

ratios (> 2.5) for all events, the enrichment ratios strongly decline with increasing event 

size in C1 (Fig. 4.6: B-C). 

4.4 Discussion 

4.4.1 Vertical C fluxes 

Tillage erosion dominates the erosion-induced vertical C fluxes in both catchments. With-

out water erosion (Waoff), total tillage-erosion-induced C sequestration potential was 7 

and 9 g m² (50 yr)-1 in catchment C1 and C2, respectively. The higher sequestration po-

tential in catchment C2 results from steeper slopes and more field boundaries, where till-

age erosion is most pronounced (Fig. 4.4). This offsets its smaller relative proportion of 

arable land. However, this field boundary effect (Fig. 4.4) might be overestimated as we 

did not update the digital elevation model during the 50-year simulation period. The re-

sponse of vertical C fluxes to changes in tillage erosion strength (Tillo; Tilhi) further un-

derlines the dominance of tillage redistribution in determining these fluxes (Fig. 4.5). This 

dominance results, in part, from the soil conservation system established at the research 

farm. Indeed, when compared to conventional soil management practices, water erosion 

was reduced by roughly a factor of 20 (Fiener and Auerswald, 2007a) in both catchments, 

while tillage erosion intensity (ktil) was only reduced by a factor of about 3 times smaller 

(Van Oost et al., 2006) as a result of the soil conservation system. However, independent 

from the soil tillage management, it is obvious that tillage erosion needs to be taken into 

account for reasonable estimates of vertical erosion-induced C fluxes on arable land (see 

also Van Oost et al., 2005b). Moreover, it should be noted that modelling tillage erosion 

is associated with large uncertainties since it is controlled by a large number of parameters 

(e.g. tool geometry and type, up-down or contour tillage, speed, depth, soil characteristics; 

Van Muysen et al., 2000; Van Oost and Govers, 2006). This uncertainty is illustrated by 

the large range of ktil coefficients which can be found in the literature (e.g. for chisel ktil: 
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70 to 657 kg m-1 yr-1; Van Oost and Govers, 2006). Interestingly, different water erosion 

processes hardly affected the vertical erosion-induced C fluxes. This is even true for 

model parametrisations with very pronounced rill erosion (Rilhi) and large sediment 

fluxes, because rills only affect a small area. Deposition is also restricted to a small num-

ber of raster cells (Fig. 4.4), particularly in the grassed waterway of catchment C2. The 

model does not account for changes in C mineralization at depositional sites that may 

occur as a result of aggregate breakdown shortly after deposition (Hu et al., 2016; Van 

Hemelryck et al., 2010; 2011). However, the potential underestimation of C mineralisa-

tion at depositional sites is assumed to be small (< 2% at a loess site in Belgium; Van 

Hemelryck et al., 2011). In addition, various drivers of additional C mineralisation at 

depositional sites have been discussed in literature (soil moisture, crusting and crust 

recovery, deposition of large macroaggregates; Van Hemelryck et al., 2010; 2011) but 

there is still a substantial lack in process understanding. At this moment, this issue makes 

it difficult to transfer the specific experimental results into a modelling framework ad-

dressing other environmental conditions. 

Overall, to achieve accurate estimates of vertical erosion-induced C fluxes, it seems to be 

more important to improve the representation of tillage erosion in the model, rather than 

focusing on detailed process-oriented water erosion modelling, which is less important 

for vertical C fluxes.  

4.4.2 Lateral C fluxes 

In contrast to vertical C fluxes, lateral erosion-induced C fluxes are substantially affected 

by a number of event-specific processes. To assess these processes, a spatially distributed 

process-oriented modelling approach is needed. 

Our synthetic 50-year data set (based on the 1994-2001 observations) produces three large 

SOC delivery events, representing nearly 60% of the total SOC delivery in both catch-

ments (Fig. 4.5: Del1-Del2). This underlines the importance of accounting for individual 

events, particularly for the enrichment of SOC in delivered sediment (Fig. 4.6). However, 

it should be noted that SOC enrichment is mostly affected by catchment characteristics 

(Fig. 4.6: B-C). While catchment C1 follows the expected behaviour, i.e. decreasing SOC 

enrichment with increasing event size (Auerswald and Weigand, 1999; Menzel, 1980; 

Polyakov and Lal, 2004b; Sharpley, 1985), and is in good agreement with the results of 

Wang et al. (2010) for similar soils in the Belgian loess belt, event size had hardly any 

effect on the SOC enrichment in catchment C2, where any larger particles, including ag-
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gregates, are deposited in the grassed waterway due to consistently high hydraulic rough-

ness throughout the year. Hence, a parsimonious approach solely relating annual erosion 

magnitude to SOC enrichment (e.g. Fiener et al., 2015 using the model SPEROS-C) might 

fail on the landscape scale due to varying inter-field connectivity characteristics of catch-

ments. Underlining the results of recent studies (e.g. Hu and Kuhn, 2016), it seems to be 

essential to take detailed processes into account during erosion, transport, and deposition 

in order to accurately capture the SOC enrichment of delivered sediments. In our model-

ling example, neglecting enrichment would lead to a 36% underestimation of the total 

SOC delivery in catchment C1 and an even more extreme 63% underestimation in catch-

ment C2. This large difference between catchment C1 and C2 suggests that the relevance 

of SOC enrichment in delivered sediments is controlled not only by event size but also 

by the catchment connectivity to the outlet. 

SOC enrichment in delivered sediments is mainly controlled by the physical properties 

(e.g. soil texture) of the parent soil (Foster et al., 1985). Soil aggregation transforms un-

consolidated fine primary particles, a highly mobile SOC fraction, into soil aggregates, a 

fraction in which SOC is far less mobile. Hu and Kuhn (2016) showed that soil aggrega-

tion reduces the transport distance and potentially enhances terrestrial SOC deposition up 

to 64%. We found a similar trend: upon increasing the aggregation level of the model 

from non-aggregated (Aggoff) to heavily aggregated (Agghi) soil conditions, we found an 

increase in SOC deposition for both catchment C1 (47%) and C2 (83%). However, while 

soil texture clearly plays an important role, inter-field connectivity can be the dominant 

process driving lateral SOC delivery on the landscape scale. This is demonstrated by 

catchment C2, which shows its largest SOC delivery when it is assumed that there is no 

soil aggregation. Unfortunately, representing soil aggregation in models is challenging 

due to a pronounced seasonality (Angers and Mehuys, 1988; Coote et al., 1988; Six et al., 

2004; Wang et al., 2010) and complex spatial patterns related to soil nutrients, moisture, 

grain size distribution, management practices, erosion, and soil biota (Denef et al., 2002). 

Especially for landscape-scale applications, this high degree of complexity needs to be 

substantially reduced in a conceptual way. In general, static soil parameters might under-

estimate dynamic feedbacks, but they are a necessary simplification for landscape-scale 

modelling approaches. 
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4.4.3 Erosion-induced C balance of different catchments 

Under the same precipitation and field conditions, the simulated erosion-induced C bal-

ance of catchment C1 and C2 show opposing results (Fig. 4.5: Bal1-Bal2). While catch-

ment C1 acts as a C source for the majority of simulated processes (controlled primarily 

by SOC delivery), the presence of the grassed waterway for catchment C2 substantially 

reduces lateral SOC delivery and leads the catchment to function as a C sink for most 

simulated processes. For both catchments, the majority of simulation years show a posi-

tive erosion-induced C balance (sink). However, three heavy erosion events in catchment 

C1 exceeded the positive cumulative vertical flux. Therefore, we underline that any anal-

ysis of landscape-scale erosion-induced C balances must consider inter-field connectiv-

ity.  

4.5 Conclusions 

In this study, the effect of individual soil organic carbon (SOC) redistribution processes 

on SOC dynamics is assessed by utilizing a coupled process-oriented erosion and carbon 

(C) turnover model. The erosion component of the model was successfully validated 

against a continuous 8-year data set of surface runoff and sediment delivery. The model 

was able to estimate the relevance of different processes in terms of their impact on ver-

tical and lateral C fluxes for two catchments with distinct characteristics over an artificial 

time series of 50 years. We found that tillage erosion dominates on-field soil redistribu-

tion and vertical erosion-induced C fluxes on arable land, while water erosion processes 

have a much more limited effect. However, episodic lateral SOC delivery is critically 

important for the carbon balance. Ignoring SOC enrichment in delivered sediments leads 

to a pronounced underestimation of delivered SOC. Soil aggregates substantially reduce 

SOC delivery by turning highly mobile fine primary particles into less mobile soil aggre-

gates. In general, the erosion-induced C balance is largely affected by inter-field deposi-

tion related to catchment connectivity.  

Our results underline the importance of having an accurate and spatially distributed rep-

resentation of tillage erosion. The episodic nature of water erosion calls for a sufficiently 

long simulation period and the inclusion of grain-size-selective transport in order to ad-

dress the enrichment of delivered SOC. Furthermore, we stress the need for future inves-

tigations on seasonal and spatial variations in soil aggregation for a conceptual model 

implementation. 
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Article IV 

Uncertainties in assessing tillage erosion – how appropriate are our 
measuring techniques? 
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Robert Hardy4, Emilien Aldana-Jague5, John Quinton4, Michael Sommer2,6, Kristof Van 
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1Institute of Geography, University Augsburg, Germany  

2Institute of Soil Landscape Research, Leibniz-Centre for Agricultural Landscape Re-
search ZALF e.V., Germany 
3Institute for Sustainable Agriculture, Spanish National Research Council, Department of 
Agronomy, Spain 
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5 Earth & Life Institute, TECLIM, Université catholique de Louvain, Belgium 
6Institute of Earth and Environmental Sciences, University of Potsdam, Germany 
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Article abstract 

Tillage erosion on arable land is a very important process leading to a net downslope 

movement of soil and soil constitutes. Tillage erosion rates are commonly in the same 

order of magnitude as water erosion rates and can be even higher, especially under highly 

mechanized agricultural soil management. Despite, its prevalence and magnitude, tillage 

erosion is still understudied compared to water erosion. The goal of this study was to 

bring together experts using different techniques to determine tillage erosion and use the 

different results to discuss and quantify uncertainties associated with tillage erosion meas-

urements. The study was performed in North-Eastern Germany on a 10 m by 50 m plot 

with a mean slope of 8%. Tillage erosion was determined after two sequences of seven 

tillage operations (simulating about 10-14 yrs. of cultivation). Two different micro-trac-

ers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (pas-

sive radio-frequency identification transponders (RFIDs), size: 3 x 20 mm) were used to 

directly determine soil fluxes. Moreover, tillage induced changes in topography were 

measured for the entire plot with two different terrestrial laser scanners and an unmanned 

aerial system for structure from motion topography analysis. Based on these elevation 

differences, corresponding soil fluxes were calculated. The mean translocation distance 

of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil 

translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique 

*Accepted for publication (https://doi.org/10.1016/j.geomorph.2017.12.031) on  
Jan. 2nd, 2018. 
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could not be identified as all used techniques have individual error sources, which could 

not be quantified. However, the translocation distances of the used macro-tracers were 

consistently smaller than the translocation distances of the micro-tracers (mean difference 

-26±12%), which questions the general assumption of non-selective soil transport via till-

age operations. This study points out that tillage erosion measurements, carried out under 

almost optimal conditions, are subject to major uncertainties that are far from negligible. 

5.1 Introduction 

Soil erosion, especially on arable land, is a major environmental threat (Montanarella et 

al., 2016; Pimentel, 2006) negatively affecting on-site soil properties and leading to sub-

stantial off-site damage (Pimentel and Burgess, 2013). Moreover, lateral soil fluxes due 

to soil erosion are important modulators of biogeochemical cycles within soils (Doetterl 

et al., 2016; Quinton et al., 2010), and also substantially affect carbon and nutrient cycling 

in inland waters (Battin et al., 2009; Tranvik et al., 2009). Soil erosion is most commonly 

understood as a process driven by water and wind that redistributes soil within the terres-

trial environment and transfers it to water courses. However, since the early 1990s there 

has been a growing awareness of tillage as another important agent of soil erosion and 

redistribution (Govers et al., 1993; Lindstrom et al., 1990; Lobb et al., 1995). Tillage on 

sloping land leads to a net downslope displacement of soil, even if up- and downslope 

tillage directions are alternated (Govers et al., 1999). The major difference between tillage 

and water or wind erosion is: (i) that tillage erosion occurs on a regular basis and is not 

driven by rare extreme events; and (ii) that soil is solely redistributed within fields and 

hence the process does not lead to off-site damage. Tillage erosion typically occurs on 

convex slopes while soil accumulation takes place in concavities (Govers et al., 1999). 

Hence, tillage and water erosion tends to take place at different landscape positions: till-

age mobilizes soil from hilltops which are minimally affected by water erosion to the 

thalwegs where the highest rates of water erosion occur (Govers et al., 1994).  

Various authors have shown that tillage erosion rates on arable land are at least in the 

same order of magnitude as water erosion rates (Li et al., 1999; Van Oost et al., 2006) 

and might be even higher than water erosion rates in drier or less convective storm dom-

inated areas (Sommer et al., 2008). Despite, its prevalence and magnitude, tillage erosion 

is still understudied compared to water erosion: a Web-of-Knowledge search for articles 

including the topic ‘water erosion’ or ‘tillage erosion’ resulting in roughly 10-times more 

results for ‘water erosion’ (260 vs. 2222; May 2017). 
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There are a variety of techniques presented in the literature for determining tillage erosion 

rates. These can be categorized as either tracer-based, those that determine topographic 

change or directly determine the movement of soil. For tracing methods, tracers are either 

added before performing individual or series of tillage operations or are in-situ tracers, 

e.g. 137Cs (Van Oost et al., 2006), used to estimate long-term erosion rates. Tracers added 

before tillage experiments have the advantage that tillage erosion can be isolated from 

long-term erosion, which is always a combination of different erosion processes. The 

added tracers can be subdivided into macro-tracers (diameter > 2 mm) and micro-tracers 

(diameter as soil particles or solutes absorbed by soil colloids). Micro-tracers are applied 

as solutes sprayed onto soil, e.g. sodium chloride solution (Barneveld et al., 2009), or 

mixed with natural soil and applied in trenches within the experimental plots, e.g. mag-

netic particles (Zhang and Li, 2011) or Chloride (often as KCL) (Lobb et al., 1999). The 

recovery of the tracer after the experiment is either performed via soil sampling and/or if 

possible, e.g. in case of magnetic tracers, with instruments measuring in-situ concentra-

tions as used by Guzmán et al. (2013) at plot scale, but for water erosion. Typical macro-

tracers are coloured stones (Kietzer, 2007; Logsdon, 2013; Thapa et al., 1999; Tiessen et 

al., 2007; Turkelboom et al., 1997; Zhang and Li, 2011) and different types of metal, 

mostly aluminium cubes (Barneveld et al., 2009; De Alba et al., 2006; Lindstrom et al., 

1990; Van Muysen et al., 2002; Van Oost et al., 2000b), which are often individually 

numbered. In addition, approaches that attempt to mimic soil with the intention to more 

realistically simulate soil movement, coloured aggregates (Dupin et al., 2009) have been 

used. The main advantage of these macro-tracers is that in most cases the movement of 

individual, numbered particles can be tracked. The main disadvantage is the very time-

consuming application and especially recovery of the particles from the tilled soil layer.  

The most widely used in-situ tracer to determine tillage (or total) erosion is 137Cs resulting 

from atom bomb testing in the 1950s and 60s (Govers et al., 1996; Heckrath et al., 2005; 

Kietzer, 2007; Quine et al., 1994; Quine et al., 1996; Van Oost et al., 2003). Tillage ero-

sion rates are estimated by comparing the 137Cs activities at different slope positions and 

soil depths with those of reference sites, which should not be affected by any soil erosion 

or deposition. A similar approach is based on other naturally occurring tracers, e.g. 

Jordanova et al. (2011) used the natural magnetism in different soil horizons to determine 

tillage erosion and deposition due to different depths of these horizons. The advantage of 

using such kind of natural tracers is that these represent long-term tillage erosion. Apart 

from technical issues with these techniques, their major disadvantage is that they do not 
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only measure tillage erosion, as the pattern of tracer redistribution results from the com-

bination of various erosion types (Van Oost et al., 2006).  

Techniques to estimate tillage erosion from changes in topography vary widely regarding 

their spatial and temporal resolution. In several studies, the slight step in topography, 

introduced by tillage at the upslope boundary, allowed the translocation of soil material 

to be determined due to tillage at the upslope end of experimental plots (Kimaro et al., 

2005; Turkelboom et al., 1997). This, so-called step method, has been combined with the 

installation of soil collecting trenches at the downslope end of the experimental plots 

(Kimaro et al., 2005; Turkelboom et al., 1997). Another method for the determination of 

elevation differences is the determination of the soil depth above a known reference point 

buried below the tillage depth, e.g. a concrete block as in Sadowski and Sorge (2005). 

Photogrammetry was used by Vandaele et al. (1996) to carry out a longer-term and larger-

scale estimate of tillage erosion. They determined temporal patterns of elevation differ-

ences using sequential stereoscopic aerial photographs from the Belgium loess belt (1947-

1996). Their findings underlined the importance of tillage erosion in the region, with the 

most severe surface lowering occurring on hilltops and on hillslope convexities (Vandaele 

et al., 1996). More recently, high-resolution digital elevation models (DEMs) in combi-

nation with digital aerial photographs have improved long-term analysis of landscape 

changes (Deumlich et al., 2014) and recent advances in image acquisition and software 

have, over the past decades, made novel measurement techniques for geomorphological 

change detection affordable. Terrestrial laser scanner (TLS) and unmanned aerial system 

(UAS) together with structure from motion (SfM) techniques have been utilized in several 

morphological change detection studies. On arable land the majority of these studies have 

focused on rill and gully erosion features (d'Oleire-Oltmanns et al., 2012; TLS: Eltner 

and Baumgart, 2015; UAS: Eltner et al., 2015; Peter et al., 2014; Vinci et al., 2015). A 

recent study by Pineux et al. (2017) investigated spatial elevation changes at the catch-

ment scale, utilizing multi-temporal DEMs of difference (DoD) using UAS based SfM 

(UAS/SfM). However, as with natural tracers, the changes in topography result from a 

combination of erosion processes, which need to be unravelled for tillage erosion to be 

studied.  

The results of tillage erosion studies (e.g. summarized in Van Oost et al., 2006) have been 

used to develop and parameterize a number of tillage erosion models of different com-

plexity. The most widely used is a diffusion-type approach developed by Govers et al. 

(1994) that simulates tillage erosion as a function of local slope and a tillage transport 
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coefficient ktill. The tillage transport coefficient generalizes several parameters (e.g. till-

age speed, implement shape, soil physical properties) and needs to be determined exper-

imentally (e.g. Heckrath et al., 2006; Kosmas et al., 2001; Van Muysen et al., 2000) or 

calculated from empirical relationships based on experiments (Van Muysen and Govers, 

2002; Van Muysen et al., 2002). An overview of different ktill values for different soils, 

tillage depths, tillage directions, implements and speeds as well as plough layer bulk den-

sity is given in Van Oost et al. (2006). However, our knowledge of the changes in ktill for 

different tillage techniques is very limited (De Alba et al., 2006; De Alba et al., 2004), 

and data regarding reduced tillage are especially rare (Van Oost et al., 2006). Apart from 

models using the diffusion-type approach (e.g. WaTEM-SEDEM or SPEROS-C: Fiener 

et al., 2015; Van Oost et al., 2000a; Van Oost et al., 2005c; Van Rompaey et al., 2001) 

there are other, more complex models taking a larger number of parameters into account, 

e.g. tillage direction, on-field objects, or complex field boundary effects (TILDA: Quine 

and Zhang, 2004; CATT: Vanwalleghem et al., 2010; TELEM: Vieira and Dabney, 

2011).  

All commonly used tillage erosion models are developed and tested against tillage erosion 

measurements. To represent individual tillage management practices, these models need 

to be parameterized by experimentally determined tillage erosion rates. As indicated 

above, there is still a lack in knowledge regarding model parameters, especially for the 

large number of different tillage implements (size, depths, shape etc.). However, to es-

tablish a substantial data-base of model parameters to simulate tillage erosion, we first 

need more information regarding the comparability of different methods to determine 

tillage erosion. Experimentation is critical for determining the parameters used to drive 

tillage erosion models. Therefore, it is vital to understand how the experimental technique 

deployed influences the derivation of the model parameters and how these differences 

translate in to uncertainty surrounding predictions of tillage erosion. Here for the first 

time we directly compare a range of methodologies for determining tillage erosion sim-

ultaneously in the field. In addition, the work contributes new knowledge on the redistri-

bution of soil in reduced tillage systems and the potential of new tracer methods and 

topographic change techniques to quantify tillage erosion rates. 

The main aims of the study are (i) to quantify and compare tillage-induced soil redistri-

bution using different tracers and high-resolution topography measurements, and (ii) to 

quantify and discuss potential model uncertainties resulting from different model param-

eters derived from different measuring techniques.  
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5.2 Materials and Methods 

5.2.1 Test site and experimental design 

The experimental site was located near the vil-

lage of Polßen (53.157° North; 13.962° East) 

about 80 km North-East of Berlin, Germany. It 

represents the typical topography of previously 

glaciated, hummocky ground moraines. The 

soils in this region are strongly affected by land-

scape position. Extremely eroded Calcaric Reg-

osols (IUSS, 2015) are often located at the 

hilltops, whereas moderately to strongly eroded 

Luvisols can be found along the slope, and col-

luvial, partly groundwater-influenced soils are 

located in closed depressions (Gerke et al., 2010; 

Sommer et al., 2008). The subcontinental cli-

mate in the area is characterized by a mean an-

nual precipitation of approximately 500 mm a-1 

and a mean annual air temperature of 8.9°C 

(CLINO-1981-2010 for the meteorological sta-

tions Gruenow and Angermuende). The region 

is intensively used for agricultural production 

with large fields (>20 ha) and cultivated using 

heavy farming equipment since the early 1970s 

(Sommer et al., 2008). 

The experiment was performed between 

03/04/16 and 08/04/16 on a convex upslope, lo-

cated within a large (ca. 50 ha) field were winter 

wheat had been planted in autumn. Overall, an 

area of 15 m x 85 m was prepared with an inner 

plot of 10 m x 50 m where the tracers were placed (Fig. 5.1). To homogenize the soil and 

bury the germinated wheat on the test field, the plot was firstly tilled (03/04/16) with a 

mouldboard plough to a depth of 0.25 m and then smoothed with a roller. Subsequently, 

the time after initial plot preparation is referred to as t0. For the (reduced) tillage erosion 

 
Figure 5.1: Topography of the test site, 
location of tracers at the beginning of 
the experiment (t0), TLS scan positions, 
and location of georeferenced targets 
for TLS and UAV/SfM measurements. 
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experiment, two sequences of seven downslope tillage operations consisting of a combi-

nation of a cultivator and a roller (Fig. 5.2) were applied on 04/04/16 and 06/04/16. Sub-

sequently, the time after the first and second tillage sequence is referred to as t1 and t2, 

respectively. The cultivator, a Tiger 4 AS (HORSCH Maschinen GmbH; Germany), con-

sisted of a series of disks, tines and a roller, and tilled the soil to a depth of 0.15 m without 

inverting but disrupting and mixing the soil. The tillage width of the cultivator was 5 m, 

requiring three parallel down-slope operations for one cultivation of the plot. The tractor 

speed during tillage was approximately 6 km h-1. The roller had a width of 7.5 m, hence 

only two passes where necessary for rolling the plot.  

 

  
Figure 5.2: Cultivator (left) and roller (right) used during the experiment. 

 

To monitor potential bulk density changes between t0 and t2, it was measured at 20 loca-

tions within the inner plot (centre of 5 x 5 m rasters) at two depths (0.06 to 0.12 m and 

0.18 to 0.24 m, resp.) using Kopecky cylinders with a diameter of 0.08 m (volume 

3.0 x 10-4 m3; Table 5.1).  

 
Table 5.1: Bulk density and stone content measured after preparation of the plot 
with one-time ploughing to a depths of 0.25 m (t0) and at end of the experiment 
after 14-times tillage with the field cultivator to a depths of 0.15 cm (t2). 

Parameter Soil depth 
(m) Time Mean Standard 

Dev. Min Max n 

Bulk density 
incl. stones  
(t m-3) 

0.06-0.12 t0 1.53 0.08 1.36 1.70 20 
0.18-0.24 t0 1.56 0.11 1.40 1.78 20 
0.06-0.12 t2 1.60 0.08 1.48 1.79 19 
0.18-0.24 t2 1.67 0.13 1.47 1.88 20 

Stone content 
(mass-%) 

0.06-0.12 t0 14 4.3 9 25 20 
0.18-0.24 t0 13 3.9 7 22 20 
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5.2.2 Tracer techniques 

Micro-tracers 
Magnetic iron oxide mixed with soil 

A total of 312 kg of soil were mixed by serial dilutions with magnetic iron oxide (subse-

quently referred as magnetic tracer) in order to increase the average background concen-

tration of soil by two orders of magnitude following the protocol of Guzmán et al. (2010). 

Magnetic iron oxide mainly binds to the fine particle fraction (clay and silt) of the soil. 

The mixture was applied at t0 in two trenches of 5.0 m x 0.35 m x 0.15 m (width, length, 

depths, resp.) the upper and middle right side of the plot (Fig. 5.1). Volumetric magnetic 

susceptibility at the beginning of the trial and after every tillage sequence (t1 and t2) was 

measured using a MS2 sensor and a MS2D field probe (Bartington Instruments, UK). The 

device penetrates the soil and integrates the signal with depth (10% of the signal is asso-

ciated to a depth of response of 0.06 m). A 0.90 m x 2.50 m grid (X, Y) was set out, with 

a more dense measuring grid (Y distance: 1.25 m) at areas close to the initial tagged 

trenches. In order to calibrate the signal of the field probe and allow conversion of the 

volumetric magnetic susceptibility into mass of tracer, total of 18 random locations (in-

cluding originally untagged areas and trenches) were sampled before and after the first 

seven tillage passes at different depths (0-0.05, 0.05-0.10 and 0.10-0.15 m). Their mag-

netic susceptibility was determined using a MS2B laboratory meter (Bartington®) as de-

scribed by Guzmán et al. (2015; 2013). Additionally, samples below the tillage layer 

(interval 0.15-0.20 m) were taken and analysed in the laboratory to evaluate and calibrate 

the field probe. 

Fluorescent sand 

The fluorescent tracer is commercially-available (Partrac Ltd; UK) and consists of natural 

quartz particles (D50: 70 µm) coated with a green fluorescent pigment. A Panasonic Lu-

mix GH4 camera was used with an orange 490 nm long pass filter (Knight Optical; UK) 

to enhance the contrast between the soil and the tracer. Images were taken during the 

night or under darkened conditions using an external LED light source (wavelength 

450 nm) with diffusing plates to produce the fluorescent response. An intensity-based 

method, similar to that of Hardy et al. (2016) was utilized to analyse the amount of tracer 

in the images. The intensity-based method used the numeric pixel values from the green 

colour channel in the camera and differentiates between the background intensity of the 

soil and the fluorescent tracer. Therefore, a reduction of the tracer concentration and cor-

responding soil flux can be derived. At t1 a trench (3.0 x 0.4 x 0.15 m; Fig. 5.1) was filled 
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with the fluorescent tracer particles and the intensity-based method used to determine the 

tracer redistribution was used at t2. Therefore, the visible surface intensity was deter-

mined and the depths distribution of the tracer was measured in five 1.0 x 0.2 x 0.15 m 

trenches down-slope the tracer application trench (distance: 2.5, 5.0, 7.5, 10.0, 12.5 m). 

Macro-tracer 
Passive radio-frequency identification transponder  

Commercially-available passive radio frequency identification (RFID; HID Global, Ger-

many) transponders were used together with a newly designed prototype detection an-

tenna (diameter 0.2 m; TECTUS Transponder Technology, Germany) to tag soil 

movement along the inner plot. RIFD transponders (n=250), grouted in glass cylinders 

(3 mm x 20 mm), were inserted to a soil depth of 0.075 m (mid tillage depth) along five 

rows (spacing of rows and along slope 2 and 1 m, resp.; Fig. 5.1). At t1 and t2 the RIFD 

transponders were re-located with the detection antenna, and the new location of the tran-

sponders was determined with a total station (TS 06 plus R1000; Leica, Germany). Indi-

vidual horizontal displacement distances of the RFID transponders were calculated, both 

along and perpendicular to the slope and tillage direction.  

5.2.3 Topographical techniques 

Flagstones 

Concrete flagstones (n=12; 0.25 m x 0.25 m x 0.03 m) were buried at t0 at different slope 

positions in a mean depth of 0.42 m (Fig. 5.1). To relocate the flagstones after the tillage 

sequences, 3M™ Full-Range Markers (3MTM, US; 0.38 m diameter) were buried under-

neath the flagstones. The markers allow for a precise relocation of the flagstones after the 

tillage sequences by using a 3M™ Dynatel™ Locator (detection range of about 2.5 m). 

The change in soil depths above the flagstones at the tillage sequences t1 and t2 were 

measured with a 0.8 m long soil probe (steel needle). Measurements at t1 and t2 were 

corrected for changes in bulk density and hence surface elevation (see below). 

Terrestrial laser scanning 

Two different impulse wave terrestrial laser scanners (TLSs), a Leica (Scanstation C10; 

Leica, Germany) and a Faro (Focus 3D; FARO, US), were used during the experiment. 

The Leica TLS has a lower spatial resolution with a scanning range of approx. 300 m, 

while the Faro TLS has a higher spatial resolution with a maximum scanning range of 

approx. 50 m. The Leica scans were performed from two locations at the upper and lower 

end of the plot, while the Faro scans were taken from eight locations (four on each side 
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of the plot; Fig. 5.1). An average resolution depending of distance between scanner and 

soil surface of 4.4 x 103 and 175 x 103 points per m2 was achieved for the Leica and Faro 

scanner, respectively. Each scan took about 60 min with the Leica and about 12 min per 

scan with the Faro. 

To georeference the scans, 10 static black and white targets were equally distributed along 

the down slope plot borders (Fig. 5.1) and independently located for each time step (t0 – 

t2) with a total station (TS 06 plus R1000; Leica, Germany). The reference coordinates 

were used to register the TLS data into a single merged point cloud for t0, t1, and t2 using 

the Leica software Cyclone 9 (Leica, Germany). Digital elevation models of different grid 

size resolutions of the merged point clouds were processed in CloudCompare 2.6.2 

(cloudcompare.org). Subsequently, DoDs were calculated using R for statistical compu-

ting 3.2.2 (R Development Core Team, Austria) and ArcGIS 10.4.1 (ESRI, US).  

UAS/SfM 

DEMs for the time steps t0 and t2 were calculated using UAS/SfM technique. Therefore, 

a hybrid Sony α5000 camera with a 20.1 MP (5456 x 3064 pixel) resolution was mounted 

on a gyro-stabilised gimbal to a multirotor UAS platform. The UAS was a custom build 

hexacopter with a double rotor setup on three arms (RcTakeOff, Belgium). The images 

(t0: n=99 images; t2: n=88 images) were recorded from nadir angle with a 16 mm focal 

length, f 3.5-5.6 OSS (equivalent 24 mm) and an average flight elevation of 15 m. The 

TLS black and white targets were also used for referencing the SfM approach. SfM cal-

culations were carried out using PhotoScan Professional version 1.0.4 (Agisoft; Russia) 

and for further point cloud processing, the software CloudCompare 2.6.2 (cloudcom-

pare.org) was used. The average point cloud density of the inner plot is 75 x 103 points 

per m2. 

5.2.4 Determine change in topography 
To calculate spatially distributed erosion and deposition from the different TLSs and 

UAS/SfM based DEMs at t0, t1 and t2, it was necessary to correct these DEMs for bulk 

density changes during the experiment. Therefore, the measured changes in bulk density 

(t0 and t2; Table 5.1) were used to correct for the settling of the soil surface during the 

experiment. It was assumed that the increase in bulk density solely happened in the tillage 

layer between t0 and t1 as complete disruption was reached after seven tillage operations 

and soil loosed during the pre-experimental mouldboard ploughing should be settled. Cal-

culating a change in soil surface elevation, using the mean bulk density (Table 5.1), leads 

to an overall elevation correction of the soil surface for the initial DEM (t0) by -13.2 mm.  
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5.2.5 Calculating downslope soil flux from tracer movement and topography 
changes 

To derive soil translocation distances and translocation rates form the different measuring 

techniques two approaches are applied: (i) The soil translocation distance was directly 

derived from the measured translocation distance of the respective tracer. The underlying 

assumptions here are that the translocation distance of the used tracer represents the trans-

location distance of the tilled soil layer, the transport distances of the tracer are normally 

distributed and hence the mean transport distance adequately represents its movement, 

and the tracers are more or less homogenously moved throughout the depth profile of the 

tillage layer. The distribution of the tracer movement was tested with all tracers and any 

depths dependence was tested according to depth profiles of the fluorescent tracer along 

the slope and point measurements of the magnetic tracer. For the RFIDs a mean or median 

translocation distance in the inner plot was calculated from the movement of all recovered 

individual RFIDs; non-recovered RFIDs were assumed to travel the mean distance deter-

mined from those that were recovered. Due to the large number of RFIDs distributed over 

the inner plot (Fig. 5.1), it was also possible to calculate movement parallel and perpen-

dicular to the slope. Moreover, movement at different slope positions could be determined 

between t0 and t1 as well as t1 and t2, respectively. In case of the micro-tracers the mean 

or median translocation distance was derived from the distribution of the measured tracer 

intensity (magnetic susceptibility and fluorescence) downslope the application trenches. 

It is important to note that in case of the magnetic susceptibility the bulk magnetic sus-

ceptibility of the plough layer is measured, while in case of the fluorescence only the 

distribution of particles on the soil surface was determined. Compared to the RFIDs it 

was only possible to determine tracer movements from one (fluorescent tracer) and two 

locations (magnetic tracer) and one time step. Based on the translocation distance a mean 

soil translocation rate was calculated following Eq. 1, while using the measured mean 

bulk density (Table 5.1) and a mean tillage depths of 0.15 m (Van Oost et al., 2006). 

Qs = ρb ∙ d ∙ D (5.1) 

where Qs the rate of soil translocation (kg m-1); ρb is the soil bulk density (kg m-3); d is 

the tillage translocation distance (m), and D is the tillage depths (m). 

Based on 0.5 m x 0.5 m rasters DEMs determined from the three different topographical 

techniques, the average translocation distance and soil translocation rate is calculated. 

The soil flux calculation starts at the insertion of the tillage implement (plot length loca-

tion about -12.5 m; Fig. 5.1) in downslope direction corresponding to the tillage direction. 
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Hence, the volume of soil loss in downslope direction can be determined based on the 

accumulated loss in elevation per grid cell (product of elevation difference and grid size). 

Therefore, the soil flux from the source area (area above inner plot; Fig. 5.1) translocated 

into the inner plot can be determined by the total soil volume lost in the source area. To 

route soil loss throughout all slope positions of the inner plot, the soil loss volume was 

determined by iteratively adding 1 m segments to the source area until the end of the plot 

was reached. The tillage translocation distance (d; m) at each 1 m segment 𝑖𝑖 is calculated 

as 

𝑑𝑑𝑖𝑖 = 𝑉𝑉𝑖𝑖
𝑊𝑊∙ 𝐷𝐷

 (5.2) 

where 𝑉𝑉 is the volume of soil loss (m³), 𝐷𝐷 is the tillage depths (m) and 𝑊𝑊 is the plot seg-

ment width (m).  

5.3 Results 

5.3.1 Translocation of tracers 

All the tracers showed a substantial down-

slope movement after 7 and 14 tillage 

passes (Fig. 5.3), with a maximum move-

ment of up to 18 m recorded for an individ-

ual RFID during one of the tillage 

sequences. Across all the tracers mean 

translocation distances per tillage pass had 

a substantial range of 0.23 to 0.71 m that 

depended on the tracer and slope position. 

Deriving a probability density function of 

the mean tracer movement per tillage pass 

of all RFIDs between t0 and t1 (recovery 

rate 79%) as well as t1 and t2 (recovery rate 

75%) indicates, that a forward movement 

of RFIDs only occurred parallel to the 

slope, while perpendicular to the slope the 

mean movement was close to zero (Fig. 

 

Figure 5.3: Translocation of individual RFIDs 
(t0 to t1 and t1 to t2); translocation of magnetic 
tracer mixed with soil from trenches 1 and 2 (t0 
to t1) given as lines of equal magnetisation (mg 
mag m-3); translocation of fluorescent sand 
from trench 3 (t1 to t2) given as mosaic of colour 
images taken under an external light-source.  
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5.4). Hence, we subsequently only analysed the movement of tracers in downslope direc-

tion.  

 

Comparing the movement of the RFIDs lo-

cated around the micro-tracer trenches 

(max. distance up- and downslope of appli-

cation trench ≤ 5 m) with the movement of 

magnetic tracer (two trenches [Fig. 5.1]; t0 

to t1) and fluorescence tracer (one trench 

[Fig. 5.1]; t1 to t2) indicates a substantial 

difference in movement between the micro-

tracer to the macro-tracer (Fig. 5.5; Table 

5.2). In all cases the micro-tracers exhibit a 

larger translocation distance, while their be-

haviour at different slope positons is consistent, e.g. at upper and lower trench of magnetic 

tracer (Fig. 5.5A vs. Fig. 5.5B). Larger transport distances were measured for all tracers 

at steeper slopes. The mean translocation distance per tillage pass was 26 ± 12% smaller 

for the RFIDs compared to the micro-tracers (Table 5.2).  

 

Figure 5.4: Mean and median translocation 
of all RIFDs per tillage pass (t0-t1 and t1-t2); 
in slope direction (A) and perpendicular to 
slope direction (B). 

 
Figure 5.5: Comparison of mean translocation 
distance per tillage pass of different tracers. 
RFIDs vs. magnetic tracer translocation from 
upper (A) and lower trench (B) between t0 and 
t1. RIFDs vs. fluorescent tracer translocation 
from upper trench between t1 and t2; It is im-
portant to note that in case of the RFIDs slope 
segments (max. distance up- and downslope of 
micro-tracer application trenches ≤ 5 m) are 
compared against tracers distributed along 
small trenches (see Fig. 5.1). The solid and 
dashed vertical line shows the average 
transport distance of the RFIDs and the corre-
sponding micro-tracer, respectively. 
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Measurements of the fluorescent tracer in five soil pits (0-0.15 m) downslope of the tracer 

application trench at distances of 2.5, 5.0, 7.5, 10.0 and 12.5 m indicate some soil disturb-

ance along the soil profile (Fig. 5.6) 

without an obvious systematic depths 

dependency. The surface measure-

ments of the fluorescent tracer indicate 

that after 7 tillage passes only 17% of 

the tracer is still located in the area 

above the first soil pit (2.5 m below 

application trench). Hence, it was as-

sumed that the depths measurements 

represent 83% of all fluorescent mate-

rial to be detected, while ignoring potentially small tracer amounts moved more than 15 

m below the application trench. Under this assumption the relative amount of the fluores-

cent tracer and its mean translocation distance in each of the 0.01 m soil layers could be 

calculated (Table 5.3). According to this calculation, no systematic depths dependency in 

amount and translocation distance ranging from 0.68 to 0.83 m per tillage pass (mean ± 

sd: 0.76 ± 0.05 m) can be detected. This finding is corroborated through six magnetic 

tracer measurements in three depths (0-0.05 m, 0.05-0.10 m, 0.10-0.15 m) downslope of 

the tracer application trenches (1.25 m, 2.5 m, 3.75 m, 5.0 m) which only showed slightly 

higher, but insignificant (p<0.05) values for the soil movement in the upper topsoil layer 

(0-0.05 m). Both the fluorescent and the magnetic tracer indicate that the different 

transport distances of the tracers cannot be explained from the different application depths 

of 0-0.15 m in case of the micro-tracers and 0.075 m in case of the RFIDs, respectively.  

 
Figure 5.6: Soil depths-dependent translocation distance of fluorescent sand dur-
ing seven tillage passes; translocation from upper trench between t1 and t2. 
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Table 5.2: Mean tracer translocation at magnetic 
tracer trenches and at fluorescent trench according 
to probability density functions. 

Tracer  Tracer 
origin 

Time of 
measurement 

Mean translo-
cation per  
tillage [m] 

Magnetic 
tracer Upper 

trench t1 
0.71 

RFIDs 0.44 
Magnetic 
tracer Lower 

trench t1 
0.59 

RFIDs 0.37 
Fluorescent 
tracer Upper 

trench 
t2 

 
0.70 

RFIDs 0.50 
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Table 5.3: Mean soil translocation distance per tillage 
pass in different 1-cm soil layers and relative transloca-
tion amount in each of the 1-cm soil layer. 

Soil depths 
[cm] 

Translocation  
distance [m] 

Relative amount trans-
ported per layer [%] 

Surface 0.69  

0...1 0.71 5.90 
1...2 0.81 6.81 
2...3 0.81 7.29 
3...4 0.79 7.06 
4...5 0.76 6.48 
5...6 0.77 6.64 
6...7 0.80 7.19 
7...8 0.83 7.61 
8...9 0.78 7.20 

9...10 0.74 6.90 
10...11 0.74 6.91 
11...12 0.71 6.55 
12...13 0.70 6.13 
13...14 0.68 5.52 
14...15 0.74 5.82 
0...15 0.76 100 

5.3.2 Change in topography  

The DoDs between the start and end of the experiment (t0 – t2) show good agreement in 

spatially distributed erosion and deposition patterns for all measuring techniques (Fig. 

5.7). The absolute elevation differences between the TLS systems at the time t0 to t1 

accurately match for both the flagstone positions and the gridded DEM data (Table 5.4). 

The TLS systems indicate a substantially lower loss for the tillage sequence t1 to t2 com-

pared to t0 to t1. However, for tillage sequence t1 to t2 the Leica shows a lower soil loss 

than the Faro. In contrast to the TLS systems the UAV/SfM show a net soil gain within 

the inner plot between t0 and t2 (Table 5.4). The flagstone point measurements for t0 to 

t2 are in the same range as the TLS measurements, but show major deviations compared 

to the TLS systems for the individual tillage sequences (Table 5.4).  
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Figure 5.7: Difference in topography between t2 and t0 for all measuring systems. High-resolution 
data degraded to 0.5 x 0.5 m. Elevation differences derived from the flagstone technique are given in 
the mid (Faro) DoD map. 
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5.3.3 Soil translocation distances and translocation rates  

Based on Eq. 1, the depths-in-

dependence of tracer move-

ment (Table 5.3) and the 

close to normal distribution 

of tracer movement (Fig. 5.4 

and Fig. 5.5) we calculated 

the mean soil translocation 

distance and rate per tillage 

pass for each original tracer 

location. For the florescent 

and the magnetic tracers soil 

translation was determined for the upper and lower trench locations at the tillage sequence 

t0-t1 and t1-t2, respectively (Fig. 5.8). For the RFIDs, soil translocation was calculated 

for ten 5 m segments of the inner plot (Fig. 5.1) for both tillage sequences. Compared to 

the single trenches or segments along the slope soil translocation was derived in 1 m 

segments from the DoDs of the TSL systems using Eq. 5.1 and Eq. 5.2. Soil translocation 

was not calculated for the UAS/SfM system, as the point of implement insertion was 

unfortunately not recorded. 

 
Figure 5.8: Average soil translocation distance and rate derived from the different methods used 
between t0 and t1 and t1 and t2; movement of tracers it is indicated at the location where the 
tracers were originally applied; it is important to note that the movement of RFIDs is calculated 
in 5 m segments averages the mean movement of 4 to 31 RFIDs (mean n per segment = 20.8). 
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Table 5.4: Comparison of changes in topography at the flag-
stone positons and for the TLS system and the UAS for the en-
tire inner plot. 

 Δh t1-t0 [cm] Δh t2-t1 [cm] Δh t2-t0 [cm]  
 Mean SD Mean SD Mean SD n 

At flagstone positions 
Flagstones -2.4 3.3 1.1 2.7 -1.3 3.0 

12 
Leica -0.8 2.4 -0.4 3.1 -1.1 4.7 
Faro -0.9 2.6 -1.0 3.4 -1.9 5.0 
UAV     0.4 3.9 

0.5 x 0.5 raster inner plot  
Leica -0.8 3.0 -0.1 2.8 -0.8 3.7 

2000 Faro -0.6 2.9 -0.3 2.8 -0.9 3.8 
UAV         1.1 3.4 
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The soil translocation distances and rates from the different techniques show some con-

sistencies but also some substantial differences (Fig. 5.8). The Faro and the micro-tracer 

distances and rates are very similar and additionally the Faro translocation do not sub-

stantially change between t0-t1 and t1-t2. In contrast, the Leica translocation shows some 

substantial difference between t0-t1 and t1-2, with a difference in mean translocation rates 

of 80.6 kg m-1 per pass (difference of t1-t2 relative to t0-t1 is 47%). As expected from the 

tracer flux calculations, the RFID-based soil translocation distances and rates are substan-

tially smaller than those of the micro-tracers, and are closest to the Leica derived data for 

the tillage sequence between t1-t2. Comparing all data (both tillage sequences) for the 

areas around the tracer trenches (between 7.5 m and 17.5 m and 32.5 m and 42.5 m) 

indicates, that the different techniques result in a substantial variability of derived soil 

translocation rates ranging from 105.6 to 170.4 kg m-1 per pass at the upper trench area 

and from 80.9 to 175.6 kg m-1 per pass for the lower trench area. Even more extreme 

differences can be recognized for the down slope end of the inner plot where four-fold 

differences between RFID-based and Leica-based translocation rates are found (t0-t1; 

Fig. 5.8).  

5.4 Discussion 

5.4.1 Implications of measurement uncertainties  

A number of studies were performed over the last two decades reporting different soil 

translocation rates for different soils (properties, conditions) and tillage techniques (till-

age speed, direction, depths, type of implement etc.) determined from a variety of meas-

urement techniques (e.g. Barneveld et al., 2009; Kietzer, 2007; Logsdon, 2013; Van 

Muysen et al., 2002; Van Oost and Govers, 2006). Van Oost et al. (2006) provide a com-

prehensive overview of results acquired until 2006. From these data it is obvious that 

there are substantial differences for similar tillage categories (e.g. mouldboard tillage), 

which were mostly interpreted as differences resulting from differences in soil properties 

(bulk density) and in tillage technique (especially tillage depths, tillage speed, and tillage 

direction; Van Oost et al., 2006). However, uncertainties associated to different measur-

ing techniques used in different studies were not systematically analysed.  

Assuming that the results of the individual techniques presented in this study are of com-

parably quality to those referred to by Van Oost et al. (2006), our work indicates that 

substantial uncertainties in estimated tillage erosion rates not only results from different 

experimental set-ups but also from the different techniques used. For those areas of the 
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tested slope where the different techniques can be directly compared we could identify 

substantial differences in soil translocation rates per tillage pass (upper trench: 106 to 

170 kg m-1 per pass, difference 60%; lower trench: 81 to 176 kg m-1 per pass, difference 

118%; Fig. 5.8). Comparing the mean translocations rate from six measuring techniques 

and two tillage sequences against the corresponding individual measurements ranges 

from an underestimation of -32.8 kg m-1 (-21.6%) to an overestimation of 41.3 kg m-1 

(33.6%). When using experimental results to parametrize tillage erosion models (Dlugoß 

et al., 2012; Van Oost et al., 2005b), these measurement uncertainties need to be added 

to uncertainties based on the transfer of measured tillage erosion rates from one test site 

to another modelling region. The relevance of this uncertainty was recently illustrated by 

Wilken et al. (2017b), who coupled a water and tillage erosion and soil organic carbon 

model to analyse erosion-induced carbon (C) fluxes in a small catchment. Varying tillage 

erosion by ±50% substantially changed the modelled erosion-induced C balance of the 

catchment, which was overall more important for the C balance than water erosion 

(Wilken et al., 2017b). In general, it can be concluded that tillage erosion measurement 

uncertainties of the magnitude found in this study can substantially affect results of stud-

ies dealing with erosion-induced changes in soil properties of arable land.  

5.4.2 Specific uncertainties of different tillage erosion measuring techniques 

Micro-tracer methods disturb the natural soil structure as a trench is filled with artificial 

or artificially manipulated soil material. This causes uncertainties regarding the transport 

and mixing properties of the tracer particles into the natural soil structure. If applied in a 

trench, the fluorescent tracer concentration can reach the detectable saturation level. In 

consequence, the peak concentration might not be accurately determined and causes un-

certainties in the translocation calculation, which is based on fluorescence intensity pro-

portions. RFID macro-tracers enable the tracking of individual particles at distinct slope 

positions. However, the experiment showed 26±12% lower translocation distances deter-

mined by the stone-sized RFID macro-tracers compared to soil-sized micro-tracers (Table 

5.2). This calls the general assumption that tillage erosion is a non-selective process of 

homogenous movement throughout the tillage layer into question. Few studies already 

speculated about different transport distances between soil and stone sized tracers 

(Barneveld et al., 2009; Dupin et al., 2009; Logsdon, 2013), but did not investigate this 

in detail. Nevertheless, it is likely that a potential grain size selectivity of tillage erosion 

is affected by soil conditions and tillage implement type. Soil cohesiveness may control 

whether the soil is disrupted and selectively mixed or homogenously transported in large 
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clods that encapsulate stone-sized particles. Due to a series of tillage operations under 

rather dry conditions, the soil was highly disrupted during the experiment, which might 

have supported selectivity compared to a single tillage operation. Furthermore, a potential 

grain size selectivity of tillage translocation is likely to be tillage implement specific as 

some implements are designed to invert topsoil and not to disrupt and entirely mix it.  

High-resolution topography change measurements can provide spatial movement of the 

tillage layer and are not affected by potential grain size selective transport. However, the 

technique needs to be corrected for elevation changes related to bulk density differences 

that are subject to spatial variations (Gifford and Roderick, 2003). As TLS and UAS/SfM 

devices are based on optical techniques, information gaps occur behind objects leading to 

shaded areas. Due to soil surface roughness, the shaded areas become larger with increas-

ing distance to the scan device as the incidence angle of the laser beam becomes smaller 

(Fig. 5.9). Due to the linear interpolation of shaded areas, the TLS scanners systematically 

overestimate the elevation of remote scan positions. As illustrated in Figure 5.9 this effect 

increases with increasing surface roughness. Due to the smooth rolled soil surface (about 

2.5 cm roughness), the wheel tracks were the most problematic element in this study. This 

is especially true as the depths of the wheel tracks were deeper at t0 because of a very 

loose soil following the pre-experimental mouldboard ploughing and rolling. The conse-

quence was that the long range scans with the Leica, from two positions only (Fig. 5.1), 

could only partly see into the wheel tracks, and therefore potentially underestimates dep-

osition in these wheel tracks between t0 and t1, and hence overestimate erosion rates. In 

general, an image acquisition from nadir that prevents flat incidence angles is a major 

advantage of the UAS/SfM technique (Fig. 5.9).  

To unify different TLS scenes or photo-

grammetric images, georeferenced 

ground control points (GCPs) are re-

quired. On arable land, plane surfaces or 

clear structures are not present and scene 

overlay depends on GCPs. As TLS de-

vices operate from a static position on 

ground, less GCP are required compared 

to the moving UAV/SfM. Hence, a dense network of GCPs is of key importance for an 

UAV/SfM approach on arable land to measure tillage erosion. In this experiment the 

UAS/SfM approach lead to similar patters but showed an elevation offset compared to 

 
Figure 5.9: Schematic figure of scan angle and 
shadowing effect of the laser scanners compared 
to UAV/SfM. 
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the TLS measurements. This somewhat unsatisfactory result might be improved using 

more GCPs or add stable linear features along the measuring plot, which improved SfM 

processing. However, it was challenging to detect small (< 1 cm) changes in topography 

if these changes had not resulted from changes in linear features (e.g. erosion rills), which 

makes a change detection easier. Similar problems in detecting changes on non-linear soil 

erosion features were shown in a UAS/SfM study of Pineux et al. (2017).  

Based on our experiment it was not possible to determine one measuring technique as 

benchmark as all applied techniques are subject to different technique-specific error 

sources. However, it is clear that using only one technique to determine tillage erosion, 

as done in the majority of studies, will lead to large uncertainties in calculated tillage 

erosion rates.  

5.5 Conclusions 

Under controlled conditions, different tillage translocation measuring techniques (three 

tracers and three topographical methods) were applied in a macro-plot experiment with 

two tillage sequences each consisting of seven tillage operations. The different techniques 

produce a relatively wide range of soil translocation rates for the same slope positions, 

with deviations to the mean of all measurements between -32.8 kg m-1 (-21.6%) and 

41.3 kg m-1 (33.6%). This large measurement-induced variation indicates substantial un-

certainties in determining tillage erosion, which points to the need to utilise more than 

one method in tillage erosion studies. The associated uncertainty should be especially 

taken into account if using results of tillage erosion experiments to parameterize models.  

All used techniques have potential error sources, which could not be individually quanti-

fied. Hence, no benchmark result could be obtained, which probably makes the mean 

translocation rate out of all six methods the most appropriate estimate. However, the con-

sistently smaller translocation distances of the used macro-tracers, which were on average 

26±12% smaller than the translocation distance of the two micro-tracers, questions the 

general assumption of non-selective transport and homogenous movement of the tillage 

layer by management operations into question. At least under dry and disrupted soil con-

ditions, as tested in this experiment, macro-tracers may not accurately represent the flux 

of soil-sized particles.  

As compared to water erosion, there is still a lack in standardized measurements and the 

overall number of measurements for different management practices is relatively small, 

which makes a reasonable model parametrisation challenging. Overall, this study points 
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out that tillage erosion measurements, carried out under almost optimal conditions, are 

subject to major uncertainties that need to be carefully considered in soil erosion studies.  
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6 Summary and general discussion 

Conflicting results have spurred an ongoing debate about the global role of soil erosion 

on soil organic carbon (SOC) dynamics. These uncertainties especially originate from 

insufficient input data and missing processes in soil erosion and SOC dynamics model-

ling. Within four articles, this PhD-thesis addresses uncertainties related to input data and 

missing processes in soil erosion and SOC dynamics modelling. 

 

Article I deals with uncertainties in theoretical rainfall kinetic energy-intensity (KE-I) 

relations that are implemented in widely used soil erosion models (e.g. USLE; 

Wischmeier and Smith, 1978). Continuous direct measurements of rainfall kinetic energy 

(KE) are hardly available and need to be derived from rainfall intensity measurements. 

Due to large variations in drop size and fall velocity distributions, numerous KE-I rela-

tions were developed and calibrated for different meteorological regions. Within this 

study, a comparison of directly measured against derived rainfall KE based on 32 KE-I 

relations was carried out and applied on a USLE based model. The simulated sediment 

delivery showed a pronounced response to the different KE-I relations up to a 95% con-

fidence interval from 13 to 27 Mg ha-1 yr-1. It was pointed out that no specific KE-I rela-

tion was able to perform equally good for each station and all types of rainfall events, 

which means that drop size and fall velocity distributions are highly dynamic and are not 

static for a meteorological region. Therefore, these large inter and intra rainfall event var-

iations, which were also observed in an optical disdrometer study by Angulo-Martinez et 

al. (2016), and supports the findings of Salles et al. (2002) that KE-I relations are more 

suitable for specific rainfall types than for meteorological regions. Furthermore, a pro-

nounced overestimation for all stations of the KE-I relations compared to the measured 

KE was found that is in line with the findings of Angulo-Martinez et al. (2016). These 

conflicting results are potentially caused by sub-terminal drops (also identified in other 

studies: Angulo-Martinez et al., 2016; Cerro et al., 1998; Montero-Martinez and Garcia-

Garcia, 2016; Petan et al., 2010) that fall at slower speeds than predicted by traditional 

models of drop size (Marshall and Palmer, 1948) and fall velocity (Gunn and Kinzer, 

1949) distributions. Modern ombrometers, which are less sensitive to measurement errors 

compared to the standard Hellmann tipping bucket rain gauges (e.g. wind drift, high 

intensities; Humphrey et al., 1997; Marsalek, 1981; Shedekar et al., 2016), potentially 

need a calibration for KE-I relationships developed from traditional measurements.  
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Article II assesses the role of an event-based preferential SOC transport and correspond-

ing SOC enrichment in delivered sediments. Therefore, a unique 100-yrs high-resolution 

(10 min intervals) rainfall data set was simulated with the process-oriented MCST-C 

model in an arable catchment of the Belgian loess belt. The results are in line with the 

concept of selective interrill and non-selective rill erosion shown in numerous other stud-

ies (Kuhn et al., 2010; Polyakov and Lal, 2004b; Quinton et al., 2001; Schiettecatte et al., 

2008b). Modelled SOC enrichment of small interrill dominated events are highest, where 

enrichment decreases with event size due to a higher contribution of rill erosion. Over the 

100-yrs simulation period, small events accounted for substantially more (82%) SOC in 

delivered sediments compared to the parent soil concentration. Nevertheless, single ex-

treme events are of high importance for sediment and SOC delivery, as 20 single events 

contributed to 63% and 44% of total sediment and SOC delivery, respectively. Monitor-

ing studies by Steegen et al. (2000) and Fiener et al. (2008) support the important role of 

single events and emphasize the need for long-term observations of event-level processes 

on the long-term catchment carbon (C) balance. Ignoring SOC enrichment processes in 

soil erosion modelling leads to a substantial underestimation of delivered SOC that biases 

the results of large-scale modelling studies. 

For the follow up publication of Article III, the MCST-C model was improved in order 

to represent various detailed soil erosion and SOC redistribution processes. To account 

for erosion-induced changes of vertical soil-atmosphere fluxes, the model was coupled to 

a tillage erosion (SPEROS-C: Van Oost et al. 2000, based on diffusion-type equation: 

Govers et al., 1997) and C turnover model (ICBM; Andrén and Kätterer, 1997). For an 

isolated analysis on the effect of specific processes, simulation runs with altered or re-

moved processes were compared against the reference run. These model based compari-

sons were applied on two catchments with different hydrological and sedimentological 

connectivity characteristics over an synthetic 50-yrs rainfall series. The first catchment is 

a single field with a relatively high connectivity to the outlet, where the connectivity of 

the second catchment is limited due to a grassed waterway established along the thalweg. 

The results are in line with Article II and show that lateral fluxes by water erosion are 

highly event driven as almost 60% of sediment delivery is based on three single events 

but small events show an enhanced contribution to SOC delivery (36% and 63%) in both 

catchments due to enrichment processes. C enrichment in delivered sediments is not only 

controlled by event size and type of erosion, but also by catchment connectivity proper-

ties. Due to the constantly high roughness and prevention of rill erosion in the grassed 
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waterway, coarse primary particles are deposited even at extreme events. This leads to a 

substantial reduction of delivered sediments, but also to constantly high SOC enrichment 

ratios as solely fine primary particles are transported to the outlet. Hence, the relevance 

of specific processes is also subject to catchment connectivity properties. In consequence, 

the contribution of rill erosion is much more important for the highly connected catch-

ment as the rill network can emerge in close proximity to the outlet and therefore limits 

deposition. In contrast, alterations in grain size distribution based on soil aggregation 

show a larger response to the catchment of limited connectivity. This is caused by 

transport capacity limitations within the grassed waterway, which are not sufficient to 

transport soil aggregates or coarse particles to the outlet. Within the study site, soil con-

servation practices reduced water erosion (factor of about 20; Fiener and Auerswald, 

2007a) much more efficient than tillage erosion (factor of about 3; Van Oost et al., 2006). 

Hence, the SOC sequestration potential of water erosion on vertical C fluxes was mainly 

lower compared to tillage erosion as tillage translocation caused the majority of on-site 

redistribution, occurred on a regular basis without sediment and SOC delivery. While the 

highly connected catchment is for most scenarios a C source for the atmosphere, the 

catchment of limited connectivity is a C sink due to substantial tillage-induced SOC se-

questration that offsets the reduced sediment delivery by the grassed waterway. It was 

shown that distinct erosion processes have a pronounced effect on SOC delivery and turn-

over that needs to be addressed in large-scale modelling approaches for an appropriate 

simulation of the catchment C balance. 

 

Article IV: Numerous experimentally determined tillage transport coefficients for differ-

ent tillage implements and practices are reported in literature with an average of 

236 kg m-1 per pass and large variations ±172 kg m-1 per pass (n= 33; Van Oost and 

Govers, 2006). As tillage erosion has shown to be a highly sensitive driver of erosion-

induced C dynamics, an experiment was carried out to assess potential uncertainties in 

measuring techniques for the determination of tillage translocation. Within the experi-

ment, two sequences of seven downslope tillage operations were applied on a 15 x 85 m 

plot. Tillage translocation was measured using two soil-sized micro-tracers and a stone-

sized macro-tracer. Topographical changes were determined using two terrestrial laser 

scanners (TLS) and unmanned aerial system based structure from motion (UAS/SfM) 

techniques. The general assumption of a non-selective transport of the tillage layer is 

called into question due to consistently shorter translocation distances by the stone-sized 
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macro tracers compared to the soil-sized micro tracers. This study provides first evidence 

for different transport distances related to the tracer size that was already hypothesized in 

a few studies (Barneveld et al., 2009; Dupin et al., 2009; Logsdon, 2013). Under con-

trolled conditions, the relative deviation to the mean result of all measurement techniques 

range from -21.6% to 33.6%. These substantial measuring-induced differences point at 

large parametrization uncertainties, which need to be carefully taken into account for soil 

erosion and SOC dynamics modelling.  

 

This PhD-thesis contributes to the debate about the role of soil erosion on SOC dynamics 

and addresses uncertainties that enhance conflicting results. Global approaches for soil 

erosion and SOC dynamics modelling lacks appropriate data with sufficient spatio-tem-

poral resolution. However, even under controlled conditions of field and plot scale studies 

large uncertainties are found. These uncertainties are based on assumptions (e.g. selection 

of most suitable KE-I relation), input data (e.g. tillage erosion parametrization) and miss-

ing processes that lead to fundamental differences in simulated results. Nearing et al. 

(1999) showed in a replicated field plot experiment a range in the coefficient of variation 

between the replicates from 14% to 150% for heavy and small events, respectively. This 

problem illustrates the large unknown variability of soil erosion with complex micro-

scale processes at play that cannot be taken into account. This plot scale variability can 

be assumed to be averaged out under spatio-temporal aggregation (Wendt et al., 1986). 

Hence, process-oriented soil erosion and C dynamics modelling needs to strengthen the 

process understanding to develop robust generalizations to bridge the gap between spatio-

temporal scales of short-term processes and their effects on long-term SOC dynamics that 

can be applied in large scale studies.
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7 Conclusion and outlook 

Uncertainties in input data and oversimplifications in soil erosion and carbon (C) dynam-

ics modelling were identified and quantified. Therefore, deviations between directly 

measured and derived kinetic energies (KE) on sediment delivery were assessed. Subse-

quently, the process-oriented water erosion model MCST was coupled to a tillage 

(SPEROS-C) and C turnover (ICBM) model. The model was successfully validated and 

used to quantify potential uncertainties regarding specific sediment and soil organic car-

bon (SOC) redistribution processes. An insight on uncertainties in tillage erosion meas-

urements was achieved by a plot experiment utilizing various tracers and topographical 

measuring techniques.  

The main findings of this PhD thesis are (i) a distinct overestimation of the KE-I relations 

in comparison between the directly measured and derived KE. This suggests that tradi-

tional KE-I relations need to be calibrated for modern ombrometer measurements. (ii) It 

was indicated that drop size and fall velocity distributions are highly dynamic and do not 

necessarily correspond to the meteorological region but rather to the type of rainfall. 

Hence, the selection of the most appropriate KE-I relation should be individually selected 

for the type of rainfall event. (iii) Both modelling studies distinctively pointed out the 

important role of event-based water erosion modelling as grain size selective transport 

and deposition causes substantially more SOC delivery compared to widely used static 

average erosion rates with assumed parent soil SOC concentrations. (iv) Soil physical 

properties like the characteristic proportion of interrill vs. rill erosion and soil aggregation 

substantially alter sediment and SOC delivery. (v) The relevance of process-oriented 

modelling on global scale was shown, but cannot be achieved as data and computational 

requirements cannot be matched. Hence, event-based processes need to be highly gener-

alized and implemented to conceptual models that are suitable for large-scale simulations. 

(vi) It was shown that the effect of water erosion on vertical C fluxes can be minor (e.g. 

under soil conservation practices), where tillage erosion has major impact on vertical C 

fluxes with a pronounced SOC sequestration potential. The results of this thesis suggest 

that tillage erosion has to be taken into account for accurate projections on erosion-in-

duced SOC dynamics. (vii) However, measurements of tillage translocation are subject 

to uncertainties that can have substantial impact on the results of soil erosion and C dy-

namics modeling.  
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Uncertainties originating from input data and ignored process-level control mechanisms 

in soil erosion and C dynamics modelling are far from negligible. Global soil erosion and 

C dynamics modelling faces the task of generalizing and implementing complex pro-

cesses to conceptual models. 
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