
Macroeconomic Dynamics, 21, 2017, 1811–1826. Printed in the United States of America.
doi:10.1017/S1365100515000966

NOTES

ON THE NUMERICAL ACCURACY
OF FIRST-ORDER APPROXIMATE
SOLUTIONS TO DSGE MODELS

CHRISTOPHER HEIBERGER, TORBEN KLARL, AND ALFRED MAUSSNER
University of Augsburg

Many algorithms that provide approximate solutions for dynamic stochastic general
equilibrium (DSGE) models employ the QZ factorization because it allows a flexible
formulation of the model and exempts the researcher from identifying equations that give
raise to infinite eigenvalues. We show, by means of an example, that the policy functions
obtained by this approach may differ from both the solution of a properly reduced system
and the solution obtained from solving the system of nonlinear equations that arises from
applying the implicit function theorem to the model’s equilibrium conditions. As a
consequence, simulation results may depend on the specific algorithm used and on the
numerical values of parameters that are theoretically irrelevant. The sources of this
inaccuracy are ill-conditioned matrices as they emerge, e.g., in models with strong habits.
Researchers should be aware of those strange effects, and we propose several ways to
handle them.
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1. INTRODUCTION

Dynamic stochastic general equilibrium (DSGE) models have become the
workhorse of macroeconomic research. Although the early proponents of this
approach had to write their own computer code, their contemporary successors can
resort to a variety of freely available toolkits, among which DYNARE is probably
the best-known and most versatile.1 The user-friendly toolkits have spurred the
further development and prevalence of DSGE models, because they have reduced
the barriers for potential users considerably. One does not have to understand
the details of a particular algorithm, the pitfalls of numerical mathematics, or
the subtleties of different programming languages to solve, simulate, and even
estimate a particular model.

This paper is a substantially revised and extended version of our former working paper entitled “System Reduction
and the Accuracy of Solutions of DSGE Models: A Note.” We are grateful to two anonymous referees for their
comments and suggestions. Of course, all remaining errors and shortcomings are ours. Alfred Maußner acknowl-
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Imperfections and Macroeconomic Performance” under Grant MA 1110/3-1. Address correspondence to: Alfred
Maußner, Department of Economics, University of Augsburg, Universitätsstraße 16, 86159 Augsburg, Germany;
e-mail: alfred.maussner@wiwi.uni-augsburg.de.
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1812 CHRISTOPHER HEIBERGER ET AL.

In this paper we argue for careful use. In particular, we illustrate by means of
an example different degrees of numerical accuracy that depend on the particular
algorithm used to obtain the linear part of the model’s approximate solution. Errors
that occur at this stage affect the computation of higher-order terms of the solution.
The example is by no means specific. Rather, versions of this model are routinely
employed in studies of the equity premium puzzle.2

Our benchmark is the (stable) solution of the system of nonlinear equations
obtained from applying the implicit function theorem to the model’s equilib-
rium conditions. We compare this solution with those that result from linearizing
the equilibrium conditions and from solving the respective stochastic first-order
system of difference equations. The prevalent way to do this is to use matrix fac-
torization. We consider QZ factorization and, for a properly reduced system, Schur
decomposition. Theoretically, i.e., ignoring errors from finite-precision computer
arithmetic, all these algorithms will deliver the same solution. In our application,
however, some of the elements of the solution differ remarkably between the
various methods. As a consequence, we also observe differences in the second
moments of simulated time series.

The researcher who relies on the use of DSGE toolkits thus should be aware
of these strange effects. We propose several ways to handle them. Euler equation
residuals, error bounds for the eigenvalues, and the nonlinear equations can be
used to detect a potential problem. A reformulation of the model in terms of
transformed variables or equations and a specific balancing of ill-conditioned
matrices are ways to improve accuracy.

From here we proceed with a brief description of the canonical DSGE model,
the linearized form of this model, and the matrix factorizations in the next section.
Section 3 presents our example. Section 4 concludes. The Online Appendix covers
the details of the matrix factorizations and of the model presented in Section 3 and
provides additional information on the model’s approximate solutions.3

2. ANALYTICAL FRAMEWORK

2.1. Canonical Dynamic Stochastic General Equilibrium Model

Our framework closely follows Schmitt-Grohé and Uribe (2004). The solution
based on the QZ factorization is due to Klein (2000) and the presentation follows
Heiberger et al. (2015).

Let xt ∈ Rn(x), zt ∈ Rn(z), and yt ∈ Rn(y) denote a vector of endogenous
state variables, exogenous state variables, and nonpredetermined (jump) variables,
respectively. The equilibrium conditions of a DSGE model are

0n(x)+n(y) = Etg(xt , zt , yt , xt+1, zt+1, yt+1), (1a)

zt+1 = �zt + σ�εt+1, εt+1 ∼ N (0n(z), In(z)), (1b)
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NUMERICAL ACCURACY OF FIRST-ORDER APPROXIMATE SOLUTIONS 1813

where the operator Et denotes expectations as of period t . Perturbation methods
yield approximate solutions

xt+1 = hx(xt , zt , σ ), (2a)

yt = hy(xt , zt , σ ). (2b)

2.2. The Set of Nonlinear Equations

Let wt = [x′
t , z′

t ]
′, �̃ = [0′

n(x)×n(z), �
′]′ and denote the solution of the model more

compactly by

wt+1 = hw(wt , σ ) + σ�̃εt+1 =
[

hx(wt, σ )

hz(wt, σ ) + σ�εt+1

]
,

yt = hy(wt , σ ).

Then by defining

g̃(wt , yt , wt+1, yt+1) =
[

g(xt , zt , yt , xt+1, zt+1, yt+1)

zt+1 − �zt

]
,

(1) can be written as

0n(w)+n(y) = Et g̃(wt , hy(wt , σ ), hw(wt , σ ) + σ�̃εt+1, hy(hw(wt , σ )

+ σ�̃εt+1, σ ))

= G(wt , σ ).

According to the implicit function theorem, the partial derivatives of G with respect
to wt must vanish at the stationary solution w obtained from σ = 0. This yields a
system of equations in the (n(w) + n(y)) × n(w) coefficients of the linear part of
hw and hy , denoted by Lw and Ly , respectively:

0 = g̃i
wjt

+
n(y)∑
l=1

g̃i
ylt

L
y
l,j +

n(w)∑
l=1

g̃i
wlt+1

Lw
l,j +

n(y)∑
l=1

g̃i
ylt+1

n(w)∑
k=1

L
y
l,kL

w
k,j ,

i = 1, . . . , n(w) + n(y),

j = 1, . . . , n(w).

(3)

One must pick the solution of this system for which the eigenvalues of the matrix
Lw are within the unit circle, so that the linearized dynamic system wt+1 =
w + Lw(wt − w) is stable.

2.3. The AB Model and the QZ Factorization

A second way to obtain the matrices Lw and Ly is to linearize the system (1) at
the point (x, 0, y), solving g(x, 0, y, x, y, 0) = 0n(x)+n(y). This yields the system
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1814 CHRISTOPHER HEIBERGER ET AL.

of linear stochastic difference equations

A Et

[
w̄t+1

ȳt+1

]
= B

[
w̄t

ȳt

]
, w̄t ≡

[
xt − x

zt

]
, ȳt ≡ yt − y, (4a)

A =
[

g4 g5 g6

0n(z)×n(x) In(z) 0n(z)×n(y)

]
, (4b)

B =
[ −g1 −g2 −g3

0n(z)×n(y) � 0n(z)×n(y)

]
, (4c)

where gi denotes the Jacobian matrix of g with respect to its ith argument.
Usually, the linear system (4) contains a number of equations that involve

only variables dated at time t . These arise from equations such as the economy’s
resource constraint or from static first-order conditions. In this case the matrix A is
singular, so that A−1B does not exist and the procedure outlined by Blanchard and
Kahn (1980) cannot be applied.4 As pointed out by Klein (2000), QZ factorization
can be used to solve the system (4).5

There are two ways to use QZ factorization to solve the model (4a). As shown in
Heiberger et al. (2015), both provide the same solution (if it exists at all). The first
way [see Klein (2000)] rests on factoring the matrix pencil (B − λA), the second
on factoring (A − μB) [see Heer and Maußner (2009)]. The QZ factorization of
the pencil (B − λA) is

QHAZ = S,

QHBZ = T ,
(5)

where Q and Z are unitary matrices, S and T are upper triangular matrixes, and
QH denotes the Hermitian transpose of Q.6 The eigenvalues of the matrix pencil
are given by λi = tii/sii for sii �= 0.7 Furthermore, the matrices S and T can be
arranged so that the eigenvalues appear in ascending order with respect to their
absolute values. Assume that n(w) = n(x) + n(z) eigenvalues have modulus less
than one and n(y) have modulus greater than one. Let Z11 denote the upper left
n(w) × n(w) block of Z, Z12 the upper right n(w) × n(y) block, etc., and define
new variables [

Z11 Z12

Z21 Z22

] [
w̃t

ỹt

]
=

[
w̄t

ȳt

]
, (6)

so that we can write (4) as[
S11 S12

0n(y)×n(w) S22

]
Et

[
w̃t+1

ỹt+1

]
=

[
T11 T12

0n(y)×n(w) T22

] [
w̃t

ỹt

]
. (7)

S11 is an n(w) × n(w) upper triangular matrix, S22 is an n(y) × n(y) upper
triangular matrix, and S12 is an n(w) × n(y) matrix. The matrices T11, T22, and
T12 have corresponding dimensions.
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NUMERICAL ACCURACY OF FIRST-ORDER APPROXIMATE SOLUTIONS 1815

Given these assumptions and definitions, the system

S22Et ỹt+1 = T22ỹt

is unstable,8 and to obtain a definite solution, we must set ỹt = 0n(y) for all t .
Thus, from the first line of (7),

w̃t+1 = S−1
11 T11w̃t .

Because
w̃t = Z−1

11 w̄t (8)

from the first line of (6), we get

w̄t+1 = Z11S
−1
11 T11Z

−1
11︸ ︷︷ ︸

Lw

w̄t .

The second line of (6), together with (8), implies that

ȳt = Z21Z
−1
11︸ ︷︷ ︸

Ly

w̄t .

The dynamics of the solved linear model can be represented by

x̄t+1 = Lx
x x̄t + Lx

z zt , (9a)

ȳt+1 = Ly
x x̄t + Ly

z zt , (9b)

zt+1 = �zt + σ�εt+1, (9c)

where the matrices of the linear approximation of the policy functions (2) are
related to Lw and Ly according to

Lw =
[

Lx
x Lx

z

0n(z)×n(x) �

]
, Ly = [

L
y
x L

y
z

]
.

2.4. Model Reduction

In this subsection we assume that the researcher is able to sort the equations in
g(·) so that the first n(u) equations involve only period-t variables. This allows us
to partition yt = [u′

t , v′
t ]

′ and to write the linearized system (1) as

Cuūt = Cwv

[
w̄t

v̄t

]
, (10a)

DwvEt

[
w̄t+1

v̄t+1

]
+ Fwv

[
w̄t

v̄t

]
= D̃uEt ūt+1 + F̃uūt , (10b)
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1816 CHRISTOPHER HEIBERGER ET AL.

where the matrices are related to the Jacobian matrix of g according to

Dg =
[
Cx Cz Cu Cv 0 0 0 0
Fx Fz Fu Fv Dx Dz Du Dv

]
,

Cwv = [−Cx −Cz − Cv

]
, Dwv =

[
Dx Dz Dv

0 In(z) 0

]
, Fwv =

[
Fx Fz Fv

0 −� 0

]
,

D̃u =
[
Du

0

]
, F̃u =

[
Fu

0

]
.

Solving (10a) for ut and using the result in (10b) yields

Et

[
w̄t+1

v̄t+1

]
= W

[
w̄t

v̄t

]
, W = [

Dwv − D̃uC
−1
u Cwv

]−1 [
Fwv − F̃uC

−1
u Cwv

]
.

(11)
This system can be solved along the same lines as the system (4a). We present the
necessary steps in the Online Appendix.

The solutions of (4) and (10) also solve (3). To see this, let w̄t+1 = Lww̄t and
ȳt = Lyw̄t denote the solution of (4). This yields

A

[
Lw

LyLw

]
w̄t − B

[
In(w)

Ly

]
w̄t = 0n(w)+n(y).

The coefficients of Lw and Ly thus must satisfy the system of equations

A

[
Lw

LyLw

]
− B

[
In(w)

Ly

]
= 0(n(w)+n(y))×n(w), (12)

which is just the matrix version of (3). Note that (12) provides a simple way to
check the accuracy of solutions based on matrix methods against the solution that
would solve the nonlinear system (3). Given the matrices A and B and the policy
functions Lw and Ly , the entries of the (n(w) + n(y)) × n(w) matrix on the
left-hand side of (12) should not exceed a given tolerance, 10−6, say, in absolute
value.

2.5. Implementation

The linear algebra package LAPACK provides several routines to compute both
the QZ factorization of a matrix pencil and the Schur decomposition of non-
symmetric matrices.9 The Fortran program Solab by Paul Klein, which is also
used by DYNARE, employs the LAPACK routine ZGGES to factor the pencil
(B −λA). We use the LAPACK routines ZGGESX and ZGGESXV. Both ZGGES
and ZGGESX compute the matrices S, T , Q, and Z and cluster the eigenvalues in
two blocks. The eigenvalues are given by λi = αi/βi , where αi and βi are equal
to the diagonal elements of S and T , respectively. Klein’s procedure requires
clustering the eigenvalues according to the criterion |αi | > |βi | (or |λi | > 1) so
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NUMERICAL ACCURACY OF FIRST-ORDER APPROXIMATE SOLUTIONS 1817

that the eigenvalues of S−1
11 T11 are within the unit circle.10 ZGGESX additionally

computes average reciprocal condition numbers κ for the eigenvalue clusters. An
approximate error bound for each cluster is given by11

χ(λ̄, λ̄′) = |ᾱβ̄ ′ − β̄ᾱ′|√
|ᾱ|2 + |β̄|2

√
|ᾱ′|2 + |β̄ ′|2

≤
ε

√
||A||21 + ||B||21

κ
, (13)

where χ is the chordal distance between the average eigenvalue in the selected
cluster λ̄ = ∑n(w)

i=1 λi/(n(w)) and the average true eigenvalue λ̄′ of the pencil.
ε refers to the machine epsilon, ||A||1 and ||B||1 are the one-norms of A and
B, respectively. They are returned from ZGGESXV. The routines ZGGES and
ZGGESX balance A and B by scaling the rows and columns to reduce computa-
tional errors. Therefore, the error bounds refer to the scaled matrices and not to
A and B as passed to ZGGES and ZGGESX. As will become apparent later, an
additional scaling may be necessary to reduce computational errors.

The LAPACK routine ZGEESX performs the Schur decomposition W = ZSZH

of the matrix W in (11), clusters eigenvalues so that the eigenvalues of S11 are
within the unit circle, and provides reciprocal condition numbers κi , i = 1, 2,

for the average eigenvalues of S11 and S22. An approximate error bound for the
distance between the true average eigenvalue λ̄′ of S11 and the computed average
λ̄ is given by

|λ̄ − λ̄′| ≤ ε||W ||1
κ1

. (14)

As in the case of the generalized eigenvalue problem, ZGEESX scales the rows
and columns of the matrix W to reduce the computational errors. Therefore, the
one-norm of W returned by ZGEEVX is the norm of the scaled matrix.

3. AN EXAMPLE

We consider a real business cycle model taken from Heer and Maußner (2013) that
features habits in consumption and hours as well as adjustment costs of capital.
The model introduces endogenous labor supply into the model of Jermann (1998),
who studied the equity premium implications of a production economy.

3.1. The Model

Households. Households enter the current period t with given amounts of
firm shares St and real bonds Bt . Bonds have a maturity of one period and can be
purchased at the current price vb

t and pay one unit of consumption in period t + 1.
The real share price is ve

t and real dividend payments per share are dt . Firms pay
the real wage wt per unit of working hours Nt . Thus,

ve
t (St+1 − St ) + vb

t Bt+1 ≤ wtNt + dtSt + Bt − Ct (15)
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1818 CHRISTOPHER HEIBERGER ET AL.

is the household’s budget constraint, where Ct denotes consumption. The house-
hold chooses contingency plans for consumption Ct , hours Nt , and next-period
stocks St+1 that maximize

Ut = Et

∞∑
s=0

βs (Ct+s − χCCt+s−1)
1−η − 1

1 − η
− ν0

(Nt+s − χNNt+s−1)
1+ν1 − 1

1 + ν1
,

(16)

subject to (15). The parameters χC and χN determine the degree of habits in
consumption and labor supply. We treat both habits as exogenous; i.e., Ct+s−1 and
Nt+s−1 refer to the average consumption and labor supply of the previous period.
The first-order conditions for this problem and any further mathematical details
of this model are presented in the Online Appendix.

Firms. The representative firm uses labor Nt and capital Kt to produce output
Yt according to the production function

Yt = ZtN
1−α
t Kα

t , α ∈ (0, 1). (17)

The level of total factor productivity Zt is governed by the AR(1) process

ln Zt = ρ ln Zt−1 + σεt , εt ∼ N (0, 1) . (18)

The firm finances part of its investment It from retained earnings REt and issues
new shares to cover the remaining part:

It = vt (St+1 − St ) + REt . (19)

It distributes the excess of its profits over retained earnings to the household sector:

dtSt = Yt − wtNt − REt . (20)

Investment increases the firm’s future stock of capital according to

Kt+1 = �(It/Kt)Kt + (1 − δ)Kt , δ ∈ [0, 1], (21)

where we parameterize the function � as

�(It/Kt) := a1

1 − ζ

(
It

Kt

)1−ζ

+ a2, ζ > 0, (22)

and determine a1 and a2 from �′(δ) = 1 and �(δ) = δ so that adjustment costs
are absent in the deterministic stationary equilibrium.

The firm maximizes its beginning-of-period value

Vt = Et

∞∑
s=0

�t+s(Yt+s − wt+sNt+s − It+s), (23)
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TABLE 1. Parameter choice

Preferences β = 0.99 η = 5 ν1 = 2.5 N ∈ {0.13, 1/3}
χC = 0.82 χN = 0.82

Production α = 0.36 ρ = 0.95 σ = 0.00712
Capital accumulation δ = 0.025 ζ = 1/0.23

subject to (17) and (21). The variable

�t+s = βs �t+s

�t

is the household’s stochastic discount factor for period-(t + s) returns, and �t

equals the marginal utility of consumption:

�t = (Ct − χCCt−1)
−η. (24)

The respective first-order conditions can be found in the Online Appendix.

Calibration. We calibrate the model with respect to the U.S. economy.
Table 1 displays our choice of parameters. The standard parameter values for
the production side, α, ρ, and σ , are taken from Hansen (1985), as well as the
value of the discount factor β. The habit parameter χC , η, and the parameters
of the capital accumulation equation (21) are taken from Jermann (1998). The
parameter ν1 = 2.5 is from De Paoli et al. (2010). Like these authors, we assume
that χN = χC12 and choose ν0 so that at the stationary equilibrium N equals 1/3.

3.2. Accuracy of the Solution

Solutions. In this section we consider the linear part of the model’s approx-
imate solution. We compute four different linear solutions for the levels of the
variables:

1. the solution of the nonlinear system via a nonlinear equations solver, with termina-
tion criterion maxk |fk(L

w, Ly)| < 10−7, where fk , k = 1, . . . , (n(w) + n(y)) ×
n(w) denotes the kth equation of (3),

2. the solution via the QZ factorization of the matrix pencil (B − λA),
3. the solution via the QZ factorization of the matrix pencil (A − μB),
4. the solution of the reduced system, where we partition

yt = [u′
t , v′

t ]
′ = [Yt , Ct , It , Nt , wt , qt , �t ]

′

so that vt ≡ �t .13

As shown in Section 2, if we ignore different degrees of numerical precision, all
four solutions should deliver the same policy functions.

Here we report the solutions from our Fortran program. On our home page
we also provide a Maple program and a DYNARE script.14 Whereas the Fortran
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1820 CHRISTOPHER HEIBERGER ET AL.

program employs a central difference approximation of the Jacobian matrix of g,
the Maple program and DYNARE use symbolic algebra to derive the analytic for-
mulas for the elements of the Jacobian and evaluate these at the stationary solution.
The results reported in the following are robust with respect to the computation
of the Jacobian. The policy functions from DYNARE reproduce solution #2.

With these solutions we also simulate the model and report second moments
for the percentage deviations of the model’s variables from their respective steady
state values.15 We do the latter for three reasons. First, researchers usually do not
report the coefficients of the policy functions but present statistics that summarize
the empirical implications of their models. For this reason, it is important to
see whether or not simulated measures of the business cycle bear traces of the
numerical differences in the coefficients of the policy functions. Second, as is well
known from the benchmark business cycle model, different degrees of numerical
accuracy rarely surface in differences of second moments from simulated time
series.16 Third, as we demonstrate in the Online Appendix, if we solved and
simulated the log-linearized version of the model, the respective second moments
would not depend on the value of N , the stationary fraction of hours supplied by
the representative agent. Therefore, any discrepancies we observe indicate serious
numerical differences between the four different solutions.

Policy functions. Tables A.2 and A.3 in the Online Appendix report the coef-
ficients of the policy functions (i.e., the linear approximate solution of the model)
for the cases N = 0.13 and N = 1/3. To save on space, here we focus on the
relative difference between solutions #2 through #4 and solution #1.

In the case N = 1/3 the coefficients are virtually identical: the maximum
relative difference between the coefficients is less than 0.005% and relates to the
coefficient of Tobin’s q with respect to the capital stock, as computed by solution
# 3. This changes considerably if we use N = 0.13, a value used by Heer and
Maußner (2013) for the German economy.

Table 2 presents the results for this case. There are virtually no differences
between the solution of the reduced system and the nonlinear solution. In ab-
solute terms the maximum relative distance between the solution based on the
QZ factorization (B − λA) and the nonlinear solutions is 65% for the coefficient
of qt with respect to capital Kt : the nonlinear solution provides a coefficient of
about −0.024, whereas solution #2 yields about −0.008. For the same coefficient,
the QZ factorization of (B − μA) (solution #3) even delivers a positive value of
about 0.014, which gives raise to a relative difference of over 150%. Whereas the
nonlinear solution gives positive coefficients in the policy function for the future
capital stock Kt+1 for Nt−1 and ln Zt of 0.85 and 0.22, respectively, solution #3
yields zero coefficients, which explains the 100% deviation in the entries for Kt+1

in Table 2.

Second moments. Table 3 presents results from six different simulations of
the model. The moments in the first and second panels rest on solutions #2 and #3,
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TABLE 2. Policy functions for N = 0.13, relative discrepancy

Independent variables
Dependent
variables Kt Ct−1 Nt−1 ln Zt

(B − λA) versus nonlinear system
Kt+1 0.000446 0.005025 0.004494 0.017461
Yt 0.009649 −0.003991 0.001928 0.007353
Ct −0.036036 0.001049 −0.003646 −0.013363
It 0.018323 0.005025 0.004494 0.017461
Nt −0.045245 −0.003991 0.001928 −0.015204
wt −0.004071 −0.003991 0.001928 −0.002356
qt −0.650130 0.005025 0.004494 0.017461
�t −0.036036 −0.003991 −0.003646 −0.013363

(A − μB) versus nonlinear system

Kt+1 −0.008139 −1.019427 −1.000000 −1.000000
Yt 0.027064 −0.018830 0.009491 0.023591
Ct −0.101083 0.004949 −0.017945 −0.042873
It 0.043836 0.003276 0.002099 0.035338
Nt −0.126914 −0.018830 0.009491 −0.048780
wt −0.011419 −0.018830 0.009491 −0.007558
qt −1.566015 0.004084 0.002891 0.036156
�t −0.101083 −0.018830 −0.017945 −0.042873

Reduced system versus nonlinear system

Kt+1 0.000000 0.000000 0.000000 0.000000
Yt 0.000000 0.000000 0.000000 0.000000
Ct 0.000000 0.000000 0.000000 0.000000
It 0.000000 0.000000 0.000000 0.000000
Nt 0.000000 0.000000 0.000000 0.000000
wt 0.000000 0.000000 0.000000 0.000000
qt 0.000001 0.000000 0.000000 0.000000
�t 0.000000 0.000000 0.000000 0.000000

Notes: The entries represent relative differences between the coefficients of the policy
functions of the variables in the leftmost column. �t is the Lagrange multiplier of the
household’s budget constraint.

respectively, whereas the moments in the third panel are from simulations that use
the policy function obtained from the nonlinear solution #1. The single difference
between the panels labeled N = 1/3 and N = 0.13 is two different values for the
stationary level of hours N . The second moments refer to percentage deviations
of a variable from its stationary solution. They were computed as averages over
500 simulations. Each individual time series has 200 observations. We show in
the Online Appendix that the coefficient matrices of the log-linearized system do
not depend on N , so that the simulations should yield identical second moments,
given that the same sequence of random numbers is used. Obviously, this is true
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TABLE 3. Second moments

N = 1/3 N = 0.13

Variable sx sx/sY rxY rx sx sx/sY rxY rx

(A − μB)

Output 1.19 1.00 1.00 0.90 0.82 1.00 1.00 0.79
Consumption 1.09 0.91 0.97 0.97 0.34 0.41 1.00 0.79
Investment 1.77 1.48 0.90 0.67 2.17 2.65 1.00 0.79
Hours 1.37 1.15 −0.97 0.96 1.92 2.34 −0.84 0.98
Real wage 2.55 2.13 0.99 0.94 2.65 3.23 0.92 0.94
Tobin’s q 7.09 5.93 0.79 0.61 9.46 11.54 1.00 0.79

(B − λA)

Output 1.19 1.00 1.00 0.90 0.82 1.00 1.00 0.75
Consumption 1.09 0.91 0.97 0.97 0.70 0.86 0.94 0.95
Investment 1.77 1.48 0.90 0.67 1.44 1.75 0.89 0.31
Hours 1.37 1.15 −0.97 0.96 1.98 2.42 −0.88 0.96
Real wage 2.55 2.13 0.99 0.94 2.73 3.34 0.94 0.94
Tobin’s q 7.09 5.93 0.79 0.61 5.97 7.29 0.80 0.24

Nonlinear solution

Output 1.19 1.00 1.00 0.90 1.19 1.00 1.00 0.90
Consumption 1.09 0.91 0.97 0.97 1.09 0.91 0.97 0.97
Investment 1.77 1.48 0.90 0.67 1.77 1.48 0.90 0.67
Hours 1.37 1.15 −0.97 0.96 1.37 1.15 −0.97 0.96
Real wage 2.55 2.13 0.99 0.94 2.55 2.13 0.99 0.94
Tobin’s q 7.09 5.93 0.79 0.61 7.09 5.93 0.79 0.61

Notes: sx = Standard deviation of percentage deviations of variable x from its stationary solution. x stands
for any of the variables from column (1). Results are from 500 replications with 200 observations each.
sx/sY = Standard deviation of variable x relative to standard deviation of output Y . rxY = Cross correlation
of variable x with output y. rx = First-order autocorrelation of variable x.

for the nonlinear solution (and also, but not shown in the Table, for solution #4).
However, the second moments obtained from solutions #2 and #3 reveal many
obvious and large differences, both in the standard deviations and in the cross and
autocorrelations of the variables displayed.

Euler equation residuals. Euler equation residuals are frequently employed to
investigate the degree of numerical accuracy. In Table 4 we report the maximum
residuals of the Euler equation for capital:17

�t = βEt

�t+1[α(Yt+1/Kt+1) − (It+1/Kt+1) + qt+1(1 − δ + �(It+1/Kt+1))]

qt

.

(25)
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TABLE 4. Euler equation residuals

Solution N = 1/3 N = 0.13

#1 0.04519 0.04519
#2 0.04519 0.04711
#3 0.04519 0.04860
#4 0.04519 0.04519

Notes: The leftmost column indicates the number of
the solution as defined in the body of the paper.

We compute the residuals on a grid G defined on the four-dimensional cube around
the stationary solution of the variables K , C, N , and Z = 1 given by18

[0.93K, 1.07K] × [0.93C, 1.07C] × [0.94N, 1.04N ] × [0.95, 1.05].

Each of the subintervals is discretized in 50 points. For each (Kt , Ct−1, Nt−1, Zt ) ∈
G , we evaluate the right-hand side of equation (25) by Gauss–Hermite integration
with four points and use the respective value of �t to compute the amount of
consumption Ĉt that would deliver a zero residual from equation (24). The residual
is defined as (Ĉt /Ct ) − 1, where Ct is the amount of consumption determined
from the policy function [see Judd and Guu (1997)].

The Euler equation residuals confirm the results from the simulations, albeit
they are not as impressive.19 Solution #3 obtained from the QZ decomposition
of (A − μB) is the least accurate, followed by solution #2. The consumption
equivalent of the former (latter) is about 4.9% (4.7), as compared to 4.5% for the
more accurate nonlinear solution #1 and the solution of the reduced system. For
the case N = 1/3, all four solutions deliver the same Euler residual.

3.3. Source of the Problem and Remedies

Unbalanced matrices. The odd results reported in the previous subsection
originate in two equations, the first-order conditions for consumption and for
labor supply:

�t = (Ct − χCCt−1)
−η, (26a)

�twt = ν0(Nt − χNNt−1)
ν1 . (26b)

The steady-state value of consumption is low and increases with the stationary
value of working hours, N . Therefore, a strong habit (χC close to one) and a large
coefficient of relative risk aversion η imply a huge value of �, the multiplier of
the budget constraint (15). This gives rise to very large coefficients in the Jacobian
matrix of g, and, accordingly, in the matrix B of (4a) and the matrix W of (11).
Yet, because of the reduction of the model, W is less unbalanced than A.
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The different degrees of accuracy for N = 0.13 and N = 1/3 can also be
seen from the approximate error bounds (13) and (14). Because of the scaling
performed by ZGGESX, they do not differ between the two different versions
of QZ factorization. Yet, for the cluster of eigenvalues within the unit circle,
the approximate error bound for the case N = 0.13 is about 1.9 × 102 times
larger in magnitude than for the case N = 1/3. The error bound for the Schur
decomposition is about 6.2 × 103 times larger.

Transformation and nonlinear solution. One way to overcome this problem
is a reformulation of (26):

1 = (Ct − χCCt−1)
−η

�t

,

1 = ν0
(Nt − χNNt−1)

ν1

wt�t

.

Indeed, we find negligible differences between the policy functions of the differ-
ent solutions after this change. However, it may not always be obvious how to
reformulate a model’s equations or to transform its variables. Of course, one might
be tempted to always resort to the nonlinear solution. Yet this requires additional
programming, and inexperienced users of programming software might hesitate
to take this step.

Balancing. However, there is a third possible solution: a previous balancing
of the matrix pencil. Whereas the scaling performed by ZGGESX aims to make
the elements of the scaled matrices A and B as close as possible to unity [see Ward
(1981)], the scaling proposed by Lemonnier and van Dooren (2006) tries to make
a matrix pencil as similar as possible to a pencil with orthogonal left and right
eigenvectors.20 The algorithm of Lemonnier and Dooren (2006) computes two
diagonal matrices C and D such that A′ = C−1AD and B ′ = C−1BD represent
the scaled pencil. We let ZGGESX factor this pencil, solved for the policy functions
of the transformed problem, and transformed these back to those of the original
problem. In this way we were able to reduce the maximum relative error between
the QZ factorizations and the nonlinear solution to less than .6×10−12. The success
of this balancing scheme in reducing computational errors can also be seen from
the error bound (13). In the case of N = 0.13 the error for the eigenvalues within
the first cluster drops from 0.22 × 10−7 to 0.12 × 10−12 for solution #2 and from
0.20×10−7 to 0.49×10−13 for solution # 3. For both solutions the Euler equation
residual drops to 4.5%.

4. CONCLUSION

The availability of easy-to-use toolkits for solving DSGE models has enhanced
the widespread application of these models in macroeconomic research. The
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researcher supplies the equations of his model to programs such as DYNARE,
which solve and simulate the model.

We demonstrate by means of an example that uninformed use of DSGE solution
software may produce strange results. Researchers should be aware of those effects
and take appropriate measures.

We consider a model that has been employed in studies of the equity premium
puzzle. Because of matrices with very large and very small coefficients, the policy
functions obtained from different ways of solving the model differ widely. The
differences in policy functions give raise to differences in the second moments of
model-simulated time series, so that the researcher may be misled with respect to
the dynamic properties of the model. A very effective and particularly simple way
to deal with this problem is the previous balancing of the matrices of the linearized
system. The scheme that we employ differs from the scaling routinely undertaken
by the procedures from the linear algebra package. Transformations of the model’s
variables and equations, as well as solving a system of nonlinear equations, are
alternative, but less straightforward strategies for handling the problem.

NOTES

1. Others are the toolkit of Uhlig (1999), and the programs of Sims (2002).
2. See Heer and Maußner (2013) for an overview of those models.
3. The Online Appendix can be downloaded from http://www.wiwi.uni-augsburg.de/vwl/

maussner/pap/HKM NA Appendix.pdf.
4. Heer and Maußner (2009) present an illustrative example.
5. King and Watson (1998, 2002) present a different way to reduce a singular system of linear

stochastic difference equations. The advantage of using the generalized Schur factorization, instead, is
that it is implemented in the freely available LAPACK programs, and thus is easy to implement.

6. See, e.g., Golub and van Loan (1996, Theorem 7.7.1, p. 377), who also describe the algorithm
to compute the factorization of A and B. The set of all matrices of the form B − λA, λ ∈ C is called
a pencil. The eigenvalues of the pencil are the solutions of |B − λA| = 0. Unitary matrices Q are
complex-valued matrices whose conjugate (Hermitian) transpose equals the inverse of Q.

7. If sii = 0 and tii �= 0, the eigenvalue μii = sii/tii of the pencil |μA − B| = 0 is defined and
equal to zero. Therefore, we can regard λii as an “infinite eigenvalue.”

8. To see this, consider the last line of this system, which may be written

Et ỹm,t+1 = λm,mỹm,t , |λm,m| = |(tm,m/sm,m)| > 1,

where sm,m and tm,m with m = n(w)+n(y) denote the last elements on the main diagonals of S22 and
T22, respectively.

9. The routines are written in Fortran. C interfaces for these routines also exist.
10. The procedure of Heer and Maußner (2009) selects the eigenvalues according to |μi | < 1,

μi = αi/βi .
11. See the LAPACK Users Guide on http://www.netlib.org/lapack/lug/node1.html.
12. Alternatively, following Heer and Maußner (2013), we could have chosen the unobserved

parameters so that the model replicated certain empirical facts. However, because we use the model
just as an example, the precise calibration does not matter.

13. �t denote the Lagrange multiplier of budget constraint (15).
14. See http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/maussner en.html.
15. We report the steady state solution of the deterministic counterpart of the model in Table A.1 in

the Online Appendix.
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16. See Aruoba et al. (2006) and Heer and Maußner (2008).
17. This equation is derived in the Online Appendix.
18. On a larger cube the policy functions occasionally return negative values, so that a meaningful

comparison is not possible.
19. Note, however, that the Euler equation residuals inform about the error of an approximate

solution, whereas Table 2 informs about different degrees of accuracy of the linear solution. It may
still happen that numerically inaccurate coefficients in the linearized policy functions result in a better
approximation. However, this is not the case here.

20. We are grateful to the referee who pointed us to this article.
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