
Universität Augsburg

Kleene Algebras and Pointer Structures

Thorsten Ehm

Report 2003-13 July 2003

Institut für Informatik
D-86135 Augsburg

Copyright c© Thorsten Ehm
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Kleene Algebras and Pointer Structures

Thorsten Ehm

Institut für Informatik
Universität Augsburg

D-86135 Augsburg, Germany
Ehm@informatik.uni-augsburg.de

Abstract Kleene algebras (KA) have turned out to be an appropriate tool
to formally describe algebraic systems in various areas. Despite this univer-
sal applicability there often proofs are easy and half as long as in concrete
KAs. In this paper we describe how to use KAs to model edge-labeled di-
rected graphs. As an application we show how the relational pointer algebra
developed by B. Möller can be treated with this technique.

Keywords: Kleene algebra, pointer algebra, pointer structures

1 Introduction

Many areas that have to be treated formally demand a powerful but also concise
calculus. As these two desires affect each other, we are forced to find a compromise
between them. Kleene algebra has turned out to be an algebraic system that is
simple in its treatment on the one hand and of high expressive power on the other.

There are some applications, for example in automata or graph theory, where
one has to cope with several equally structured KAs. A standard method in this case
is to switch to matrix algebra with Kleene algebraic entries. The problem is that
the more abstract treatment avoids access to the matrix elements. Moreover such
an algebra is not always closed under Kleene algebra operations. Kozen proposed as
solution the definition of action lattices [25], which are action algebras [32] enhanced
with an additional meet operator. These are closed under the formation of matrices,
but in this case the difference to relational algebra is so small that the abstraction to
KAs by only omitting the converse operation does not make much sense anymore.

The main goal of this paper is to give a technique how to handle several (equally
shaped) Kleene algebras in one. To make the paper self-contained we give full proofs
for all lemmas. The reader may wish to skip some of these. As an application we show
how this framework can be used to model pointer structures and prove properties
about them. More precisely, we have in mind a set of records that can be pointer-
linked by various selectors. This is an abstract view of a labeled graph where the
nodes represent records and selectors are modeled by labeled links. Möller [27] has
shown how a relational version of such a calculus can be used to derive correct
pointer algorithms from an abstract functional specification. Such a pointer algebra
also can be used as a formal basis for the semantics to the mostly Hoare-logic or
wp-calculus based methods for the verification of pointer algorithms [6,31,3,7,4,34].

This paper is structured as follows: Section 2 defines the notions of Kleene
algebra, operators, enhancements and states some properties. In Section 3 it is
shown how the toolkit can be used to handle several Kleene algebras simultaneously
without loosing the ability to have access to the distinct elements inside. In the
theoretical Sections 2 and 3 we mostly will use labeled graphs as a running example
to motivate our calculations. As an application the abstract treatment of pointer
structures and related operations in such a Kleene algebra is shown in Section 4.

2 Kleene Algebra

This section gives the definition of Kleene algebra, several operations and their
properties as well as some extensions. An important part is the relation between
scalars and ideals and the derivation of an extension that later is used to handle
injection and projection of elements. As the basis for developing such an extended
Kleene algebra we use the axiomatization of KA as given by Kozen [26]:

Definition 1 (Kleene algebra). A Kleene algebra (K,+, ·, 0, 1,∗) is an idempo-
tent semiring with star:

a + (b + c) = (a + b) + c (1)
a + b = b + a (2)
a + 0 = a (3)
a + a = a (4)

a · (b · c) = (a · b) · c (5)
1 · a = a (6)
a · 1 = a (7)

a · (b + c) = a · b + a · c (8)
(a + b) · c = a · c + b · c (9)

0 · a = 0 (10)
a · 0 = 0 (11)

1 + a · a∗ = a∗ (12)
1 + a∗ · a = a∗ (13)

b + a · c ≤ c → a∗ · b ≤ c (14)
b + c · a ≤ c → b · a∗ ≤ c (15)

As usual, inequations are defined using the join operator:

a ≤ b
def⇔ a + b = b

A useful proof tool to work in a poset are the rules of indirect equality:

a = b ⇔ (∀c. c ≤ a ⇔ c ≤ b) ⇔ (∀c. a ≤ c ⇔ b ≤ c)

As an abbreviation we define a+ = a ·a∗. We also mention some standard laws that
hold for ∗ and +:

Lemma 1.

1. 1 ≤ a∗

2. a ≤ a∗

3. a∗ · a∗ = a∗

4. (a∗)∗ = a∗

5. (a + b)∗ = a∗ · (b · a∗)∗

6. a · (b · a)∗ = (a · b)∗ · a
7. a+ · a∗ = a+ = a∗ · a+

The proofs are trivial or can be found in [24].

Sometimes Lemma 1.5 does not give the required simplification of a starred join.
Instead we need a sort of recursive rewrite rule:

Lemma 2 (Star decomposition).

(a + b)∗ = (1 + (a + b)∗ · b) · a∗ = a∗ · (1 + b · (a + b)∗)

Proof. We only prove the first equality. The second is shown symmetrically.

(a + b)∗ = (a∗ · b)∗ · a∗ = (1 + (a∗ · b)∗ · a∗ · b) · a∗ = (1 + (a + b)∗ · b) · a∗

ut

2

2.1 Predicates

Of special interest are elements that are less than or equal to the neutral element
1. They can be used to describe domain and range of elements in a straightforward
way, serve as tests or model sets of states. In other disciplines these elements are
also called partial identities, monotypes or coreflexives. We nevertheless will call
them predicates, as this models quite well the semantics of such elements in the
context of program verification and construction.

Definition 2 (predicate). A predicate of a Kleene algebra is an element s with
s ≤ 1.

In the sequel the set of all predicates is denoted by P = {s : s ≤ 1} and elements
of P by s and t. We will use a similar approach as Kozen in [26] but identify the
Boolean sort with the set of all predicates.

Definition 3 (KAT). A Kleene algebra with tests (KAT) is a KA where the set of
predicates P forms a Boolean lattice (P,+, ·,¬, 0, 1) with ¬ denoting the complement
in P.

Predicates in KAT are idempotent with regard to composition, since · coincides
with the meet operation. So some properties directly derived from lattice theory
are only valid for elements of P.

Corollary 1. Consider a KAT and s, t ∈ P.

1. s · s = s
2. a) s + ¬s = 1

b) s · ¬s = 0

3. a) ¬(s + t) = ¬s · ¬t
b) ¬(s · t) = ¬s + ¬t

2.2 Residuals and top

Residuation goes back to de Morgan [9] who called the respective rule “Theorem
K”. In the meantime residuals are well understood. They also play an essential
rôle in relation algebra [35] and form the basis of division allegories [16]. In earlier
approaches [14] we used residuated KAs which are defined as KAs with existing left
and right residuals:

b ≤ a\c def⇔ a · b ≤ c
def⇔ a ≤ c/b

The structure of a residuated Kleene algebra is equivalent to action algebras intro-
duced by Pratt [32]. An advantage of residuals is that we get a top element for free,
which is > = 0\0. Note that 0\0 is not the only representation of >. In fact, all
expressions of the form 0\a are equal to >. The distributivity laws (8) and (9) as
well as the composition laws for 0 in Definition 1 follow directly from the existence
of residuals. But since in the sequel we just need residuals with respect to predicates
which can be defined using a top element and the existence of residuals is such a
strong demand, we just enhance the algebra with a top element.

Definition 4 (KA with top). A Kleene algebra (K,+, ·, 0, 1,∗) with top is a KA
with an element > defined by: ∀a ∈ K. a ≤ >

In residuated KAs the residuals of predicate s can be expressed by

s\a = a + ¬s · > (16)
a/s = a +> · ¬s (17)

Proof. We only show the first equality. Assume a residuated KA, then

”≥”: a + ¬s · > ≤ s\a ⇔ s · (a + ¬s · >) ≤ a ⇔ s · a ≤ a

3

”≤”: s\a = s · (s\a) + ¬s · (s\a) ≤ a + ¬s · > ut

So we use \ as well as / in KAs with top as abbreviation defined by terms (16)
and (17). We summarize the most important properties of residuals with respect to
predicates:

Lemma 3. 1. 0\a = >
2. 1\a = a
3. s\> = >
4. 1 ≤ s\s

5. s · (s\a) = s · a
6. s\(s · a) = s\a
7. (s\a)/t = s\(a/t)

Proof. 1. 0\a = a + ¬0 · > = a +> = >
2. 1\a = a + ¬1 · > = a
3. s\> = >+ ¬s · > = >
4. s\s = s + ¬s · > ≥ s + ¬s = 1
5. s · (s\a) = s · (a + ¬s · >) = s · a
6. s\(s · a) = s · a + ¬s · > = a + ¬s · > = s\a
7. (s\a)/t = (a + ¬s · >)/t = a + ¬s · >+> · ¬t = (a/t) + ¬s · > = s\(a/t) ut

The laws given for \ hold symmetrically for /. Further the Galois connection holds
restricted to predicates in a KA with top and residuation defined by (16) and (17):

Lemma 4.

s · a ≤ b ⇔ a ≤ s\b
a · s ≤ b ⇔ a ≤ b/s

Proof. We only how the first claim. the second follows symmetrically. Assume s ·
a ≤ b, then a = s · a + ¬s · a ≤ b + ¬s · > = s\b. Now assume a ≤ s\b, then
s · a ≤ s · (s\b) 3.5= s · b ≤ b ut

A nice but not very valuable thing is that with these definitions of restricted resi-
duals the pure induction rule (see [32]) can be proved for predicates:

Lemma 5 (pure induction). (s\s)∗ = (s\s)

Proof. (s\s)∗ ≤ (s\s) follows from star induction (Definition 1.15) and

1 + (s\s) · (s\s)
= s + ¬s + (s + ¬s · >) · (s + ¬s · >)
= s + ¬s + s + ¬s · > · s + ¬s · > · ¬s · >
≤ s + ¬s · >
= (s\s)

whereas the other inequality is trivial. ut

2.3 Domain and Codomain

For an abstract definition of domain and codomain we use an equational axioma-
tization based on the one given in [11]. As we will see in Section 2.6 it suffices to
manifest only the propositions of a predomain operator, since locality will follow
from a later added axiom.

Definition 5 (domain). The domain operation p is defined by:

a ≤ pa · a (18)
p(s · a) ≤ s (19)

4

The codomain operator q can be defined symmetrically. From these laws it follows
that domain and codomain distribute over joins and therefore are monotonic. The
here used axiomatization first was introduced in [11]. In [30] properties of domain
and codomain operators are presented in standard Kleene algebra (see Appendix A
for an axiomatization). Most of the rules also hold in our environment except the
ones mentioning the meet operator.

Lemma 6.

1. ps ≤ 1
2. ps = s

3. ps · s = s
4. p(s · >) = s

Proof. 1. ps = p(s · 1)
(19)

≤ s ≤ 1

2. s
(18)

≤ ps · s ≤ ps · 1 = ps and ps ≤ s follows from the proof of 1.
3. Immediate by 2. and Boolean algebra

4. p(s · >)
(19)

≤ s
2.= ps ≤ p(s · >) ut

In KAs with top we can also define domain by the Galois connection

pa ≤ s ⇔ a ≤ s · >

which is the standard way in SKAs. Equality of these definitions is an easy proof
shown in [11].

2.4 Ideals and Scalars

We will introduce the notions of ideals [20,21] and scalars [22]. These later are used
to single out certain regions or parts of Kleene algebra elements. To be able to handle
the elements of equally shaped Kleene algebras simultaneously the elements of each
algebra are tagged by a scalar. Both, the set of ideals and the set of scalars are
closed under application of the Kleene operations join and composition. The access
to differently tagged algebras is based on a one-to-one correspondence between
ideals and scalars, which does not hold in all KAs. We will first give the definitions
of ideals and scalars and afterwards derive conditions under which a bijection can
be established.

Definition 6 (ideal). A right ideal is an element j ∈ K that satisfies j = j · >.
Symmetrically we define the notion of left ideals. An ideal then is an element that
is a left and a right ideal (that fulfills > · j · > = j).

Intuitively an ideal corresponds to a completely connected graph where all arrows
are identically labeled with the respective selector. As we will see later each of these
graphs plays the rôle of a top element in the subalgebra for a fixed selector set. It is
evident that every non-trivial Kleene algebra has at least two ideals, namely 0 and
> the not at all and the completely connected graph. As an example, in abstract
relation algebra by the Tarski rule (a 6= 0 ⇒ > · a · > = >) these are the only ones.
An algebra in which the Tarski rule holds is called simple in [36]. So in every simple
Kleene algebra there are only these two ideals. From every Kleene element a we can
get an ideal by composing it with the top element from both sides (> · a · >) and
these are the only ideals. As mentioned above,

Lemma 7. The set J = {j | > · j · > = j} of ideals is closed under join and
composition.

5

Proof. Let j, k ∈ J , then > · (j + k) · > = > · j · >+> · k · > = j + k

> · (j · k) · > = (> · j) · (k · >) = j · k
ut

In the sequel we will denote elements of J by j and k. A rôle comparable to that
of ideals in the whole algebra play scalars in the set of predicates. A scalar is a
predicate that commutes with the top element.

Definition 7 (scalar). An element α ∈ P is called a scalar iff α · > = > · α.

Scalars are similar to ideals except that they are not completely connected. There
are only pointers from each node to itself via all selectors described by the scalar.
In the sequel we will use the terminology selector interchangeably for scalars as this
mimics the purpose of scalars as handles for selecting parts of a graph or pointer
structure. The notion of a scalar comes from fuzzy relation theory. There it is used
as discrimination level for an α-cut. The α-cut of a fuzzy set A is a crisp set Aα that
contains all elements that have a membership grade greater or equal to α in A. In
this context the notion of crispness describes that there is no uncertain information.
This means the membership grades are either 0 or 1. We will see later how such
an α-cut can be used to project out an α-labeled subgraph. There is no need to be
familiar with fuzzy theory. The interested reader is referred to [23]. As above we
can see, that in a non-trivial algebra there are at least the two scalars 0 and 1. The
set S of scalars is closed under join, composition and complement:

Lemma 8. The set S = {α | α ≤ 1 ∧ α · > = > · α} of scalars forms a Boolean
lattice

Proof. Clearly all resulting elements are predicates and therefore it suffices to show
commutativity with the top element:

1. (α + β) · > = α · >+ β · > = > · α +> · β = > · (α + β)
2. α · β · > = α · > · β = > · α · β
3. We show ≤ (≥ symmetrically): ¬α · > = ¬α · > · (α + ¬α)

= ¬α · > · α + ¬α · > · ¬α

= ¬α · α · >+ ¬α · > · ¬α

≤ > · ¬α
ut

In the sequel we will use Greek letters α, β, γ for scalars. Scalars not only commute
with top but also show some other nice commutativity properties:

Lemma 9. Let α ∈ S be a scalar and a ∈ K, then

1. α\a = a/α
2. α · a = a · α

Proof. 1. α\a = a + ¬α · > = a +> · ¬α = a/α
2. By indirect equality and Lemma 4: α · a ≤ b ⇔ a ≤ α\b ⇔ a ≤ b/α ⇔ a · α ≤ b

ut

2.5 Establishing the bijection

As mentioned in the previous section, access to parts of the structure is based on a
bijective correspondence between ideals and scalars. In all KATs with an additional
domain operator it holds that there exists an injective mapping from scalars to
ideals. The way back is a little more complicated.

6

Lemma 10. Define iSJ (α) def= α · >. Then for a scalar α the element j = iSJ (α)
is an ideal and iSJ : S → J is injective.

Proof. > · j · > = > · (α · >) · > = α · > · > · > = α · > = j, so j is an ideal.
Let now be α, β ∈ S and iSJ (α) = iSJ (β), then α = p(α · >) = p(β · >) = β. ut

At this point we give two examples of ideals and scalars in standard models of Kleene
algebra. First consider LAN = (P(A∗),∪, ·, •, ∅, ε) the algebra of regular languages
over an alphabet A. Here the structure of predicates is minimal. We only have ∅ and
ε which correspond to 0 and 1. So these also are the only scalars and by Lemma 10
the corresponding ideals are ∅ and A∗. A more interesting structure of predicates
shows the path algebra PAT = (P(A∗),∪, ./, ∅, A ∪ {ε}) with ./ denoting the join
of two paths by concatenation of the paths and removing one of the common last
or first element. So we have the four scalars ∅, {ε}, A, A∪{ε} and the corresponding
ideals ∅, {ε},>,> \ {ε}.

To be able to map also ideals injectively to scalars to get a one-to-one corre-
spondence we have to do some more work. First we change our focus from Kleene
algebra to standard Kleene algebra (SKA) as defined in [8] (For an axiomatization
see Appendix A). This is more restrictive and based on a complete lattice structure.
So there is an additional meet operation. We now show how to port a result from
Dedekind categories to Kleene algebras by using SKAs.

In [22] it is shown that f(a) = a u 1 is an injective mapping f : J → S from
ideals to scalars in a Dedekind category. To prove this the modular laws

Q ·R u S ≤ Q · (R uQ` · S)
Q ·R u S ≤ (Q u S ·R`) ·R

are used. To avoid unnecessary parenthesis we assume that composition binds more
tightly than meet. Although arbitrary KAs need not have a converse operation, the
proof only needs weaker versions of these laws by using > as the conversed element.
So we can demand that the modular laws only hold for the top element:

Definition 8 (weakly modular KA). We say a SKA is weakly modular if the
modular laws hold for >:

> · a u b ≤ > · (a u > · b)
a · > u b ≤ (a u b · >) · >

The proof of injectivity of f in a weakly modular KA (WMKA) then looks as follows:

Proof.
(j u 1) · > ≤ j · > = j = j u 1 · > ≤ (j · > u 1) · > = (j u 1) · >, thus: (j u 1) · > = j
which immediately shows injectivity of f . Symmetrically j = > · (j u 1), so that
(j u 1) is a scalar. ut

We now also try to eliminate the need for a meet operator by searching for conditions
equal to the restricted modular law without using meets. In the case of weakly
modular KAs there is a closed formula for the domain operator:

Lemma 11. Assume a WMKA, then

pa = a · > u 1

Proof. By the modular laws a = a u 1 · > ≤ (a · > u 1) · > holds, so pa ≤ a · > u 1
follows immediately from the Galois connection for the domain operator. On the
other hand a · > u 1 = pa · a · > u 1 = pa · a · > u pa ≤ pa ut

7

As a consequence the operation f(a) = a u 1 on ideals simplifies to f(j) = j u 1 =
j · > u 1 = pj. This is an operation that we also have in Kleene algebra. So we
can ask, if it is possible to establish a correspondence between ideals and scalars by
using domain.

Lemma 12. The following conditions are equivalent in SKAs with domain:

1. pa ≤ a · >
2. pa · > = a · >
3. pa = a · > u 1

Proof.

1. ⇒ 2.: pa · > ≤ a · > · > = a · > = pa · a · > ≤ pa · > · > = pa · >
2. ⇒ 3.: pa = pa u 1 ≤ pa · > u 1 = a · > u 1 = pa · a · > u 1 = pa · a · > u pa ≤ pa
3. ⇒ 1.: pa = a · > u 1 ≤ a · > ut

It is easy to show that the reverse implication from 2. to 1. also holds, so that the
first two equations are equivalent even in KAs with domain.

Lemma 13. Symmetrically the following formulas are equivalent in SKAs with do-
main.

1. aq ≤ > · a
2. > · aq = > · a
3. aq = > · a u 1

Motivated by equations 12.1 and 13.1 we will call Lemmas 12 and 13 subordina-
tion of domain respectively codomain. An alternative but to Lemma 12 equivalent
definition that looks more symmetrical could be given by the condition:

pa · b ≤ pb · a · >

Proof. ” ⇒ ” : pa · b = pa · pb · b = pb · pa · b ≤ pb · pa · > 12.2= pb · a · >
” ⇐ ” : pa = pa · 1 ≤ p1 · a · > = a · > ut

and symmetrically for the codomain conditions. Nevertheless we will use the laws
from Lemmas 12 and 13 due to their simplicity. By adding one at a time of the
characterizations from Lemmas 12 and 13 above we can show some more properties
of ideals that are needed in later derivation steps (we only show the ones using
domain):

Lemma 14. Assume again subordination of domain, then for j ∈ J

1. j = pj · >
2. pj = jq
3. pj · > = > · pj

Proof. 1. pj · > = j · > = j
2. pj ≤ j · > = j ⇒ (pj)q ≤ jq ⇔ pj ≤ jq. Symmetrically jq ≤ pj
3. pj · > = j · > = > · j = > · jq = > · pj ut

Equation 2. shows, that it does not matter if one uses domain or codomain to map
ideals to scalars. This mimics the fact, that one is also free to choose composition
with top either from the left or right to map a scalar to its corresponding ideal.
Subordination of domain also is the key to be able to show that the domain operation
on ideals is injective:

Lemma 15. Assume subordination of domain, then p is injective on ideals.

8

Proof. Assume pj = pk, then j
14.1= pj · > = pk · > 14.1= k ut

As one can see by Lemma 14.3 function iJS really maps into the set of scalars, viz.
commutes with the top element. Indeed the two functions are inverse:

Lemma 16. iJS(iSJ (α)) = iJS(α · >) = p(α · >) = α

iSJ (iJS(j)) = iSJ (pj) = pj · > = j

By the now established bijection between scalars and ideals it is immediately clear
that the set of ideals also forms a Boolean lattice. The in the presence of residuals
often used pseudo complement construction a\0 now coincides for ideals with the
real Boolean complement. So we are able to give a closed formula of the converse
operation on ideals by:

Lemma 17. The elements j and j = pj\0 = ¬pj · > are complements in J .

Proof. By definition of \ it holds that pj\0 = 0 + ¬pj · > and

• j + j = j + ¬pj · > 14.1= pj · >+ ¬pj · > = >
• j · j = j · (¬pj · >) = j · jq · ¬pj · > 14.2= j · pj · ¬pj · > = 0 ut

Summarizing we have the following relations between scalars and ideals (here with
the use of domain and composition on the right):

J

p.

��

p.\0 // J

p.

��
S

.·>

TT

¬
// S

.·>

TT

2.6 About locality

An important rule that does not follow from the axiomatization - neither the Kleene
algebraic, nor the S-Kleene algebraic one - is (left/right) locality [30]. This describes
the fact that composition only depends on the domains of the elements on the
respective side.

Definition 9 (localality). A Kleene algebra shows left locality if

pb = pc ⇒ p(a · b) = p(a · c)

Right locality is defined symmetrically. The definition of locality is equivalent to

p(a · b) = p(a · pb)

which implies also immediately:

p(pa · b) = pa · pb

Left locality holds in Kleene algebra extended with one of the equations from Lemma
12:

Lemma 18. Assume subordination of domain, then p(a · pb) = p(a · b)

Proof. p(a · pb) ≤ p(a · b · >) 12.2= p(p(a · b) · >) = p(a · b) and the opposite direction
holds in all Kleene algebras. ut

Conversely, right locality follows from one of the properties in Lemma 13. So a KA
with subordinated domain and codomain shows locality.

9

2.7 Updates

To be able to change elements in certain parts we define a selective update operator.
Selective here means that the update is performed with respect to the domain of
the involved elements. The updated element is preserved exactly where the update
is not defined.

Definition 10 (update). Element b overwrites a by

b | a def= b + ¬pb · a

The following properties are easy to see:

Lemma 19. 1. b ≤ b | a
2. b = pb · (b | a)
3. a | a = a

4. c | (a + b) = c | a + c | b

5. p(b | a) = pb + pa

Proofs of these lemmas can be found in [13] where the update operator is examined
in more detail.

2.8 Images

In concrete applications of Kleene algebra, as for example pointer structures, the
nodes that are reachable from some node set play an essential rôle. Here the cal-
culation of nodes that are direct successors of other nodes is of great importance.
What we need is an operator for the image of a node under an element which again
returns a set of nodes. This is an instance of a Peirce [5] product. For an abstract
axiomatization of the image operator in Kleene algebra see [15]. There, it is also
shown that the pure definition of Kleene modules using this abstract setting is not
of useful expressive power because there are too few properties connecting the two
sorts of the module. We can find a remedy by identifying the Boolean sort of the
module with the predicates. Together with the image operator this is a special view
of a dynamic algebra [33] were the second sort is embedded as predicates into the
Kleene algebraic part:

Definition 11 (image). We define the image of s under a by:

s : a
def= (s · a)q

Here predicate s could be seen as model of the addresses and a represents the
pointer-linked data structure. We use the convention that · binds more tightly than
: to avoid parentheses if possible. As the image operator is a composition of two
universally disjunctive functions · and q, it follows that image is monotone in both
arguments and

Corollary 2. Image distributes through joins:

s : (a + b) = (s : a) + (s : b)
(s + t) : a = (s : a) + (t : a)

Locality is directly inherited by the image operator. The corresponding equality is:

Lemma 20. Local composition of the image operator

(s : a) : b = s : (a · b)

Proof. (s : a) : b = ((s · a)q · b)q = (s · (a · b))q = s : (a · b) ut
The following lemmas are immediate by definitions and the corresponding laws for
composition:

Lemma 21.

10

1. s : t = s · t
Immediately:
(a) s : 1 = s
(b) s : 0 = 0

2. 0 : a = 0
3. 1 : a = aq

4. (s : a) · b = 0 ⇔ (s : a) : b = 0
5. s : a∗ = 0 ⇔ s = 0
6. s : a∗ = s + (s : a) : a∗

7. s : (a · t) = (s : a) · t
8. s : (t · a) = (s · t) : a

As there is an induction principle for the star operator in Kleene algebra (Definitions
1.(14) and 1.(15)), we also have such a rule for the image under a starred Kleene
element.

Lemma 22. A generalized induction principle for the image operator is

s : a + t : b ≤ t ⇒ s : (a · b∗) ≤ t

Proof.

s : (a · b∗) ≤ t

⇔ {[definition of : and q]}

s · a · b∗ ≤ > · t

⇐ {[star induction principle]}

s · a +> · t · b ≤ > · t

⇔ {[definition of q, : and distributivity]}

s : a + (> · t · b)q ≤ t

⇔ {[codomain version of Lemma 6.4 and definition of :]}

s : a + t : b ≤ t

ut

This lemma is an instance of the well-known µ-fusion rule from fixed point theory.

f ◦ g ≤ h ◦ f ⇒ f ◦ µg ≤ µh

(see e.g. [2]) with definitions

f(x) = xq g(x) = s · a + x · b h(x) = t

The least scalar a predicate is included in can equationally be defined using the
image operator.

Lemma 23. The image of a predicate s under > is the least scalar α with s ≤ α

Proof. s : > = (s · >)q = ((> · s)q · >)q = (> · s · >)q which by Lemma 16 is a scalar
and from assumption β ≥ s, follows s : > ≤ β : > = (β · >)q = (> · β)q = β which
shows that s : > is the least scalar greater than s.

2.9 Observational equivalence

As our goal is to get an abstract framework to handle pointer structures we can not
demand that there is always equality of two elements. But in some cases only the
equivalence of mapping behaviour suffices.

Definition 12 (observational equivalence). We say the Kleene elements a and
b are observational equivalent, if

a ≡ b
def⇔ ∀s ≤ 1. s : a = s : b

11

The scope of s can be restricted to the joined domain of the two elements.

Lemma 24. a ≡ b ⇔ ∀s ≤ (pa + pb). s : a = s : b

Proof. s : a = (s · pa) : a = (s · pa) : b = (s · pa · pb) : b and symmetrically
s : b = (s · pa · pb) : a and by assumption follows the claim. ut

2.10 Determinacy and atomicity

As we are interested in the mapping behaviour of the used elements, we sometimes
have to demand that elements are deterministic. Determinacy can be characterized
in Kleene algebra [10] by:

Definition 13 (determinacy). An element a ∈ K is called a map (deterministic)
if

∀b ≤ a. b = pb · a
Deterministic elements in a Kleene algebra are downclosed:

Lemma 25. map(a) ⇒ ∀b ≤ a. map(b)

Proof. Let c ≤ b ≤ a and map(a), then pc · b = pc · pb · a = pc · a = c ut

To achieve a really applicable framework to deal with concrete applications there
is no way around atomicity. Defining a single link from one address to another
in a pointer structure is for example such an atomic concept. We show here the
definitions of atomicity and its relation to determinacy but in the end we can do in
most of the cases with scalar-atomicity which is defined later.

Definition 14 (atom). An element 0 6= a ∈ K is called an atom if

∀b ≤ a. b = 0 ∨ b = a

To mark an element as atomic we abbreviate the previous formula by the predicate
at(a). Determinacy and atomicity are in a certain sense related, but not equal:

Lemma 26. 1. at(a) ⇒ map(a)
2. at(a) ⇒ at(pa) ∧ at(aq)
3. at(s) ∧map(a) ⇒ at(s · a)

Proof. 1. Assume at(a), then ∀b ≤ a. b = 0 ∨ b = a

⇒∀b ≤ a. b = 0 = pb · a ∨ b = pb · b = pb · a
⇒∀b ≤ a. b = pb · a

2. Let s ≤ pa, then s · a ≤ a
at(a)⇒ s · a = 0 ∨ s · a = a. The first disjunct simplifies

to s = 0 by s ≤ pa ⇒ s = s · pa = p(s · a) = p0 = 0 whereas the second one by
s · a = a ⇒ p(s · a) = pa ⇔ s · pa = pa ⇔ pa ≤ s and s ≤ pa implies s = pa which
shows the claim for domain. Atomicity of codomain is shown symmetrically.

3. Let b ≤ s · a and therefore also b ≤ a, hence pb ≤ p(s · a) = s · pa ≤ s and by

at(s) : pb = 0 ∨ pb = s ⇔ b = 0 ∨ pb = s
map(a)⇒ b = 0 ∨ b = pb · a = s · a ut

From 26.2 and 26.3 follows immediately:

Corollary 3. at(s) ∧map(a) ⇒ at(s : a)

Additionally we define the concept of atomicity on scalars. This is not a scalar that
is atomic in K but atomic in the lattice of scalars!

Definition 15 (scalar-atomic). A scalar 0 6= α ∈ S is called scalar-atomic if

∀β ∈ S. β ≤ α ⇒ β = 0 ∨ β = α

In the sequel we will use the predicate sat(α) to express that α is scalar-atomic.
This concept gives us a handle to access parts of elements in a Kleene algebra as
shown in the next section.

12

3 Simultaneous treatment of Kleene Algebras

In this section we show how to handle several Kleene algebras in one. To achieve this
we port some concepts as for example crispness from fuzzy relation algebra [22,36] to
Kleene algebra. Crispness describes the total absence of uncertain information. So a
crisp relation relates two elements a hundred percent or not at all. With an abstract
notion of crispness we are able to calculate exactly those parts of an elements that
are present in all concurrently handled algebras. To model crispness we define two
new operators ↑ and ↓ that send an element to the least crisp element it is included
in and to the greatest crisp element it includes, respectively. The effect of these
operations carried over to labeled graphs is depicted in Figure 1. So for example
assume we have three graphs (each a Kleene algebra) fitted together in one. To
distinguish the edges that come from different graphs each is labeled with a unique
identifier, say µ, ν, π. In the original graph on the left side a crisp connection exists
from node A to node B as they are connected by all types of links. Applying ↑ results
in the graph in the middle, where all previously anyhow linked nodes are totally
linked. Application of ↓ yields the graph on the right side in which remain only
the previously crisp parts. As ↑ and ↓ produce related least and greatest elements
we can use a Galois connection to define them. To fully axiomatize them we need

A

µ
))

ν //
π

55 B A

/.-,()*+↑

µ
))

ν //
π

55 B A

/.-,()*+↓

µ
))

ν //
π

55 B

C

µ
))
D

ν

ii

π

OO

C
uu

µ
))oo ν //ii

π

55 D

µ

II

ν

OO

π

UU

C D

Figure 1. Example graph and application of ↑ and ↓

additional laws like for example Definition 16.4 which models the conversion of a
fuzzy relation into its resolution form.

Definition 16 (up and down).

1. (↑,↓) form a Galois connection, e.g. a↑ ≤ b ⇔ a ≤ b↓

2. (a) (a · b↓)↑ = a↑ · b↓
(b) (a↓ · b)↑ = a↓ · b↑

3. α scalar and α 6= 0, then α↑ = 1
4. a ≤

∑
α∈S α · (α\a)↓

Monotonicy and the cancellation laws follow directly from the Galois connection
and therefore are given without proof. The interested reader may have a look at [1]
for properties of Galois connections.

Corollary 4. 1. ↑ and ↓ are monotone
2. a ≤ a↑↓ and a↓↑ ≤ a
3. a↑ = a↑↓↑ and a↓ = a↓↑↓

We can now define crisp elements as the ones that are not changed by ↑ and ↓.

Definition 17 (crispness). An element a ∈ K is called crisp, if a↑ = a.

As ↑ and ↓ return crisp elements it is evident that multiple application will not
change the argument. Just as from the standard models it is also clear that 0,1
and > are crisp. As defined for scalars we will also use the term crisp atomic as a
predicate for elements that are atoms in the lattice of crisp elements. By definition
of ↑ and ↓ we can show:

13

Lemma 27.

1. 1↑=1
2. a↓↑ = a↓

3. a↑↓ = a↑

4. a↑↑ = a↑ and a↓↓ = a↓

5. a ≤ a↑ and a↓ ≤ a
6. a↑ = a ⇔ a↓ = a
7. 0↑ = 0 and >↑ = >

8. a↑ = 0 ⇔ a = 0 and

a↓ = > ⇔ a = > and similar:

s↓ = 1 ⇔ s = 1
9. (a · b↑)↑ = a↑ · b↑ = (a↑ · b)↑

10. j 6= 0 ideal, then j↑ = >
11. a 6= 0 ⇒ > · a↑ · > = >

Proof. 1. Assume 1 6= 0, then apply Definition 16.3. Otherwise for all a holds
a = 1 · a = 0 · a = 0 and so 1↑ = 0 = 1.

2. a↓↑ = (1 · a↓)↑ = 1↑ · a↓ = 1 · a↓ = a↓

3. a↑ = a↑↓↑ = a↑↓

4. a↑ = a↑↓ = a↑↓↑ = a↑↑

5. a ≤ a↑↓ = a↑ and a↓ = a↓↑ ≤ a
6. By Galois connection and Lemma 27.5
7. 0↓ ≤ 0, thus 0↓ = 0 and by Lemma 27.6 follows the proposition. The second

one is immediate from Lemma 27.5 as > ≤ >↑.
8. • a↑ = 0 ⇔ a↑ ≤ 0 ⇔ a ≤ 0↓ ⇔ a = 0

• a↓ = > ⇔ a↓ ≥ > ⇔ a ≥ >↑ ⇔ a = >
9. (a · b↑)↑ 27.3= (a · b↑↓)↑ Ax.16.2= a↑ · b↑↓ 27.3= a↑ · b↑. The second symmetrically.

10. Assume α to be the corresponding scalar to j. Then from j 6= 0 follows α 6= 0
and therefore j↑ = (α · >)↑ = α↑ · > = >.

11. From > · a · > = 0 follows pa ≤ > · pa · > = > · a · > = 0 ⇔ a = 0 which is
equivalent to a 6= 0 ⇒ > · a · > 6= 0. As > · a · > is an ideal we can show:

> 27.10= (> · a · >)↑
27.9/27.7

= > · a↑ · >

ut

As we can see by Corollaries 4.1, 4.2 and Lemma 27.6 up is a closure and down
an interior operator. Lemma 27.11 reflects the fact that the crisp elements form
a simple Kleene algebra. Some of the laws for up (e.g. Lemma 27.9) remind us of
axioms in a cylindric algebra [17]. Indeed one can see the up operator as a sort of
cylindrification. An immediate consequence of Lemma 27.9 is

Corollary 5. α scalar ⇒ α↑ scalar

Proof. α↑ · > = (α · >)↑ = (> · α)↑ = > · α↑ ut

3.1 Crisp algebras

In addition to crispness for single elements we will also introduce a notion of
crispness with respect to the whole algebra. We will call a KA crisp, if every element
a ∈ K is crisp. A first observation shows, that in fact most of the crisp elements lie
outside the set of scalars. In fact there are exactly only two crisp scalars.

Lemma 28. The only crisp scalars are 0 and 1.

Proof. By Lemmas 27.1 and 27.7 the elements 0 and 1 are crisp scalars. Now suppose
that α ∈ S, α 6= 0, 1 and α crisp. Then α = α↑ = 1 by Definition 16.3. ut

Using this we can give a direct characterization of a crisp KA using the structure
of its scalars.

Lemma 29. A Kleene algebra is crisp if and only if 0 and 1 are the only scalars.

14

Proof. First assume that 0 and 1 are the only scalars, then: a =
∑

α α · (α\a)↓ =
0 · (0\a)↓ + 1 · (1\a)↓ = (a +¬1 · >)↓ = a↓. So for every element a = a↓ = a↑ holds.
Now assume a crisp Kleene algebra. Then all elements are crisp and therefore also
the scalars. By Lemma 28 this can only be 0 and 1. ut

The crisp elements of an arbitrary Kleene algebra are closed under join and com-
position:

Lemma 30. Crisp elements are closed under join and composition.

Proof. Let a, b be crisp elements, then: (a + b)↑ = a↑ + b↑ = a + b

(a · b)↑ = (a · b↑)↑ = a↑ · b↑ = a · b ut

As the set of crisp elements also involves the constants 0, 1 and > it forms a Kleene
algebra.

3.2 Interaction with domain, codomain and negation

The interaction of ↑ and ↓ with join, composition and the constants was shown
above. More interesting is the connection to domain and codomain. We will focus
on the properties of the domain operator. The laws for codomain hold symmetrically.
As we will see, the application of pand ↑ can be commuted. For pand ↓ we only can
show an inequality.

Lemma 31. 1. p(a↑) = (pa)↑

2. p(a↑) and p(a↓) are crisp, e.g. (p(a↑))↑ = p(a↑) and (p(a↓))↑ = p(a↓)
3. p(a↓) ≤ (pa)↓

Proof. 1. p(a↑) = p(a↑·>) = p((a·>)↑) 12= p((pa·>)↑) = p((pa)↑·>) = p((pa)↑) = (pa)↑

2. (p(a↑))↑ 1.= p(a↑↑) 27.4= p(a↑) and (p(a↓))↑ 1.= p(a↓↑) 27.2= p(a↓)
3. p(a↓) 2.= (p(a↓))↓ ≤ (pa)↓ ut

By Lemma 31 it follows immediately that Axiom 16.2 and Lemma 27.9 can be lifted
from compositions to images:

Corollary 6. 1. (s : a↑)↑ = s↑ : a↑ = (s↑ : a)↑

2. (s : a↓)↑ = s↑ : a↓ and (s↓ : a)↑ = s↓ : a↑

For the interaction with negation on predicates we also are only able to show ine-
qualities:

Lemma 32. 1. ¬(s↑) ≤ (¬s)↑

2. (¬s)↓ ≤ ¬(s↓)

Proof. We only show the first proposition. The second is proven symmetrically.
s ≤ s↑ ⇔ ¬(s↑) ≤ ¬s ⇒ (¬(s↑))↑ ≤ (¬s)↑ and by ¬(s↑) ≤ (¬(s↑))↑ follows the
proposition. ut

3.3 Projection Properties

To retrieve a desired element from a graph or pointer structure we use a selector
α as unique handle for an embedded subgraph. Then we have to calculate a sort
of projection to get access to an element representing the mapping behavior of the
embedded graph. By α\a = a + ¬α · > we can see that the residual with a scalar
completes the resulting graph with links labeled with marks that are not in α. So two
nodes are completely connected after the operation if and only if they before were
linked via all pointers described by α. Application of ↓ yields a graph completely

15

connecting all the nodes that are previously connected at least via the α links. By
restricting this result to α we get a graph consisting of all the α-links of the original
graph. So the projection function is

Pα(a) = α · (α\a)↓

If α is scalar-atomic Pα(a) can be simplified:

Lemma 33. sat(α) ⇒ α · (α\a)↓ = α · a
Proof. One direction follows from Lemma 36.1. Immediately from sat(α) follows
α · β = 0 ∨ α ≤ β, so

α · a = α
∑
β∈S

β · (β\a)↓ =
∑
β∈S

α · β · (β\a)↓ =
∑
β≥α

α · (β\a)↓

≤
∑
β≥α

α · (α\a)↓ = α · (α\a)↓

ut
It is not clear if the opposite direction also holds. It does so in the standard model
presented in Section 3.5. What we can show is:

Lemma 34. Assume α↓ is a scalar and α < 1, then:

1. α↓ = 0
2. (α · >)↓ = 0

Proof. 1. As α↓ is a scalar and crisp α↓ = 0 or α↓ = 1. From α < 1 follows α↓ < 1
which shows the claim.

2. p((α · >)↓)
31.3
≤ (p(α · >))↓ = α↓

1.= 0 ⇔ (α · >)↓ = 0 ut
With this the opposite direction can be shown under the assumption that α↓ again
is a scalar:

Lemma 35. Assume for all scalars α holds that α↓ again is a scalar. Then

α · (α\a)↓ = α · a ⇒ sat(α)

Proof. Assume 0 < β < α then β = α · β = α · (α\β)↓ = α · (β + ¬α · >)↓ ≤
α · ((β + ¬α) · >)↓. By β + ¬α < α + ¬α = 1 and Lemma 34.1 follows β = 0 which
is a contradiction. ut
The projection is used for calculating the image of m under Pα(a) which is abbre-
viated by aα(m) in Section 4.2. This gives us all the α-successors of m. We show
some properties of the projection function:

Lemma 36. 1. Pα(a) ≤ α · a In particular: Pα(a) ≤ a
2. sat(α) ∧ sat(β) ⇒ P(α+β) = Pα + Pβ

Proof. 1. α · (α\a)↓ ≤ α · (α\a) = α · a
2. (α + β) · ((α + β)\a)↓ = (α + β) · a = α · a + β · a = α · (α\a)↓ + β · (β\a)↓ ut

By defining
(α · a)? def= α · a∗

the sets Kα = {α · (α\a)↓ | a ∈ K} of all elements of an atomic scalar α form Kleene
algebras (Kα,+, ·, 0, α,?). The corresponding ideal j = α · > to α forms the top
element. By

α · (α\a)↓ + α · (α\b)↓ = (α · a) + (α · b) = α · (a + b) = α · (α\(a + b))↓

α · (α\a)↓ · α · (α\b)↓ = α · a · α · b = α · (a · b) = α · (α\(a · b))↓

α · (α\a)↓ = pj · (α\a)↓ ≤ pj · > = j · > = j

we have shown that Kα is closed under join and composition as well as j is the top
element.

16

3.4 Intermediate summary

At this point we give a complete summary of the definition of an enriched Kleene
algebra that supports the treatment of several KAs in one:

Definition 18 (EKA). An enriched Kleene algebra (EKA) is a Kleene algebra
(K,+, ·, 0, 1,∗) with additional

• a top element >
• subordinate domain and codomain pa ≤ a · > and aq ≤ > · a
• ↑ and ↓ defined as in Definition 16

In the sequel we will work with such EKAs and use the term Kleene algebra inter-
changeably.

3.5 A concrete model

To show that our definitions make sense we now will give a concrete (relational)
model of such an extension of a Kleene algebra. The existence of a model ensures
that the added properties do not imply a contradictory axiomatization. We use a
model that relates two elements from a set A via several selectors.

Definition 19. Let A be the set of addresses and S the set of selectors used in
a pointer model. Then the elements of our concrete extended Kleene algebra are
functions f : A×A → P(S).

We define the operations of the model by:

1. fa+b(x, y) = fa(x, y) ∪ fb(x, y)
2. fa·b(x, y) =

⋃
z{fa(x, z) ∩ fb(z, y)}

3. f0(x, y) = ∅

4. f>(x, y) = S

5. f1(x, y) =
{
S , x = y
∅ , otherwise

From the definition we can derive all the other operations that are:

Corollary 7. 1. f¬s(x, y) =
{

fs(x, y) , x = y
∅ , otherwise

2. fpa(x, y) =
{⋃

z{fa(x, z)} , x = y
∅ , otherwise

3. fa↑(x, y) =
{
S , fa(x, y) 6= ∅
∅ , otherwise

4. fa↓(x, y) =
{
S , fa(x, y) = S
∅ , otherwise

5. fa|b(x, y) = fa(x, y) ∪ (
⋂

z fa(x, z) ∩ fb(x, y))
6. fs\a(x, y) = fa(x, y) ∪ fs(x, x)

One also can define predicates for the properties used in the calculus.

Corollary 8. 1. a ≤ 1 ⇔ ∀x, y. fa(x, y) = 0 ∨ (x = y ∧ fa(x, y) ⊆ S)

2. α · > = > · α ⇔ ∀x, y. fα(x, y) =
{
U , x = y (U ⊆ S)
∅ , otherwise

3. a↑ = a ⇔ ∀x, y. fa(x, y) = S ∨ fa(x, y) = ∅

4 Modeling Pointer Structures

As mentioned earlier the previously described EKAs can be used to model pointer
structures. We consider an abstract model of pointer structures as described in [27]
using several selectors to model records. The concurrently treated algebras represent
the selector types via which addresses can be linked. Each scalar-atomic element is
the unique identifier to get its related selector from a Kleene element. Selection of
a certain selector structure is calculated using the projection presented in Section
3.3.

17

4.1 Addresses

We already have defined the notion of crispness. By using crisp predicates we are
able to model elements that can play the part of addresses in pointer structures.
The idea is, that addresses are represented by nodes that are completely connected
via all selectors.

Definition 20 (address). A crisp element m ≤ 1 is called an address.

In the sequel we will use letters m and n to denote addresses. As addresses are
crisp, they are closed under join and composition. Additionally they are closed
under complement and so form a lattice.

Lemma 37. 1. If m is an address then ¬m is also an address
2. (a ·m)↑ = a↑ ·m and (m · a)↑ = m · a↑
3. (a : m)↑ = a↑ : m and (m : a)↑ = m : a↑

4. If α 6= 0, then m · α = 0 ⇔ m = 0

Proof. 1. m + (¬m)↑ = m↑ + (¬m)↑ = (m + ¬m)↑ = 1↑ = 1

m · (¬m)↑ = m↑ · (¬m)↑ = (m · ¬m)↑ = 0↑ = 0
So (¬m)↑ is the unique complement of m and therefore (¬m)↑ = ¬m.

2. a↑ ·m = a↑ ·m↑ = (a ·m↑)↑ = (a ·m)↑ The second symmetrically!
3. Follows immediately from 2.
4. m · α = 0 ⇒ (m · α)↑ = 0↑ ⇔ m · α↑ = 0 ⇔ m = 0. The opposite direction is

trivial. ut

4.2 Ministore

To have the possibility to define single links from one address to an other we will
define a ministore that models completely linked addresses from the domain to the
range. So we restrict the totally linked store > at selector α to m on its domain and
to n on its range:

m · Pα(>) · n = m · α · (α\>)↓ · n = m · α · >↓ · n = m · α · > · n

Definition 21 (ministore). Let m,n ∈ K be addresses and α ∈ S a selector. Then
we call the element (m α→ n) def= m · α · > · n an α-ministore with source addresses
m and target addresses n.

If addresses m and n are atomic, an α-ministore models exactly a single pointer
link from address m via selector α to address n.

It is easy to see that (m α→ n)↑ = m · > · n = (m 1→ n)↑. By construction it
is also evident that the domain of a ministore equals the set of starting addresses
restricted to the respective selector. As well the image of the given set of addresses
under the ministore should result in all the connected addresses.

Lemma 38. Let α ∈ S a selector and m,n ∈ K be addresses

1. p(m α→ n) = m · α
2. (m α→ n)q = α · n
3. m : (m α→ n) = α · n
4. ¬m · ((m α→ n) | a) = ¬m · a
5. m : ((m α→ n) | a)↑ = n + m : (¬α · a)↑

Proof.

18

1. m ·α 6.4= p(m ·α ·>) 27.11= p(m ·α ·> ·n ·>) 12= p(p(m ·α ·> ·n) ·>) 6.4= p(m ·α ·> ·n)
2. Symmetrically to 1.
3. m : (m α→ n) = (m · (mα>n))q = (mα>n)q = α · n
4. ¬m · ((m α→ n) | a) = ¬m · (m α→ n) + ¬m · ¬(m · α) · a

= 0 + ¬m · a + ¬m · ¬α · a = ¬m · a
5. m : ((m α→ n) | a)↑ = (m : (m α→ n))↑ + m : (¬(m · α) · a)↑

= (α · n)↑ + (m : (¬m · a + ¬α · a))↑ = n + m : (¬α · a)↑ut

For local reasoning we often have to step exactly one link further along a selector.
We will abbreviate the image of address m under selector α of store a by aα(m). As
we normally want the result to be an address again, we additionally define âα(m)
to be the crisp image:

Definition 22 (restricted image).

1. aα(m) def= m : Pα(a) = m : (α · (α\a)↓)
2. âα(m) def= aα(m)↑ = (m : (α · (α\a)↓))↑ = m : (α\a)↓

By Lemma 36.1 follows

Corollary 9. âα(m) ≤ m : a↑

So we are in the position to show that overwriting of an α-successor with the original
value leaves the store untouched. This law was denoted as (p.k := p.k) = p in [30].
Nevertheless, by the more abstract model we are only able to show observational
equivalence of the two terms.

Lemma 39. Assume sat(α), then (m α→ âα(m)) | a ≡ a

Proof. Let m,n be addresses and m crisp atomic, then

m · n ≤ m ⇒ m · n = 0 ∨m · n = m

So we handle two cases:

m · n = 0: By assumption n : (m α→ âα(m)) = 0 and n : ((m · α) · a) = 0.

n : ((m α→ âα(m)) | a)

= n : (m α→ âα(m)) + n : (¬(m · α) · a)
= 0 + n : (¬(m · α) · a) + n : ((m · α) · a)
= n : a

m · n = m: With a first auxiliary calculation

n : (m α→ âα(m)) = (m α→ âα(m))q = α · âα(m) = α · (m : (α\a)↓)
21.7= m : (α · (α\a)↓)

sat(α)
= m : (α · a) = (n ·m) : (α · a)

= n : ((m · α) · a)

we can show: n : ((m α→ âα(m)) | a)

= n : (m α→ âα(m)) + n : (¬(m · α) · a)
= n : ((m · α) · a) + n : (¬(m · α) · a)
= n : a

ut

19

4.3 Reachability

The most important things in pointer structures are based on reachability obser-
vations. Especially we are interested in addresses or nodes reachable from a set of
starting addresses as well as the part of the store that is reachable. So we first define
an operator to calculate all the reachable addresses starting from m in store a:

Definition 23 (reach). reach(m,a) def= m : (a↑)∗

To avoid unnecessary parenthesis we abbreviate (a↑)∗ by a↑
∗
. Distributivity over

joins is directly inherited from the image operator:

Corollary 10. reach(m + n, a) = reach(m,a) + reach(n, a)

We additionally will use reachability only via a certain selector defined by:

reachα(m,a) def= reach(m,Pα(a))
sat(α)

= reach(m,α · a)

Evidently, this is equivalent to a reachability calculation in the algebra Kα.
As consequence from Definition 23 and star decomposition we can decompose

reach in different ways. Even the very efficient calculation in Lemma 40.3 can be
improved to 40.4 by only proceeding with addresses not in m.

Lemma 40. 1. reach(m,a) = m + reach(m,a) : a↑

2. reach(m,a) = m + reach(m : a↑, a)
3. reach(m,a) = m + reach(m : a↑,¬m · a)
4. reach(m,a) = m + reach((m : a↑) · ¬m,¬m · a)

Proof. 1. reach(m,a) = m : a↑
∗

= m : (1 + a↑
∗
· a↑) = m + m : (a↑

∗
· a↑)

= m + (m : a↑
∗
) : a↑ = m + reach(m,a) : a↑

2. Symmetrically to 1.
3. The claim follows by image induction from

m + (m + reach(m : a↑,¬m · a)) : a↑

= m + m : a↑ + reach(m : a↑,¬m · a) : (m · a↑) + reach(m : a↑,¬m · a) : (¬m · a↑)
≤ m + m : a↑ + 1 : (m · a↑) + reach(m : a↑,¬m · a) : (¬m · a↑)
21.8= m + (m : a↑) + reach(m : a↑,¬m · a) : (¬m · a↑)
1.= m + reach(m : a↑,¬m · a)

4. reach(m,a)
3.= m + reach(m : a↑,¬m · a)

= m + (m : a↑) : (1 + ¬m · a↑ · (¬m · a)↑
∗
)

= m + (m : a↑) : (m + ¬m) + (m : a↑) : (¬m · a↑ · (¬m · a)↑
∗
)

= m + (m : a↑) ·m + (m : a↑) · ¬m + ((m : a↑) · ¬m) : (¬m · a↑ · (¬m · a)↑
∗
)

= m + ((m : a↑) · ¬m) : (1 + (¬m · a)↑ · (¬m · a)↑
∗
)

= m + reach((m : a↑) · ¬m,¬m · a)
ut

Reachability in a join of two stores also can be calculated recursively similar to
Lemma 2:

Lemma 41. reach(m,a + b) = reach(m,a) + reach(m,a) : (b↑ · (a + b)↑
∗
)

20

Proof. reach(m,a + b)

= {[definition of reach and distributivity]}

m : (a↑ + b↑)∗

= {[Lemma 2]}

m : (a↑
∗ · (1 + b↑ · (a↑ + b↑)∗))

= {[distributivity and local composition]}

reach(m,a) + reach(m,a) : (b↑ · (a + b)↑
∗
)

ut

The purpose of reach should be to calculate a set of addresses that are reachable via
a given pointer structure from a starting set of addresses. So it would be reasonable
that reach returns a crisp predicate. By definition of reach it is evident that the
resulting element is a predicate. Additionally we can show that the calculated result
of the reach operator is crisp and therefore an address:

Lemma 42. The reach operator returns addresses: reach(m,a)↑ = reach(m,a)

Proof. By Lemma 40 and image induction it follows that:

(m + reach(m,a)↓ : a↑)↑ ≤ m + reach(m,a) : a↑ = reach(m,a)

⇔ m + reach(m,a)↓ : a↑ ≤ reach(m,a)↓

⇒ m : a↑
∗
≤ reach(m,a)↓

⇔ reach(m,a) ≤ reach(m,a)↓

⇔ reach(m,a)↑ ≤ reach(m,a)

ut

If we advance one step in the pointer structure it is evident, that the set of reachable
nodes can not grow:

Lemma 43. reach(aα(m), a) ≤ reach(m,a)

Proof. reach(aα(m), a) ≤ reach(m : a↑, a) ≤ m + reach(m : a↑, a) = reach(m,a)
ut

The from operator describes the part of a store that contains all the links and
addresses that are reachable from the entry address. This is a sort of projection of
the live part of the store.

Definition 24 (from). from(m,a) def= reach(m,a) · a

In contrast to [27] we abstract from the original definition of from in that we only
focus on the used store and not on the whole pointer structure, as the rest can
be handled simply by pairing and comparing the starting addresses. As before we
define the reachable part of a store via selector α by

fromα(m,a) def= reachα(m,a) · a

Equality of the from part of a pointer structure implies equality of the reachable
addresses:

Lemma 44. from(m,a) = from(m, b) ⇒ reach(m,a) = reach(m, b)

21

Proof. The claim follows immediately from Lemma 40.1 as we know that reach can
be expressed by from: reach(m,a) = m + reach(m,a) : a↑ = m + (from(m,a))q↑

ut

By lifting the result from Lemma 40.4 we are also able to calculate from efficiently:

Lemma 45. from(m,a) = m · a + from((m : a) · ¬m,¬m · a)

Proof.

from(m,a)
40.4= m · a + reach((m : a) · ¬m,¬m · a) · a
= m · a + reach((m : a) · ¬m,¬m · a) · (m + ¬m) · a
= m · a + reach((m : a) · ¬m,¬m · a) ·m · a + reach((m : a) · ¬m,¬m · a) · ¬m · a
= m · a + reach((m : a) · ¬m,¬m · a) · ¬m · a
= m · a + from((m : a) · ¬m,¬m · a)

ut

Another interesting point is iteration of the reachability operators reach and from.
The idempotence of reach is a rather simple calculation using locality of images.
Additionally we can show that

Lemma 46. reach is a closure operator, viz

1. Extensive: m ≤ reach(m,a)
2. Idempotent: reach(reach(m,a), a) = reach(m,a)
3. Monotone: m ≤ n ⇒ reach(m,a) ≤ reach(n, a)

Proof. 1. Follows immediately from 40.1.
2. reach(reach(m,a), a) = (m : a↑

∗
) : a↑

∗
= m : (a↑

∗
· a↑

∗
)

1.4= m : a↑
∗

= reach(m,a)
3. By monotony of all involved operators. ut

Idempotence of from is a little bit more tricky. Here we have to use the image
induction principle to be able to reason about the star of a reach:

Lemma 47. from is an interior operator, viz

1. Reductive: from(m,a) ≤ a
2. Idempotent: from(m, from(m,a)) = from(m,a)
3. Monotone: a ≤ b ⇒ from(m,a) ≤ from(m, b)

Proof. 1. Trivial
2. Let b = reach(m,a) · a, then reach(m,a) ≤ reach(m, b) follows from:

m + reach(m, b) : a↑

= m + (reach(m, b) · (reach(m,a) + ¬reach(m,a))) : a↑

= m + (reach(m, b) · reach(m,a)) : a↑ + (reach(m, b) · ¬reach(m,a)) : a↑

≤ m + reach(m, b) : (reach(m,a) : a↑)

= m + reach(m, b) : b↑

= reach(m, b)

Then: from(m, b) = reach(m, b) · b = reach(m, b) · reach(m,a) · a
= reach(m,a) · a = from(m,a)

22

3. Immediately from monotonicity of reach. ut

With this we can show, that the from operator really does not change connections
in the live part of the store. So the reachable addresses are equal to the ones in the
original store:

Corollary 11. reach(m, from(m,a)) = reach(m,a)

Which follows immediately from Lemma 44 and the previous one.

4.4 Non-reachability

If we know which addresses are allocated, we are able to define a complementary
operator to reach that calculates all the used but not reachable records in a pointer
structure. Therefore we define recs that takes all elements a pointer link starts from
and converts them to addresses.

Definition 25 (allocated records). recs(a) def= (pa)↑

As by Lemma 31 we know that p and ↑ can be commuted, this is equivalent to
recs(a) = p(a↑) which we will also use if appropriate. Additivity is inherited from
the involved operations. The following rules can be used to simplify expressions
containing recs by elimination of domain or join.

Lemma 48.

1. recs(pa) = recs(a)
2. recs(pb · a) ≤ recs(b)
3. α 6= 0 ⇒ recs(m α→ n) = m
4. recs(b | a) = recs(b) + recs(a)

5. recs(m · a) = m · recs(a)

6. α 6= 0 ⇒ recs((m α→ n) | a)
= m + ¬m · recs(a)

Proof. 1. recs(pa) = (p(pa))↑ = (pa)↑ = recs(a)
2. recs(pb · a) = recs(p(pb · a)) = recs(pb · pa) ≤ recs(pb) 1.= recs(b)
3. recs(m α→ n) = (p(m α→ n))↑ = (m · α)↑ = m

4. recs(b | a) = recs(b) + recs(¬pb · a) 2.= recs(b) + recs(pb · a) + recs(¬pb · a)
= recs(b) + recs(a)

5. recs(m · a) = (p(m · a))↑ = (m · pa)↑ = m · (pa)↑ = m · recs(a)
6. recs((m α→ n) | a) = recs((m α→ n)) + ¬m · recs(a) 3.= m + ¬m · recs(a) ut

As abbreviation we define the set of addresses pointers are linked to by:

Definition 26. links(a) def= (aq)↑

For symmetry reasons all the laws that hold for recs hold correspondingly. Imme-
diately from Lemma 48.5 follows that the allocated records of from(m,a) are all
allocated records that are reachable.

Corollary 12. recs(from(m,a)) = reach(m,a) · recs(a)

The allocated but non-reachable records now are all these in recs without the re-
achable ones.

Definition 27 (noreach). noreach(m,a) def= recs(a) · ¬reach(m,a)

The operator noreachα of non-reachability via a certain selector works similar to
reachα and fromα. The previously noticed relations between reach and from im-
mediately can be applied to noreach.

Lemma 49. noreach(m,a) = recs(a) · ¬recs(from(m,a))

23

Proof.

recs(a) · ¬recs(from(m,a))

= {[Corollary 12]}

recs(a) · ¬(reach(m,a) · recs(a))

= {[de Morgan and distributivity]}

recs(a) · ¬reach(m,a) + recs(a) · ¬recs(a)

= {[definition of noreach]}

noreach(m,a)

ut

By antitony and Lemma 43 for stepping in the calculation of reachable nodes we
can establish a dual proposition for noreach:

Lemma 50. noreach(m,a) ≤ noreach(aα(m), a)

Proof. Immediate from Lemma 43 ut

We can show that the non-reachable part with respect to a fixed selector of a pointer
structure after a pointer manipulation equals the non-reachable part starting from
the new target address.

Lemma 51. sat(α) ⇒ noreachα(m, (m α→ n) | a) = noreachα(n,¬m · a)

Proof.

noreachα(m, (m α→ n) | a)

= {[def. of noreachα and reachα]}

recs((m α→ n) | a) · ¬reach(m,α · ((m α→ n) | a))

= {[Lemmas 48.4 and 40.3]}

(m + recs(a)) · ¬reach(m : (α · ((m α→ n) | a))↑,¬m · α · ((m α→ n) | a))

= {[Boolean algebra, definition of | and simplification]}

¬m · recs(a) · ¬reach(n, α · ¬m · a)

= {[Lemma 48.5]}

recs(¬m · a) · ¬reach(n, α · ¬m · a)

= {[def. of reachα and noreachα]}

noreachα(n,¬m · a)

ut

Incidentally we noticed a copy error on the right hand side of this lemma in [29], as
we tried to prove it in the form given there. The same lemma was noted correctly
in the former articles [27] and [28]. Nevertheless, in all these papers the restriction
to a single selector is not mentioned.

Additionally, as a further abbreviation we define a reachability predicate that
evaluates to true if a set of nodes represented by a predicate n is reachable from
the pointer structure (m,a). In contrast to a point-wise definition we are only able
to model sets of nodes. Therefore we define three different reachability and non-
reachability predicates:

24

Definition 28.

1. Every node in element n is reachable: (m,a) ` n
def⇔ n ≤ reach(m,a)

2. Some nodes in n are reachable: (m,a) � n
def⇔ 0 < reach(m,a) · n < n

3. None of the nodes in n is reachable: (m,a) 0 n
def⇔ reach(m,a) · n = 0

If n is atomic the predicate � evaluates to false. In this case we have the point-
wise view. Each address element represents exactly one node and ` and 0 are
complementary predicates. The validity of predicate (m,a) 0 n immediately can be
deduced from non-reachability. We can give an exact characterization when address
n is in the set of non-reachable records:

Lemma 52. n ≤ noreach(m,a) ⇔ n ≤ recs(a) ∧ (m,a) 0 n

Proof.

⇒: a) n ≤ noreach(m,a) = recs(a) · ¬reach(m,a) ≤ recs(a)
b) n · reach(m,a) ≤ recs(a) · ¬reach(m,a) · reach(m,a) = recs(a) · 0 = 0

⇐: n · noreach(m,a) = n · recs(a) · ¬reach(m,a) = n · ¬reach(m,a)
= n · ¬reach(m,a) + n · reach(m,a) = n ut

4.5 Localization

Most of the expressions for pointer structures are only valid under certain reachabi-
lity conditions that have to hold. If we know that the records of a certain element b
are not reachable from a pointer structure (m,a), we can simplify some expressions.
This means that changes of the pointer structure only have local effects. First we
show some simple consequences from reachability constraints:

Lemma 53. Assume that (m,a) 0 recs(b) which by definition is equivalent to
reach(m,a) · recs(b) = 0, then

1. reach(m,a) · b↑ = 0
2. reach(m,a) · b = 0
3. reach(m,a) · pb = 0

Proof. 1. reach(m,a) · b↑ = reach(m,a) · p(b↑) · b↑ = reach(m,a) · recs(b) · b↑ = 0
2. reach(m,a) · b ≤ reach(m,a) · b↑ = 0
3. reach(m,a) · pb ≤ reach(m,a) · p(b↑) = reach(m,a) · recs(b) = 0 ut

By strictness of domain all these laws can be lifted to images. Using these prerequi-
sites the expression (m,a) 0 recs(b) gives us a lot of information about reachability
in pointer structures. So for example we can completely leave out certain regions
of the store in the calculation of reachable addresses. In other words the effects to
reachability can be localized.

Lemma 54 (Localization I). Assume (m,a) 0 recs(b), then

1. reach(m,a + b) = reach(m,a)
2. reach(m, b | a) = reach(m,a)

Proof.

1. reach(m,a + b) 41= reach(m,a) + reach(m,a) : (b↑ · (a + b)↑
∗
) 53.1= reach(m,a)

25

2. As by 1. ≤ is trivial, we show:

reach(m,a) = reach(m,¬pb · a + pb · a)
41= reach(m,¬pb · a) + reach(m,¬pb · a) : ((pb · a)↑ · a↑

∗
)

≤ reach(m,¬pb · a) + reach(m,a) : ((pb · a)↑ · a↑
∗
)

= reach(m,¬pb · a)
54.1= reach(m, b | a)

ut

But the previous lemma can also be lifted from reach to fromso that the part
reachable in the join of two stores can be simplified.

Lemma 55 (Localization II). Assume (m,a) 0 recs(b), then

1. from(m,a + b) = from(m,a)
2. from(m, b | a) = from(m,a)

Proof. 1. from(m,a + b) = reach(m,a + b) · (a + b)
54.1= reach(m,a) · a + reach(m,a) · b
53.2= reach(m,a) · a
= from(m,a)

2. from(m, b | a) = reach(m, b | a) · (b | a)
54.2= reach(m,a) · b + reach(m,a) · (¬pb · a)
53.3= 0 + reach(m,a) · (¬pb · a) + reach(m,a) · (pb · a)
= from(m,a)

ut

In particular, with pointer structures p = (m,a), q = (n, b) and r = (m, b) we can
show some of the most sophisticated rules that are needed to derive algorithms on
pointer structures with selective updates.

Corollary 13. Set c = (m α→ n) | b and assume sat(α) ∧ sat(β) then

1. q 0 m ⇒ from(n, c) = from(q)
2. α · β = 0 ∧ (bβ(m), b) 0 m ⇒ from(cβ(m), c) = from(bβ(m), b)

which in the notation of [27] are:

1. q 0 ptr(p) ⇒ from((p.α := q).α) = from(q)
2. α · β = 0 ∧ r.β 0 ptr(p) ⇒ from((p.α := q).β) = from(r.β)

For the second proposition one needs to show that cβ(m) = bβ(m) which follows
from α · β = 0.

4.6 Correctness of pointer structures

To have an anchor for inductively defined data structures we need a special address
that serves as model for nil pointers. In contrast to [19] who propose to model it by
an address with all links pointing to itself we choose nil to be a special node that no
link starts from. This better reflects the property that it can not be dereferenced.

Definition 29 (nil). The special value � is an address that has no image under
any store.

� ≤ 1 ∧ �↑ = � and � : a = 0 for all stores a

26

From this definition follows that no proper addresses are reachable from �:
Corollary 14. reach(�, a) = � from(�, a) = 0

In the sequel we assume that all used stores fulfill this requirement and use it for
proofs if necessary. We can also show that the definition intuitively is correct, as it
implies that � is not in the set of allocated addresses:

Lemma 56. recs(a) · � = 0

Proof. � : a = 0 ⇔ � · a = 0 ⇔ � · pa = 0 ⇒ recs(a) · � = p(a↑) · � = (pa · �)↑ = 0 ut

As we have seen that the given framework enables us to model labeled graphs, we
also can give the set of terminal states by calculating all reachable nodes that no
further link starts from:

Definition 30 (final nodes). final(m,a) def= reach(m,a) · ¬recs(a)

The intuitive interpretation of final nodes - that they have no successors - imme-
diately follows:

Corollary 15. final(m,a) : a = final(m,a) : a↑ = 0

With this definition we are able to check the correctness of a store that represents
concrete data structures. It is evident by definition that the reachable addresses from
terminal nodes are only these nodes themselves and that final is an idempotent
operator

Lemma 57. 1. reach(final(m,a), a) = final(m,a)
2. final(m, from(m,a)) = final(m,a)
3. final(final(m,a), a) = final(m,a)

Proof. 1. reach(final(m,a), a) 40.2= final(m,a) + reach(final(m,a) : a↑, a)
Cor.15= final(m,a) + reach(0, a)
= final(m,a)

2. final(m, from(m,a)) = reach(m, from(m,a)) · ¬recs(from(m,a))
= reach(m,a) · ¬recs(a)
= final(m,a)

3. final(final(m,a), a) = reach(final(m,a), a) · ¬recs(a)
1.= final(m,a) · ¬recs(a)
= final(m,a)

ut

As all data representations should be terminated by nil, we can define a predicate
that serves as a sort of invariant for operations on pointer structures. This says that
the only final state in a pointer structure should be nil:

Definition 31 (correctness). The store a is a correct representation of induc-
tively defined pointer data structures if for all available entries m the condition
final(m,a) ≤ � is satisfied.

Additionally one can demand that the store is closed and so there are no dangling
links:

links(a) ≤ recs(a) + �
If this condition holds there are no links that point to non-allocated records but
one has to assert that the record schemes match the corresponding addresses.

With respect to the store we can also define the set of sources and sinks of the
graph. These are the addresses where pointer-links only start from or where they
just end. With this we can define the inner nodes that have entering and leaving
edges.

27

Definition 32 (source, sink and inner nodes).

src(a) def= recs(a) · ¬links(a)

snk(a) def= links(a) · ¬recs(a)

inner(a) def= recs(a) · ¬src(a) = links(a) · ¬snk(a) = recs(a) · links(a)

4.7 Acyclicity

A higher concept that is based on reachability is acyclicity of graphs and pointer
structures. The standard way in relation algebra to define acyclicity is

Definition 33 (relational acyclicity (RA)).

acyclicRA(a) def⇔ a+ u 1 = 0

As there is no meet operation in EKA we have to find a different characterization.
One possibility is to switch to observational equivalence. This means that the image
of an arbitrary address under both sides has to be equal. So we work in the set of
predicates where we have a meet (namely composition) at hand.

Definition 34 (observational acyclicity (OA)).

acyclicOA(a) def⇔ ∀m. m · (m : a+) = 0

It is easy to see that this definition is quite natural by showing that it is equivalent
to a reachability proposition (Note, that we assume to work in a crisp KA):

acyclicOA(a) ⇔ ∀m. (m : a, a) 0 m

Nevertheless this characterization is much stronger than acyclicity as address ele-
ments model set of nodes. By setting m = 0 one can see that acyclicOAa is equi-
valent to a = 0. So a logical step would be to switch to atomic address elements
representing only a single node.

Definition 35 (atomic observational acyclicity (AOA)).

acyclicAOA(a) def⇔ ∀at(m). m · (m : a+) = 0

An alternative characterization comes from graph theory. There one says that a
graph is progressively finite [35] if all paths in the graph have finite length. So there
are no infinite chains which says that the graph is Noetherian or well-founded.

Definition 36 (progressively finite (PF)).

acyclicPF (a) def⇔ ∀m. m ≤ m : a+ ⇒ m = 0

For finite graphs it is well-known that progressive finiteness and freeness of circuits
are equivalent. So we also can define progressive finiteness for atoms.

Definition 37 (atomic progressively finite (APF)).

acyclicAPF (a) def⇔ ∀at(m). m ≤ m : a+ ⇒ m = 0

For these characterization candidates for acyclicity we can show the following rela-
tions:

28

RA

OA

77

7?wwwwwwww

wwwwwwww�� +3
__

��

PF
��

_g GGGGGGGG

GGGGGGGG

qy kkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkk

��
AOA ks +3 APF

Here an arrow with an open tail stands for an unknown connection between these
two characterizations in the respective direction. A closed tail (Z⇒) means that the
characterization on this side is strictly stronger than the one pointed to.

Proof. The unifying counter example that proves that OA neither follows from
RA,AOA nor PF is the graph a with two nodes and only one connection from 1
to 2:

'&%$!"#1 // '&%$!"#2

We choose m = {1, 2}, then m : a+ = {2} and m · (m : a+) = {2}. By this
OA does not hold, but PF holds for all m, AOA holds for all atomic m and RA
trivially holds. A counter example for RA ⇒ PF can be found in PAT, the algebra
of paths. Assume P = {aa} a path in PAT, then P+ = {aa, aaa, . . .} and therefore
P+ u 1 = 0. But 0 6= {a} ⊆ {a} : P+ = {a}. For finite graphs RA and PF are
equivalent (see [35]).
The implications from OA ⇒ AOA and PF ⇒ APF are trivial. The other impli-
cations are shown as follows:

OA ⇒ PF : m = m ·m ≤ m · (m : a+) = 0
AOA ⇒ APF : Similar to OA ⇒ PF with additional assumption at(m).
PF ⇒ AOA,APF ⇒ AOA: at(m) ⇒ m · (m : a+) = m ∨m · (m : a+) = 0 and for

the first term holds: m = m · (m : a+) ≤ (m : a+) ⇒ m = 0
OA ⇒ RA: OA holds for all addresses, so also for m = 1, then 0 = m · (m : a+) =

1 · (1 : a+) = (a+)q ⇒ a+ = 0 ⇒ a+ u 1 = 0
PF ⇒ RA: a+ u 1 = (a+ u 1) · (a+ u 1) ≤ (a+ u 1) · a+

⇒ (a+ u 1)q ≤ ((a+ u 1) · a+)q

⇔ a+ u 1 ≤ (a+ u 1) : a+

⇒ a+ u 1 = 0

In the sequel we will use characterization PF as definition of acyclicity, as OA is
too strong and RA is not expressible in Kleene algebra. We note that acyclicity is
a downward closed predicate:

Lemma 58. acyclic(a) ⇒ ∀b ≤ a. acyclic(b)

Proof. Assume m ≤ m : b+, then m ≤ m : b+ ≤ m : a+ ⇒ m = 0 ut
With the additional assumption of acyclicity we can show stronger properties of
pointer algebra operation. So one can reason about reachability after having per-
formed a step:

Lemma 59. acyclic(a↑) ∧m 6= 0 ⇒ reach(m : a, a) < reach(m,a)

Proof. Evidently reach(m : a, a) ≤ reach(m : a↑, a) ≤ m + reach(m : a↑, a) =
reach(m,a). So assume

reach(m,a) ≤ reach(m : a, a)

⇒ m : a↑
∗
≤ (m : a) : a↑

∗
≤ (m : a↑) : a↑

∗
= (m : a↑

∗
) : a↑

+

⇒ m : a↑
∗

= 0
⇔ m = 0

29

which is a contradiction to m 6= 0. ut

Standard consequences from acyclicity can also be proven. Assume an element n is
in more than one step reachable from m. If the store is acyclic it follows that m
is not in the part of the store reachable from n. In contrast to the corresponding
lemmas in [27] we always have to demand that the involved address is not 0. This is
a consequence from the set representation of addresses and assures non-emptyness.

Lemma 60. n 6= 0 ∧ n ≤ m : a↑
+ ∧ acyclic(a↑) ⇒ ¬((n, a) ` m)

Proof. Assume (n, a) ` m which is equivalent to m ≤ reach(n, a), then

n ≤ m : a↑
+
≤ (n : a↑

∗
) : a↑

+
= n : (a↑

∗
· a↑

+
) = n : a↑

+ acycl.⇒ n = 0

which contradicts the precondition. ut

If m is atomic the implication simplifies to (n, a) 0 m. By this observation specia-
lized versions of the localization properties for singly selective updates in Corollary
13 follow from acyclicity:

Lemma 61 (Localization III). Set c = (m α→ aγ(m)) | a) and assume m crisp
atomic, aβ(m) 6= 0 and acyclic(a↑), then

from((aβ(m), (m α→ aβ(m)) | a) = from(aβ(m), a)
α · β = 0 ⇒ from(cβ(m), c) = from(aβ(m), a)

which again in the notation of [27] are:

from((p.α := p.β).α) = from(p.β)
α · β = 0 ⇒ from((p.α := p.γ).β) = from(p.β)

Proof. The claims follow immediately from Lemma 60 and

m : a↑
+

= m : a↑ + m : (a↑ · a↑
+
) ≥ m : a↑ ≥ m : (β · a)↑ = aβ(m)

ut

4.8 Sharing

Using the reachability operator from Section 4.3 we are able to define a predicate
that expresses the sharing of parts of two pointer structures. As � is used as ter-
minator for linked data structures it plays a special rôle. We say that two pointer
structures do not share any parts if the intersection of their reachable addresses is
at most �.
Definition 38 (sharing). ¬sharing(m,n, a) def⇔ reach(m,a) · reach(n, a) ≤ �
As immediate consequence from Lemma 43 follows that if two pointer structures
have no nodes in common, the successor structures also do not show sharing:

Lemma 62. ¬sharing(m,n, a) ⇒ ¬sharing(aα(m), n, a)

Proof. reach(aα(m), a) · reach(n, a) ≤ reach(m,a) · reach(n, a) ≤ � ut

By calculation with our algebra we observed, that the following lemma from [27] in
fact does not need acyclicity as a precondition.

Lemma 63. From n ≤ m : a↑
+

follows ∀o. ¬sharing(m, o, a) ⇒ ¬sharing(n, o, a)

Proof.

reach(n, a) = n : a↑
∗
≤ (m : a↑

+
) : a↑

∗
= m : a↑

+
≤ m + m : a↑

+
= reach(m,a)

and thus reach(m,a) · reach(o, a) ≤ � ⇒ reach(n, a) · reach(o, a) ≤ � ut

30

5 Summary

We have presented an extension of Kleene algebra that can be used to model the
concurrent treatment of several equally shaped KAs. Calculations like the transitive
closure there can be performed simultaneously on all involved KAs. Afterwards it is
possible get the result in the context of a specific KA by projection. As application
we have shown how EKAs can be used as a formal basis for pointer algebra. Future
tasks are the investigation of an equational axiomatization based on action algebra
and the application of pointer algebra to larger problems like for example garbage
collection algorithms.

6 Acknowledgement

I would like to thank B. Möller, G. Struth and M. Winter for valuable critic and
discussion.

References

1. C.J. Aarts. Galois connections presented calculationally. Afstudeer verslag (Gra-
duating Dissertation), Department of Computing Science, Eindhoven University of
Technology, July 1992.

2. R. Backhouse. Galois connections and fixed point calculus. In Algebraic and Coal-
gebraic Methods in the Mathematics of Program Construction International Summer
School and Workshop, Oxford, UK, April 10-14, 2000, Revised Lectures, volume 2297
of Lecture Notes in Computer Science, pages 89–148. Springer-Verlag, 2002.

3. A. Bijlsma. Calculating with pointers. Science of Computer Programming, 12(3):191–
206, September 1989.

4. R. Bornat. Proving pointer programs in Hoare logic. In R. Backhouse and J.N.
Oliveira, editors, Mathematics of Program Construction, 5th International Confe-
rence, MPC 2000, volume 1837 of Lecture Notes in Computer Science, pages 102–126.
Springer-Verlag, 2000.

5. C. Brink, K. Britz, and R.A. Schmidt. Peirce algebras. Formal Aspects of Computing,
6:1–20, 1994.

6. R.M. Burstall. Some techniques for proving correctness of programs which alter data
structures. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 7, pages 23–50.
Edinburgh University Press, Edinburgh, Scotland, 1972.

7. M. Butler. Calculational derivation of pointer algorithms from tree operations. Science
of Computer Programming, 33(3):221–260, March 1999.

8. J.H. Conway. Regular Algebra and Finite Machines. Chapman & Hall, London, 1971.
9. A. de Morgan. On the syllogism, no. iv, and on the logic of relations. Transactions of

the Cambridge Philosophical Society, 10:331–358, 1864.
10. J. Desharnais and B. Möller. Characterizing determinacy in Kleene algebras. In

J. Desharnais, M. Frappier, A. Jaoua, and W. MacCaull, editors, Relational Methods in
Computer Science. Int. Seminar on Relational Methods in Computer Science, Jan 9–
14, 2000 in Québec, volume 139 of Information Sciences — An International Journal,
pages 153–273, 2001.

11. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with a domain operator.
Technical report 2003-7, Institut für Informatik, Universität Augsburg, 2003.

12. J. Desharnais, B. Möller, and F. Tchier. Kleene under a Demonic Star. In T. Rus,
editor, Algebraic Methodology and Software Technology, 8th International Conference,
AMAST 2000, volume 1816 of Lecture Notes in Computer Science, pages 355–370.
Springer-Verlag, 2000.

13. T. Ehm. Properties of overwriting for updates in typed Kleene algebras. Technical
report 2000-7, Institut für Informatik, Universität Augsburg, 2000.

14. T. Ehm. Pointer Kleene Algebra. Submitted to RelMiCS, 2003.
15. T. Ehm, B. Möller, and G. Struth. Kleene modules. Submitted to RelMiCS, 2003.

31

16. P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of North-Holland Ma-
thematical Library. North-Holland, Amsterdam, 1990.

17. L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras I, volume 64 of Studies in
logic and the foundations of mathematics. North-Holland, 1971.

18. C.A.R. Hoare. Proofs of correctness of data representation. Acta Informatica, 1:271–
281, 1972.

19. C.A.R. Hoare and H. Jifeng. A trace model for pointers and objects. In R. Guerraoui,
editor, ECCOP’99 - Object-Oriented Programming, 13th European Conference, Lisbon,
Portugal, June 14-18, 1999, Proceedings, volume 1628 of Lecture Notes in Computer
Science, pages 1–17. Springer-Verlag, 1999.

20. B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. American Journal
of Mathematics, 73:891–939, 1951.

21. B. Jónsson and A. Tarski. Boolean algebras with operators, Part II. American Journal
of Mathematics, 74:127–167, 1952.

22. Y. Kawahara and H. Furusawa. Crispness and representation theorems in Dedekind
categories. Technical report DOI-TR 143, Kyushu University, 1997.

23. G.J. Klir and T.A. Folger. Fuzzy Sets, Uncertainty and Information. Prentice Hall
International, Englewood Cliffs (NJ), 1988.

24. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Technical report TR90-1123, Cornell University, Computer Science Depart-
ment, May 1990.

25. D. Kozen. On action algebras. In J. van Eijck and A. Visser, editors, Logic and
Information Flow, pages 78–88. MIT Press, 1994.

26. D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability.
Technical report TR96-1582, Cornell University, Computer Science Department, April
1996.

27. B. Möller. Calculating with pointer structures. In R. Bird and L. Meertens, editors,
Algorithmic Languages and Calculi, pages 24–48. Proc. IFIP TC2/WG2.1 Working
Conference, Le Bischenberg, Feb. 1997, Chapman & Hall, 1997.

28. B. Möller. Linked Lists Calculated. Technical report 1997-7, Institut für Informatik,
Universität Augsburg, 1997.

29. B. Möller. Calculating with acyclic and cyclic lists. In A. Jaoua and G. Schmidt, edi-
tors, Relational Methods in Computer Science. Int. Seminar on Relational Methods in
Computer Science, Jan 6–10, 1997 in Hammamet, volume 119 of Information Sciences
— An International Journal, pages 135–154, 1999.

30. B. Möller. Typed Kleene Algebras. Technical report 1999-8, Institut für Informatik,
Universität Augsburg, 1999.

31. J.M. Morris. Assignment and linked data structures. In Theoretical Foundations of
Programming Methodology, volume 91 of NATO Advanced Study Institutes Series C
Mathematical and Physical Sciences, pages 35–51. Dordrecht, Reidel, 1981.

32. V. Pratt. Action logic and pure induction. In J. van Benthem and J. Eijck, editors,
Proceedings of JELIA-90, European Workshop on Logics in AI, Amsterdam, Septem-
ber 1990.

33. V. Pratt. Dynamic Algebras as a well-behaved fragment of Relation Algebras. In
C.H. Bergman, R.D. Maddux, and D.L. Pigozzi, editors, Algebraic Logic and Univer-
sal Algebra in Computer Science, volume 425 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

34. J.C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In
J. Davies, B. Roscoe, and J. Woodcock, editors, Millennial Perspectives in Computer
Science, pages 303–321, Houndsmill, Hampshire, 2000. Palgrave.

35. G. Schmidt and T. Ströhlein. Relations and Graphs, Discrete Mathematics for Compu-
ter Scientists. EATCS-Monographs on Theoretical Computer Science. Springer-Verlag,
1993.

36. M. Winter. Relational constructions in Goguen categories. In H. de Swart, editor, 6th
International Seminar on Relational Methods in Computer Science (RelMiCS), pages
222–236, 2001.

32

A Standard Kleene Algebra

Definition 39 (SKA). A standard Kleene algebra is a sixtuple (K,≤,>, ·, 0, 1)
satisfying the following properties:

1. (K,≤) is a complete lattice with least element 0 and greatest element >. The
supremum of a subset L ⊆ K is denoted by

∑
L.

2. (K, ·, 1) is a monoid.
3. The operation · is universally disjunctive (i.e. distributes through arbitrary su-

prema) in both arguments.

We only summarize the important laws that hold in SKAs due to the existence of
a meet operator.

Lemma 64. Consider a SKA and s, t ∈ P.

1. s · t = s u t
2. s · (a u b) = s · a u s · b
3. (s u t) · a = s · a u t · a

4. s · a u ¬s · b = 0
5. a u s · b = s · a u s · b

In particular: a u s · > = s · a

33

	Kleene Algebras and Pointer Structures
	Introduction
	Kleene Algebra
	Predicates
	Residuals and top
	Domain and Codomain
	Ideals and Scalars
	Establishing the bijection
	About locality
	Updates
	Images
	Observational equivalence
	Determinacy and atomicity

	Simultaneous treatment of Kleene Algebras
	Crisp algebras
	Interaction with domain, codomain and negation
	Projection Properties
	Intermediate summary
	A concrete model

	Modeling Pointer Structures
	Addresses
	Ministore
	Reachability
	Non-reachability
	Localization
	Correctness of pointer structures
	Acyclicity
	Sharing

	Summary
	Acknowledgement
	Standard Kleene Algebra

