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We study production functions with capital and labor as arguments that exhibit positive,
yet diminishing marginal products and constant returns to scale. We show that such
functions satisfy the Inada conditions if (i) both inputs are essential and (ii) an unbounded
quantity of either input leads to unbounded output. This allows for an alternative
characterization of the neoclassical production function that altogether dispenses with the
Inada conditions. Although this proposition generalizes to the case of n > 2 factors of
production, its converse does not hold: 2n Inada conditions do not imply that each factor
is essential.
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1. INTRODUCTION

The neoclassical production function is a cornerstone of neoclassical growth theory
and of modern dynamic macroeconomics in general. According to Barro and
Sala-ı́-Martin (2004, Chap. 1), a production function taking capital and labor as
arguments is called neoclassical if it exhibits three defining properties: positive
and diminishing marginal products of both inputs, constant returns to scale, and
the Inada conditions.1 Although the first two properties have convincing intuitive
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1828 ANDREAS IRMEN AND ALFRED MAUSSNER

appeal, the main justification given for the Inada conditions is simply analytical
convenience.2

The main purpose of this note is to show that an intuitive justification can be
given for the Inada conditions. More precisely, our main result applies to produc-
tion functions that possess the first two properties. For such functions, we show that
the Inada conditions hold if both capital and labor are essential and if an unbounded
quantity of either input leads to an unbounded output. Using this finding, we come
up with an alternative, yet equivalent, definition of the neoclassical production
function that altogether dispenses with the Inada conditions.3

We develop our main result in three steps. First, we show in Section 2 that the
Inada condition at infinity for one input is implied by the essentiality of the other
input. Second, we establish sufficient conditions for the Inada conditions at zero
in Section 3. They include the condition of essential inputs in conjunction with
the requirement that output becomes unbounded as either input goes to infinity.
Finally, Section 4 has our main result. The (four) Inada conditions are shown
to be equivalent to a set of four conditions: capital and labor are essential and
an unbounded input of either of these inputs leads to an unbounded output. We
use this finding for an alternative characterization of the neoclassical production
function.

In Section 5, we ask whether the previous results extend to the case of n > 2
factors of production. Here, we first generalize the conditions that imply the Inada
conditions at infinity and at zero. Second, we prove that all 2n Inada conditions
hold if all factors of production are essential and an unbounded input of each of
them leads to an unbounded output. However, we also find that the converse of this
statement is not true. Therefore, a characterization of the neoclassical production
function without reference to the Inada conditions seems more natural than the
one given by Barro and Sala-ı́-Martin (2004).

2. ESSENTIAL INPUTS AND THE INADA CONDITIONS AT INFINITY

Consider an aggregate production function F (K,L), where K > 0 and L > 0
denote the inputs of capital and labor. This function has the following properties.

DEFINITION 1 (Aggregate Production Function)
The aggregate production function, F : R2

++ → R++,

1. is twice differentiable with positive, yet diminishing marginal products, i. e.,

FK (K, L) > 0 > FKK (K,L) and FL (K, L) > 0 > FLL (K, L) ;
2. exhibits constant returns to scale in K and L.

For functions that comply with Definition 1, we now establish that es-
sential inputs are sufficient for the Inada conditions at infinity. To intro-
duce the notion of an essential input, let F (K, 0) ≡ limL→0 F (K,L) and
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NEOCLASSICAL PRODUCTION FUNCTION 1829

F (0, L) ≡ limK→0 F (K,L). Then labor is an essential input, or essential for
short, if F (K, 0) = 0, and capital is essential if F (0, L) = 0.

PROPOSITION 1 (Essential Inputs and Inada Conditions at Infinity)
For an aggregate production function of Definition 1 the following hold:

1. If labor is essential then limK→∞ FK (K, L) = 0.
2. If capital is essential then limL→∞ FL (K, L) = 0.

Proof of Proposition 1. The proof of Proposition 1 involves an intuitive argument
for each claim. For brevity we focus on Claim 1. Mutatis mutandis, the argument
is analogous for Claim 2 [see Irmen and Maußner (2014)].

Because labor is essential, the average product of capital must vanish as labor
converges to zero.4 To see this, let k ≡ K/L and F (k, 1) ≡ f (k). Because
(K,L) ∈ R2

++, we have k ∈ R++. Thus, it holds that

lim
L→0

F (K,L) = K lim
L→0

F (K,L)

K
= K lim

L→0

f (k)

k
.

From the definition of k it follows that limL→0 k = limk→∞ k = ∞. Hence, if
labor is essential, then

0 = lim
L→0

f (k)

k
= lim

k→∞
f (k)

k
. (1)

By assumption, the marginal product of labor is strictly positive, so that
FL (K,L) = f (k) − kf ′ (k) > 0. Accordingly, the average product of capital
must be strictly greater than its marginal product; i. e., f (k) /k > f ′ (k). Then,
with (1), we obtain

0 = lim
k→∞

f (k)

k
≥ lim

k→∞
f ′ (k) = lim

K→∞
FK (K,L),

where the last equality follows because f ′(k) = FK(K,L) for all K and L. In
other words, as f (k) /k tends to zero as L → 0, f ′ (k) = FK (K,L) must also
tend to zero. Accordingly, the Inada condition at infinity for capital is satisfied if
labor is essential. �

Hence, essentiality of one input implies the Inada condition at infinity for the
other input. To illustrate Proposition 1, consider the common CES production
function

F (K,L) =

⎧⎪⎨
⎪⎩

A
(
αK

σ−1
σ + (1 − α)L

σ−1
σ

) σ
σ−1

σ �= 1,

AKαL1−α σ = 1,

(2)

where A > 0, 0 < α < 1, and σ > 0 is the elasticity of substitution. If σ ≤ 1
then labor is essential and hence the marginal product of capital vanishes as
K → ∞. The “symmetry” of the CES also implies that capital is essential if
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1830 ANDREAS IRMEN AND ALFRED MAUSSNER

σ ≤ 1. Hence, the marginal product of labor also vanishes as L → ∞. If σ > 1
then neither labor nor capital is essential, and the contrapositive of Proposition 1
holds true, as limK→∞ FK (K,L) = Aασ/(σ−1) > 0 and limL→∞ FL (K,L) =
A (1 − α)σ/(σ−1) > 0.5

3. UNBOUNDED OUTPUT, ESSENTIAL INPUTS, AND THE INADA
CONDITIONS AT ZERO

In addition to essential inputs, the Inada conditions at zero require that output
approaches infinity as either input goes to infinity. We capture this property using
the following notation:6 F (K,∞) ≡ limL→∞ F (K,L) = ∞ and F (∞, L) ≡
limK→∞ F (K,L) = ∞.

PROPOSITION 2 (Unbounded Output, Essential Inputs, and Inada Conditions
at Zero)

For an aggregate production function of Definition 1 the following hold:

1. If F (K, ∞) = ∞ and capital is essential then limK→0 FK (K, L) = ∞.
2. If F (∞, L) = ∞ and labor is essential then limL→0 FL (K, L) = ∞.

Proof of Proposition 2. As before, the proof of Proposition 2 involves an intuitive
argument for each claim. For brevity, we focus on Claim 1. Mutatis mutandis, the
argument is analogous for Claim 2 [see Irmen and Maußner (2014)].

If output becomes unbounded as labor goes to infinity, then the average product
of capital becomes unbounded, too; i. e., for L → ∞ we have F (K,L) /K → ∞.
Under constant returns to scale, the latter implies that f (k) /k → ∞ as k → 0.
To see this formally, observe that for any K ∈ R++ it holds that

lim
L→∞

F (K,L) = K lim
L→∞

F (K,L)

K
= K lim

L→∞
f (k)

k
.

Recall that limL→∞ k = limk→0 k = 0. Hence, if output approaches infinity as
labor goes to infinity, then

∞ = lim
L→∞

f (k)

k
= lim

k→0

f (k)

k
. (3)

Because capital is essential, limk→0 f (k) = 0, we may apply L’Hôpital’s rule to
evaluate the rightmost limit in (3), yielding

lim
k→0

f (k)

k
= lim

k→0
f ′(k) = lim

K→0
FK(K,L) = ∞.

�
Hence, the Inada condition at zero for one input obtains if this input is essential

and output becomes unbounded as the other input tends to infinity.
One readily verifies that the CES production function of (2) is incompatible with

Proposition 2 unless σ = 1. Indeed, if σ < 1, then F (K,∞) = AKασ/(σ−1) < ∞
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NEOCLASSICAL PRODUCTION FUNCTION 1831

and F (∞, L) = AL (1 − α)σ/(σ−1) < ∞. At the same time, both inputs are
essential and both Inada conditions at zero are violated; i. e., limK→0 FK (K,L) =
Aασ/(σ−1) < ∞ and limL→0 FL (K,L) = A (1 − α)σ/(σ−1) < ∞. If σ > 1 then
both F (K,∞) = F (∞, L) = ∞, yet neither capital nor labor is essential, as
F (K, 0) = AKασ/(σ−1) > 0 and F (0, L) = AL (1 − α)σ/(σ−1) > 0. However,
both Inada conditions at zero hold.

4. AN ALTERNATIVE CHARACTERIZATION OF THE NEOCLASSICAL
PRODUCTION FUNCTION

What are the implications of Proposition 1 and 2 for the notion of a neoclassical
production function ? The formal definition of this concept is the following [see
Barro and Sala-ı́-Martin (2004, pp. 27–28)].

DEFINITION 2 (Neoclassical Production Function)
An aggregate production function of Definition 1 is called a neoclassical pro-

duction function if it also satisfies the Inada conditions

lim
K→0

FK (K,L) = lim
L→0

FL (K,L) = ∞,

(4)
lim

K→∞
FK (K,L) = lim

L→∞
FL (K,L) = 0.

To establish an alternative and equivalent definition to Definition 2, we first use
Proposition 1 and 2 to state and prove the following result.

PROPOSITION 3 (Essential Inputs, Unbounded Output, and Inada Condi-
tions)

An aggregate production function of Definition 1 satisfies the set of Inada
conditions (4) if and only if it satisfies

F (0, L) = F (K, 0) = 0,
(5)

F (K,∞) = F (∞, L) = ∞.

Proof of Proposition 3. The proof and the intuition behind Proposition 3 are
straightforward. In fact the “if” part follows directly from Proposition 1 and
2. From Proposition 1 we know that F (0, L) = F (K, 0) = 0 implies that
limK→∞ FK (K,L) = limL→∞ FL (K,L) = 0. Proposition 2 states that the same
essentiality conditions in conjunction with unbounded output, i. e., F (K,∞) =
F (∞, L) = ∞, imply that limK→0 FK (K,L) = limL→0 FL (K,L) = ∞. More-
over, the converse implications are established in Barro and Sala-ı́-Martin (2004,
pp. 77–78). Accordingly, Proposition 3 holds. �

Hence, an aggregate production function of Definition 1 will satisfy the Inada
conditions if and only if both inputs are essential and output becomes unbounded
if one input becomes unbounded. Proposition 3 leads to the main result of this
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1832 ANDREAS IRMEN AND ALFRED MAUSSNER

note. We state our alternative definition of the neoclassical production function as
Corollary 1.

COROLLARY 1 (Neoclassical Production Function without Inada Condi-
tions)

Consider an aggregate production function of Definition 1. This function is
a neoclassical production function in the sense of Definition 2 if it satisfies the
conditions (5).

Hence, the alternative definition of the neoclassical production function that we
propose replaces the four Inada conditions with four new conditions: each input
is essential and output becomes unbounded if either input tends to infinity.

5. THE NEOCLASSICAL PRODUCTION FUNCTION WITH n > 2
FACTORS OF PRODUCTION

Do the results of the preceding analysis generalize to the case of n > 2 factors
of production? Toward this purpose we introduce the following notation. Let X =
(X1, X2, . . . , Xn) ∈ Rn

++ be a vector of n > 2 factors of production. Moreover,
denote first- and second-order partial derivatives by ∂F (X) /∂Xi ≡ Fi (X) and
∂2F (X) /∂X2

i ≡ Fii (X), respectively. Then F (X) is the aggregate production
function and has the following properties.

DEFINITION 3 (Aggregate Production Function with n > 2 Factors of Pro-
duction)

The aggregate production function, F : Rn
++ → R++,

1. is twice differentiable with positive, yet diminishing marginal products, i. e.,

Fi (X) > 0 > Fii (X) for all i = 1, 2, . . . , n;

2. exhibits constant returns to scale in X.

The following proposition establishes the implications of essentiality and
unbounded output for the Inada conditions. To accomplish this let X−i =
(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn). Then, analogously to our previous notation,
we have F (X−i , 0) ≡ limXi→0 F (X), so that Xi is essential if F (X−i , 0) = 0. In
the same vein, let F (X−i ,∞) ≡ limXi→∞ F (X). Then F (X−i ,∞) = ∞ means
that output approaches infinity as Xi goes to infinity.

PROPOSITION 4 (Essential Inputs, Unbounded Output, and Inada Conditions
with n > 2 Factors of Production)

Consider an aggregate production function of Definition 3.

1. If Xm is essential then limXi→∞ Fi (X) = 0 for all Xi ∈ X−m.
2. If F (X−m, ∞) = ∞ then for each essential Xi ∈ X−m, it holds that limXi→0 Fi (X) =

∞.
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NEOCLASSICAL PRODUCTION FUNCTION 1833

Proof of Proposition 4. Without loss of generality, suppose that m = 1. Let
xj ≡ Xj/X1 for j = 2, . . . , n and F(1, x2, . . . , xn) ≡ f (x−1) = f (x2, . . . , xn).

1. Proof of Claim 1
X1 is essential. Because X ∈ Rn

++, we have xj ∈ R++, and limX1→0 xj =
limxj →∞ xj = ∞. Thus, it holds that

0 = lim
X1→0

F (X) = lim
X1→0

X1f (x−1) = Xj lim
xj →∞

f (x−1)

xj

= lim
xj →∞

f (x−1)

xj

. (6)

By assumption, the marginal product of X1 is strictly positive, so that

F1 (X) = f (x−1) −
n∑

l=2

fl (x−1) xl > 0.

This implies that

f (x−1)

xj

> fj (x−1) +
n∑

l=2,l �=j

fl (x−1)
Xl

Xj

.

Then, with (6), we obtain

0 = lim
xj →∞

f (x−1)

xj

≥ lim
xj →∞

⎛
⎝fj (x−1) +

n∑
l=2,l �=j

fl (x−1)
Xl

Xj

⎞
⎠ .

Hence,

lim
xj →∞

fj (x−1) = lim
Xj →∞

Fj (X) = 0 for all j = 2, 3, . . . , n.

�
2. Claim 2

Because output becomes unbounded as X1 goes to infinity, we have for all j =
2, 3, . . . , n

∞ = lim
X1→∞

F (X) = lim
X1→∞

X1f (x−1) = Xj lim
xj →0

f (x−1)

xj

= lim
xj →0

f (x−1)

xj

. (7)

Because Xj is essential, limxj →0 f (x−1) = 0, and L’Hôpital’s rule implies

∞ = lim
xj →0

f (x−1)

xj

= lim
xj →0

fj (x−1) = lim
Xj →0

Fj (X),

yielding the desired result. �

Claim 1 generalizes Proposition 1 to the case of n > 2 factors of production. It
states that the essentiality of one factor implies the Inada condition at infinity for
all other factors. Claim 2 generalizes Proposition 2 to the case of n > 2 factors of
production. In plain words, it states the following: if output becomes unbounded
as the input of one factor of production tends to infinity, then the Inada condition
at zero holds for all other factors that are essential.
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1834 ANDREAS IRMEN AND ALFRED MAUSSNER

Observe that the converse of Claim 1 of Proposition 4 does not hold; i. e.,

lim
Xi→∞

Fi (X) = 0 for all i = 1, 2, . . . , n and i �= m � F (X−m, 0) = 0.

To see this, consider

F (X) = Xα
1 X1−α

2 + Xα
1 X

β
2 X

1−α−β
3 , 0 < α < 1, 0 < β < 1, α + β < 1. (8)

This function is consistent with Definition 3. Moreover, limX1→∞ F1 (X) =
limX2→∞ F2 (X) = 0. However, X3 is not essential, as F (X1, X2, 0) =
Xα

1 X1−α
2 > 0.

Proposition 4 lends itself to the following corollary.

COROLLARY 2 (Essential Inputs, Unbounded Output, and Inada Conditions
with n > 2 Factors of Production)

Consider an aggregate production function of Definition 3.
If F (X−i , 0) = 0 and F (X−i ,∞) = ∞ for all i = 1, 2, . . . , n, then F (X)

satisfies

lim
Xi→0

Fi (X) = ∞ and lim
Xi→∞

Fi (X) = 0 for all i = 1, 2, . . . , n.

In other words, an aggregate production function of Definition 3 satisfies all
2n Inada conditions if all factors of production (i) are essential and (ii) deliver an
unbounded output as their respective input quantities approach infinity. Observe
that the converse of Corollary 2 does not hold, as F (X) of (8) exemplifies. This
function satisfies all six Inada conditions, yet X3 is not essential. Hence, the
finding of Barro and Sala-ı́-Martin (2004, pp. 77–78)], according to which the
Inada conditions at infinity imply essential inputs is only valid for n = 2 factors
of production. We therefore propose the following generalized definition of the
neoclassical production function without reference to the Inada conditions.

DEFINITION 4 (Neoclassical Production Function without Inada Conditions
for n > 2 Factors of Production)

Consider an aggregate production function of Definition 3. Such function is
called a neoclassical production function if it satisfies

F (X−i , 0) = 0 and F (X−i ,∞) = ∞ for all i = 1, 2, . . . , n.

NOTES

1. Some authors, such as Acemoglu (2009, Chap. 2) and Romer (2012, Chap. 1), include the
essentiality of capital in this set of properties. However, the three defining properties mentioned in the
preceding can be shown to imply this feature [see Barro and Sala-ı́-Martin (2004, Chap. 1)].

2. The Inada conditions prescribe that the limit of the marginal products of capital and labor
is infinity (zero) as the respective input approaches zero (infinity). In many circumstances, these
conditions are sufficient for the existence of interior equilibria. However, they may also give rise to
counterintuitive features [see, e. g., Hakenes and Irmen (2008)]. Inada himself does not provide an
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NEOCLASSICAL PRODUCTION FUNCTION 1835

economic justification for his conditions either but simply refers to them as “derivative conditions”
[Inada (1963, p. 121)].

3. The literature related to this note includes important contributions on the axiomatic foundations
of aggregate production functions [see, e. g., Shephard (1970) and Färe (1980)]. However, unlike
the present note, the main focus of these works is on an appropriate formal statement of the law of
diminishing returns. More recently, Färe and Primont (2002) scrutinized implications of the Inada
conditions and pointed to a possible incompatibility with such a statement. Contrary to this, our focus
is on the set of conditions that imply the Inada conditions.

4. Burmeister and Dobell (1970, p. 25) use this property to prove the existence of a strictly positive
steady-state capital intensity in the model of Solow (1956). However, these authors do not address the
implications of this property for the Inada conditions at infinity.

5. To further illustrate the claims of Proposition 1, consider two “asymmetric” and less common
production functions that are both consistent with Definition 1 [see de la Croix and Michel (2002, p.
122) and Litina and Palivos (2008, p. 298), respectively]. First, let F (K, L) = bL + aLK/(L + K),
a, b > 0. Here, labor is essential and capital is not. Accordingly, we have limK→∞ FK (K, L) =
limK→∞ a (L/(L + K))2 = 0, whereas limL→∞ FL (K, L) = limL→∞ b + a [K/(K + L)]2 = b >

0. Second, let F (K, L) = AK+αL−βL exp (−βK/L), A > 0, α ≥ β > 0. Here, capital is essential
if α = β, in which case limL→∞ FL (K, L) = limL→∞ α

[
1 − (1 + αK/L) exp (−αK/L)

] = 0.
Interestingly, for α > β, capital is no longer essential and the conclusion of Claim 2 is no longer valid,
as limL→∞ FL (K, L) = α − β > 0.

6. In the parlance of Färe and Primont (2002), capital is said to be not limitational if F (K, ∞) = ∞.
This wording intuitively suggests that even though the amount of capital is finite, it cannot impose a
limit on the amount of output as labor becomes unbounded. Similarly, labor is said to be not limitational
if F (∞, L) = ∞.
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