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Chapter 1

Introduction

The financial and economic crisis of 2007-2009 has emphasized the importance of understanding
the interplay between asset markets and goods and factor markets. Macroeconomic models,
which are consulted to analyze this interplay and to quantitatively assess policy options, have to
be consistent with empirical regularities which characterize these markets.

Since the publication of Mehra and Prescott (1985), however, many papers have further
confirmed the diagnosis that, for a reasonable degree of risk aversion, the historically observed
U.S. risk premium (excess of the return on a stock market index over the return of a relatively
riskless security) of over 6 percent is an order of magnitude greater than what can be explained
within the paradigm of modern macroeconomics, the neoclassical stochastic growth model. This
fact has been named ”the equity premium puzzle” in the literature. The inconsistency between
the model and empirical data seriously questions ”the viability of using this class of models for
any quantitative assessment–say, to gauge the welfare implications of alternative stabilization
policies”.1

The source of the puzzle within a framework where assets are held by an infinitely-lived
representative household with rational expectations, who maximizes his expected lifetime utility
drawn from consumption streams, can be summarized as follows. An equilibrium condition for
asset prices in this framework demands that the loss in utility from reducing consumption in the
current period in order to buy an asset and the expected gain in utility from the future payoff of
the asset must be equal. Consequently, an asset with an undesirable payoff structure, i.e. an
asset which is expected to pay off comparatively much in states where the marginal utility of
consumption will be low but will pay off less in states where the marginal utility of consumption
will be high, will sell only for a lower price compared to an asset which pays equally well in all
future states. In other words, such an asset must offer a higher equity premium in order to be
held. The key to the magnitude of the equity premium, therefore, lies in the size of the negative
covariation between future marginal utility (or identical the stochastic discount factor) and the
payoff of a risky asset. A too small equity premium in this framework is the result from a lack of
such covariation given a reasonable degree of risk aversion.

Over the past years, different attempts have been made in order to solve the puzzle.2 One
approach is concerned with modifying the preference structure from Mehra and Prescott (1985)
who assume that the representative household’s lifetime utility is determined as the expected
discounted sum of within period CRRA3 utilities. The standard additive time separable CRRA
preference structure implies that the household’s attitude towards uneven consumption paths
over time, measured by the elasticity of intertemporal substitution (EIS), and the attitude
towards risk from varying consumption levels in different future states, measured by the RRA, are
inversely connected via EIS = RRA−1. The class of generalized recursive preferences introduced

1See Mehra (2003), p. 18.
2See, among others, the surveys of Abel (1990), Kocherlakota (1996), and Mehra (2003).
3I.e. a utility function with a constant Arrow-Pratt relative risk aversion (RRA).
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by Epstein and Zin (1989) (EZ) allows for disentanglement of theses quantities. While the
equity premium arises since a variety of studies suggest that the coefficient of RRA is a rather
small number4—Mehra and Prescott (1985) therefore restrict the value to be below 10 in their
analysis—there is less evidence against a low EIS close to zero5. Hence, even when the RRA is
set to a plausible low value, EZ preferences provide an additional, to some degree free parameter
in the EIS which can be used to improve the equity premium puzzle. In particular, a low EIS
implicates that further deviations from a smooth consumption path associated with procyclical
asset payments may cause higher variation in the stochastic discount factor and therefore may
generate a higher equity premium.

Another promising approach to explain a sizeable equity premium was introduced by Rietz
(1988). He modifies the distribution of consumption streams in such way to allow for the
possibility of rare but severe economic disasters where consumption is drastically lower. Even
when the volatility of consumption (growth) remains in line with the data, the concavity of the
utility function guarantees that the risk in the lottery over the marginal utility from consumption
increases. Again, a procyclical asset has to offer a higher risk premium.

The three essays summarized in this thesis can be understood to be commonly concerned
with these two approaches for explaining the historically high equity premium.

Chapter 2 contains the current version of the working paper ”Applied Macroeconomic Anal-
ysis with Epstein-Zin Utility” (2014a) from joint work with Halvor Ruf. This paper provides
a self contained guide to the approximate solution of dynamic stochastic general equilibrium
(DSGE) macroeconomies that feature EZ utility. We first summarize the crucial elements of the
EZ representation as it is increasingly applied in the literature adding intuitive remarks and
illustrative examples. While in the standard framework of temporal decision making under
uncertainty choice is made between probability distributions over consumption sequences, EZ
preferences add additional timing structure regarding the resolution of uncertainty. The addi-
tional timing structure is introduced in form of temporal lotteries describing infinite probability
trees of consumption. Such an infinite probability tree is naturally characterized as a tuple
of current consumption and a probability distribution over nodes of infinite probability trees
emanating next period. This characterization naturally leads to a recursive utility representation.
Uncertainty displayed in the distribution over utility drawn from potential probability trees
emanating in the next period is evaluated with a certainty equivalent which defines the decision
maker’s attitude towards risk. Typically, a certainty equivalent exhibiting a constant RRA is
assumed. In a second step, current consumption and the certainty equivalent for the next period
are summarized with a CES time aggregator. The CES time aggregator determines the decision
maker’s EIS. A recursive formulation for the utility representation emerges which disentangles
the RRA from the EIS. Thereafter, we demonstrate within a basic representative agent economy
how EZ utility naturally lends itself to dynamic programming and apply the Schmitt-Grohe and
Uribe (2004) approach to find a second order perturbation. We conclude by discussing the
immediate implications of employing the EZ representation in applied work by computing an
actual numerical example. In particular, we analyze the role of the RRA and the EIS on the
comovement of the stochastic discount factor with the return on equity under a second order
perturbation solution, providing a first intuition on the implications for the equity premium. The
paper is accompanied by a flexible Maple-Matlab perturbation toolbox. Both authors contributed
equally to the paper.

Chapter 3 is the current version of the working paper ”Epstein-Zin Utility, Asset Prices, and
the Business Cycle Revisited” (2014b) together with Halvor Ruf. In this paper we analyze DSGE
models with several frictions in the allocation of labor in their ability to resolve the equity
premium puzzle while at the same time being consistent with the stylized facts of business cycles

4See Mehra and Prescott (1985) for a number of studies reporting estimates on the RRA.
5See e.g. Hall (1988).
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of the German economy. Different from Heer and Maußner (2013), we assume EZ preferences.
We set the coefficient of RRA to a low value but consider the EIS to some degree free in order to
match the data. We find that within the EZ utility representation, the frictionless model already
yields simulation results in good accordance with the German empirical data if the EIS is set to
a low enough value. The additional flexibility provides throughout significant improvements in
the models’ fit to empirical characteristics compared to the results reported in Heer and Maußner
(2013) for standard preferences.

Finally, chapter 4 presents the current version of my working paper ”Search Frictions in the
Labor Market and Endogenous Economic Disasters” (2017). The paper builds on the work
of Kuehn et al. (2012, 2015). The authors claim that a standard search and matching labor
market model, as developed by Diamond, Mortensen and Pissaridies6, has the potential to
explain a high equity premium. In such framework a newly created job generates a positive
surplus in the economy, which is distributed between employer and employee via the wage.
The wage is thereby commonly assumed to be the outcome of a bargaining process over the
total surplus. Kuehn et al. (2012, 2015) follow Hagedorn and Manovskii (2008) and assume
that the household’s bargaining power in this process is small, yet his fall back value in case
of unemployment is high and fixed. Consequently, a reservation demand for the wage close
to labor productivity in steady state, but also completely inflexible over the business cycle is
implied. The model can then endogenously generate severe economic disasters. Similar to the
idea of Rietz (1988), it can therefore also provide a framework which explains the historically
high equity premium found in the data. I analyze the driving forces behind the mechanism
leading to endogenous diasters in the model and identify the crucial assumptions behind the
mechanism. I then check whether these assumptions seem plausible and how the results change
if they are relaxed to some degree.

6See, e.g., Pissarides (1985, 2000) or Mortensen and Pissarides (1994).



Chapter 2

Applied Macroeconomic Analysis with Epstein Zin
Utility
— Christopher Heiberger and Halvor Ruf —

2.1 Introduction
To us, there are essentially three motivations for applied macroeconomists to study the Epstein
and Zin (1989) (EZ) utility representation and its (incomplete) separation of the elasticity of
intertemporal substitution (EIS) from the standard risk aversion parameter. First, it provides the
researcher with an additional degree of freedom to improve on the empirical performance of his
dynamic stochastic general equilibrium (DSGE) models. Second, it is theoretically appealing
to loosen those two aspects of preferences because, a priori, there does not seem to be a
reason for their reciprocity as implicitly assumed in the paradigmatic framework of additively
separable expected utility. Third, probably mostly for these two reasons, the applied literature is
increasingly employing EZ utility.1

Following the publication in 1989, EZ preferences at first found application primarily in the
asset pricing literature. For example, Epstein and Zin (1990) demonstrated that this class of
preferences can help to improve the equity premium puzzle reported by Mehra and Prescott
(1985). While U.S. data shows an historical average risk premium of 6.18% p.a. over the
period 1889-1979, Mehra and Prescott (1985) find that in an exchange economy, where the
representative agent’s lifetime utility is determined as the expected discounted sum of within
period CRRA2 utilities and where the RRA is restricted to a plausible value below 10, the largest
equity premium obtainable is only 0.35%. Introducing EZ preferences into the model, Epstein
and Zin (1990) can generate a low risk free rate together with an average equity premium of
roughly 2%. Although still less than one third of the historical average risk premium found
in the U.S. data, the premium in the model thus rises by an order of magnitude compared
to the findings for standard preferences. Further, Kandel and Stambaugh (1991) analyze a
representative agent model with EZ preferences in order to separate the effects from either risk
aversion or the elasticity of intertemporal substitution on various (first and second) moments of
asset returns. However, these earlier studies making use of EZ preferences were mainly restricted
to endowment economies where consumption follows an exogenously specified process. Hence,
they neglect the effects from the studied variations in the parameter values determining the
agent’s risk aversion or the elasticity of intertemporal substitution on consumption choice itself
as well as feedback effects from adjusted optimal consumption plans on asset returns.

On the other hand, the strand of studies, including e.g. Jermann (1998), Lettau and Uhlig
(2000) and Boldrin et al. (2001), that focused on bringing macroeconomic DSGE models into line

1Note the introductory remarks in van Binsbergen et al. (2012) and the sources cited therein.
2I.e. a utility function with a constant Arrow-Pratt relative risk aversion (RRA).
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with both classical real business cycle statistics as well as asset pricing figures found in the data, at
first mainly concentrated on consumption habits, as initially proposed by Constantinides (1990),
as a possible way to modify the standard preference structure. An early exception is provided
by Tallarini (2000). He considers the effects of a varying coefficient of relative risk aversion in
a standard stochastic growth model with EZ preferences where the elasticity of intertemporal
substitution is fixed to unity. The results are in contrast to earlier findings for production
economies with standard additively separable expected utility. Rouwenhorst (1995) found
that in the standard setting, increasing risk aversion, coming necessarily hand in hand with a
declining elasticity of intertemporal substitution, leads endogenously determined consumption
decisions to become smoother. Consequently, as too smooth consumption is already a factor for
a too low equity premium in endowment economies, explaining sizeable premia by increasing
risk aversion in production economies turns out even more difficult and additionally reduces
the model’s consumption dynamics significantly. With EZ preferences however, Tallarini (2000)
draws the conclusion that the second moment properties of the business cycle are mainly
controlled by the elasticity of intertemporal substitution, while they remain almost unaffected
by changes in the risk aversion parameter. Therefore, the additional degree of freedom from the
disentanglement of the risk aversion parameter from the intertemporal elasticity of substitution
helps Tallarini (2000) to improve ”the model’s performance with regard to asset pricing while
not significantly diminishing its ability to account for quantity dynamics.”3

Consequently, more recent work from, among others, Kaltenbrunner and Lochstoer (2010),
Andreasen (2012), Gourio (2012, 2013), Rudebusch and Swanson (2012) and van Binsbergen
et al. (2012), has put increasing focus on EZ preferences as a potential mechanism in order to
(successfully) replicate both classical real business cycle statistics as well as asset pricing figures.

Now, although there is work on both the rationale behind the EZ representation and its
approximation4, we find the more recent DSGE literature to mainly employ EZ preferences
without further discussion of their theoretical background, in particular regarding differences
to the standard case of temporal decision making under uncertainty where choice is made
between probability distributions over consumption sequences. We find the literature to lack a
unified approach which guides the reader from the theoretical framework of preferences over
temporal lotteries and their natural representation via a generalized recursive utility function,
as introduced by Kreps and Porteus (1978) and Epstein and Zin (1989), to the implementation
into standard applied macroeconomic analysis of intertemporal decision problems and their
approximate solution. This paper mainly intends to fill this gap and to additionally provide
guidance with respect to the expected benefits for applied research.

The remainder is organized as follows. The following two sections summarize the crucial ele-
ments of the EZ representation. The material is enhanced with intuitive remarks and illustrative
examples. Section 2.4 demonstrates the application of EZ utility to a standard representative
agent decision problem as well as the application of the Schmitt-Grohe and Uribe (2004) second
order perturbation approach for its approximate solution. A discussion on some immediate
implications of the EZ representation for applied work is provided within a numerical exem-
plification. The employed perturbation routines are collected in a very flexible Maple–Matlab
toolbox which is briefly documented in section 2.5. Section 2.6 concludes the paper.

2.2 Consumption space
This section introduces the key notion of temporal lotteries and their respective identification as
a pair of current consumption and a probability distribution over future temporal lotteries. The

3See Tallarini (2000), p. 508.
4See e.g. Backus et al. (2008) or Altug and Labadie (2008) for a description of the representation or Caldara et al.

(2012) on the approximation techniques.
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inherent recursiveness of this identification will give rise to a recursive utility representation of
preferences over such temporal lotteries in section 2.3.

2.2.1 Preliminary remarks
Most of the applied DSGE literature relies on a common and thus standard framework of
temporal decision making under uncertainty: choice is made between probability distributions
over consumption sequences, i.e. over stochastic consumption processes.

The underlying idea of the approach applied in the present work is the introduction of addi-
tional structure to the fundamental consumption decision problem. Not only is the probability
distribution of consumption sequences considered but also the time at which the uncertainty
concerning future consumption is resolved. This is done via the concept of probability trees,
so called temporal lotteries.5 This idea and the ensuing construction of the consumption space
was introduced by Kreps and Porteus (1978) and extended to an infinite horizon setting by
Epstein and Zin (1989). While the former provide an axiomatization for a recursive utility
representation over finite temporal lotteries, the latter prove the existence of a recursive utility
function over some space of infinite horizon temporal lotteries. This section is concerned with
the presentation of these ideas and is thereby intended to summarize particularly crucial results.
We thereby often sacrifice the generality of the original treatment in order to keep a focus on
applicability. This will provide us with the necessary basis for the application of the EZ approach
to neoclassical macroeconomic analysis in the remainder of this paper.

2.2.2 Notation
Let X be a metric space. Denote by

B(X ) := σ ({O ⊂ X | O open})
the induced Borel σ–algebra on X and by

M (X ) := {p :B(X )→ [0, 1] | p probability measure}
the set of Borel probability measures. Particularly, for x ∈ X let

δx : B(X ) → [0,1]

B 7→ δx(B) :=

¨
1, x ∈ B
0, x /∈ B

, ∀B ∈B(X )

be the Dirac probability measures. Moreover, time is discrete and the planning horizon is infinite.
Hence, by t ∈ N we denote a point in time or its respective period.

2.2.3 Temporal lotteries
Let D denote the space of temporal lotteries. Elements of D can be pictured as infinite probability
trees and can thus naturally be identified with a tuple of current consumption and a probability
distribution over nodes of infinite probability trees emanating next period. Accordingly, we will
shortly find the space of temporal lotteries D to be homeomorphic to R+ ×M (D). In order to
motivate the analysis of temporal lotteries, consider the following example.6

5Accordingly, their atemporal analog mentioned above will sometimes be called an atemporal lottery.
6This example is a modified version of the coin flip example originally provided by Kreps and Porteus (1978). We

use our formulation instead for the sake of exposition.
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Figure 2.1: Temporal decision problem
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Example 1. Robinson Crusoe is facing the problem of choosing between two seed technologies.
Both possible technologies offer an aggregate period t harvest (output) Yt as a response to this
period’s aggregate input Kt according to

Yt = At · Kt , where A2 =

¨
2, with probability 1

2

1, with probability 1
2

and At = 2 ∀t 6= 2.

The difference between these two technologies is the time at which the technologies’ period
2–types are revealed.

Suppose for the first technology, its period type is revealed at the beginning of period 1 whereas
for the second technology Robinson does not know about its type before period 2. Further
suppose that for all periods, Robinson is rigidly bound to a somewhat primitive allocation as he
distributes a constant fraction 1

2 of (produced) resources to both consumption and next period’s
capital stock.

He now decides between these two alternative technologies according to their resulting future
consumption prospects, his utility argument. We identify such a decision between actions with
the decision between the probability trees induced by these actions. The decision problem is
pictured in figure 2.1, where d and d̂ denote the consumption probability trees that correspond to
an initial endowment of 20.7 Observe that from a period 0 point of view, both technologies result
in the same atemporal distribution over future consumption, namely 1

2δ(10,10,...) +
1
2δ(10,10,5,5,...).

Hence, if we take the consumption space to be the space of atemporal lotteries over consumption
streams—as it is implied by the standard model—there is no way to distinguish between the
consequences of these alternative technologies. However evidently, the two pictured probability
trees are not identical.

We conclude this introductory example with a brief discussion on its strength as a motivation
for the upcoming analysis. For the case of lotteries over income sequences there is very little
controversy about whether different temporal lotteries inducing identical atemporal lotteries
ought to be modelled in a way that allows the decision maker to prefer one over the other.8

7In such graphs, squares denote action nodes while circles denote uncertainty nodes, cf. Raiffa (1970), p. 11.
8Thereby, preference for income sequences is understood as being induced from the primitive preference for

consumption sequences as the ultimate source of utility.
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Figure 2.2: Temporal lottery with no uncertainty after period 1
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For consumption sequences, the situation is less evident. To see this, take a second look at our
example. If Robinson allocated consumption according to an optimality criterion such as the
maximization of his lifetime utility, it would typically be of value for him to know about the
future production in advance in order to improve on the allocation by situational consumption
adaption.9 However, there is no apparent planning advantage for consumption sequences, as
the one just pictured.

We eventually provide two remarks on that. First, even if there is no immediate reason for why
it must be the case that a decision maker would favor prior or later resolution of consumption
uncertainty, it also seems odd to insist on the view that any decision maker would never be able to
appreciate it. Above all, introspection enhances the latter doubts. As Epstein (1992), p. 23, notes
e.g. later knowledge about the future to come might very well be preferred by a person who likes
to “defer resolution in order to [be able to sustain] the hope [...] for a favorable outcome for a
risky prospect.” Moreover, the “rationality” of nonindifference towards the timing of resolution
of consumption uncertainty is nicely exemplified in Chew and Epstein (1989). Second, as it
turns out, it is exactly this nonindifference that allows to loosen the strict entanglement of risk
attitudes and intertemporal consumption substitution as implied by the standard model such
that it leaves macroeconomists with an additional degree of freedom in replicating empirical
data as noted above. A preference for earlier or later resolution of consumption uncertainty can
hence also be interpreted as a cost of the last mentioned advantages, cf. Epstein et al. (2014).

The construction of the consumption space carried out in Epstein and Zin (1989), p. 941-
944, is mathematically involved. Since the ideas behind are nevertheless indispensable for
our intended discussion of the actual application of EZ utility to a basic DSGE economy, the
remainder of this section summarizes their treatment in detail and complements it with some
examples and additional intuition. Still, at some places more rigorous remarks supplement our
summary.

2.2.3.1 Infinite trees of finite length

The example above shows the following. If we identify each branch of a probability tree with
a consumption sequence and if—as in the case of the example probability tree d—there is no
uncertainty after period 1, then no structure is lost by simply considering the “finite” probability
tree d1 that results through considering only the probability distribution of the consumption
sequence starting at period 1 next to initial consumption. We thus say that the infinite tree d1

has length 1 and generally call an infinite tree of finite length t a finite (t-stage) tree. Since we
only consider infinite horizon decisions, this should not cause confusion but shorten the ensuing
analysis.

In particular, figure 2.2 reveals that the probability tree d1 is unambiguously represented
by the tuple (c0, m1) consisting of current consumption c0 = 10 and the probability measure

9This point is nicely illustrated in Spence and Zeckhauser (1972).
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Figure 2.3: Temporal lottery with no uncertainty after period 2
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m1 =
1
2δ(10,10,10,...) +

1
2δ(10,5,5,...) ∈M (R∞+ ) over future consumption sequences. Accordingly, we

identify the infinite probability tree d with the finite tree d1 = (c0, m1) ∈ R+ ×M (R∞+ ).
If we now turn to the infinite probability tree d̂ instead (cf. figure 2.3), we observe that in this

case there is no uncertainty after period 2. Analogously, d̂ can be pictured as a finite two–stage
probability tree d̂2. The one–stage tree emerging at its second node, d̂1, is similarly identified with
the tuple (ĉ1, m̂1) out of period 1’s consumption level ĉ1 = 10 and the probability distribution
m̂1 =

1
2δ(10,10,...) +

1
2δ(5,5,...) ∈ M (R∞+ ) over consumption as of period 2, i.e. d̂1 = (ĉ1, m̂1) ∈

R+×M (R∞+ ). Consequently, the whole two–stage probability tree d̂2 now comes up to a tuple of
current consumption ĉ0 = 10 and a degenerate probability distribution over nodes of one–stage
trees m̂2 = δd̂1

∈M �
R+ ×M (R∞+ )

�
. I.e. we have d̂2 = (ĉ0, m̂2) ∈ R+ ×M

�
R+ ×M (R∞+ )

�
.

In general, continuing this reasoning inductively we can define finite probability trees of
length t. In such trees, the way in which uncertainty resolves over time is only displayed until
period t − 1 and the only information encoded about future periods’ consumption as of t is
their joint probability distribution. Precisely, a probability tree of length t can be described
completely by a pair of today’s consumption and a probability measure over nodes of trees of
remaining length t − 1. I.e. we recursively define

D0 := R∞+ ,

Dt := R+ ×M (Dt−1) f.a. t ≥ 1.

Observe that any infinite probability tree which does not contain any uncertainty from period t
on can be represented by such a t–stage probability tree without loss of information.

As mentioned above, we will from time to time add more rigorous remarks to round off our
treatment. In this spirit, note that since R∞+ is a complete, separable metric space, i.e. Polish, so
isM (R∞+ ) with the weak topology. Therefore, D1 = R+×M (R∞+ ) is also a Polish space with the
product topology on it. Inductively it follows that Dt is a Polish space f.a. t ≥ 1 if we recursively
endow eachM (Dt−1) with the weak topology and Dt with the induced product topology. For
each t ∈ N we denote byBt :=B(Dt) the respective Borel σ–algebra.

2.2.3.2 Infinite trees of arbitrary length: consistent reduction

The idea behind formally defining an arbitrary infinite probability tree d is to approximate it
stepwise by the t–stage probability trees, which arise from d by reducing its temporal structure
in such a way that the reduced tree has the identical distribution over consumption sequences
as of period t. Since the reduced tree does not contain any information of how the uncertainty
regarding these consumption sequences as of t resolves over time, considering the reduced tree
is like pretending that all uncertainty about consumption will have been resolved by period t.

This way we get a sequence (d1, d2, . . .) of finite probability trees dt ∈ Dt , each describing the
structure of d with increasing accuracy. Since for each t ∈ N, the probability tree dt describes
the temporal structure of d up to period t, the whole sequence (d1, d2, . . .) describes the entire



CHAPTER 2 APPLIED MACROECONOMIC ANALYSIS WITH EPSTEIN ZIN UTILITY 18

Figure 2.4: Consistent reduction (example)
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Figure 2.5: Trivial D2 tree (example)
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structure of d. Therefore, we can identify each infinite probability tree with exactly one such
sequence. Accordingly, we define the set D of all infinite probability trees as the set of all
sequences

d = (d1, d2, . . .), dt ∈ Dt f.a. t ∈ N,

which are consistent in the following sense. For dt ∈ Dt and dt+1 ∈ Dt+1 to be consistent it must
hold that up until period t they both obey the same structure and that dt can be imagined as
dt+1 folded back one period. To put it another way, dt and dt+1 are consistent if dt results from
dt+1 by neglecting its temporal structure already in period t and merely considering the joint
distribution of consumption to come. The process of consistently reducing probability trees is
first illustrated in the following example and then outlined generally.

Example 2. Consider a two-stage probability tree. As depicted in figure 2.4, consistent reduction
of such a tree demands the computation of the induced distribution of consumption to come
as of period 1. Note that e.g. the two-stage tree pictured in figure 2.5 is trivially consistently
reduced to the same D1 tree as the two-stage tree of figure 2.4. Hence, consistent reduction
cannot be an injection. In particular, for all trees that share this consistent reduction, the induced
probability measure must e.g. for B = {(c1

1 , c1
2 , 1, 1, . . .), (c3

1 , c4
2 , 1, 1, . . .)} ∈ B �

R∞+
�

yield

P (B) = p1
0(1− p1

1) + (1− p1
0 − p2

0)p
2
1.
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Figure 2.6: Consistent reduction
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In general, consistent reduction can formally be stated as follows. Starting with the reduction
of a two–stage probability tree to a tree of length 1, we first note that such a tree is given
by d2 = (c0, m2), where m2 ∈M

�
R+ ×M (R∞+ )

�
is the probability measure over the random

tuple (c̃1, m̃1), i.e. over tomorrow’s consumption level c̃1 and the joint probability measure for
(c̃2, c̃3, . . .). Hence, as exemplified above, for every B ∈B(R∞+ ) we get

P (B)≡P ({(c̃1, c̃2, c̃3, . . .) ∈ B}) =∫

R+×M (R∞+ )

m̃1

��
(c̃2, c̃3, . . .) ∈ R∞+ | (c̃1, c̃2, c̃3, . . .) ∈ B

	�
dm2(c̃1, m̃1).

Accordingly, we define

f1 : M (D1) → M (D0)
m2 7→ f1(m2) : B(R∞+ ) → [0,1]

B 7→ ∫
m̃1

��
y ∈ R∞+ | (c̃1, y) ∈ B

	�
dm2.

The mapping f1 directly yields a probability measure over consumption sequences (c̃1, c̃2, . . .)
out of a probability measure m2 over nodes of one–stage trees. Thus, we define

g1 : D2 → D1

(c0, m2) 7→ (c0, f1(m2)).

This is the desired mapping for consistently reducing a two–stage tree to its one–stage counterpart
(cf. figure 2.6). Note again that, as illustrated in the example above, g1 is not injective. One can
furthermore show that f1 and g1 are both continuous and therefore measurable.

We now pursue inductively. Suppose the desired continuous mappings

fi : M (Di) → M (Di−1)
gi : Di+1 → Di

have already been constructed for i = 1, . . . , t − 1, t > 1, such that gi(di+1) is the resulting
tree of length i that consistently corresponds to di+1. Consider an arbitrary probability tree
dt+1 ∈ Dt+1 of length t+1. By definition, dt+1 is a tuple (c0, mt+1) of a non-negative real number
c0 representing today’s consumption and a probability measure mt+1 over nodes of probability
trees of length t,

dt+1 = (c0, mt+1) ∈ R+ ×M (Dt).
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Let d̃t denote the random variable of trees of length t emerging at stage 1 distributed according
to mt+1. If we want to consistently shorten the (t + 1)–stage tree dt+1 by one step, we have to
shorten the random t–stage tree d̃t by one step. Now, we already know that the latter reduction
is executed via the mapping gt−1. So by gt−1(d̃t) we get the random (t−1)–stage tree emanating
from the first node of the desired t–stage tree dt that consistently corresponds to dt+1. The
wanted induced probability measure over (t − 1)–stage trees is thus given by the distribution of
gt−1(d̃t), i.e. by

mt+1 ◦ g−1
t−1 :Bt−1→ [0,1].

We accordingly set

ft : M (Dt) → M (Dt−1)
mt+1 7→ mt+1 ◦ g−1

t−1

and

gt : Dt+1 → Dt

(c0, mt+1) 7→ (c0, ft(mt+1)) .

It follows inductively, that all ft and gt are continuous and thus measurable and also that gt

is not injective for all t. Observe that it is this non-injectivity that gives rise to the notion of
nonindifference towards the timing of uncertainty resolution.

Now that we formally described what it means for a sequence of trees (d1, d2, . . .), dt ∈ Dt ,
to be consistent, we round off this subsection replicating a result in Epstein and Zin (1989)
proving what we have already stated intuitively at the beginning of this section. Namely, every
infinite probability tree can be identified unambiguously with a tuple of current consumption
and a probability measure over nodes of probability trees emerging at period 1.

Definition 1. We define (D,B) as the inverse limit of the separable measurable spaces (Dt ,Bt), t =
1,2, . . ., relative to the measurable mappings gt : Dt+1→ Dt . I.e.

(i) D =
§
(d1, d2, . . .) ∈

∞∏
t=1

Dt | dt = gt(dt+1) f.a. t ≥ 1
ª

(ii) B is the smallest σ–algebra of subspaces of D that renders the canonical projection

πt : D→ Dt , (d1, d2, . . .) 7→ dt

measurable for all t = 1,2, . . ., i.e.B = σ
�∞⋃

t=1
{π−1

t (Bt) | Bt ∈Bt}
�

.

Theorem 1. First, D is a Polish space relative to the subspace topology that is induced by the

product topology on
∞∏
t=1

Dt andB equals the Borel σ–algebra that is generated by this topology on

D. Second, D is homeomorphic to R+ ×M (D).
Proof. The first part follows from Parthasarathy (1967), Theorem 2.6. For the second part,
let d = (d1, d2, . . .) ∈ D, dt = (c0, mt) ∈ Dt , dt = gt(dt+1) f.a. t ∈ N be arbitrary. Thus, by
definition we have for all t ∈ N a probability measure mt+1 onBt satisfying mt+1 = ft+1(mt+2) =
mt+2 ◦ g−1

t . Following Parthasarathy (1967), Theorem 3.2, there exists a unique probability
measure m : B → [0,1] such that m

�
π−1

t (Bt)
�
= mt+1(Bt) f.a. t ∈ N, Bt ∈ Bt . By setting

Φ(d) := (c0, m) we define the mapping Φ : D → R+ ×M (D). One can now show that this
mapping is a homeomorphism.
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Before we proceed, let us provide some additional intuition about the constructed homeo-
morphism and its significance for the upcoming utility analysis. Consider again an arbitrary
probability tree d = (d1, d2, . . .) ∈ D, dt = (c0, mt) ∈ Dt , dt = gt(dt+1) f.a. t ∈ N. Approximated
until stage (t + 1), this tree is given by πt+1(d) = dt+1 = (c0, mt+1) and the trees of length t
emerging at the first stage of dt+1 are distributed according to mt+1. Yet on the other hand,
the probability trees originating at the first stage of dt+1 also correspond to the t–stage ap-
proximations of the infinite probability trees emerging at the first stage of the whole tree d.
Since the infinite probability trees emerging at stage 1 of d are distributed according to the
probability measure m and their t–stage approximation is given via the mapping πt , these
t–stage approximations are distributed according to the probability distribution m ◦π−1

t . So it
must hold that

m ◦π−1
t = mt+1.

Moreover, observe that the fact that D is homeomorphic to R+ ×M (D) importantly says that
for every tree d ∈ D it holds that every “subtree” that emanates from some of its intermediary
nodes necessarily also lies in D. This “stationarity” of the consumption space is necessary for
the existence of a recursive utility function on D.10

2.2.3.3 Additional restrictions to the lottery space

The space D will provide the fundament for our consumption space, i.e. the space over which
decisions will be made. In order to describe such decisions, we will introduce eligible utility
functions in the next section. However, these utility functions can generally not be defined on
the whole space D but only on particular subspaces. In fact, consumption has to be bounded in
some sense. Therefore, we have to further narrow the lottery space appropriately.

For that purpose, Epstein and Zin (1989) define the space of consumption sequences such
that the gross growth rate is capped by some b ≥ 1, i.e. for l > 0

Y (b, l) :=
n
(c0, c2, . . .) ∈ R∞+

��� ct

bt
≤ l f.a. t ∈ N

o
=
∞∏
t=0

[0, bt l].

Endow Y (b, l) with the product topology and note that according to Tychonoff’s theorem Y (b, l)
is compact. The subspaces D(b) of D consisting only of probability trees d = (d1, d2, . . .), dt =
(c0, mt), such that the atemporal probability measure m1 gives rise to consumption sequences
(c1, c2, . . .) in Y (b, l) for some l > 0 with probability 1, are suitable as domains for recursive
utility functions.

Definition 2. For b ≥ 1 define

D(b) := {d = (d1, d2, . . .) ∈ D | d1 = (c0, m1) s.t. ∃l > 0 : supp(m1) ⊂ Y (b, l)}
and endow D(b) with the subspace topology.

Note that since D(b) is a subspace of a separable metric space, it is thus a separable metric
space itself. Moreover, as a subset of D it is homeomorphic to a subset of R∞+ ×M (D), i.e. via
Φ every probability tree d ∈ D(b) can uniquely be represented as a tuple of the consumption
level c0 today and a probability measure over nodes of trees emanating at period 1. However, as
the next example will illustrate, not every probability measure m ∈M (D(b)) is in question for
this identification.

Example 3. For n≥ 1 consider the probability tree dn depicted in figure 2.7. The corresponding

10Cf. Epstein and Zin (1989), p. 941, and the introductory remarks to section 2.3.
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Figure 2.7: Degenerate temporal lottery
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Figure 2.8: Temporal lottery not in D(b)
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1–stage trees are given by dn
1 = (n, mn

1) ∈ D1, where mn
1 = δ(bn,b2n,b3n,...), n≥ 1. Since supp(mn

1) ⊂
Y (b, n), n≥ 1, it holds that dn ∈ D(b) f.a. n≥ 1. But now consider the probability defined by

m=
∞∑
n=1

1
2n
δd bn ∈M (D(b)).

We want to show that the tree d ∈ D that via Φ corresponds to the tuple (1, m) ∈ R+×M (D(b))
does not lie in D(b). The tree is pictured in figure 2.8 and it can be seen that its 1-stage
approximation is given by d1 = (1, m1), where m1 =

∑∞
n=1

1
2nδ(bn,b2n,b2n,...). Since for every b ≥ 1

there is no l > 0 such that supp(m1) ⊂ Y (b, l), it follows that d 6∈ D(b).

This example makes clear that D(b) cannot be homeomorphic to R+ ×M (D(b)) but that
only a subset of M (D(b)) is in question. In order to see which probability measures these
are, let us again consider an arbitrary tuple (c0, m) ∈ R+ ×M (D(b)). The corresponding tree
d = (d1, d2, . . .) ∈ D, dt = (c0, mt), is identified through mt+1 = m ◦π−1

t , t ≥ 1 (cf. Theorem 1).
In particular, we have that m2 = m ◦π−1

1 and hence m1 = f1(m ◦π−1
1 ). In order for d to lie in

D(b) it is necessary and sufficient that supp( f1(m ◦π−1
1 )) ⊂ Y (b, l) for some l > 0. If we restrict

the homeomorphism Φ : D→ R+ ×M (D) to D(b) we get a homeomorphism Φ
��
D(b) :

D(b)→ R+ × {m ∈M (D(b)) | supp( f1(m ◦π−1
1 )) ⊂ Y (b, l), for some l > 0}.

We finish this section by summarizing these considerations with the following Theorem.

Theorem 2. D(b) is homeomorphic to R+ ×M̂ (D(b)) with

M̂ (D(b)) := {m ∈M (D(b)) | supp( f1(m ◦π−1
1 )) ⊂ Y (b, l), for some l > 0},

where M̂ (D(b)) is endowed with the subspace topology induced fromM (D(b)).

2.3 EZ utility
Having reached a formal description of the concept of an infinite probability tree, we next
want to describe the decision making over such trees by means of the EZ utility representation.
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Thereby, we parallel the approach taken above in that we identify the decision over such infinite
trees with the two-stage decision over current consumption and future utility prospects. I.e.,
precisely how we represented an infinite probability tree for the infinite random consumption
sequence (c0, c1, c2 . . .) by a pair (c0, m) of period 0 consumption and a probability measure over
nodes of probability trees emanating next period, we now identify the utility of such an infinite
consumption sequence (c0, c1, c2 . . .) by a recursive two–period utility stemming from today’s
consumption level c0 and future utility contingent on next period’s random node.

The mechanics of an EZ utility function U : D(b)→ R+ can be described as follows. Let d ∈
D(b) denote an arbitrary infinite probability tree identified with the tuple (c0, m) ∈ R+×M̂ (D(b))
via the above constructed homeomorphism (cf. Theorem 2). Hence, the random node of a
probability tree d̃ emerging at period 1, is distributed according to the probability measure m.
Thus, if we evaluate possible next period nodes by their utility through U(d̃), we get an induced
probability distribution over random real utility levels as of tomorrow. Given measurability of
U , this random future utility is distributed according to

mU := m ◦ U−1 :B(R+)→ [0,1].

In other words, the probability measure mU describes an atemporal lottery over next period’s
random utility. Given monotonic preferences over such atemporal utility lotteries,11 we will
assume these to be representable through a certainty equivalence functional

µ :M (R+)→ R+,

meaning for any lottery P ∈M (R+) the decision maker is indifferent between the lottery itself
and a certain utility level µ(P). Note that µ thereby aggregates the decision maker’s evaluation
of uncertain future utility along next period’s nodes. This perspective gives rise to the intuitive
notion of uncertainty aggregation as coined by Träger (2011). Finally, this certainty equivalent
is combined with today’s consumption c0 via

W : R2
+→ R+,

acting as a time aggregator of the utility contributions of the elements of (c0, m). To sum up, for
all d ∈ D(b)

U(d) =W
�
Φ1(d),µ

�
Φ2(d) ◦ U−1

��
=W (c0,µ(mU)). (2.3.1)

A utility function U over D(b) that satisfies the above equation is called recursive. Koop-
mans (1960) introduced the notion of a recursive utility function on infinite deterministic
consumption programs by means of a function that aggregates current consumption and future
continuation utility. On the other hand, Selden (1978) provided a representation for two-period
“certain×uncertain” consumption programs, where utility is defined as an aggregation of current
consumption and a certainty equivalent of next period’s random consumption level. A time-
consistent multi-period extension of the Selden representation is found in Kreps and Porteus
(1978).12 The stochastic generalization to the infinite horizon recursive Koopmans representa-
tion is eventually provided by Epstein and Zin (1989) as described above. Note thereby that
assuming an EZ representation is sufficient for the underlying preference ordering over temporal
consumption lotteries to satisfy stationarity and intertemporal consistency.13 Further note the
relation of such stationarity of preferences and the “stationarity” of the consumption space as
proven above.

11By assuming monotonic preferences, we plausibly model the decision maker as favoring higher utility levels over
lower, but see later.

12Cf. the introductory remarks in Weil (1990).
13Cf. Epstein and Zin (1989), p. 945.
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2.3.1 Uncertainty aggregation
As already sketched above, the idea of a certainty equivalent with regard to random continuation
utility is to assign a deterministic level of appreciation (utility level) to every atemporal lottery
over continuation utilities, which renders the decision maker indifferent to the latter. In order
for this to make sense, we first have to introduce preferences over atemporal continuation utility
lotteries. Thereby, we discuss a set of assumptions about such preferences and their respectively
implied utility representations. The employed axiomatization is provided by Chew (1989). It is
flexible enough to account for prominent behavioral peculiarities that have been reported as
violations of the classic von Neumann/Morgenstern (vNM) independence axiom.14

Thereafter, we will specify the functional form of certainty equivalents that come with such
utility representations. We conclude with two parametric examples of particular interest.

2.3.1.1 Preferences over utility lotteries

Let I ⊂ R+ denote a compact interval and again write B(I) and M (I). We assume that
preferences over lotteries inM (I) are given by a binary relation �. Further let ≺ and ∼ denote
the induced strict preference relation and indifference relation, respectively. Consider the
following behavioral axioms:

(O) � is a weak order, i.e. complete and transitive.

(C) ∀P ∈M (I) : {Q ∈M (I) | P ≺Q} and {Q ∈M (I) | Q ≺ P} are open with respect to the
weak topology onM (I).

(VWS) ∀P,Q ∈M (I) :

P ∼Q⇒∀R ∈M (I),λ ∈ (0, 1) : ∃θ ∈ (0, 1) : λP + (1−λ)R∼ θQ+ (1− θ )R.

(WS) ∀P,Q ∈M (I) :

P ∼Q⇒∀λ ∈ (0,1) : ∃θ ∈ (0, 1) : ∀R ∈M (I) : λP + (1−λ)R∼ θQ+ (1− θ )R.

(S) ∀P,Q, R ∈M (I) :

P ∼Q⇒∀λ ∈ (0, 1) : λP + (1−λ)R∼ λQ+ (1−λ)R.

Weak order (O) and continuity (C) are the standard requirements for there to exist a continuous
numerical function representing � over M (I).15 We will thus always demand preferences
to satisfy (O) and (C). Assuming � to also obey one of the remaining three axioms imposes
considerably more structure on the decision making. Thereby, (VWS), (WS) and (S) increasingly
facilitate the analytical implementation of the resulting utility representation in applied work.
Nevertheless, their empirical appeal is decreasing in the same order along their respective degree
of reconcilability with behavioral data.16

Starting with the most restrictive axiom, substitution (S) demands that whenever the decision
maker is indifferent between two lotteries P and Q, he is also indifferent between the mixture
of P with a third lottery R and the mixture of Q with that third lottery R, both mixtures by the
same ratio.
14See e.g. the Allais (1953) paradox as the most prominent of such violations.
15Cf. Debreu (1954).
16See how Chew (1983) motivates his inquiry into utility representations over lottery spaces that do not necessarily

satisfy the classic independence axiom, which is rephrased to (S) in the Chew (1989) framework.
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Now, weak substitution (WS) weakens (S) as it additionally permits the mixture ratios at
which the decision maker is indifferent between a mixture of P or Q with a third lottery R to
differ. Yet, these mixtures cannot depend on the third lottery R. In other words, it is possible
that one of the two indifferent lotteries can be mixed more “easily” with the third leaving room
for complementarity between P and R or Q and R.

Eventually, with very weak substitution (VWS), the ratio at which indifference is attained is
additionally allowed to depend on R. Hence, (S) implies (WS), which in turn implies (VWS).

2.3.1.2 Chew certainty equivalents

General representation Chew (1989), Theorem 3, proves necessity and sufficiency of the
“very weak” constellation of the above axioms for there to exist a continuous utility representation
of � overM (I) of the so called implicit-weighted kind. Thereby, the utility level u(P) associated
with a lottery P ∈M (I) is the unique root of a mapping

y 7→
∫

I

Ψ(x , y)dP(x),

where Ψ : I × R → R has to satisfy certain continuity requirements. Implicitly defining the
continuous weight function w : I ×R→ R such that

Ψ(x , y) = w(x , y)(v(x)− y),

where the continuous mapping v : I → R is defined via v(x) := u(δx),17 thus yields

0=

∫

I

Ψ(x , u(P))dP(x) =

∫

I

w(x , u(P))v(x)dP(x)− u(P)

∫

I

w(x , u(P))dP(x),

such that

u(P) =

∫

I

w(x , u(P))∫
I
w(x , u(P))dP(x)

v(x)dP(x). (2.3.2)

In a sense, the utility u associated with a lottery P ∈M (I) is given by a weighted expected value
of the utility index v over deterministic outcomes. The fact that the weights in this representation
also depend on the utility level u(·) of the considered lottery itself gives rise to the notion of
implicit weighting.18

Next, since our analysis is concerned with lotteries over utility levels, the preference ordering
� is also assumed to always satisfy the following strict monotonicity axiom:

(M) For all x , y ∈ I it holds that δx ≺ δy ⇔ x < y.

Hence, v is strictly monotonically increasing on I and therefore invertible such that for every
P ∈M (I) there is a unique real number in I , denoted by µ(P) and called lottery P ’s certainty
equivalent, that satisfies

P ∼ δµ(P)⇔ u(P) = u(δµ(P)) = v(µ(P)). (2.3.3)

Hence, by (M), preferences overM (I) can equivalently be stated in terms of certainty equivalents,
i.e. for all P,Q ∈M (I) it holds that

P �Q⇔ µ(P)≤ µ(Q).
17I.e. v(·) is a utility index over deterministic outcomes in I .
18It is the particular functional form of w that comprises behavioral implications about the underlying decision

making, et vice versa, but see shortly.
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With regard to the notion of uncertainty aggregation, note that µ makes explicit its ingredients.
Next to the description of uncertainty P ∈ M (I), µ incorporates both the appreciation of
deterministic continuation utility levels v(·) and the respective implicit weights of the utility
representation.

Next, (2.3.3) implies that
∫

I

Ψ(x , v(µ(P)))dP(x) = 0 ⇔
∫

I

ψ(x ,µ(P))dP(x) = 0,

where ψ : I × I → R, (x , y) 7→ Ψ(x , v(y)). I.e., given preferences � overM (I) which satisfy
(O), (C), (VWS) and (M), the certainty equivalent µ(P) of a lottery P ∈M (I) is given by the
unique root of the mapping

y 7→
∫

I

ψ(x , y)dP(x).

Note that by construction we have

ψ(x , x)≡ Ψ(x , v(x)) =

∫

I

Ψ( x̃ , v(x))dδx( x̃) =

∫

I

Ψ( x̃ , u(δx))dδx( x̃) = 0.

Thus, to put it explicitly, the considered certainty equivalents satisfy the “consistency with
certainty” property listed by Chew (1983) as a crucial requirement for mean value functionals,
i.e.

µ(δx) = x .

Moreover, Chew (1989), Theorem 5, proves that such certainty equivalents are consistent
with first (resp. second) degree stochastic dominance if and only if for all y ∈ I the mapping
x 7→ψ(x , y) is strictly monotonically increasing (resp. concave).

Eventually, if we assume preferences to have a Chew-type utility representation overM (I),
with I = R+, we further restrict the certainty equivalents to satisfy homogeneity:

(H) For all P ∈M (I) and λ > 0 it holds that µ(Pλ) = λµ(P),

where Pλ denotes the probability measure defined by Pλ(B) := P(x ∈ I |λx ∈ B). Intuitively, (H)
requires the assignment of a λ-fold certainty equivalent to a lottery that yields a λ-fold utility.
This implies

0=

∫

I

ψ(x ,µ(Pλ))dPλ(x) =

∫

I

ψ(λx ,λµ(P))dP(x),

which is satisfied in particular for ψ linear homogenous. Thus, by defining ζ(x) :=ψ(x , 1), we
find the sought for certainty equivalent µ(P) of a continuation utility lottery P ∈M (I) to be
the unique root of the mapping

y 7→
∫

I

ζ

�
x
y

�
dP(x).

Special cases We finish this subsection on Chew-type implicit-weighted certainty equivalents
for some utility lottery P ∈M (I) by presenting two parametric examples explicitly considered
by Epstein and Zin (1989).
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First, let ζ(x) = xα−1
α + a(x − 1), 0 6= α < 1, a ≥ 0. This gives rise to a so called Chew/Dekel

(CD) certainty equivalent implicitly defined as the solution to

µC D(P)(1+ aα)− aα

∫

I

xdP(x)) = (µC D(P))
1−α

∫

I

xαdP(x). (2.3.4)

Second, consider the case of a = 0 in the above example, which allows us to explicitly solve
for the certainty equivalent,

µKP(P) =

�∫

I

xαdP(x)

� 1
α

. (2.3.5)

This is the certainty equivalent of a decision maker with so called Kreps/Porteus (KP) preferences.
Observe by equation (2.3.2) that this µ-specification arises in the case of a constant (explicit)
weight function w and for v(x) = xα, 0 6= α < 1. To put it another way, next to a CRRA-type
utility index v(·), such a representation demands the decision maker to obey (O), (C) and (S)
by the vNM Theorem.19

2.3.2 Time aggregation
So far, we saw how the notion of recursive utility “reduces” the problem of evaluating intertem-
poral consumption tradeoffs within an infinite horizon framework to a two–period problem of
assessing the tradeoff between current consumption and a certainty equivalent of random utility
prospects. In order to merge these two ingredients we already introduced the time aggregator

W : R2
+ → R+.

Epstein and Zin (1989) explicitly demand this aggregator to have the form

W (c,µ) = [cρ + βµρ]
1
ρ , 0 6= ρ < 1, β ∈ (0, 1). (2.3.6)

Note that it is made sure that both today’s consumption and future utility enter the modelled
decision maker’s evaluation positively.

To complement our analysis of parametric examples of Chew certainty equivalents above,
finally consider the special case of the KP functional further restricted to α= ρ, where ρ is the
time aggregation parameter above

µEU(P) :=

�∫

I

xρdP(x)

� 1
ρ

. (2.3.7)

This specification finally gives rise to an expected utility (EU) representation over temporal
lotteries and thus yields the standard model as described in the introductory remarks to section
2.2.

Let us next restrict our attention to probability trees that correspond to deterministic con-
sumption sequences (c0, c1, c2, . . .), such as the tree d depicted in figure 2.9. Since the tree d is
characterized by

d ∼= (c0, m), where m= δd1

d1 ∼= (c1, m1), where m1 = δd2

d2 ∼= (c2, m2), where m2 = δd3

etc.

19See Chew (1989), Theorem 1, for a formal statement of the vNM Theorem in this context.
Note that Chew (1989), Theorem 2, also proves necessity and sufficiency of the “weak” constellation for a

“(explicit) weighted utility” representation of intermediate generality. We skip this part because we will not
refer to it in our ensuing analysis. The (WS) axiom is thus listed merely for the sake of exposition.
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Figure 2.9: Deterministic consumption sequence

...d :
111

c0 c1
c2

it follows from (2.3.1) that

U(d) = [cρ0 + βµ(δU(d1))
ρ]

1
ρ = [cρ0 + βU(d1)ρ]

1
ρ = [cρ0 + β[c

ρ
1 + βµ(δU(d2))

ρ]
1
ρρ]

1
ρ =

= [cρ0 + β cρ1 + β
2U(d2)ρ]

1
ρ = . . .=

�∞∑
t=0

β t cρt

� 1
ρ

.
(2.3.8)

I.e., the approach taken here results in a utility function of the constant elasticity of substitution
(CES) class as an evaluator of deterministic consumption sequences.20 In this context, the
expression

1
1−ρ

measures the EIS.
We conclude with the following Theorem that ensures existence of the considered EZ utility

functions.21

Theorem 3. If W has the CES form (2.3.6), then, for the three parametric examples of µ considered
above, the functional equation

U(c0, m) =W (co,µ(mU))

has a solution

1. for ρ > 0 : V : D(b)→ R+, where b satisfies β bρ < 1

2. for ρ < 0 : V : D→ R+.

2.3.3 Timing and risk preferences
The major advantage of adopting the more general EZ utility for applied work stems from
the disentanglement (however incomplete) of the decision maker’s attitude towards risk and
towards the timing of consumption. This subsection demonstrates their separation.

2.3.3.1 Definitions

We begin by defining the notion of timing and risk preferences, respectively. Both definitions
are mutually abstract in the following sense. In defining timing preferences we abstract from
uncertainty, while in defining risk preferences we keep the analysis atemporal.

Moreover, we are particularly interested in a comparative assessment of preferences. We there-
fore consider two recursive decision makers with utility representations U I and U I I . Specifically,
for i = I , I I , 0 6= ρi < 1 and 0< β i < 1

V i(c0, m) =W i
�
c0,µi(V i

m)
�
=
h
cρ

i

0 + β
i
�
µi(V i

m)
�ρii 1

ρi

,

where µi :M (R+)→ R+ is one of the three parametric examples of the Chew class studied
above.
20Observe that, since id

1
ρ is a strictly monotonically increasing transformation, a standard Samuelson (1937)

Discounted Utility function
∞∑
t=0
β t cρt is an alternative representation of the underlying preferences if restricted

to degenerate temporal lotteries.
21Epstein and Zin (1989) prove a more general version in their Theorem 3.1.
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Timing preferences The deterministic treatment of consumption timing and the associated
intertemporal consumption substitution is at least two-dimensional in (modern) economics.22

First, there is mere impatience such that a decision maker c.p. favors current consumption.
Second, he also assesses the “relative abundance” of consumption available to him over time.23

Now, impatience is formally reflected in the discount parameter β . We thus regard the decision
maker V I as less patient than V I I if he discounts future consumption more strongly, i.e. if it
holds that

β I ≤ β I I .24 (2.3.9)

As far as deterministic consumption substitution is concerned, we note that, by means of the
utility U , the EIS controls the decision maker’s affinity towards a smooth consumption profile.
We thus interpret V I to be more averse towards deviations from smooth consumption than V I I if

EISI :=
1

1−ρ I
≤ 1

1−ρ I I
=: EISI I ,

or equivalently

ρ I ≤ ρ I I . (2.3.10)

Risk preferences As opposed to timing preferences, a readily operationalized measure of
comparative risk aversion is less evident. However, it seems natural to focus on the employed
certainty equivalent functional as it serves as the uncertainty aggregation device in the EZ
framework. Accordingly, for W I =W I I , Epstein and Zin (1989) define V I to be more risk averse
than V I I if it holds that

µI ≤ µI I .25 (2.3.11)

2.3.3.2 Disentangling attitudes towards risk and timing

Separation By further examining the above definitions we first find for the CD-class that
(2.3.11) is equivalent to

αI ≤ αI I and aI ≤ aI I .

Second, for the KP-class (aI = aI I = 0) this condition reduces to

αI ≤ αI I .

Thus, the EZ utility representation with CD- and KP-certainty equivalents yields a parametric
disentanglement of comparative risk aversion and timing preferences.26

Eventually, with the additional restriction of αi = ρi, i = I , I I , it is obvious that such separation
is impossible in the case of EU certainty equivalents.
22A thorough discussion on the notion of time preference, its historic development and also some serious reservations

against discounted utility models is provided by Frederick et al. (2002).
23Cf. Fisher (1930), p. 67.
24Note that the notion of comparative impatience can be defined more formally in terms of preferences along

the lines of Olson and Bailey (1981) by means of the decision makers’ marginal rate of substitution between
consumption levels in two different periods after excluding “the effect of a difference in marginal utility.”

25Note that, as remarked by Epstein and Zin (1989), for the case of KP certainty equivalents, by the assumed
consistency with second order stochastic dominance it follows that the least risk averse decision maker aggregates
uncertainty additionally obeying α = 1. I.e. his utility index satisfies v(·) = id(·) such that his certainty equivalent
is a plain expected value.

26Note that this separation as well as the utility representation is akin to Selden (1978)’s result in a two period
environment.
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Nonindi�erence towards the timing of uncertainty resolution Even though the EZ repre-
sentation allows for a parametric disentanglement of the above notions of risk and timing
preferences, it is important to note that this separation is only partly in nature. Specifically,
departing from an EU certainty equivalent necessarily gives rise to nonindifference towards
the timing of the resolution of consumption uncertainty as it is illustrated in the introductory
example to the present chapter.27

Precisely, Epstein and Zin (1989) conclude in the sense of Kreps and Porteus (1978), Theorem
3, that a decision maker V i with KP preferences over atemporal continuation utility lotteries
prefers earlier (later) resolution if and only if it holds that αi < (>)ρi. Moreover, V i is indifferent
to the timing of uncertainty resolution if and only if it holds that αi = ρi, i.e. if and only if he
has EU preferences.

2.3.4 The EZ/KP representation
We conclude this section on the EZ representation by the application of the KP case to our
introductory example. The focus on KP preferences is natural in the sense that our ensuing
analysis is focused on applied macroeconomics. For such work it is important to have an explicit
functional form of U to parameterize. Summing up, the EZ/KP utility representation reads

U(d) =
h
(Φ1(d))

ρ + β
�
EΦ2(d) [U

α]
� ρ
α

i 1
ρ

, 0 6= ρ < 1, 0 6= α < 1, β ∈ (0, 1).28 (2.3.12)

To illustrate its application, consider Robinson’s two alternatives as presented in example 1
and compare his behavior for the three cases of him preferring earlier or later resolution or
being indifferent about the timing of uncertainty resolution, i.e. following the consequentialist
hypothesis implied by the standard model.

Example 1 (Continued). Robinson’s preferences over temporal lotteries are assumed to be
representable by an EZ utility function of the KP form as stated above. He has to choose
between the two (finite) temporal lotteries displayed in figure 2.1, i.e. between d = (10, m) and
d̂ = (10, m̂), with d, d̂ ∈ D. Since Robinson decides in favor of the temporal lottery that results
in a relatively higher utility evaluation, his decision making can be described as comparing the
utility levels

U(d) =
�
10ρ + βµ(m ◦ U−1)ρ

� 1
ρ =

�
10ρ + β (Em [U

α])
ρ
α

� 1
ρ

, (2.3.13)

and

U(d̂) =
�
10ρ + βµ(m̂ ◦ U−1)ρ

� 1
ρ =

�
10ρ + β (Em̂ [U

α])
ρ
α

� 1
ρ

, (2.3.14)

where β ∈ (0,1), 0 6= ρ < 1.
Now, note again that m is already a lottery over degenerate trees (deterministic consumption

sequences) while m̂ is a degenerate lottery δd̂1
, with d̂1 = (10, m̂1). Moreover, m̂1 is a lottery

27Note, as sketched above, that looked at it this way such nonindifference may appear as a cost of the achieved
disentanglement, cf. Epstein et al. (2014). Interestingly, Kreps and Porteus (1978), who provided the fundament
of the EZ framework and thus for the studied separation of risk aversion and EIS, were looking for a temporal
utility representation that allowed for the explicit modelling of such nonindifference and did not motivate
their analysis through the issue of entangled risk aversion and consumption substitutability. Nevertheless, they
already indicated on some relation between risk aversion and nonindifference, see Kreps and Porteus (1978), p.
198.

28Note that Weil (1990)’s “generalized isoelastic” utility provides an equivalent representation.
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over degenerate trees. We thus compute

µ(m ◦ U−1) =
�

1
2

Uα(10,10, . . .) +
1
2

Uα(10,5, 5, . . .)
� 1
α

(2.3.8)
=


1

2



�∞∑

t=0

β t10ρ
� 1
ρ



α

+
1
2



�

10ρ +
∞∑
t=1

β t5ρ
� 1
ρ



α


1
α

=

�
1
2

�
10
�

1
1− β

� 1
ρ

�α
+

1
2

��
10ρ + 5ρ

β

1− β
� 1
ρ

�α� 1
α

and

µ(m̂ ◦ U−1) =U(d̂1) =
�
10ρ + βµ(m̂1 ◦ U−1)ρ

� 1
ρ

=

�
10ρ + β

�
1
2

Uα(10,10, . . .) +
1
2

Uα(5, 5, . . .)
� ρ
α
� 1
ρ

(2.3.8)
=


10ρ + β

�
1
2

�
10
�

1
1− β

� 1
ρ

�α
+

1
2

�
5
�

1
1− β

� 1
ρ

�α� ρ
α




1
ρ

.

Now, plugging these two results in (2.3.13) and (2.3.14) makes it possible to determine Robin-
son’s decision for any given set of parameter values. As foreshadowed above, we here want
to parameterize three situations. Therefore, we set β = 0.9 and ρ = −1 and consider three
different degrees of risk aversion implied by α1 = −1

2 , α2 = −1 and α3 = −2. This respectively
yields

U(d;α) =





0.7284, if α= α1

0.7117, if α= α2

0.6819, if α= α3

and U(d̂;α) =





0.7298, if α= α1

0.7117, if α= α2

0.6799, if α= α3.

Note that, as generally stated above, Robinson prefers earlier over later resolution of uncertainty,
i.e. d over d̂, in the case of ρ ≥ α. Analogously, preference for later resolution is calibrated
via ρ ≤ α. Eventually, ρ = α parameterizes indifference towards the timing of uncertainty
resolution (giving rise to the standard model).

2.4 Solving a basic DSGEmodel with EZ/KP utility
This section is intended to illustrate the implementation of the theoretical considerations so
far into standard applied macroeconomic analysis, which we understand as the approximate
solution of the intertemporal decision problem characterizing some model economy by means
of value and policy functions and their usage in simulating artificial data to be contrasted with
the stylized facts describing the real economy. Since simulation is a computational exercise
independent of the EZ specification, our presentation is only concerned with the approximate
solution of EZ economies.

For this purpose, we once more come back to a Robinson Crusoe decision problem. This time,
we embed it into a more complete model economy in that we describe the interdependence of
current consumption and future consumption opportunities by the means of a savings equation
while his output is again subject to an exogenous stochastic influence. Formally, Robinson’s
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situation is described as a stochastic control system. Given an initial capital stock, the way how
Robinson chooses his consumption path thereby induces a probability tree. The utility of the
latter can thus be found through the representation described in section 2.3 so that the decision
problem is stated in terms of utility maximization. Thereafter, we briefly describe how to apply
the perturbation methodology of Schmitt-Grohe and Uribe (2004) to approximate this control
system’s solution. Eventually, we actually compute a second order perturbation for a given
parametrization and discuss the most prominent implications of the EZ/KP framework for such
applied work.

2.4.1 Representative agent environment
Robinson uses capital to produce a final good. He can either consume the final good or use
it as investment in the capital stock. His planning horizon is infinite,29 his personal utility
stems solely from consumption and his preferences over uncertain consumption paths have an
EZ/KP representation as in (2.3.12). To keep the notation parsimonious, we avoid time indices
wherever possible.

Now, for each t ∈ N, we consider the state space

X := R+ ×R.

An element x =
�
x1 x2

�T ∈ X denotes a tuple of capital stock x1 and productivity level x2.
Further, for every t ∈ N Robinson chooses from the control space

Y := R+.

The control y ∈ Y is interpreted as his consumption level. We endow X and Y with their
respective standard topologies.

Moreover, let the triplet (Ω,A , P) denote a probability space with a stochastic process {εt}∞t=1
satisfying εt ∼ iidN(0, 1) for all t ∈ N. The control system is now determined by its dynamic

f : X × Y ×R → R2

(x , y,ε) 7→
�

ex2 xη1 + (1−δ)x1 − y
λx2 +σε

�
,

(2.4.1)

where η,λ ∈ (0, 1),δ ∈ [0, 1] and σ ≥ 0. Note that f is continuous and thus measurable. The
idea behind this construction is that, given a state x , a choice of the control variable y and a
stochastic influence ε, next period’s state is determined through the mapping f . Thereby,

ex2 xη1

denotes the produced output and δ determines material wear. Thus, the first component of f
says that next period’s capital stock amounts to output plus the not worn part of this period’s
capital stock less chosen consumption. In order to make sure that next period’s capital stock is
nonnegative, the chosen consumption level has to satisfy

y ≤ ex2 xα1 + (1−δ)x1.

We accordingly define for every x ∈ X

Y (x) :=
�

y ∈ Y | y ≤ ex2 xα1 + (1−δ)x1

	

29Apparently, we cannot simply refer to a bequest motive in order to motivate this assumption so we rather interpret
this as an approximation of Robinson’s actual situation, which is just as much characterized by his knowledge
about the finiteness of his horizon as of the lack of knowledge about the exact duration (maybe complemented
with his hope for (or fear of) a long life).
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as the feasible control space.30 On the other hand, f ’s second component says that the produc-
tivity level x2 evolves as a stationary AR(1) process, i.e. next period’s productivity additively
depends on its current level and an exogenous stochastic iid influence. While λ determines the
persistence of the productivity process, σ is the standard deviation of its stochastic influence
and therefore scales the uncertainty in our economy.

We next define a strategy as a measurable mapping

h : X → Y,

where X and Y are each endowed with their respective Borel σ-algebra. In other words, a
strategy assigns a control value h(x) ∈ Y to every state x ∈ X , i.e. the agent chooses h(x)
whenever confronted with the state x . Note that our definitions of state space and strategy do
not allow for the consideration of the state or consumption history. We further call a strategy
admissible if it results in a feasible control choice. Accordingly, define the space of admissible
strategies as

Π := {h: X → Y | h measurable, h(x) ∈ Y (x) f.a. x ∈ X } .
Now, given such a discrete time stochastic control system, an initial state x0 ∈ X and an

admissible strategy h ∈ Π, we recursively define the system’s solution under x0 and h as the

state process
¦

X x0,h
t

©∞
t=0

and the control process
¦

Y x0,h
t

©∞
t=0

, where

X x0,h
0 := x0,

Y x0,h
t := h(X x0,h

t ), f.a. t ∈ N,

X x0,h
t+1 := f (X x0,h

t , Y x0,h
t ,εt+1), f.a. t ∈ N.

Note first that X x0,h
t and Y x0,h

t are well-defined random variables for all t ∈ N because of the
measurability of f , h and εt , for all t ∈ N. Second, the solution’s recursive construction further
reveals that, for all t ∈ N, X x0,h

t and Y x0,h
t are already measurable in the random variables

ε1, . . . ,εt . I.e., if we denote by

Ft := σ(ε1, . . . ,εt), t ∈ N,

the σ-algebra generated by ε1, . . . ,εt , with F0 := {;,Ω}, and further by F := {Ft}∞t=0 the

filtration generated by {εt}∞t=0, we find the solution
¦

X x0,h
t

©∞
t=0

and
¦

Y x0,h
t

©∞
t=0

to be F -adapted.
Thus, our modeling reasonably assumes Robinson to base his control choice only on already
observed ε-values. Thereby, the realization of εt becomes observable for him at the beginning
of period t. Moreover, because of our AR(1)/iid assumption it holds for all s > t that given

X x0,h
t , the random state X x0,h

s is independent of Ft . Hence, the solution
¦

X x0,h
t

©∞
t=0

and therefore¦
Y x0,h

t

©∞
t=0

both have the Markov property.

2.4.2 Induced temporal lotteries
Having laid out the basic framework and notation, we next want to describe how to assign
a temporal lottery to a tuple of initial state and admissible strategy. Therefore, arbitrarily fix
x0 ∈ X and h ∈ Π. To find the probability tree in D that is induced by this tuple, we consider the
solution of the stochastic control system for the control process under x0 and h. We proceed

30The basic terminology mostly follows Kreps and Porteus (1979).
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inductively as we treat the solution in the t th step as if, regarding the uncertainty of future
realizations as of period t, we were only interested in their joint distribution.

In the first step, we thus restrict attention with regard to the solution of the control process¦
Y x0,h

t

©∞
t=0

only to Y x0,h
0 = h(x0) in t = 0 and the induced joint probability distribution over R∞+

from period 1 on. More precisely, define the stochastic process

Y x0,h : Ω→ R∞+ , ω 7→ (Y x0,h
1 (ω), Y x0,h

2 (ω), . . .).

Next, set mx0,h
1 as the induced image measure overB �

R∞+
�
, i.e.

mx0,h
1 := P ◦ (Y x0,h)−1,

such that for all B ∈B �
R∞+

�
it holds that

mx0,h
1 (B) = P

�{ω ∈ Ω | Y x0,h(ω) ∈ B}�

= P
�
{ω ∈ Ω | (Y x0,h

1 (ω), Y x0,h
2 (ω), . . .) ∈ B}

�
.

This way, we find the mapping

ι1 : X ×Π → D1

(x0, h) 7→
�
Y x0,h

0 , mx0,h
1

�
=
�
h(x0, h), mx0,h

1

�
.

We now pursue inductively. Suppose the desired mappings ι1, . . . , ιt have already been
constructed and we now want to also consider the structure of the induced probability tree until
period t. We therefore define for all B ∈Bt

mx0,h
t+1 (B) := P({ω ∈ Ω | ιt(X x0,h

1 (ω), h) ∈ B}) = P ◦ ιt(X x0,h
1 (·), h)−1(B) = P

ιt (X
x0,h
1 ,h)(B).

The idea behind this definition is the following. Next period’s state under x0 and h is the random
variable X x0,h

1 . The random t-stage probability tree that is induced by X x0,h
1 and h is given by

ιt

�
X x0,h

1 , h
�
. Thus, the probability distribution over such trees is given by the image measure

that is induced by ιt
�
X x0,h

1 (·), h
�
. Consequently, we define

ιt+1 : X ×Π → Dt+1

(x0, h) 7→
�
Y x0,h

0 , mx0,h
t+1

�
=
�
h(x0, h), mx0,h

t+1

�
.

Finally, we set

ι : X ×Π → D
(x0, h) 7→ (ι1(x0, h), ι2(x0, h), . . .) .

Consistency In order for the mapping ι(·, ·) to be well-defined, the elements of the image
sequence have to be consistent in the sense introduced in subsection 2.2.3.2. To put it another
way, if the previous construction was carried out correctly, it has to hold for all t ∈ N that

ιt(x0, h) = gt (ιt+1(x0, h)) .

Since on the one hand

gt (ιt+1(x0, h)) = gt

�
h(x0), mx0,h

t+1

�
=
�
h(x0), ft(m

x0,h
t+1 ))

�
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and on the other hand

ιt(x0, h) =
�
h(x0), mx0,h

t

�
,

it remains to be shown for all t ∈ N that

ft(m
x0,h
t+1 ) = mx0,h

t .

We prove this by induction in appendix A. Thus, via ι we can naturally assign the corresponding
temporal lottery in D to a tuple of initial state and admissible strategy.

Uniquemeasure over induced trees From Theorem 1 we further know that we can identify
every tree in D with a tuple of current consumption and a probability measure over trees
emanating next period via a homeomorphism

Φ : D→ R+ ×M (D).
I.e., it holds that Φ(ι(x0, h)) = (h(x0), m), where m ∈ M (D) is the unique measure, which
satisfies for all t ∈ N and B ∈Bt

m(π−1
t (B)) = mx0,h

t+1 (B).

We eventually want to show that it holds that

Φ(ι(x0, h)) = (h(x0), P ◦ ι(X x0,h
1 (·), h)−1),

i.e.

P ◦ ι(X x0,h
1 (·), h)−1(π−1

t (B)) = mx0,h
t+1 (B).

This readily follows from the fact that for all B ∈Bt

P ◦ ι(X x0,h
1 (·), h)−1(π−1

t (B)) = P
�¦
ω ∈ Ω | ι(X x0,h

1 (ω), h) ∈ π−1
t (B)

©�
=

= P
�¦
ω ∈ Ω | πt(ι(X

x0,h
1 (ω), h)) ∈ B

©�
= P

�¦
ω ∈ Ω | ιt(X x0,h

1 (ω), h) ∈ B
©�
=

= mx0,h
t+1 (B).

2.4.3 Consumption choice
We are now ready to describe Robinson’s decision making in this economy. Therefore, define

ι̂ := Φ ◦ ι,
i.e. the mapping

ι̂ : X ×Π → Y ×M (D)
(x0, h) 7→ (h(x0), P ◦ ι(X x0,h

1 (·), h)−1).

This allows us to indirectly assign a corresponding utility level to the pair (x0, h). For this
purpose, let U : D→ R+ denote a solution to the recursive functional equation

U(Φ−1(c0, m)) =
�
cρ0 + β(EmUα)

ρ
α

� 1
ρ

, β ∈ (0,1), 0 6= α < 1, 0 6= ρ < 1,
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as introduced in section 2.3. We then define the utility mapping

Û : X ×Π → R
(x0, h) 7→ U(ι(x0, h)).

Using the fact that U is a solution to the recursive equation above, we find

Û(x0, h) = U(ι(x0, h)) = U(Φ−1(ι̂(x0, h))) = U(Φ−1(h(x0), P ◦ ι(X x0,h
1 (·), h)−1))

=
�
h(x0)

ρ + β
�
EP◦ι(X x0,h

1 (·),h)−1 [U
α]
� ρ
α

� 1
ρ

=
�
h(x0)

ρ + β
�
EP

�
Uα(ι(X x0,h

1 , h))
�� ρ

α

� 1
ρ

=
�
h(x0)

ρ + β
�
EP

�
Ûα(X x0,h

1 , h)
�� ρ

α

� 1
ρ

=
h
h(x0)

ρ + β
�
EP

�
Ûα( f (x0, h(x0),ε1), h)

�� ρ
α

i 1
ρ

.

Hence, Û is itself a solution to the recursive functional equation

Û(x , h) =
h
h(x)ρ + β

�
EP

�
Ûα( f (x , h(x),ε), h)

�� ρ
α

i 1
ρ

, (2.4.2)

with ε∼ N(0, 1). I.e.,

Û(x , h) =


h(x)ρ + β

�∫

Ω

Ûα( f (x , h(x),ε(ω̃)), h)dP(ω̃)

� ρ
α




1
ρ

=


h(x)ρ + β

�∫

R
Ûα( f (x , h(x), ε̃), h)φ(ε̃)dε̃

� ρ
α




1
ρ

,

where φ(·) denotes the standard normal density function.

2.4.3.1 Decision problem

Having shown how to assign a utility level to a pair of initial state and admissible strategy, we
are now able to formulate Robinson’s choice problem. Given an initial state x0, his objective
is to find a strategy that maximizes the utility associated with it. I.e. formally Robinson has to
solve

max
h∈Π

Û(x0, h), given x0.

An admissible strategy h∗ ∈ Π is thereby called an optimal policy, if it satisfies

Û(x , h∗)≥ Û(x , h) f.a. x ∈ X , h ∈ Π.

Further, we write

V (x) := sup
h∈Π

Û(x , h)

for this consumption problem’s value function. Assuming the existence of both, a maximum
value, given some x ∈ X , and an optimal policy, we note that the recursive formulation (2.4.2)
of Robinson’s problem directly lends itself to the application of dynamic programming. Thus,
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from Bellman’s Principle of Optimality it follows that an optimal consumption policy has to
comply with

h∗(x) = argmax
y∈Y (x)

�
yρ + β(EP[V

α( f (x , y,ε))])
ρ
α

� 1
ρ

, ε∼ N(0,1), (2.4.3)

and that the value function must satisfy the intertemporal relation demanded by the (generalized)
Bellman equation

V (x) = max
y∈Y (x)

�
yρ + β(EP[V

α( f (x , y,ε))])
ρ
α

� 1
ρ

, ε∼ N(0,1). (2.4.4)

Necessary optimality conditions In order to actually find an optimal policy, we next use
(2.4.3) and (2.4.4) to derive conditions, which h∗ and the induced optimal dynamic have to
meet necessarily. We thereby assume the value function to be differentiable. First, an optimal
consumption policy must satisfy the Euler equation

0= EP

�
β

�
V α( f (x , h∗(x),ε))
EP[V α( f (x , h∗(x),ε))]

�1− ρα �h∗( f (x , h∗(x),ε))
h∗(x)

�ρ−1

·

· (ηeλx2+σε(ex2 xη1 + (1−δ)x1 − h∗(x))η−1 + (1−δ))− 1
�

.

(2.4.5)

We derive this result in appendix B.
Additionally, in order to clearly distinguish between what can be controlled by Robinson and

what is left to pure chance, we introduce further notation. Therefore, denote the deterministic
part of the system’s dynamic that is induced by following the optimal policy by

f ∗(x) :=
�

ex2 xη1 − h∗(x) + (1−δ)x1

λx2

�
.

Accordingly, we write

f (x , h∗(x),ε) = f ∗(x) +Σε,

with

Σ :=
�

0
σ

�

to denote the optimal dynamic.
Summing up, we have the following conditions, which have to be satisfied by an optimal

policy h∗ ∈ Π, the value function, and the resulting deterministic part f ∗ of the dynamic

V (x)−
h
h∗(x)ρ + β

�
EP[V ( f

∗
1 (x), f ∗2 (x) +σε)

α]
� ρ
α

i 1
ρ

= 0,

EP


β

�
V α( f ∗1 (x), f ∗2 (x) +σε)

EP[V α( f ∗1 (x), f ∗2 (x) +σε)]

�1− ρα �h∗( f ∗1 (x), f ∗2 (x) +σε)

h∗(x)

�ρ−1

·

· (ηe f ∗2 (x)+σε( f ∗1 (x))
η−1 + (1−δ))− 1

�
= 0,

f ∗1 (x)− ex2 xη1 + h∗(x)− (1−δ)x1 = 0,

f ∗2 (x)−λx2 = 0.



CHAPTER 2 APPLIED MACROECONOMIC ANALYSIS WITH EPSTEIN ZIN UTILITY 38

It is generally not possible to solve for the functions h∗, V, and f ∗ analytically. In the next
subsection, we therefore describe a popular method of finding approximations for these functions
from this system of equations. Note that neither uniqueness nor existence is ensured by the
above set of conditions. This would e.g. demand us to add a transversality condition. The
approach taken here, however, is more direct in that it imposes a stability restriction directly on
our approximate solution.31 Further note that the actual feasibility of the approximate solution
is typically checked ex post in the simulation results.

2.4.4 Perturbation
This subsection is intended to illustrate the application of the perturbation approach to EZ
environments. Now, due to the fact that the non-linear time aggregation in the EZ representation
translates itself directly into the generalized Bellman equation, the DSGE economy studied here
has to be slightly modified to match the class of models studied by Schmitt-Grohe and Uribe
(2004). In particular, by defining an auxiliary variable for Robinson’s expected evaluation of
continuation utility as of next period, an EZ economy can be fitted into their required structure.

Thus, the following subsection outlines the application of second order perturbation to an EZ
economy along the lines of Schmitt-Grohe and Uribe (2004). Thereby, it is detailed enough in
order to be self contained and to serve as a complement to the analysis of Caldara et al. (2012),
who document on the appropriateness of the perturbation approach to EZ economies.

2.4.4.1 Method

The method of perturbation relies on the approximation of the optimal policy h∗, the resulting
deterministic part of the dynamic f ∗ and the value function V by means of Taylor polynomials.
Thereby, the variance parameter σ in the dynamic f is understood as variable. To make the
dependence of the optimal policy, the induced deterministic part of the dynamic and the value
function from σ explicit, σ is considered as an additional argument of those functions. I.e. we
write

h∗(x ,σ), f ∗(x ,σ) and V (x ,σ).

The Taylor polynomials are thereby expanded around a deterministic fixpoint of the dynamic,
i.e. a point (x ,σ) = (xss, 0), with xss ∈ X satisfying

f ∗(xss, 0) = xss.

This point is called (deterministic) steady state. Now, a simulated solution of the state and
control variables along the computed Taylor approximations that results from perturbing the
control system from its steady state by allowing σ 6= 0 is appropriately called a perturbation.
For this example, we are computing second order approximations and are hence executing a
second order perturbation.

For feasibility, we thus assume h∗, f ∗ and V to be continuously differentiable in x and σ up to
second order. In order to be able to apply the Schmitt-Grohe and Uribe methodology, we further
define the auxiliary function

W (x ,σ) := EP

�
V ( f ∗1 (x ,σ), f ∗2 (x ,σ) +σε,σ)α

�
,

for the expectation of the value function to the power of α at next period’s random state.

31See the next subsection on its implementation in numerical work.
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Next, we use the necessary optimality conditions derived above to define the functions
Fi : X ×R→ R, i = 1, . . . , 5 by

F1(x ,σ) := V (x ,σ)−
�
h∗(x ,σ)ρ + β (W (x ,σ))

ρ
α

� 1
ρ

,

F2(x ,σ) := EP


β

�
V α( f ∗1 (x ,σ), f ∗2 (x) +σε,σ)

W (x ,σ)

�1− ρα �h∗( f ∗1 (x ,σ), f ∗2 (x ,σ) +σε,σ)

h∗(x ,σ)

�ρ−1

·

· (ηe f ∗2 (x)+σε f ∗1 (x)
η−1 + (1−δ))�− 1,

F3(x ,σ) :=W (x ,σ)−EP

�
V ( f ∗1 (x ,σ), f ∗2 (x ,σ) +σε,σ)α

�
,

F4(x ,σ) := f ∗1 (x ,σ)− ex2 xη1 − (1−δ)x1 + h∗(x ,σ),

F5(x ,σ) := f ∗2 (x ,σ)−ρx2.
(2.4.6)

We thus know that

Fi(x ,σ)≡ 0, for all i = 1, . . . , 5.

Evaluating Fi(xss, 0) = 0 for i = 1, . . . , 5 and imposing the above condition for a fixpoint then
yields

V (xss, 0) =
�

1
1− β

� 1
ρ

h(xss, 0),

β(ηexss,2 xη−1
ss,1 + 1−δ) = 1,

W (xss, 0)− V (xss, 0)α = 0,

xss,1 − exss,2 xηss,1 + h∗(xss, 0)− (1−δ)xss,1 = 0,

xss,2 −ρxss,2 = 0.

From the last equation it follows that

xss,2 = 0.

Hence, the second equation delivers Robinson’s steady state capital stock

xss,1 =
�

1− β(1−δ)
βη

� 1
η−1

.

The point of expansion for the Taylor polynomials therefore is (xss, 0) with

xss =

��
1−β(1−δ)

βη

� 1
η−1

0

�
.

Further, we use the remaining three equations to calculate Robinson’s steady state consumption

h∗(xss, 0) = xηss,1 −δxss,1,

the steady state value of the value function

V (xss, 0) =
�

1
1− β

� 1
ρ

h∗(xss, 0),
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plus the auxiliary function

W (xss, 0) = V (xss, 0)α.

In order to find the Taylor approximations of the optimal policy, the induced deterministic part of
the dynamic and the value function around the steady state, we have to compute the derivatives
of h∗, f ∗, V and W in (xss, 0) with respect to x1, x2 and σ at the steady state.

Now, from Fi(x ,σ) ≡ 0, i = 1, . . . , 5, it follows that all partial derivatives must be zero, too.
I.e. especially at the deterministic steady state it holds that

Fi

∂ x1
(xss, 0) = 0, i = 1, . . . , 5,

Fi

∂ x2
(xss, 0) = 0, i = 1, . . . , 5,

Fi

∂ σ
(xss, 0) = 0, i = 1, . . . , 5.

(2.4.7)

By plugging in the values for h∗(xss, 0), f ∗1 (xss, 0), f ∗2 (xss, 0), V (xss, 0) and W (xss, 0) derived
above, (2.4.7) is a system of 15 polynomial equations of at most second order in 15 unknowns,
namely the partial derivatives of h∗, f ∗1 , f ∗2 , V and W with respect to x1, x2 and σ at the steady
state. Solving this system of equations thus yields the sought for first derivatives. In order to be
able to pin down the polynomial coefficients uniquely, we additionally demand the dynamic to
be stable, or equivalently demand its Jacobian, with respect to x1, x2 and σ evaluated at the
steady state, to only have eigenvalues of modulus less than unity.

Next, to find the second order derivatives of h∗, f ∗1 , f ∗2 , V and W , we accordingly compute the
second order derivatives of all Fi, i = 1, . . . , 5, at the steady state with respect to x1, x2 and σ
and additionally plug in the already calculated values of the first order derivatives. This yields a
(now linear) system of equations in the unknown second order derivatives of h∗, f ∗1 , f ∗2 , V and
W with respect to x1, x2 and σ at the steady state. Its necessarily unique solution completes the
required computations for a second order perturbation.

2.4.4.2 Why at least second order?

In this subsection, we want to briefly summarize why it is sensible to at least perform second
order approximations of EZ economies. This is a consequence of the certainty equivalence
property of first order perturbations as proved in Schmitt-Grohe and Uribe (2004). It states that
the coefficients of a linear approximation are independent of the degree of uncertainty in the
economy. This is already problematic in general. Most prominently, the expectation of a linearly
perturbed variable turns out to equal its deterministic steady state value, entirely independent of
σ. Thus, in terms of artificial data generated by a linear approximation of our model, simulating
ergodic return time series from pseudorandom iidN(0,1) shocks will yield vanishing simulated
risk premia on average, independent of the assumed degree of risk aversion.

Moreover, as demonstrated by van Binsbergen et al. (2012), first order perturbation coefficients
are also independent of the risk aversion parameter α. Thus, generalizing a model towards the
EZ/KP class leads to identical results as with standard EU preferences (α= ρ) if both variants
feature the same EIS.32

Eventually, (relative) welfare cost measures of business cycle volatility are typically based on
“risky steady state” comparisons of the approximated value function, i.e. on

V (xss,σ).

Such evaluations thus also demand at least second order approximation.
32Note that while this renders the calibration of α ineffective, the EZ/KP representation (at least) still allows α to

be set independently of the EIS.
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2.4.4.3 Numerical example

In this subsection, we use an actual parametric example of our model’s second order perturbation
to demonstrate where the assumption of nonindifference towards the timing of uncertainty
resolution explicitly impacts applied work. Additionally, we begin with pointing at the different
ways through which the two parameters of primary interest, EIS and α, affect such second order
perturbations.

All figures in this subsection display three different parameterizations of Robinson’s attitude
towards the timing of uncertainty resolution. Thereby, green lines denote a scenario in which
Robinson prefers later resolution, i.e. EIS−1 > 1−α, red lines denote the indifference scenario
EIS−1 = 1−α, and black lines display an early resolution case EIS−1 < 1−α. Besides, we fix a
quarterly calibration β = 0.95,η= 0.27,λ= 0.9,σ = 0.0072,δ = 0.011.

Keyparameters First, figure 2.10 compares the respective effects of α and EIS on the computed
approximation of the optimal consumption policy h∗, displayed at the steady state value of
productivity as a function of capital only. The left graph results from the calibrations EIS =
0.5 with α ∈ {−4,−1,0.5} to calibrate early, indifference and late resolution preferences,
respectively. Similarly, the right graph displays the resulting approximation for α = −1 with
EIS ∈ {0.25, 0.5, 5}. It shows that while the risk aversion parameter only shifts the consumption

Figure 2.10: Key parameters (1/2)

policy, the EIS also exerts influence on its slope. This is generally true.33 Moreover, scaling
uncertainty via σ also only affects the policy’s ordinate intercept.

Figure 2.11 offers another perspective on each parameter’s impact on the solution displaying
the consumption policy’s response to a once only positive shock in ε of magnitude 1. The studied
scenarios are identical to the figure above. It shows how it is less the attitude towards uncer-
tainty resolution but much rather the EIS directly that impacts the response of macroeconomic
quantities. Note how the nature of the effect of EIS is evident in the right graph. The smaller
his EIS, the more Robinson strives for a smooth consumption path. Accordingly is a smaller EIS
(and therefore rather late resolution preferences for some fixed calibration of α) reflected in
larger persistence in the consumption’s response.34

Nonindi�erence Another crucial variable in empirical macroeconomics is the equity premium.
We finish this discussion with some remarks on its replicability. Therefore, note that Robinson’s

33See Schmitt-Grohe and Uribe (2004) and van Binsbergen et al. (2012) on this limited effect of α on second order
perturbations.

34Note the differences in the scenarios’ convergence levels, i.e. their risky steady state.
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Figure 2.11: Key parameters (2/2)

risky next period return on equity (RoE) is given by

RoE := ηeλx2+σε(ex2 xη1 + (1−δ)x1 − h∗(x))η−1 + (1−δ).
Consequently, Robinson’s Euler condition (2.4.5) has the interpretation of a Lucas (1978)
equation such that his stochastic discount factor (SDF) is

SDF := β

�
V α( f ∗1 (x ,σ), f ∗2 (x) +σε)

EP[V α( f ∗1 (x ,σ), f ∗2 (x) +σε)]

�1− ρα �h∗( f ∗1 (x ,σ), f ∗2 (x ,σ) +σε)

h∗(x)

�ρ−1

.

Accordingly, if there was a risk free asset available to Robinson, its next period return (r f ) would
have to satisfy

1= EP [SDF] r f .

Therefore, his expected premium for bearing equity risk

EP := EP

�
RoE− r f

�

would be of magnitude

EP = −r f Cov [SDF,RoE]

such that the covariance between SDF and RoE is found to be its key driver.
It is evident from the primitive perturbation system (2.4.6) that an assumed nonindifference

with respect to the timing of uncertainty resolution enters Robinson’s solution through the
SDF. Figure 2.12 therefore illustrates how different preference scenarios affect the SDF and
the covariance between SDF and RoE. Both its graphs are generated from a second order
perturbation at α = −1 and display the SDF (solid lines) and the RoE (dashed lines) in the three
parametric scenarios from above, i.e. EIS= {0.25, 0.5,5}.

The left graph displays impulse responses to an ε shock as above. It first again shows how
the convergence to respective risky steady state levels is slower for later resolution calibrations.
It secondly also shows a more pronounced countercycality of SDF and RoE indicating a larger
negative covariance. This is further confirmed by the right hand side graph. It explicitly plots
both SDF and RoE as functions in (possible realizations of) ε with capital and technology at
their respective deterministic steady state values. While the RoE is largely unaffected, the SDF
shows a stronger negative comovement for smaller EIS (later resolution). This shows how the
EZ representation offers applied macroeconomists a channel for the replication of the empirical
equity premium. One may impose a strong enough aversion to nonsmooth consumption without
having to set the risk aversion parameter unreasonably high.
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Figure 2.12: Nonindifference

2.5 Maple-Matlab toolbox
As outlined above, for perturbation it is necessary to find the derivatives of the functions that
constitute our model’s equilibrium, all evaluated at the steady state, up to the desired order of
the Taylor polynomials. As suggested by Judd (1996) in his introductory remarks, we delegate
such computation to a computer algebra system. This section provides some noteworthy details
about the associated files, which can be downloaded from the authors homepages.35

2.5.1 Overview
We provide a Maple-based toolbox for perturbation of DSGE models. The core mw-file has an
intuitive structure that fits a wide variety of model economies. The systems of equations that
determine the perturbation coefficients are derived analytically. Hence, in comparison to purely
numerical perturbation packages, our solution is more precise and importantly allows for an
intuitive and easy implementation of approximations up to any desired order.36 In fact, the
provided procedures already allow for third order perturbation but the code is straightforwardly
extended to higher orders.

The quadratic system of equations for the first order coefficients can be solved either through
a general (analytical or a numerical) Maple-internal nonlinear solver or using the generalized
Schur decomposition implemented in Matlab.37

Alongside, our toolbox features a number of test devices to check for the quality of the solution
and provides all necessary information about the solution in the form of txt-output. In order
for these files to be correctly stored, the user must create a folder named output in the same
directory where the core mw-file is located.

2.5.2 Brief documentation
Functionality The core mw-file requires the user to enter the set of equilibrium conditions that
defines the DSGE model under consideration. This is done conveniently using the worksheet’s
Math mode. Some variable x is entered with the suffix 1 if associated with the current period

35www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/heiberger_en.html or
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/ruf_en.html.

36Of course, the practicability of higher order perturbation is nevertheless restricted by computation time.
37This solution method makes use of the Matlab-link provided by Maple. Generally, the programs were run on

Maple 17 and Matlab 2013a.

www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/heiberger_en.html
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/ruf_en.html
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(x1) and with suffix 2 for next period (x2). The toolbox thereafter demands the user to
list the equation numbers (fktn), the endogenous states (xname), exogenous states (zname),
the control variables (uname), and the shocks (shocks). Static equations within the set of
equilibrium conditions that are easily solved for (e.g. definitional equations) can be listed as
auxiliary functions (hilfsf) alongside the associated auxiliary variables (hilfsvar) to facilitate
the nonlinear solving procedures. Next, the user is asked to enter the model’s calibration
(parameter) and finally its deterministic steady state solution (ss) in terms of parameter
names (not values). The remaining steps are automatized and briefly outlined in the following
paragraphs.

The toolbox’s core procedure is getlsg_fneu. Using the information entered as described
above, it solves for the Taylor polynomials coefficients up to third order (thrd) using the chosen
solution method for the first order system (mode), where mode= 1 selects the analytical solver,
mode = 4 the numerical solver, and mode = {2,3} respectively executes a generalized Schur
decomposition using the Maple-Matlab link. getlsg_fneu itself calls six subprocedures to be
sketched below.

First, transf transforms the conveniently entered equilibrium conditions into the perturbation
logic, i.e. control variables and next period’s states as functions of the current states and the
perturbation parameter, subject to the model’s shocks. Next, getss computes the deterministic
steady state and writes it into the steadystate.txt file.

The subsequent step depends on the chosen solution method. For mode = {1,4}, the solve
routine calls getgls. This subprocedure in turn calls glsys which generates the basic systems of
equations by differentiating the equilibrium conditions and calling ew to compute the expected
value of all equations. The latter is done analytically making use of the assumed (mutual)
independence and standard normality of the shocks. In particular, it iteratively factors the
equations as polynomials in the respective shocks and then multiplies the resulting coefficients
by these shocks’ moments which are determined by the double factorial formula. Thereafter,
the equations are returned at the calibrated parameter values. For mode = {2,3}, getmatrix
is called. This subprocedure again uses the system of equations generated by glsys but now
makes further use of its formal structure. In particular, it generates the matrix pencil A, B as in
Schmitt-Grohe and Uribe (2009) and writes it into the two respectively named txt files.

In the remaining steps, getlsg_fneu computes the sought for derivatives of the optimal
policy and dynamic by the chosen method and collects them in the arrays J =

�
J1 J2 J3

�
and

H =
�
H1 H2 H3

�
. The three elements of J are the Jacobians of the endogenous dynamic (J1),

the exogenous dynamic (J2), and the optimal policy (J3), while the three elements of H are
the associated cubes consisting of the respective Hessian matrices in the same order. These
Jacobians and Hessian cubes are finally written into accordingly named txt files. Note that in
the Schur-based method (mode= {2,3}), the uniqueness of the quadratic first order system’s
solution is attained by construction. For mode = {1, 4}, uniqueness is forced through additionally
imposing the dynamic’s Jacobian to only have eigenvalues within the unit circle.

Quality of solution In order to check and document the quality of the computed solution,
the toolbox features the following instruments. First, the deterministic steady state values are
inserted into the primitive equilibrium conditions and the equations numerical deviation from
0 is printed. Second, for all solution methods, getlsg_fneu checks the uniqueness of the first
order solution and aborts the computation with an error message in case of multiple equilibria.
Third, we also provide the maximum norms of the differences A− QT AZ T and B − QT BZ T ,
respectively, to check whether the computed matrices Q and Z actually constitute a Schur
decomposition. Fourth, the QZ decomposition can be executed in both orders, A, B (mode= 2)
and B, A (mode= 3), such that a cross check may support confidence in the solution. This, of
course, holds just as much for crosschecking over the other available solution methods.
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2.6 Conclusion
In this paper, we summarized the crucial elements of the EZ representation, demonstrated the
application of the Schmitt-Grohe and Uribe (2004) approach, and provide a flexible computer
algebra toolbox for its application. As an immediate implication for applied work, we find the
EIS to play a more prominent role than the risk aversion parameter α and (consequently) suspect
the late resolution case to be likely to give rise to higher equity premia.

In light of the latter results, we would like to close with two remarks. First, the incomplete
disentanglement of comparative risk aversion from EIS, which gives rise to nonindifference with
respect to resolution timing, might itself be undesirable.38 A more general representation in
which risk aversion and EIS are completely separated would not only provide more flexibility for
applied work but also help to clarify the roles played by each of these key aspects of preferences.39

Second, the parameter of atemporal consumption risk aversion might simply be an inadequate
measure of risk aversion in intertemporal decision problems.40

38Note that it is not only difficult to rationalize why preferences for later resolution generate larger premia, it is
even less evident how to correctly calibrate nonindifference.

39See Weil (1990), p. 33, for a conjecture on how to achieve further disentanglement. Note however, that there
might also be an “inherent inseparability” as suspected by Epstein and Zin (1989), p. 953.

40See Träger (2011) and Swanson (2012) for related theoretical work.



Appendix

A Consistency of induced trees
We want to prove by induction that the induced trees are indeed consistent. Therefore, we
additionally introduce further notation. Define for any τ ∈ N the solution of the state process
{X x0,h,τ

t }∞t=0 and the control process {Y x0,h,τ
t }∞t=0 under the initial state x0 and the admissible

strategy h that arises if we shift the stochastic process {εt}∞t=1 by τ periods, i.e.

X x0,h,τ
0 := x0

Y x0,h,τ
t := h(X x0,h,τ

t ), f.a. t ∈ N,

X x0,h,τ
t+1 := f (X x0,h,τ

t , Y x0,h,τ
t ,ετ+t+1), f.a. t ∈ N.

Note that because of the iid assumption of the stochastic process {εt}∞t=0, the probability distri-
bution for this process is the same as for the non-shifted solution. Yet, the specific realizations
for some arbitrary ω ∈ Ω may differ.

Now, starting with t = 1, we–according to subsection 2.2.3.2–find for all B ∈B �
R∞+

�

f1(m
x0,h
2 )(B) =

∫

R+×M (R∞+ )
m̃1

��
y ∈ R∞+ | (c̃1, y) ∈ B

	�
dmx0,h

2 (c̃1, m̃1)

=

∫

R+×M (R∞+ )
m̃1

��
y ∈ R∞+ | (c̃1, y) ∈ B

	�
dP ◦

�
ι1(X

x0,h
1 (·), h)

�−1
(c̃1, m̃1)

=

∫

Ω

m
X

x0,h
1 (ω̃),h

1

�§
y ∈ R∞+ | (Y

X
x0,h
1 (ω̃),h

0 , y) ∈ B
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Thereby, the third last equality makes use of the above definition of a solution that is shifted by
τ = 1 steps. The second last equality then follows from the fact that in this shifted solution there
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is no ε1 such that it is stochastically independent of the condition. Thereby, the expressions in
the last two lines denote the conditional probability for the respective random sequence given
the event X x0,h

1 = X x0,h
1 (ω̂). Because of the shifting, the random sequences in the last two lines

are identical. The base case now follows from the properties of conditional expectations. To see
this, we define
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Thus, the induction hypothesis (IH) reads
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t ,

for some t ∈ N. Recalling the constructed ft and gt from subsection 2.2.3.2, the inductive step
follows for all t ≥ 1 and B ∈Bt , i.e.
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This shows that the sequence (ι1(x0, h), ι2(x0, h), . . .) is consistent and therefore lies in D.
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B Euler equation
Differentiating the bracketed right hand side expression of (2.4.3) with respect to y, we find
the necessary condition for a maximum
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Introducing the abbreviation
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Further, by the envelope theorem, we find the derivative of the value function with respect to x1

from (2.4.4)
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From (B.1) we see
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Now, iterating this equation forward by one period and plugging it into (B.1) yields
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Chapter 3

Epstein-Zin Utility, Asset Prices, and the Business
Cycle Revisited
— Christopher Heiberger and Halvor Ruf —

3.1 Introduction
The financial and economic crisis of 2007-2009 has drawn attention to the interplay between
asset markets and goods and factor markets. In macroeconomics, this interplay is considered
within the framework of dynamic stochastic general equilibrium (DSGE) models, which have
grown out of the neoclassical (stochastic) growth model. To be useful for this purpose DSGE
models have to be consistent with empirical findings that characterize these markets.

Since the work of Mehra and Prescott (1985) and the bulk of literature spurred by this paper1

it is well known that the stochastic growth model is quantitatively not able to replicate the equity
premia that have been observed in 20th century data. For instance, Mehra and Prescott (2003),
updating their calculations from Mehra and Prescott (1985) for the U.S., report an average
equity premium (excess of the return on a stock market index over the return of a relatively
riskless security) of 6.92% over the period 1989-2000. The standard stochastic growth model,
however, predicts an equity premium of only 0.02% according to Jermann (1998).

Jermann (1998) amends the standard stochastic growth model in two directions. Drawing
on work by Constantinides (1990) and Campbell and Cochrane (1999) he introduces habits,
which increase the household’s desire to smooth consumption. Assets with procyclical returns,
therefore, must pay a higher return to be willingly held by investors. In a production economy,
however, this feature does not suffice to increase the equity premium. In addition, it must
be costly for the household to smooth consumption. Jermann (1998) accomplishes this with
adjustment costs of capital. His model, with these two components combined, is able to produce
an equity premium of about 6.18%. However, this feature of the model breaks down if labor
supply is endogenous because the household can smooth his consumption by reducing working
hours in response to positive technology shocks. The stochastic growth model with habits,
adjustment costs, and endogenous labor supply, thus, has two unattractive features: it is unable
to replicate an empirically plausible equity premium and it predicts negative correlations between
hours and output and between hours and real wages, both contrary to the correlations found in
the data.

Later work therefore has considered frictions in the allocation of labor. Boldrin et al. (2001)
consider a two sector model in which the representative household is committed to his choice of
labor supply to the two sectors after the productivity shock has been revealed. This model is
able to reproduce the equity premium and the positive correlation between hours and output

1See, among others, the surveys of Abel (1990), Kocherlakota (1996), Campbell (2003), Mehra and Prescott
(2003), and Cochrane (2008).
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but still fails to predict a positive correlation between hours and the real wage. Uhlig (2007)
combines habits in consumption and leisure with a sticky real wage and successfully reproduces
the empirically observed equity premium as well as the correlations between output and hours
and hours and the real wage.

The work considered so far has relied on standard preferences over consumption and leisure
where the non-time additivity arises from the specification of habits. The parameters which
determine the importance of the habit and its evolution over time are then chosen to match
serval empirical targets, as e.g., the equity premium or the risk free rate. The class of generalized
recursive preferences introduced by Epstein and Zin (1989) (EZ) and Weil (1989) has received
attention mainly in studies of the equity premium puzzle within the context of endowment
economies. EZ preferences allow to separate the parameter that captures the agent’s risk
aversion from the parameter that determines his willingness to substitute consumption between
periods. While many researcher consider a rather small number close to unity to be a plausible
parameterization for the former, there is less restricting evidence for the value of the latter.
Therefore, this class of preferences provides an additional degree of freedom to trace empirical
regularities. As shown by Weil (1989), however, in order to get both an empirically plausible
equity premium of 5.72% and a risk-free rate of 0.85% one must assume a coefficient of relative
risk aversion of 45 and an intertemporal elasticity of substitution of 0.10. Reducing the former
to the value of unity, the equity premium shrinks to 0.45% while the risk free rate jumps above
20%. Weil (1989) receives this results from a model of an endowment economy in which the
process of dividend and consumption growth follows a two-state Markov chain calibrated to the
U.S. experience. Thus, his model neglects the interplay between savings, capital accumulation,
and the return to capital.

Kaltenbrunner and Lochstoer (2010) consider EZ preferences in a production economy with
fixed labor supply and adjustment costs of capital. Their model, thus, deviates from the Jermann
(1998) model just in one respect. Roughly speaking, they substitute one free parameter (the
habit parameter) for one other (the intertemporal substitution parameter). Their model is able to
trace four targets: the volatility of consumption growth, the relative volatilities of consumption
and output growth, the equity Sharpe ratio (i.e. the ratio of the equity premium to the standard
deviation of the equity return), and the level of the risk-free rate. We follow their approach with
regard to real business cycle models with endogenous labor, for the reason mentioned above:
useful models should be able to replicate facts from three kinds of markets: asset markets,
output, and factor markets, among which the labor market is the most important one. In this
respect our study is in line with Heer and Maußner (2013) who consider the ability of the
Jermann (1998), the Boldrin et al. (2001), and the Uhlig (2007) model (among others) to
replicate plausible asset market and business cycle facts.

Our study focuses on seven empirical targets: the equity premium, the risk free rate, the
standard deviations of the cyclical components of investment, hours, and the real wage relative
to the standard deviation of output as well as the cross-correlations of output with hours and
of hours and the real wage. The models are parameterized to have up to six free parameters:
the discount factor β ∈ (0,1), the intertemporal elasticity of substitution ψ> 0, the elasticity
of Tobin’s q with respect to the investment-capital ratio κ ≥ 0 (a measure of the importance
of adjustment costs of capital), a habit parameter χ ∈ [0,1) and a parameter λ ∈ [0,1] that
reflects the speed of adjustment of the habit to actual consumption, and a parameter µ ∈ [0, 1]
that measures the degree of real wage stickiness.

Tables 3.1 and 3.2 summarize our results. The model labeled M0 is the Jermann (1998) model
without the consumption habit, which has just three free parameters: β , ψ, and κ which were
calibrated to exactly match the equity premium EP, the risk-free rate r f , and the relative standard
deviation of investment si/sy . The model M1 is the Jermann (1998) model with endogenous
labor, without a habit (a), with an exogenous habit equal to previous consumption (b), and with
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Table 3.1: Summary of Results

EP r f sy si/sy sn/sy sw/sy ryn rwn Score

Data
5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M0: Baseline
5.18 2.49 0.89 2.28 0

M1: No labor market frictions
a 5.19 2.55 1.01 2.27 0.16 0.84 1.00 1.00 1.23
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40

M2: Sticky real wages
a 5.13 2.50 1.23 2.18 0.47 0.64 0.87 0.63 0.58
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.17 2.50 1.03 2.35 0.43 0.84 0.55 0.15 0.16

M3: Predetermined labor supply
a 5.15 2.49 0.96 2.30 0.14 0.90 0.71 0.62 0.57
b 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43
c 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43

M4: Sectoral frictions in the allocation of labor
a 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
b 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
c 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84

a habit slowly adapting to previous consumption (c). The score of the model is defined as the
unweighed sum of squares of the differences of the model implied moments and our empirical
targets. The further models considered are a model with sticky wages as in Uhlig (2007), M2, a
model with predetermined labor supply as in Boldrin et al. (2001), and a two sector model with
adjustment costs as in Heer and Maußner (2013).

The model that is closest to the targets is the sticky wage model with a slowly adjusting
consumption habit (M2.c) with a score of 0.16. Since this is the model with the most free
parameters, this should not be too surprising. Except for this model, labor market frictions do
not improve the fit to the data. The model M1.b with a small consumption habit and a very
small intertemporal elasticity of substitution (and thus with four free parameters) performs at
least as good as the other models. Note also that the sluggish adjustment of the habit does not
improve the performance of the respective models. When we compare the simulated statistics in
Table 3.1 to those reported in Table 1 of Heer and Maußner (2013) the success of EZ preferences
over standard ones becomes even more apparent. Their benchmark model with endogenous
labor supply has a score of 26.43 (excluding the deviation of the risk free rate). It fails in several
dimensions: it implies an equity premium of 0.52% and strong negative correlations between
output and hours (-0.68) and between hours and the real wage (-0.96).

The remainder of our paper consists of five sections. Section 3.2 lays out those parts of our
framework that are common to all models. In particular, section 3.2.1 studies the production side
and the decision problem of the firm, while section 3.2.2 develops the model of the household
with EZ preferences and derives the stochastic discount factor applied to evaluate returns. The
remaining subsections consider the equilibrium dynamics, the deterministic steady state and
the various forms of habit formation. We discuss the employed solution procedure as well as
the models’ common calibration and introduce our empirical targets in section 3.3. Section 3.4
considers the various model variants and their respective results, while section 3.5 discusses
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Table 3.2: Free Parameters

β ψ κ χ λ µ

M0: Benchmark
0.9874 0.04265 7.05 - - -

M1: No labor market frictions
a 0.9873 0.00635 6.3 - -
b 0.988 0.00715 6.25 0.3 - -
c 0.988 0.00715 6.25 0.3 0 -

M2: Sticky wages
a 0.9875 0.00588 5.25 - - 0.5
b 0.988 0.00715 6.25 0.3 - 0
c 0.988 0.007775 5.4 0.49 0.8 0.65

M3: Predetermined labor supply
a 0.987485 0.00643 6.5 - - -
b 0.98872 0.0073 5.3 0.53 - -
c 0.98872 0.0073 5.3 0.53 0 -

M4: Sectoral frictions in the allocation of labor
a 0.9884 0.0086 3.0625 - - -
b 0.9884 0.0086 3.0625 0 - -
c 0.9884 0.0086 3.0625 0 0 -

these findings in summary. Section 3.6 concludes the paper. The accompanying appendix
collects the more tedious derivations and also a complete list of equilibrium conditions for every
considered model (class).

3.2 Analytical framework
This section is primarily concerned with the analytical fundament of the ensuing analysis, which
is the description of the behavior of our model economies’ respective agents.

3.2.1 Household
Throughout this paper, we will assume the existence of an infinitely-lived representative house-
hold with preferences represented by a recursive utility function of EZ’s Kreps/Porteus class.2

We employ this representation because it allows us to address the household’s attitude towards
intertemporal consumption substitution and towards the uncertainty associated with future
lifetime utility somewhat separately. This considerably helps us in replicating our return targets.3

Yet, the additional degree of freedom also comes at a cost. It namely most prominently implies
a preference for either earlier or later resolution of the uncertainty regarding consumption (or,
more generally, the composite good) that may be tricky to justify.4 We will get back to this
issue at the end of the paper. The household’s infinite planning horizon can be motivated by
intergenerational altruism.

2Cf. Epstein and Zin (1989), p. 947 et. seq.
3In fact, the development of more flexible utility representations was, to a certain degree, driven by the standard

framework’s bad empirical performance mentioned above, cf. Epstein and Zin (1989), p. 938.
4Cf. Epstein et al. (2014).
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Essentially, the representative household maximizes his lifetime utility as of period τ, denoted
by Uτ, stemming from consumption, ct , t ≥ τ, and leisure, 1− nt , t ≥ τ, yet to come, where
n denotes labor normalized to a maximum level of 1. Thereby, Uτ is stated as a recursive
two–period utility that aggregates today’s within period utility from cτ and 1− nτ, denoted by
u(cτ, nτ), with a certainty equivalent of random future lifetime utility depending on tomorrow’s
state.5

Thereby, we assume the certainty equivalent, µ, of a risk averse expected utility maximizer
with a constant rate of relative risk aversion to serve as our household’s uncertainty aggregation
rule for lotteries over random future lifetime utility, i.e.

µτ :=
�
Eτ[U1−γ

τ+1]
� 1

1−γ , γ ∈ R>0 \ {1}.
The time aggregation of these two components, resulting in the lifetime utility as of period τ, is
of the CES form

W (u,µ) = [(1− β)u1− 1
ψ + βµ1− 1

ψ ]
1

1− 1
ψ , ψ ∈ R>0 \ {1}, β ∈ (0,1) .

Summing up, we are led to the following recursive formulation of the representative household’s
preferences over intertemporal consumption lotteries

Uτ =W (u(cτ, nτ),µτ) = [(1− β)u(cτ, nτ)
1− 1

ψ + β(Eτ[U1−γ
τ+1])

1− 1
ψ

1−γ ]
1

1− 1
ψ .

Note that the change in notation from the original treatment in Epstein and Zin (1989) e.g.
allows to directly parameterize the EIS and CRRA by ψ and γ, respectively. Following Caldara
et al. (2012), we will additionally introduce

θ :=
1− γ
1− 1

ψ

as a parameter measuring the relative deviation from the “classic” case, where the coefficient of
relative risk aversion coincides with the reciprocal of the intertemporal elasticity of substitution.
We thus write

W (u,µ) = [(1− β)u 1−γ
θ + βµ

1−γ
θ ]

θ
1−γ

and

Uτ = [(1− β)u(cτ, nτ)
1−γ
θ + β(Eτ[U1−γ

τ+1])
1
θ ]

θ
1−γ . (3.2.1)

In the ensuing analysis, we consider different specifications of the composite good u. The core
difference between the corresponding models will be their implied stochastic discount factor.
For the sake of exposition, we thus begin with the household’s necessary optimality conditions
for a general composite good. In the models to come, the respective decision problem basically6

is

max Uτ =W (u(cτ, nτ), (EτU1−γ
τ+1)

1
1−γ )

s.t. ct ≤ wt nt + dtst − vt(st+1 − st),
ct ≥ 0, 0≤ nt ≤ 1, for all t ≥ τ,

given sτ,

(3.2.2)

5More precisely, any period’s composite good is an aggregation of its consumption and leisure and the within
period utility mapping of this composite good is the identity mapping. We may thus, for the sake of intuition,
switch between the two notions of within period utility and the composite good.

6Although the decision problems of the more complicated models differ from this basic framework, their treatment
closely parallels the one to be outlined. See the respective sections on the necessary changes.
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where ct , wt , nt , dt , st , and vt denote period t ’s consumption, wage, working hours, dividend
payments, the number of shares held by the household, and the share price, respectively.

We can summarize the necessary conditions for an interior optimum to the representative
household’s problem as follows.7 For all t ≥ τ it has to hold that

Vt = [(1− β)u(ct , nt)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1
θ ]

θ
1−γ , (3.2.3)

Et

�
mt+1,t

dt+1 + vt+1

vt
− 1

�
= 0, (3.2.4)

∂ u
∂ c
(ct , nt)wt = −

∂ u
∂ n
(ct , nt), (3.2.5)

ct = wt nt + dtst − vt(st+1 − st), (3.2.6)

where Vt denotes the problem’s period t value function and

mt+1,t := β

�
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t+1

Et V
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t+1
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u(ct , nt)

� 1−γ
θ −1 ∂ u
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∂ u
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(3.2.7)

is the household’s stochastic discount factor. It reflects his marginal lifetime utility evaluation of
the implications of setting aside vt units of the consumption good in period t in order to receive
the uncertain reward of dt+1 + vt+1 consumption units next period. Note how

�
V 1−γ

t+1

Et V
1−γ
t+1

�1− 1
θ

=


 Vt+1�
Et V

1−γ
t+1

� 1
1−γ




1
ψ−γ

=
�

Vt+1

µt

� 1
ψ−γ

makes explicit the effect of timing preferences on the household’s asset valuation, especially how
the standard discount factor emerges from the classic consequentialist indifference assumption
1
ψ = γ.8

3.2.2 Firm
Next, we accordingly assume the existence of a representative firm. In period t it produces the
amount yt of the final good employing the households’ labor force and capital kt via a constant
returns to scale Cobb-Douglas technology

yt = ezt n1−α
t kαt , α ∈ (0, 1),

with α determining the factors’ output elasticities. The firm’s period t total factor productivity
evolves randomly with zt . The latter is modeled as a stationary first order autoregressive process,
i.e.

zt+1 = ρzt +σεt+1, εt ∼ iidN(0,1), |ρ|< 1. (3.2.8)

Hence, εt can be interpreted as a technology shock.
Capital is owned and produced by the firm whose capital stock evolves as

kt+1 − (1−δ)kt = Φ
�

it

kt

�
kt , (3.2.9)

7A detailed derivation of these conditions can be found in appendix A.
8Compare the discussion on the discounting implications of nonindifference towards the timing of uncertainty

resolution in Heiberger and Ruf (2014a).
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where δ measures depreciation. Φ is a concave function introducing capital adjustment costs in
the form employed by Jermann (1998).9 We define

Φ(x) :=
b1

1−κ x1−κ + b2, κ > 1, b1 > 0. (3.2.10)

In order for equation (3.2.9) to be well-defined, we therefore additionally demand it > 0 and
kt > 0 for all t ≥ τ. While κ controls the speed of investment, the parameters b1 and b2 are
chosen in order to render the steady state unaffected by adjustment costs.10 The concavity of
Φ(·) implies capital adjustment costs in that it both limits the growth rate of capital and makes
abrupt changes in the capital stock more investment intensive. More specifically, by rearranging
(3.2.9),

kt+1 =
�

1−δ+Φ
�

it

kt

��
kt ,

we find the function Φ(·) to model the part of the capital stock’s growth rate controlled through
investment effort. With larger values of κ, positive deviations from it to δkt have a decreasing,
less than proportional effect on the capital stock while the effect of negative deviations is
increasing and more than proportional. Hence, the firm’s management has an incentive to avoid
large deviations from it to δkt . To put it another way, investment variability decreases in κ.
Eventually note that κ > 1 implies that Φ( it

kt
) is bound above by b2 but falls without any bound

if investment approaches 0 and that the case of no adjustment costs, i.e. κ = 0, makes the
“standard” specification of Φ= id emerge.

Next, since capital is owned by the firm, period t ’s profit amounts to revenue less labor
costs, yt −wt nt .

11 The firm’s owners—i.e. households—participate in these profits via dividend
payments, dt per share. Investment in the capital stock is financed through profits beyond
dividend payments plus the issuance of new shares

it = yt −wt nt − dtst + vt(st+1 − st). (3.2.11)

Eventually, period t ’s cash flow c ft is defined as profits less investment expenditures, both in t,

c ft := yt −wt nt − it .

Using this definition, the financing equation (3.2.11) can be equivalently stated as

dtst − vt(st+1 − st) = c ft . (3.2.12)

Now, next to its dividend and stock policy, the firm’s management decides over capital
investment, its next period capital stock and its demand for labor. It has to balance the tradeoff
between current profits and future capital resources knowing that its investment funding depends
on the share price process. The management is thus not statically maximizing profits or cashflows
period by period but rather maximizing its firm value as of t, denoted by f vt . The latter is
classically defined as the firm’s current period cash flow plus its ex dividend market capitalization,
i.e.

f vt := c ft + vtst+1.

Next, the shareholders’ infinite scope requires us to impose an additional constraint. It demands
that, from period τ on, their appreciation of any market capitalization in infinite future vanishes.

9Following Hayashi (1982), we interpret Φ as an “installation function” for it describes adjustment costs by means
of capital accumulation rather than by means of a negative summand in the firm’s definition of profit.

10Note that Φ could also be defined for κ ∈ R≥0 \ {1}. See later on empirical evidence against κ≤ 1 and on more
details about b1, b2.

11Revenue equals output because we assume that firms never store any of their output and take yt as numeraire.
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I.e. the growth rate of the firm’s market capitalization has to be capped by the household’s
discounting behavior,

lim
t→∞Eτ

�
mt,τvtst+1

�
= 0, (3.2.13)

where mt,τ := mτ+1,τ · . . . ·mt,t−1 for t ≥ τ+ 1 with mτ,τ ≡ 1 is the stochastic discount factor
from period t to τ. Hence, following Altug and Labadie (2008), p. 265, repeatedly using (3.2.4),
(3.2.12) and (3.2.13) we find

vτsτ+1 = Eτ
�
mτ+1,τ(dτ+1 + vτ+1)sτ+1

�
= Eτ

�
mτ+1,τ (dτ+1sτ+1 − vτ+1(sτ+2 − sτ+1) + vτ+1sτ+2)

�

= Eτ
�
mτ+1,τc fτ+1 +mτ+1,τvτ+1sτ+2

�
= . . .= Eτ

� ∞∑
t=τ+1

mt,τc ft

�
,

(3.2.14)

so that the firm value as of period τ is the expected present value of its cash flows to come,

f vτ = Eτ
�∞∑

t=τ

mt,τc ft

�
.

In period τ, the firm’s management has to choose the amount of working hours employed,
the investment expenditures and next period’s capital stock, while kτ is given. In other words,
the maximization problem of the representative firm is

max Eτ
�∞∑

t=τ

mt,τ(e
zt n1−α

t kαt −wt nt − it)

�

s.t. kt+1 = (1−δ)kt +Φ
�

it

kt

�
kt ,

kt+1 > 0, it > 0, 0≤ nt ≤ 1, for all t ≥ τ,

given kτ > 0.

(3.2.15)

Note that we do not explicitly consider the firm’s financing in the statement of its maximization
problem. To see why, note that after having determined the optimal level of investment, next
period’s capital stock and labor demand, for the firm it is always possible to find a respective
financing that satisfies (3.2.11). To see this, note that given optimal it , kt+1 and nt the firm’s
cash flow c ft = ezt n1−α

t kαt −wt nt − it is determined. The constraint (3.2.11) then is satisfied for
any dt and st+1, which meet

dtst − vt(st+1 − st) = c ft , t ≥ τ,

where by iterating equation (3.2.4)

vt = Et[mt+1,t(dt+1 + vt+1)] = Et

�
mt+1,t dt+1 +mt+1,t vt+1)

�
=

= Et

�
mt+1,t dt+1 +mt+1,tEt+1[mt+2,t+1(dt+2 + vt+2)]

�
= . . .= Et

�∞∑
s=1

mt+s,t dt+s

�
, t ≥ τ,

if we additionally assume lims→∞Et[mt+s,t vt+s] = 0. In general, however, the resulting st+1, dt

and vt are not uniquely determined without imposing a particular dividend policy for the firm.
Differentiating with respect to nt , it and kt+1 and assuming an interior solution yields the first

order conditions for the firm’s maximization problem. First,

wt = (1−α)ezt n−αt kαt for all t ≥ τ,
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i.e. wages have to equal the marginal product of labor.12 Second,

qt =
1

Φ′
�

it
kt

� for all t ≥ τ,

where qt is period t ’s Lagrange multiplier for the capital accumulation constraint (3.2.9) divided
by mt,τ. Third, the Euler equation

qt = Et

�
mt+1,t

�
αezt+1 n1−α

t+1 kα−1
t+1 −

it+1

kt+1
+ qt+1

�
1−δ+Φ

�
it+1

kt+1

����

must hold for all t ≥ τ.
Summing up, the list of optimality conditions for an interior solution to the firm’s problem

are for all t ≥ τ,

wt = (1−α)ezt n−αt kαt , (3.2.16)

qt =
1

Φ′
�

it
kt

� , (3.2.17)

qt = Et

�
mt+1,t

�
αezt+1 n1−α

t+1 kα−1
t+1 −

it+1

kt+1
+ qt+1

�
1−δ+Φ

�
it+1

kt+1

����
, (3.2.18)

kt+1 = (1−δ)kt +Φ
�

it

kt

�
kt , (3.2.19)

it = yt −wt nt − dtst + vt(st+1 − st), (3.2.20)

yt = ezt kαt n1−α
t . (3.2.21)

We add a first (informal) remark on q. Since the price of the investment good is 1 and
additional investment in period τ increases kτ+1 by Φ′

�
iτ
kτ

�
, we find additional kτ+1 to have a

price of
�
Φ′
�

iτ
kτ

��−1
. Next, using the envelope theorem, in τ+ 1, the increase of the then given

state kτ+1 increases the maximum firm value as of period τ+ 1 by

αezτ+1 n1−α
τ+1kα−1

τ+1 −
iτ+1

kτ+1
+ qτ+1

�
1−δ+Φ

�
iτ+1

kτ+1

��
,

all variables evaluated at the optimum. By (3.2.18) we thus find qτ to measure the expected
discounted change in period τ’s maximum firm value induced by an exogenous increase in the
capital stock at the end of τ. Hence, equation (3.2.17) states that, in an optimum, the value of
a unit of capital to the firm has to be equal to its price.13

3.2.3 General equilibrium
In a general equilibrium, all markets in the model economy are cleared simultaneously and
the representative household as well as the representative firm mutually act optimally. In

12Note that this will imply profits to be positive in equilibrium due to the assumed linear homogeneity of production
by Euler’s Theorem, because both capital and its marginal product are positive for all t given zt . Precisely,

kt
∂ yt

∂ kt
= αyt > 0, for all t.

13Hayashi (1982) rigorously develops this crucial role of the capital accumulation constraint’s shadow price in
economies with installation costs.
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anticipation of the ensuing general equilibrium analysis, we have already denoted demand
and supply variables identically. Imposing these identities on the agents’ respective optimality
conditions therefore already ensures a cleared labor market. Additionally, the goods market has
to be cleared, i.e.

yt = ct + it .

This equation together with (3.2.3)-(3.2.6) and (3.2.16)-(3.2.21) define a general equilibrium
in period t.

As mentioned above, the values for st+1, dt and vt are not uniquely determined in equilibrium
without assuming the firm to follow a particular dividend policy. Note however, that it follows
from equations (3.2.6) and (3.2.20), that the goods market clearing condition is already necessary
and sufficient for the stock market to clear, too. Hence, we can ignore (3.2.4), (3.2.6) and
(3.2.20) without any loss, if we are not interested in st+1, dt and vt .

To sum up, we list our fundamental equilibrium conditions: For all t ≥ τ it must hold that

Vt − [(1− β)u(ct , nt)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1
θ ]

θ
1−γ = 0, (3.2.22)

∂ u
∂ c
(ct , nt)wt = −

∂ u
∂ n
(ct , nt), (3.2.23)

wt − (1−α)ezt n−αt kαt = 0, (3.2.24)

qt −
1

Φ′
�

it
kt

� = 0, (3.2.25)

qt −Et

�
mt+1,t

�
αezt+1 n1−α

t+1 kα−1
t+1 −

it+1

kt+1
+ qt+1

�
1−δ+Φ

�
it+1

kt+1

����
= 0, (3.2.26)

kt+1 − (1−δ)kt −Φ
�

it

kt

�
kt = 0, (3.2.27)

yt − ezt kαt n1−α
t = 0, (3.2.28)

yt − ct − it = 0, (3.2.29)

where the sequence {zt} follows (3.2.8) and the stochastic discount factor is determined by
(3.2.7).

3.2.4 Steady state
We next characterize the model’s deterministic steady state, i.e. the solution with

σ = 0 and x t = x t+1 =: xss for all t,

where x t :=
�
kt+1 zt Vt ct nt wt yt it qt

�T
. First, we see that this implies zss = 0.

Second, using (3.2.28) and (3.2.24) we find

yss = kαssn
1−α
ss and wss = (1−α)

yss

nss
.

Equations (3.2.27) and (3.2.25) further yield

δkss = Φ
�

iss
kss

�
kss and qss =

1

Φ′
�

iss
kss

� .



CHAPTER 3 EPSTEIN-ZIN UTILITY, ASSET PRICES, AND THE BUSINESS CYCLE REVISITED 59

Next, as mentioned above, we do not want adjustment costs to play a role in the steady state.
Thus, we have to make sure that our parametric specification of Φ(·) makes

iss = δkss and qss = 1

emerge. This is achieved by demanding

Φ(δ) = δ and Φ′(δ) = 1
(3.2.10)⇔ b1

1−κδ
1−κ + b2 = δ and b1δ

−κ = 1,

which is satisfied for

b1 = δ
κ

and thus

b2 = δ
�

1− 1
1−κ

�
= −δ κ

1− κ .

Additionally, one might want the adjustment cost function Φ(·) to be positive.14 This is
equivalent to demanding a period’s capital stock never to fall short its last period’s value less
depreciation. For that to be the case, the investment-to-capital ratio has to always satisfy the
condition

it

kt
> κ

1
1−κδ,

i.e. it must always exceed κ
1

1−κ times its steady state value.15

For the value function (3.2.22) we find

Vss = u(css, nss)

and, via the goods market equilibrium condition,

css = yss − iss.

We can now express all variables’ steady state values in terms of kss and nss. While the latter is
generally set to some specific level, kss is eventually determined via the model’s Euler equation
(3.2.26)

kss =
�

1− β(1−δ)
αβ

� 1
α−1

nss.

14Cf. Jermann (1998), p. 260, who actually lists positivity as a defining property of Φ.
15Hence, if positivity is demanded, it is necessary to either impose this condition directly or to check for it in the

simulation results. Note that for the factor κ
1

1−κ = e
lnκ
1−κ , where κ > 1, we find

lnκ
1− κ = −

lnκ− ln1
κ− 1

→
κ↓1
− ln′(1) = −1 and

lnκ
1−κ →

κ→∞ 0

and hence the limits

lim
κ↓1
κ

1
1−κ = e−1 and lim

κ→∞κ
1

1−κ = 1,

demonstrating the implications of different parameterizations with respect to the hazard of generating simulation
results that violate this restriction.
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3.2.5 Composite good aggregation
This subsection introduces the nontrivial variations of the composite good (bundle) considered
in this paper in increasing order of generality. Economic intuition and a brief discussion of their
respective implications for the interpretation of our key parameters, ψ and γ, are provided.

Just as the real business cycle phenomenon and also fundamental asset prices can be viewed
as a consequence of very few core mechanisms of economic activity, the models considered here
generate corresponding fluctuations and return series mainly through technology shocks and
the induced intertemporal substitution behavior of households. The shock variability and the
EIS are thus recognized as the pivotal parameters in that respect.

While our framework leaves no room to work on σ, the chosen EZ specification of lifetime
utility, however, allows for a rather liberal parameterization of ψ as it loosens the strict en-
tanglement of EIS and RRA. Hence, we are e.g. able to make the household as averse to a
non-smooth composite good path as is needed to reach our targeted equity premium. Yet, we
would rather want to work on the household’s consumption behavior more directly for we also
want to separately target a particular labor variability found in the data.

Primarily for this purpose, we will additionally consider habit formation solely in consumption.
Precisely, after analyzing the model with a classical composite good aggregation, we will
additionally allow for external habits in the sense of Campbell and Cochrane (1999). The
external habit process thereby is either standard or also allows for slowly adjusting consumption
habits as in Uhlig (2007).

3.2.5.1 MX.a: No habits

First, we will consider models using the linearly homogenous Cobb–Douglas aggregator

u(ct , nt) := cνt (1− nt)
1−ν, ν ∈ (0, 1),

where ν controls the relative weight of consumption and leisure in the composite good, i.e. in
the within period utility. In particular, we may interpret the case ν ≥ (≤)1

2 as consumption
having a larger (smaller) impact than leisure on the composite good.

It thus becomes necessary to distinguish the household’s attitude towards intertemporal
substitution of consumption from his attitude towards intertemporally substituting the composite
good. While the latter is determined byψ, the former must also take ct ’s “importance parameter”
ν into account. In the present case e.g., the computation reads ψc := 1

1−ν(1− 1
ψ )

. Hence, when we

speak of the EIS, we relate to the notion of substituting the composite good. By means of ν, this,
however, can be directly translated into a statement about consumption substitution. Precisely,
as ψ increases c.p., so does ψc. Further, the chosen composite good aggregation analogously
yields ψ(1−n) := 1

1
ψ+ν(1− 1

ψ )
.

Accordingly, we have to be aware of the fact that the composite good’s importance parameter
ν must be considered just as much when interpreting the degree of risk aversion associated
with each ingredient. E.g. in the special case of θ = 1, while the composite good CRRA is γ, the
consumption CRRA and leisure CRRA are νγ and (1− ν)γ, respectively.16

It is more cumbersome to derive the implications of the respective composite good’s specifica-
tion within the habit variants to be outlined in the following. Nevertheless, the gist of the above
reasoning carries over. We thus skip an explicit discussion of this issue in the following.

From equation (3.2.7) we can calculate the representative household’s stochastic discount
factor as

mt+1,t :=β

�
V 1−γ

t+1

Et V
1−γ
t+1

�1− 1
θ
�

cνt+1(1− nt+1)1−ν

cνt (1− nt)1−ν

� 1−γ
θ ct

ct+1
. (3.2.30)

16Cf. Swanson (2012).
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3.2.5.2 MX.b: Standard consumption habits

In this variation, we allow for consumption habits in the aggregator u. The employed version of
habits is in some sense naive, as the household now regards the current period’s excess over last
period’s consumption level as his utility argument but does not consider this behavior in advance.
From a representative agent perspective one might interpret this as the household comparing his
current consumption level to the economy’s previous period’s overall average consumption, giving
rise to the popular notion of catching up with the Joneses.17 Following Campbell and Cochrane
(1999), we will thus refer to the studied form of habit formation as external. Interpreted
either way, the fact that current consumption increases future consumption “obligations”–
however recognized by the household–is meant to further smoothen the consumption behavior
in equilibrium.

Formally, we now consider the aggregator

u(ct , nt) := (ct − ch
t )
ν(1− nt)

1−ν, ν ∈ (0,1),

where ch
t is a habit process that is strictly exogenous to the household. Note that for this

composite good to be always well-defined we must impose the more restrictive constraint

ct ≥ ch
t , t ≥ τ, (3.2.31)

instead of ct ≥ 0. The exogenous habit process here follows

ch
t := χct−1, χ ∈ [0,1]. (3.2.32)

Given this functional form of u the stochastic discount factor results in

mt+1,t = β

�
V 1−γ

t+1

Et V
1−γ
t+1

�1− 1
θ
�
(ct+1 − ch

t+1)
ν(1− nt+1)1−ν

(ct − ch
t )ν(1− nt)1−ν

� 1−γ
θ ct − ch

t

ct+1 − ch
t+1

. (3.2.33)

Steady state The steady state value for the habit variable is determined through (3.2.32),

ch
ss = χcss.

3.2.5.3 MX.c: Slowly adapting consumption habits

In this modification we generalize the process specifying the exogenous consumption habit as in
Uhlig (2007). More precisely, the consumption habit is no longer some given fraction of the
previous period’s consumption level, but also depends on its own anteceding value and hence
adjusts more slowly to variations in consumption. This behavioral generalization allows us to
more finely calibrate the household’s smoothing behavior.

While the composite good aggregation again takes the form as in MX.b, i.e.

u(ct , nt) := (ct − ch
t )
ν(1− nt)

1−ν, ν ∈ (0,1),

the exogenous habit process ch
t now follows

ch
t := λch

t−1 + (1−λ)χct−1, χ ∈ [0, 1], λ ∈ [0,1).

Thus, the stochastic discount factor remains the same as in the previous variant, i.e.

mt+1,t = β

�
V 1−γ

t+1

Et V
1−γ
t+1

�1− 1
θ
�
(ct+1 − ch

t+1)
ν(1− nt+1)1−ν

(ct − ch
t )ν(1− nt)1−ν

� 1−γ
θ ct − ch

t

ct+1 − ch
t+1

.

17Cf. Abel (1990).
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Steady state Note that it follows from λ 6= 1 that still

ch
ss = χcss.

3.3 Numerical framework
In this section, we report in detail on the employed simulation approach, the chosen empirical
targets, and on how our results were computed.18

3.3.1 Solution
Our goal is to simulate a time path of the model’s equilibrium outcomes emerging from a series
{εt} of iidN(0, 1) distributed pseudorandom shocks to the productivity level zt . In order to do
this, for each period t we have to find the solution to the stochastic dynamic system implicitly
defined by the equilibrium conditions (3.2.22)-(3.2.29), given this period’s states kt and zt .
Following Schmitt-Grohe and Uribe (2004), we denote by h(kt , zt ,σ) the solution for kt+1 and
by gi(kt , zt ,σ), i = 1, . . . , 7, the solution for the remaining variables of this system of equations
except zt+1. I.e. we make explicit that the functions characterizing the solution depend on
the states kt and zt and also on the standard deviation σ of the AR(1) noise term but are
time-independent.19 The gis are called policy functions, while h is called the capital stock’s
dynamic. Note that the technology’s dynamic is already explicitly given by (3.2.8).

Rather than solving for their exact solutions, we use the perturbation method and thus search
for a local Taylor approximation of the functions h and gi.

20 The Taylor polynomials’ point
of expansion is the deterministic steady state (kss, zss, 0). More precisely, in our equilibrium
conditions, we replace kt+1 by the dynamic h and the remaining variables by their respective
policy functions gi. Hence, differentiating these conditions with respect to k, z and σ at the
steady state yields a system of equations in which the derivatives of the dynamic and the
policy functions at the steady state are the unknowns. Solving for the stable solution to this
system of equations, we find the coefficients of the first order Taylor polynomials.21 Finally,
computing the equilibrium conditions’ second derivatives at the deterministic steady state and
inserting the already determined first derivatives of h and gi yields a linear system of equations
in the dynamic’s and policies’ second order derivatives. Its solution completes our necessary
computations for a second order perturbation.

The appropriateness of perturbation in a DSGE model with EZ utility is documented by
Caldara et al. (2012), who compare on different solution methods with regard to accuracy and
computing time for several calibrations.

3.3.2 Computation of the return series
The upcoming analysis places particular interest on the equity premium and the risk free rate.
This section demonstrates their respective computation.

18In the appendix, we additionally provide a brief documentation on the employed computation routines.
19Of course, the solution also depends on the other parameters. σ, however, plays a special role with regard to the

solution as it scales the uncertainty in our model. Explicitly considering σ as an argument of h and gi makes it
possible to examine the effect of uncertainty on our solution. Note that time-independence is necessary for
optimality.

20We thereby assume sufficient smoothness of the functions h and gi .
21A solution is regarded “stable” if all eigenvalues of the Jacobian of the system’s dynamic are less than unity in

absolute value so that the states’ processes are bounded.
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Return on Equity Our models’ return on equity is22

r e
t+1 :=

dt+1 + vt+1

vt
.

As already stated, we do not compute vt and dt in our solution. Therefore, in order to compute
the return on equity in our simulations nonetheless, we follow Heer and Maußner (2013) and
make use of the equality

dt+1 + vt+1

vt
=

yt+1 −wt+1nt+1 − it+1 + qt+1kt+2

qt kt+1
.

This equation holds along an equilibrium path and can be deduced as follows. First, remem-
ber that the financing constraint of the firm as well as the household’s budget constraint in
equilibrium determine dt and st+1 up to

dtst − vt(st+1 − st) = c ft .

Second, by equation (3.2.24)

wt nt = (1−α)ezt n1−α
t kαt = (1−α)yt

and hence

c ft = yt −wt nt − it = αyt − it .

Therefore, by the fact that kt+1 is known at the beginning of period t and by equations (3.2.26)
and (3.2.27), we may write

qt kt+1 = Et

�
mt+1,t

�
αezt+1 n1−α

t+1 kαt+1 − it+1 + qt+1

�
1−δ+Φ

�
it+1

kt+1

��
kt+1

��

= Et

�
mt+1,t (αyt+1 − it+1 + qt+1kt+2)

�
= Et

�
mt+1,t (c ft+1 + qt+1kt+2)

�

and thus by continuing inductively

qt kt+1 = Et

�∞∑
s=1

mt+s,t c ft+s

�
,

if we additionally assume lims→∞Et

�
mt+s,tqt+skt+1+s

�
= 0.23 Thus, according to (3.2.14), the

term on the right hand side equals vtst+1, so that

qt kt+1 = vtst+1. (3.3.1)

The claim now follows from
dt+1 + vt+1

vt
=

dt+1st+1 + vt+1st+1

vtst+1
=

dt+1st+1 − vt+1(st+2 − st+1) + vt+1st+2

vtst+1

=
dt+1st+1 − vt+1(st+2 − st+1) + qt+1kt+2

qt kt+1
=

c ft+1 + qt+1kt+2

qt kt+1

=
yt+1 −wt+1nt+1 − it+1 + qt+1kt+2

qt kt+1
.

This allows us to compute the return on equity without having to determine dt or vt . To put
it another way, under the assumed transversality conditions it plausibly holds that the return
on the firm’s capital investment equals the return on the households’ (i.e. firm owners’) share
investment.24 Besides, in the steady state the return on equity is 1

β .

22Note that the two sector economies studied in subsection 3.4.5 demand a slight modification with respect to the
computation of the risky return, but see later.

23This is another transversality condition, akin to (3.2.13). It imposes a growth cap on the value of the firm’s
capital stock.

24Cf. Kaltenbrunner and Lochstoer (2010), who directly define the risky return via the capital investment Euler
equation.
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A second remark on q. By (3.3.1), the price of one share divided by the book value of the
firm’s capital stock per share, turns out as

qt =
vt

kt+1·1
st+1

.

Hence, following the first remark on q above, in our model q in fact (also) measures the figure
Tobin (1969) already found to be central in any agent’s investment decision. Also does the
chosen capital adjustment friction meet his suggestion, p. 21, that “the speed at which investors
wish to increase the capital stock should be related [...] to q,” for it turns out that

Φ′(x) = b1 x−κ ⇔ x =
�

b1
1
Φ′(x)

� 1
κ

= (b1q)
1
κ

⇒ ∂ x
∂ q
=

1
κ

b1 (b1q)
1
κ−1 and

q
x
=

1
b1

xκ−1 =
1
b1
(b1q)

κ−1
κ

⇒ ∂ x
∂ q

q
x
= κ−1.

I.e. the parameter controlling the severity of the adjustment friction, and thus the “speed of
investment”, κ, is reciprocal to the elasticity of the investment-to-capital ratio with respect to q,
“Tobin’s q”.

Risk Free Return In order to be able to also approximate the risk free rate, we add it to our
list of variables and find its respective necessary equilibrium condition. The latter is achieved
by applying the Euler-Lucas equation (3.2.4) to evaluate a claim on one unit of the final good
with certainty at the end of next period. Following the reasoning before, such an asset’s price v f

would have to satisfy

v f
t = Et

�
mt+1,t · 1

�
for all t ⇔ Et

�
mt+1,t

� 1

v f
t

− 1= 0 for all t.

Defining r f
t := 1

v f
t

yields the sought for conditions

Et

�
mt+1,t

�
r f

t = 1 for all t. (3.3.2)

Note that this also yields a steady state value of r f
ss =

1
β .

Equity Premium The equity premium is finally computed as the expected excess return on
equity beyond the risk free rate,

ept+1 := Et

�
r e

t+1 − r f
t

�
, (3.3.3)

which implies a zero steady state premium.

3.3.3 Empirical targets
We examine all models along their ability to replicate factual German quarterly business cycle
statistics. Additionally, we try to match two asset pricing figures, the annual equity premium
(EP) and the annual risk free rate (r f ).

Since related versions of the models considered in the present paper are also examined in
Heer and Maußner (2013), we decided to stick with their empirical targets to be able to compare
our results. Specifically, the chosen RBC statistics are output volatility sy , relative volatility
of investment to output si/sy , working hours to output sn/sy , wages to output sw/sy , and the
contemporary correlation of output to working hours ryn and wages to working hours rwn.25

25Note that all macro variables are understood as the respective real aggregates’ cyclical components, i.e. HP-filtered.
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The respective numerical target values are thus taken from Heer and Maußner (2009), while
the empirical equity premium is from Kyriacou et al. (2004). Consequently, we are left with the
task of finding a reasonable target for the real risk free rate of the German economy.

Yet, the way in which Kyriacou et al. compute their figure of 5.18 for the German equity
premium is hard to trace. As a consequence, we determine the German risk free rate target
indirectly as follows. First, we take the German prime standard share index, DAX, as our
approximation of the German market portfolio and calculate its mean real return over an
extended historical performance, including dividend payments.26 In particular, we find a real
annual return on equity of 7.67. Now, this figure must, by definition, exceed the sought for risk
free rate by 5.18 in order to be consistent with the chosen equity premium target.

We want to remark that our results, i.e. the “goodness of fit” found possible for the considered
models, are not particularly sensitive to the chosen risk free target rate. Our empirical targets
are summarized in table 3.3.

Table 3.3: Empirical targets

EP r f sy si/sy sn/sy sw/sy ryn rwn

5.18 2.49 1.14 2.28 0.69 1.03 0.4 0.27

3.3.4 Calibration and simulation
Calibration In our models, a unit of time equals three months. The numerical results are
heavily driven by the values chosen for the parameters α,δ,ρ,σ, the RRA parameter γ and
β ,ψ,κ. There is direct empirical evidence for the first set of parameters so these are usually
chosen very similarly by researchers.27 Therefore, we consider them as fixed throughout the
whole paper at the values displayed in table 3.4. For γ, the possible bandwidth seems less
restraint. An authoritative range, [0,10], is e.g. provided by Mehra and Prescott (1985).
However, in order to emphasize on the impact of the household’s attitude towards intertemporal
consumption substitution, we nevertheless regard the RRA parameter also as fixed. In particular,
we choose γ= 2.28

Table 3.4: Fixed Parameters

α δ ρ σ γ

0.27 0.011 0.9 0.0072 2

26Although the DAX only covers 30 firm shares, it already “represent[s] around 80 percent of the market
capitalization listed in Germany.” Cf. the official information from Deutsche Börse AG, as in December
2013, http://dax-indices.com/EN/MediaLibrary/Document/120611_DeutscheBoerse_E_WEB.pdf. The
DAX history was officially prolonged backwards until December 1959. However, issues with the chaining
of the preceding indices have been discussed, cf. Strehle et al. (1996). Hence, we do not want to pull the
available data too far into the past. On the other hand, more good data would improve on the mean as our
return on equity estimator. We exogenously balance this tradeoff by taking the 1973/74 oil embargo as our
cutting date and thus only consider data as of 1974:Q2.

27Cf. Heer and Maußner (2013).
28E.g. Caldara et al. (2012) also consider this RRA calibration amongst others.

http://dax-indices.com/EN/MediaLibrary/Document/120611_DeutscheBoerse_E_WEB.pdf
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The remaining parameters, as well as the parameters to be introduced alongside the upcoming
extensions to this framework, are understood as free within particular intervals. These intervals
are fixed descriptively in the first place. The chosen calibration’s (quantitative) implications will
be discussed only after the parameters’ final determination.

With regard to the calibration of β , the DSGE literature displays disagreement, at least within
the boundaries of 0.95 (e.g. Schmitt-Grohe and Uribe (2004)) and 0.99999 (Boldrin et al.
(2001)). These values thus span our considered interval.

In the case of ψ, a comparably tight interval of possible values is much less evident in the
literature. Moreover, as ψ is our key parameter, we decided to leave it less restrained a priori.
Thus,ψ is centered around the standard case of reciprocal EIS and RRA with 0 and 1 as excluded
boundaries. However, note already that the results in Heiberger and Ruf (2014a) suggest smaller
values of ψ to be more likely to give rise to a good empirical performance.

Further, the range of values for κ−1 estimated by Abel (1980) in a somewhat different setting
provides us with initial empirical evidence regarding the magnitude of κ, suggested to be around
3.29 In accordance to that, we choose our interval for κ as the union of the respective intervals
in Jermann (1998) and Heer and Maußner (2013), also considering (3.2.10), i.e. from above 1
to 9.

Eventually, the weighting parameter ν is chosen such that steady state working hours meet

nss = 0.13, 30

while the habit parameters χ and λ are considered free within their respective domains.

Simulation Our approach is to set the free parameters’ values within the intervals above in
order to match the respective models’ simulation results to the German real economy at the best.
We discretely optimize this match over a gridA ⊂ Rk, where k is the number of free parameters
in the considered model, calculating the second order approximations of the policy functions
and the dynamic of the model as described above for each parametrization a ∈A .

With these approximated solutions, we follow Heer and Maußner (2013) and simulate 300
time series, each of length 80, of the models’ variables and compute the average outcomes of
their moments σy , σi

σy
, σn
σy

, σw
σy

,ρyn and ρwn as the models’ counterparts to our empirical targets

in obvious notation.31

The model’s risk free rate and the equity premium are computed as the annualized time series
averages of a simulation of 500,000 periods along the formulae derived in subsection 3.3.2.
Hence, we actually have to compute ex post risk premia, since the computation of any period’s
return on equity requires knowledge over later periods’ quantities.32 Note that this is just in line
with the typical computation of empirical return targets.

Altogether, this yields a vector Sm(a) ∈ R8 of values implied by the simulation of the model
that corresponds to our chosen targets. We accordingly evaluate the models’ fit to the empirical

29Cf. Abel (1980), p. 75. Note that in order to find the estimates that correspond best to our framework, we
must choose the time preference parameter that lies within our allowed interval, 0.95, and an elasticity of
substitution between capital and labor of 1, due to our Cobb-Douglas technology. Abel’s corresponding interval
for κ−1 is [0.272,0.516], i.e [1.938, 3.677] for κ.

30Cf. Heer and Maußner (2013).
31Note that also the model’s moments are calculated from HP-filtered (artificial) time series.
32For the computation of the risk free asset’s return, no such complication arises. This is the case because its ex post

return coincides with the ex ante return due to its risk free nature. To see this, note that the return computation
can be decomposed into two steps. First, we derive the price of the risk free asset via its Euler-Lucas equation.
Next period, we calculate the return by relating the payoff to this price. Yet the payoff is risk free and already
known to be 1 with certainty by the time of the purchase such that the ex post return is identical to the reciprocal
of the price.
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data as displayed in table 3.3, denoted by Sd ∈ R8, via some distance measure of the form

distA(Sm(a), Sd) := 〈A(Sm(a)− Sd), Sm(a)− Sd〉,
where A is a positive definite matrix. Within the grid, we search for the parameter values â ∈A
minimizing this distance. The resulting minimum value is called the model’s score and is reported
alongside the respective models’ artificial moments and return figures. In many cases, cf. e.g.
in Boldrin et al. (2001), the weighting matrix is chosen as diagonal with the reciprocal of the
estimates’ respective error variances on the diagonal. We, however, follow Heer and Maußner
(2013) and Uhlig (2007), in that we weight all statistics equally but quote the asset pricing
quantities in percentage notation. Hence, our matching criterion is a slightly modified sum of
squared differences between the model’s simulated results and the respective empirical targets,
where the modification is executed via

A=
�

1002 · I2 02×6

06×2 I6

�
.

3.4 Model analysis
This section provides the description of the model economies considered. For the sake of
exposition, tedious derivations and the final list of respective equilibrium conditions are collected
in the accompanying appendix.

3.4.1 M0: Baseline
We start our model analysis with an EZ variation of Jermann (1998). We also use this less
complicated baseline model to demonstrate how we will constantly refer to the results obtained
in the previous sections in order to keep the presentation of all models to come brief and
well-arranged.

The representative household faces the decision problem (3.2.2). For the baseline case we
choose the functional form of the within-period utility function as

u(ct , nt) := ct ,

i.e. the household does not value leisure.
From equation (3.2.7) we can thus calculate this model’s stochastic discount factor as

mt+1,t = β

�
V 1−γ

t+1

Et V
1−γ
t+1

�1− 1
θ � ct+1

ct

� 1−γ
θ −1

. (3.4.1)

Since the household does not care for leisure, it is obvious that the optimal solution here has
to satisfy nτ = 1 instead of equation (3.2.5) for an interior solution. The remaining optimality
conditions are unchanged. Hence, in the equilibrium conditions, (3.2.23) is replaced by

nt = 1, t ≥ τ.

The representative firm faces the basic decision problem described in (3.2.15).
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The equilibrium conditions for the baseline model, (3.2.23) and (3.2.24) in subsection 3.2.3
have to be replaced by

nt − 1= 0, and wt ≤ (1−α)ezt n−αt kαt , (3.4.2)

respectively. The complete list can be found in appendix B. Note that this model’s general
equilibrium cannot yield a unique wage because every wage that satisfies (3.4.2) solves the
problem.

The steady state can be computed by the equations given in subsection 3.2.4, now comple-
mented with

nss = 1.

Results Our baseline model’s free parameters are β , ψ and κ. First, all considered parame-
terizations within our grid led to nearly the same output volatility. Second, correlation is not
defined for n and third, because of (3.4.2), the equilibrium wage is not determined. We are
thus left with three targets, namely EP, r f , and si/sy and choose the free parameters in order
to exactly match the data with respect to these. The simulation results and the corresponding
parameter values are displayed in tables 3.5 and 3.6.

Table 3.5: Results M0

EP r f sy si/sy sn/sy sw/sy ryn rwn Score

Data
5.18 2.49 1.14 2.28 0.69 1.03 0.4 0.27

M0
5.18 2.49 0.89 2.28 0

Table 3.6: Free Parameters M0

β ψ κ

0.9874 0.04265 7.05

Additionally, we exemplify our previous discussion on the positivity of Φ(·) for M0. The
found parametrization would demand the investment never to go below eight thousandth of
the current capital stock, i.e. the investment-to-capital ratio never to go below 72% its steady
state value.33

As a consequence of the reduced list of targets and their matching mentioned above, we do
not compute a score value for M0 and neither consider consumption habits in order to improve
on the model’s empirical performance.

33κ
1

1−κδ = 0.7241 · 0.011= 0.008.
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3.4.2 M1: No labor market frictions
In this section’s class of models, we focus on the effect of making the household appreciate
leisure. This will result in a fluctuating labor supply below 1 and a unique equilibrium wage
allowing us to also target our selected labor market statistics. As announced before, we will
analyze this and the upcoming model classes within the three variations presented in subsection
3.2.5. The corresponding variants, M1.a - M1.c, will thereafter serve as our benchmark models.

We start with a brief summary of this class’ structure. The following paragraphs’ general
statements hold up to potential habit formation.

The representative household faces exactly the decision problem (3.2.2) within all of the
upcoming three settings and the specification of u will guarantee an interior solution.

The representative firm decides upon the decision problem (3.2.15) as already presented in
the framework section.

The equilibrium conditions for all three variants therefore are fully characterized by the
system of equations in subsection 3.2.3.

The steady state is computed as described in subsection 3.2.4.

3.4.2.1 M1.a: No habits

The stochastic discount factor mt+1,t is determined by (3.2.30). Further, by (3.2.23), the
equilibrium wages necessarily satisfy

wt =
1− ν
ν

ct

1− nt
.

Hence, we compute ν as

ν=
css

wss(1− nss) + css
.

Results The best fit to the data that was achievable for the respective variants within M1 is
collectively summarized in table 3.7 while the score minimizing parameter values can be read
from table 3.8. Both tables can be found at the end of this subsection.

With regard to M1.a, we emphasize on the fact that–in line with the intuition sketched in the
introductory remarks–making the household appreciate leisure requires a notable change in the
EIS parametrization in order to still be able to generate a sizeable equity premium. Specifically,
in comparison to M0 the resultingψ drops by 85 percent. This way, we are able to reproduce the
empirical returns. With regard to the RBC targets, apart from the relative volatility of working
hours that is too low and the almost perfectly positive labor market correlations, this model’s
results are already roughly in line with the empirical data.

3.4.2.2 M1.b: Standard consumption habits

Here the stochastic discount factor mt+1,t is given by (3.2.33) and condition (3.2.23) reads

wt =
1− ν
ν

ct − ch
t

1− nt
.
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Hence,

ν=
(1−χ)css

wss(1− nss) + (1−χ)css
.

Results Introducing standard consumption habits, the additional free parameter χ primarily
allows us to improve the fit of the labor market correlations. The score drops by nearly two
thirds. With consumption habits in the model, we do not have to choose the EIS as low as in
M1.a in order to replicate the return figures.

3.4.2.3 M1.c: Slowly adapting consumption habits

Neither the stochastic discount factor nor the equilibrium conditions are changed in comparison
to M1.b.

Results The additional free parameter λ, does not help in further lowering the score. The best
fit is found for a standard habit process with λ = 0 and the remaining optimal parameter values
found for M1.b, so that the simulation results are identical to those of M1.b.

Table 3.7: Summary of Results M1

EP r f sy si/sy sn/sy sw/sy ryn rwn Score

Data
5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M1: No labor market frictions
a 5.19 2.55 1.01 2.27 0.16 0.84 1.00 1.00 1.23
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40

Table 3.8: Free Parameters M1

β ψ κ χ λ

M1: No labor market frictions
a 0.9873 0.00635 6.3 -
b 0.988 0.00715 6.25 0.3 -
c 0.988 0.00715 6.25 0.3 0

3.4.3 M2: Sticky real wages
In this section we add a friction to the labor market by introducing a type of stickiness to the
real wages as in Uhlig (2007). Primarily, this stickiness is expected to decrease the volatility of
wages and thus increase the volatility of working hours, as the wages’ “buffering” of changes
in the productivity of labor is limited. We first analyze the changes in the general framework,
again up to potential habit formation, before reporting on the individual variants’ results.
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The representative household Due to some nonmodeled friction, the household’s optimality
condition (3.2.5) is not necessarily fulfilled in equilibrium anymore. Instead, we implicitly
define

∂ u
∂ c
(ct , nt)w

f
t = −

∂ u
∂ n
(ct , nt), (3.4.3)

introducing a separate symbol for the marginal rate of substitution, w f
t , denoting the equilibrium

wage in an economy that is free of such frictions.

The representative firm again faces the basic decision problem (3.2.15).

The equilibrium conditions As mentioned above, the wage wt in the economy’s equilibrium
is no longer necessarily equal to the marginal rate of substitution w f

t of the household. Instead
it evolves as a geometric mean of the previous period’s wage wt−1 and the marginal rate of
substitution, i.e.

wt = wµt−1(w
f
t )

1−µ, µ ∈ [0,1). (3.4.4)

This way, high changes of the wage between two subsequent periods become less likely.
Summing up, with regard to the equilibrium conditions in subsection 3.2.3, condition (3.2.23)

is jointly replaced by both wage equations above. The full list of equations characterizing the
equilibrium is laid out in appendix D.

The Steady state Since µ 6= 1, it follows from (3.4.4) that in the steady state

w f
ss = wss.

We then parameterize ν again using (3.4.3) in order to ensure a steady state value of nss = 0.13.
Hence, for all considered variants of our sticky wages economy, all the remaining steady state
values are identical to their frictionless counterparts of the previous section.

Calibration The additional parameter controlling the degree of wage stickiness is considered
free within its domain, i.e. µ ∈ [0, 1).

3.4.3.1 M2.a: No habits

The first variant’s stochastic discount factor is given by (3.2.30) and the equilibrium condition
(3.4.3) reads

w f
t =

1− ν
ν

ct

1− nt
. (3.4.5)

Results The optimal parameter values and the corresponding fit for M2 are again collectively
summarized in tables 3.9 and 3.10. As in model M1.a, a low value for the EIS is necessary in
order to replicate the empirical equity premium. The additional stickiness parameter µ helps in
dissolving the strict correlation structure between hours, output and wages found in M1.a. Plus,
as anticipated, the relative volatility of hours can also be increased, while on the other hand the
relative volatility of wages falls—in fact to about two thirds of its empirical value.

Altogether, the additional degree of freedom allows us to reduce the score of M1.a by more
than 50 percent.
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3.4.3.2 M2.b: Standard consumption habits

For the second setting, the stochastic discount factor is given by (3.2.33). Further, equation
(3.4.3) now takes the form

w f
t =

1− ν
ν

ct − ch
t

1− nt
. (3.4.6)

Results Despite the fact that the possibility of real wage stickiness results in a considerable
score reduction from M1.a to M2.a, allowing for standard consumption habits leads to a model
with µ = 0. The optimal values of the remaining parameters are thus identical to those found in
M1.b, just as the simulation results can be read from table 3.8.

3.4.3.3 M2.c: Slowly adapting consumption habits

As in the previous subsection, only alternating the external habit process compared to M2.b
does neither change the stochastic discount factor nor the exact form of (3.4.3).

Results The consideration of real wage stickiness together with slowly adjusting consumption
habits now again leads to µ 6= 0. In comparison to M1.c and M2.b, simultaneously allowing

Table 3.9: Summary of Results M2

EP r f sy si/sy sn/sy sw/sy ryn rwn Score

Data
5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M2: Sticky real wages
a 5.13 2.50 1.23 2.18 0.47 0.64 0.87 0.63 0.58
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.17 2.50 1.03 2.35 0.43 0.84 0.55 0.15 0.16

Table 3.10: Free Parameters M2

β ψ κ χ λ µ

M2: Sticky wages
a 0.9875 0.00588 5.25 - - 0.5
b 0.988 0.00715 6.25 0.3 - 0
c 0.988 0.007775 5.4 0.49 0.8 0.65

for µ 6= 0 and λ 6= 0 increases the relative volatility of hours by such an amount that the model
score can be reduced by nearly 60 percent even though the remaining labor market statistics
are hit less exactly. As displayed in table 3.10, the corresponding parametrization features a
rather high persistence in the habit formation and a larger degree of wage stickiness as in M2.a.
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3.4.4 M3: Predetermined labor supply
We now introduce a different friction with respect to labor supply flexibility as we follow Boldrin
et al. (2001) and require the representative household to commit himself to a certain labor
supply one period in advance. Hence, he cannot respond to changes in productivity directly
but with a time lag of one period. Again, we first discuss the implications of this change with
respect to the general framework up to potential habit formation, before stating the results for
the three individual variations considered.

The representative household has to fix his labor supply before the technology shock is re-
vealed, i.e. we consider period τ’s working hours nτ as a given state variable and the household’s
decision on nτ+1 may not depend on ετ+1. Summing up, the representative household’s problem
reads

max Uτ =W (u(cτ, nτ), (EτU1−γ
τ+1)

1
1−γ )

s.t. ct ≤ wt nt + dtst − vt(st+1 − st),
ct ≥ 0, 0≤ nt ≤ 1, for all t ≥ τ,

given sτ, nτ.

(3.4.7)

While the necessary optimality conditions (3.2.3), (3.2.4), (3.2.6) remain unchanged, the
condition for next period’s labor supply is now given by34

Et

�
mt+1,t

�
wt+1 +

∂ u
∂ n(ct+1, nt+1)
∂ u
∂ c (ct+1, nt+1)

��
= 0, t ≥ τ. (3.4.8)

The representative firm again faces the basic decision problem (3.2.15).

The equilibrium conditions in this model are obtained by replacing equation (3.2.23) of
subsection 3.2.3 with (3.4.8). The full list is again presented in the appendix.

The steady state With respect to the steady state values, there are no changes to the general
framework described in subsection 3.2.4.

3.4.4.1 M3.a: No habits

The stochastic discount factor is given by (3.2.30). Further, equation (3.4.8) becomes

Et

�
mt+1,t

�
wt+1 −

1− ν
ν

ct+1

1− nt+1

��
= 0. (3.4.9)

Results Again, this class’ fit and the respective parameterizations are collectively summarized
in table 3.11 and in table 3.12.

In comparison to the frictionless counterpart M1.a, the fit of both correlation targets can be
improved in M3.a. Yet, in contrast to the sticky wages variant M2.a, we cannot achieve a better
fit for the relative volatility of hours while the relative volatility of wages is matched a little
more exactly. Altogether, this model’s score is virtually the same as in M2.a, even with one free
parameter less.

34The detailed derivation can be found in appendix.
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3.4.4.2 M3.b: Standard consumption habits

We now combine the assumptions of predetermined labor supply and consumption habits to see
whether we can further improve our model score particularly with respect to the labor market
targets. Now, the stochastic discount factor is given by (3.2.33). Moreover with u(ct , nt) =
(ct − ch

t )
ν(1− nt)1−ν equation (3.4.8) turns out as

Et

�
mt+1,t

�
wt+1 −

1− ν
ν

(ct+1 − ch
t+1)

1− nt+1

��
= 0. (3.4.10)

Results In comparison to model M1.b the relative volatility of hours decreases even more.
Also are the correlation between wages and working hours not matched as exactly. Concluding,
in our grid, the score for the variant with standard consumption habits cannot be made smaller
than in its frictionless counterpart.

3.4.4.3 M3.c: Slowly adapting consumption habits

In this variant, again, the stochastic discount factor and the exact form of equation (3.4.8) are
the same as for M3.b.

Results Adding the possibility of slowly adapting consumption habits to the model with
predetermined hours does not further lower the achievable score. The best fit is again found
by setting the additional parameter λ= 0 and the simulation results are therefore identical to
those of M3.b.

Table 3.11: Summary of Results M3

EP r f sy si/sy sn/sy sw/sy ryn rwn Score

Data
5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M3: Predetermined labor supply
a 5.15 2.49 0.96 2.30 0.14 0.90 0.71 0.62 0.57
b 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43
c 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43

Table 3.12: Free Parameters M3

β ψ κ χ λ

M3: Predetermined labor supply
a 0.987485 0.00643 6.5 - -
b 0.98872 0.0073 5.3 0.53 -
c 0.98872 0.0073 5.3 0.53 0
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3.4.5 M4: Sectoral frictions in the allocation of labor
In this section, we follow the approach of Boldrin et al. (2001) and further extend our framework
in that we decompose the economy’s productive part into two sectors, both of which are assumed
to be representable by one stand-in firm. The consumption good is produced in one sector, the
investment good in the other.35

As in subsection 3.4.4, there is a representative household who is assumed to be unable
to adapt his labor supply to technology shocks in the respective periods but is committed to
the hours of labor contracted prior to that period. We now, additionally, require labor to be
contracted sector-specific, i.e. the household can neither switch intersectorally within a given
period. To sum up, while we already analyzed the effect of predetermination of labor supply in
M3, the sector mobility constraint introduces an additional friction into the framework discussed
so far.

This model class’ structure is considerably different to our basic framework and will thus be
introduced in detail in the next paragraphs, again up to potential habit formation.

The representative household For the representative household there are two changes. Since
there are two representative firms, one for the consumption sector and one for the investment
good sector, he may now allocate working hours, hold shares and receive dividends from either
of these. Hence, with the obvious notation, his budget constraint becomes

ct ≤ wI
t n

I
t +wC

t nC
t + d I

t s
I
t + dC

t sC
t − v I

t (s
I
t+1 − sI

t)− vC
t (s

C
t+1 − sC

t ), t ≥ τ.

Further, just like in M3, the household also has to decide on his labor supply one period ahead
so that his decision problem reads

max Uτ =W (u(cτ, nτ), (EτU1−γ
τ+1)

1
1−γ )

s.t. ct ≤ wI
t n

I
t +wC

t nC
t + d I

t s
I
t + dC

t sC
t − v I

t (s
I
t+1 − sI

t)− vC
t (s

C
t+1 − sC

t ),
nt = nI

t + nC
t ,

ct ≥ 0, nI
t ≥ 0, nC

t ≥ 0, 0≤ nt ≤ 1, for all t ≥ τ,

given sI
τ
, sC
τ
, nI
τ
, nC
τ
.

(3.4.11)

With these changes, the optimality conditions (3.2.3)-(3.2.6) for a solution where last row’s
constraints do not bind are

Vt = [(1− β)u(ct , nt)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1
θ ]

θ
1−γ ,

Et
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mt+1,t
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t+1

v I
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− 1

�
= 0,

Et

�
mt+1,t
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t+1 + vC

t+1

vC
t

− 1

�
= 0,

Et

�
mt+1,t

�
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∂ u
∂ n(ct+1, nt+1)
∂ u
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��
= 0, (3.4.12)

Et

�
mt+1,t

�
wC

t+1 +
∂ u
∂ n(ct+1, nt+1)
∂ u
∂ c (ct+1, nt+1)

��
= 0, (3.4.13)

35Note that M4 is not an EZ variation of the original Boldrin et al. (2001) model since we also stick with our
adjustment cost assumption.
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nt = nI
t + nC

t ,

ct = wI
t n

I
t +wC

t nC
t + d I

t s
I
t + dC

t sC
t − v I

t (s
I
t+1 − sI

t)− vC
t (s

C
t+1 − sC

t ),

with the stochastic discount factor given by (3.2.7).
Note that we are only interested in interior solutions with respect to the last row of constraints

because sticking to a Cobb-Douglas production technology implies labor demand to always be
strictly positive in both sectors, so that in general equilibrium wages have to be set in such a
way that also labor supply is strictly positive in both sectors. Particulary, as stated above, the
household has to be indifferent in expectation between the wages and returns in both sectors.
I.e. it must hold for all t ≥ τ that

Et

�
mt+1,t(w

I
t+1 −wC

t+1)
�
= 0

and further, for the problem to not be unbounded,
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�
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�
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vC
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��
= 0.

The latter is a no arbitrage condition on the sector-specific stocks.

The representative firm in the consumption good sector produces the consumption good
via the technology

ct = ezt (nC
t )

1−α(kC
t )
α, α ∈ (0, 1),

where the sequence {zt} follows (3.2.8), and accumulates capital according to

kC
t+1 − (1−δ)kC

t = Φ

�
iC
t

kC
t

�
kC

t ,

with Φ(·) as defined in (3.2.10). Investment goods now have to be purchased from the rep-
resentative firm in the investment sector. Let pt denote the price of investment relative to
consumption. These investment expenditures are again assumed to be financed through profits
beyond dividend payments plus the issuance of new shares. Hence, the equivalent to (3.2.11)
here is

pt i
C
t = ct −wC

t nC
t − dC

t sC
t + vC

t (s
C
t+1 − sC

t )

and period t ’s cash flow is given by

c f C
t := ct −wC

t nC
t − pt i

C
t .

The firm’s management again maximizes its firm value, which is defined as above and can, under
the respective transversality condition

lim
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�
mt,τvC

t sC
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�
= 0,

thus be written as

f vC
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:= c f C
τ
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τ
sC
τ+1 = Eτ

�∞∑
t=τ

mt,τc f C
t

�
.



CHAPTER 3 EPSTEIN-ZIN UTILITY, ASSET PRICES, AND THE BUSINESS CYCLE REVISITED 77

In other words, the maximization problem of this sector’s representative firm is
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(3.4.14)

The equivalent optimality conditions to (3.2.16)-(3.2.21) hence are
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t = (1−α)ezt (nC

t )
−α(kC

t )
α, (3.4.15)
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with {zt} following (3.2.8).

The representative firm in the investment good sector produces the investment good via
the production function

it = ezt (nI
t)

1−α(kI
t)
α α ∈ (0, 1),

where the sequence {zt} follows (3.2.8), and also accumulates capital according to
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This firm sells an amount of iC
t of the investment good to the firm in the consumption good

sector. The remaining i I
t is used for own investments. Its respective equivalent to (3.2.11) hence

is
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or equivalently
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and period t ’s cash flow is

c f I
t := pt it −wI

t n
I
t − pt i

I
t = pt i

C
t −wI

t n
I
t .

This firm’s management maximizes its firm value, again defined as above. Under the respective
transversality condition
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CHAPTER 3 EPSTEIN-ZIN UTILITY, ASSET PRICES, AND THE BUSINESS CYCLE REVISITED 78

this can be written as
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Consequently, the maximization problem of the representative firm in the investment good
sector is
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(3.4.18)

Hence, this sector’s equivalent optimality conditions to (3.2.16)-(3.2.21) are
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with {zt} following (3.2.8).

The equilibriumconditions The general equilibrium for this two sector model is characterized
by the optimality conditions listed in the paragraphs above plus the condition

it = i I
t + iC

t .

Again, this condition already guarantees a cleared stock market, even if we do not solve for a
solution for si

t+1, d i
t and v i

t , i ∈ {C , I}. The full list of equilibrium conditions can be found in
appendix F.

The steady state According to our basic framework, for the steady state we demand that

iC
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and thus parameterize Φ as before. Next, equations (3.4.16) and (3.4.20) first yield
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Taking the sum,
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and
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ss = nss − nI
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With (3.4.22) and (3.4.23), we find
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From (3.4.17) we can determine
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Now, all steady state variables are expressed in terms of nss. We use (3.4.12) or (3.4.13) to
again set ν for all three variants of u in such way that a steady state value of nss = 0.13 arises.

Computationof the returnseries The risk free return is, of course, unaffected by the extension
of our basic framework to two productive sectors. What does change, though, is the computation
of the return on equity in this economy.

As in the one sector case, in order to be able to derive the formulae needed to compute both
sectors’ return on equity, we have to impose additional conditions on our two sector economy.
Precisely, for both sectors, i.e. for i ∈ {I , C}, we assume
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s→∞Et
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i
t+sk

i
t+1+s

�
= 0.
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By the same reasoning as above, we thus find
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so that the two sectors’ period t + 1 return on equity both satisfy
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Thus, as the overall gross return on firm shares over both sectors is naturally computed as

r e,C
t+1vC

t sC
t+1 + r e,I

t+1v I
t s

I
t+1,

we finally reach

r e
t+1 :=

r e,C
t+1vC

t sC
t+1 + r e,I

t+1v I
t s

I
t+1

vC
t sC

t+1 + v I
t s

I
t+1

(3.4.24)
= r e,C

t+1

qC
t kC

t+1

qC
t kC

t+1 + qI
t k

I
t+1

+ r e,I
t+1

qI
t k

I
t+1

qC
t kC

t+1 + qI
t k

I
t+1

as this economy’s return on equity.36

3.4.5.1 M4.a: No habits

The stochastic discount factor remains the same as in (3.2.30). Further, equations (3.4.12) and
(3.4.13) can be written as
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From these equations it (again) follows that
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.

Results Again, this class’ variants’ fit and the corresponding parametrization are collectively
summarized in table 3.13 and in table 3.14.

With respect to M1.a, the lower score is again primarily ascribable to the improvement on the
labor market correlation, despite the notable “overshooting” in the relative volatility of wages.

3.4.5.2 M4.b: Standard consumption habits

The stochastic discount factor is given by (3.2.33). Equations (3.4.12) and (3.4.13) become
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36Note that this departs from Heer and Maußner (2013), who weight each sector’s return on equity by the respective
sectors’ capital shares only.
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Results Standard consumption habits cannot improve on the achieved fit. Thus, the best fit is
found at χ = 0, with the remaining parameter values chosen identically to M4.a. We observe
that the more complicated two sector framework is not able to empirically perform as well as
the comparable frictionless economy modeled in M1.b.

3.4.5.3 M4.c: Slowly adapting consumption habits

Generalizing the habit defining process with respect to M4.b, does neither change the discount
factor nor the form of equations (3.4.12) and (3.4.13).

Results The consideration of slowly adjusting consumption habits neither helps to improve
the data fit. Hence, the optimal fit is achieved at λ= 0, with the other parameters as in M4.b.

Table 3.13: Summary of Results M4

EP r f sy si/sy sn/sy sw/sy ryn rwn Score

Data
5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M4: Sectoral frictions in the allocation of labor
a 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
b 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
c 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84

Table 3.14: Free Parameters M4

β ψ κ χ λ

M4: Sectoral frictions in the allocation of labor
a 0.9884 0.0086 3.0625 - -
b 0.9884 0.0086 3.0625 0 -
c 0.9884 0.0086 3.0625 0 0

3.5 Results and discussion
This section is devoted to the collective presentation of the respective models’ results and to their
comparative discussion. First, the best fits achievable and the corresponding parameterizations
were already summarized in tables 3.1 and 3.2.

Since all models in the present paper are EZ variations with Cobb-Douglas composite good
aggregation of the corresponding models analyzed in Heer and Maußner (2013), we first want
to point out that, due to the more general utility representation, we were able to considerably
improve on their reported data fit. Note that next to the extra degree of freedom associated
with the EZ representation with regard to ψ, we thereby also considered β as free in order to
additionally target the German real risk-free rate.
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Model evaluation As foreshadowed in the analysis of M0 above, we must flexibilize the
household’s labor decision in order to arrive at models that allow for the targeting of labor
market statistics. Now, M1.a shows that it is still possible to match our return targets but the
corresponding calibration yields simulation results with nearly perfectly positive correlations
between output and working hours and between wages and working hours as well as a rather
low relative volatility of working hours. Allowing for standard consumption habits clears away
these perfect correlations. As a matter of fact, the corresponding simulation results already
might very well be regarded in line with the empirical evidence. Generalizing the assumed habit
formation towards slowly adjustment, however, does not yield any improvement for the data fit.
We again stress the fact that the range we allowed for ψ was broad enough in order to prevent
the equity premium from dropping, as it dramatically happens in Heer and Maußner (2013).

In M2, M3 and M4, we study to what extent different real labor market frictions are—within
this framework—able to help in improving on the data fit already achieved by M1.

We start with the analysis of real wage stickiness. The comparison of M1.a and M2.a shows
that allowing for wage stickiness also dissolves the rigid correlation structure between output,
hours and wages—albeit not as much as the introduction of habits within M1—and improves
on the volatility of working hours. Now, while the consideration of real wage stickiness does
not improve on the data fit under standard consumption habits, also allowing for these habits’
slow adjustment most notably further improves on the considered correlations, leading to our
overall minimum score.

An alternative friction, predetermined labor supply (M3), also initially moves ρyn and ρwn to-
wards the data. As within M1, the assumption of standard habits again further improves on these
correlations while allowing for λ 6= 0 does not help in lowering the model score. It is worth point-
ing at the fact that M3.b and M3.c do not empirically outperform their frictionless counterparts.

Eventually, in the two sector framework, M4.a also yields better simulated labor market
correlations than M1.a. Yet, the relative volatility of wages rises to nearly 170 percent of
its empirical value rendering the overall fit inferior to the pure predetermined hours model.
Moreover, the considered forms of habit formation cannot improve on the score. We want to
stress on the fact that M4.b and M4.c are not able to yield simulation results that are as well in
accordance with the data as M1.b and M1.c.

The pairwise comparison of the three considered labor market frictions clearly attributes
the largest score improvement to the modeling device of sticky wages, which introduces an
additional free parameter µ. Checked against the pure predetermined labor class, M4 cannot
justify its more complicated structure through empirical performance.

Implications So far, our analysis was kept descriptive in that we objectively fixed intervals
for the free parameters via their respective domains and partly via observable consensus in
the literature. In particular, we hitherto did not bother about the found parameterizations’
behavioral implications on our representative household. We thus want to complement our
analysis with a few—partly summarizing, partly normative—remarks on the resulting values of
our free parameters.

First, the range of score minimizing values for β , [0.9873,0.98872], is much smaller than
initially anticipated. To put it another way, the targeting of r f does not require remarkably
different levels of impatience along the models considered.

For reasons laid out in subsection 3.2.5, the parametrization ofψ is crucial for our models’ data
fit as the EIS controls the household’s sensitivity to deviations from a smooth composite good
path. The smaller ψ, the higher his sensitivity. Now, the only way the household can transfer
consumption intertemporally is provided by our models’ asset market, namely via the purchase
of stocks or the riskfree security. Thus, decreasing ψ makes the household demand a higher
compensation for him taking the risk of a stock investment, which leads to a larger return on



CHAPTER 3 EPSTEIN-ZIN UTILITY, ASSET PRICES, AND THE BUSINESS CYCLE REVISITED 83

equity. The range of values for ψ we actually found to optimize the data fit, [0.00588, 0.04265],
was already broad enough to match the empirical equity premium in all our models by an
accuracy of less than a decimal. Caution must nevertheless be paid to this resulting magnitude
of ψ, which is rather close to the lower boundary of the interval initially allowed. Although Hall
(1988) reports on confirmatory estimates leading him to the conclusion that “the elasticity is
unlikely to be much above 0.1 [...]”,37 we have to recall that the disentanglement of EIS and RRA
within the EZ framework can only be partly in nature since any deviation fromψ = 0.5, gives rise
to nonindifference towards the temporal resolution of uncertainty regarding the composite good.
More precisely, since in all our models the score minimizing values of ψ clearly satisfy ψ−1 > γ,
we are actually simulating economies where the stand-in agent is assumed to have a preference
for later resolution of uncertainty. Importantly, the above interval of optimizing values for ψ
noticeably indicates a deviation from the typically assumed expected utility framework.

As pointed out above, the reciprocal of κ is the elasticity of the investment-to-capital ratio with
respect to Tobin’s q. Thus, M0 and the classes M1-M3 roughly span its interval as [0.14, 0.19],
close to the value found by Jermann (1998). The two sector class M4 yields a notably higher
elasticity of about 0.33.38

Regarding standard consumption habits, by (3.2.31) and (3.2.32), the chosen value for χ
seems to critically affect the plausibility of the assumed habit formation. The resulting range of
values, [0.3, 0.53], indicate a moderate and thus maybe a more easily agreeable degree of habit
formation as e.g. found by Jermann (1998), Uhlig (2007) or Heer and Maußner (2013).

Among the four models M1.c, M2.c, M3.c and M4.c, only the sticky wages framework actually
indicates slow adjustment of consumption habits. The score minimizing value of λ= 0.8 is of
notable magnitude and close to Uhlig (2007)’s calibration with 0.9. The resulting values for
µ, 0.5 and 0.65, display a medium degree of real wage stickiness, again well below the score
minimizers found in Uhlig (2007) or Heer and Maußner (2013).

3.6 Conclusion
Within the EZ utility representation, frictionless models already yield simulation results in good
accordance with the German empirical data. Amongst the considered labor market frictions,
allowing for real wage stickiness leads to the most remarkable improvement in fit, while, under
habit formation, predetermined labor supply, with or without additionally decomposing the
production sector into two parts, could not further improve on the frictionless models’ empirical
performance.

In a sense, a researcher considering policy evaluation on the basis of an EZ framework might
look at the information collected in tables 3.1 and 3.2 as initial guidance with respect to the
specification of his DSGE economy.

With respect to the standard additive power utility model, the additional flexibility of the EZ
framework seems to help in avoiding such extreme parameterizations as found necessary in
Heer and Maußner (2013). The degree of additional flexibility, however, primarily hinges on the
allowed magnitude of deviations from the standard case of θ = 1. Yet, since there is no obvious
reason for such a nonindifference towards the timing of uncertainty resolution, any large devia-
tion from θ = 1 calls for justification. It would therefore be interesting to quantitatively asses the
plausibility of the implied preference for later resolution that results in our analysis. This could
e.g. be done along the lines of Epstein et al. (2014) and Kaltenbrunner and Lochstoer (2010).
While the former authors present such a quantitative measure within a long run risk (LRR)
framework, the latter study how endogenous long run consumption risk arises in M0.

37Cf. Hall (1988), p. 340.
38Note that the two sector framework forces Heer and Maußner (2013), p. 19, to assume “negligible adjustment

costs”, i.e. an enormous elasticity of 200.



Appendix

A Framework
We derive the optimality conditions from (3.2.2) for the representative household’s maximization
problem. Since an optimal solution has to fulfill the first constraint with equality, we can plug it
into the objective function. Also, in almost all of the considered cases it will be obvious that the
solution has to be interior with respect to the remaining two constraints, i.e. it satisfies ct > 0
and nt ∈ (0, 1). Hence, we state the corresponding necessary optimality conditions, i.e. we set
the derivatives of the objective function Uτ, with the first constraint plugged in, equal to zero.

With respect to sτ+1, we find the first condition for an interior optimum
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Combining these equations, we finally reach at

0=− (1− β)U1− 1−γ
θ

τ u(cτ, nτ)
1−γ
θ −1∂ u

∂ c
(cτ, nτ)vτ+

+ βU
1− 1−γ

θ
τ (EτU1−γ

τ+1)
1
θ − 1

1−γ (EτU1−γ
τ+1)

1
1−γ−1·

Eτ
�
U−γτ+1(1− β)U

1− 1−γ
θ

τ+1 u(cτ+1, nτ+1)
1−γ
θ −1∂ u

∂ c
(cτ+1, nτ+1)(dτ+1 + vτ+1)

�



CHAPTER 3 EPSTEIN-ZIN UTILITY, ASSET PRICES, AND THE BUSINESS CYCLE REVISITED 85

= (1− β)U1− 1−γ
θ

τ u(cτ, nτ)
1−γ
θ −1∂ u

∂ c
(cτ, nτ)vτ·

�
β(EτU1−γ

τ+1)
1
θ −1Eτ

�
U
(1−γ)(1− 1

θ )
τ+1

�
u(cτ+1, nτ+1)

u(cτ, nτ)

� 1−γ
θ −1 ∂ u

∂ c (cτ+1, nτ+1)
∂ u
∂ c (cτ, nτ)

(dτ+1 + vτ+1)
vτ

�
− 1

�

= (1− β)U1− 1−γ
θ

τ u(cτ, nτ)
1−γ
θ −1∂ u

∂ c
(cτ, nτ)vτ·

Eτ


β

�
U1−γ
τ+1

EτU1−γ
τ+1

�1− 1
θ �u(cτ+1, nτ+1)

u(cτ, nτ)

� 1−γ
θ −1 ∂ u

∂ c (cτ+1, nτ+1)
∂ u
∂ c (cτ, nτ)

(dτ+1 + vτ+1)
vτ

− 1


 .

Writing Vt for the value function as of period t to the dynamic optimization problem above and
using Vτ = Uτ, if we evaluate Uτ at the optimal processes it follows that39
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is the household’s stochastic discount factor.
Second, differentiating with respect to nτ reveals the second optimality condition
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B Model M0: Baseline
For a general equilibrium in M0 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (3.2.8) and mt+1,t is given by (3.4.1).

39Note also the positivity of lifetime utility, within period utility, marginal utility and the stock price.
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C Model M1: No labor market frictions
For a general equilibrium in M1 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (3.2.8) and the stochastic discount factor is determined by
(3.2.7).

D Model M2: Sticky wages
For a general equilibrium in M2 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (3.2.8) and mt+1,t is given by (3.2.7).
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E Model M3: Predetermined labor supply
E.1 Model M3: Household

Equation (3.4.8) can be derived as follows. First, note that the first restriction again has to be
fulfilled with equality in an optimum. Hence substituting for ct , t ≥ τ, in the objective function
and differentiating with respect to nτ+1 yields
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where in the next to last step we used equation (3.2.7) for the stochastic discount factor.

E.2 Model M3: Equilibrium conditions

For a general equilibrium in M3 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (3.2.8) and the stochastic discount factor is given by (3.2.7).

F Model M4: Sectoral frictions in the allocation of labor
For a general equilibrium in M4 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (3.2.8) and the stochastic discount factor is given by (3.2.7).
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G Documentation of computation routines
In order to find the models’ respective perturbations, we employed the Maple-Matlab toolbox
introduced in Heiberger and Ruf (2014a). For the simulation and evaluation, we essentially
added two procedures. On the one hand, mom2 computes the second moments of our models’
variables. In particular, after either loading or generating 300 pseudorandom iid N(0,1) shock
series of length 80, it simulates the induced time paths of the state and control variables from
their respective (second order) approximations. Second, depending on the user’s choice, the
procedure computes the second moments from the plain time paths (mode = 0) or particular
manipulations thereof such as e.g. their natural log (mode= 1), their growth rates (mode= 3),
or log differences (mode = 5). Thereby, if hp = 1, the HP-filter is applied by calling the respective
Matlab routine.

On the other hand, prem_mxx_lang computes model Mx.x’s simulated ex post return figures.
Therefore, it first loads a pseudorandom iid N(0,1) shock series of length 500,000 and then
simulates the induced time paths of all variables along their (second order) approximations.40

Second, it uses the models’ return formulae and accordingly computes ex post averages of the
risk free rate, the return on equity and the equity premium.41

40Note that in both mom2 and prem_mxx_lang, the path to the shock series has to be specified correctly.
41The employed version of the Maple/Matlab toolbox can be downloaded from http://www.wiwi.

uni-augsburg.de/vwl/maussner/lehrstuhl/heiberger_en.html and http://www.wiwi.uni-augsburg.
de/vwl/maussner/lehrstuhl/ruf_en.html. The programs were run on Maple 17 and Matlab 2013a.

http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/heiberger_en.html
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/heiberger_en.html
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/ruf_en.html
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/ruf_en.html


Chapter 4

Search Frictions in the Labor Market and
Endogenous Economic Disasters
— Christopher Heiberger* —

4.1 Introduction
The benchmark business cycle model of (amongst others) Kydland and Prescott (1982), Long
and Plosser (1983), Hansen (1985), Prescott (1986) and King et al. (1988) features a Walrasian
labor market. Working hours are determined by the intersection of a downward sloping labor
demand curve and an upward sloping labor supply curve. Hence, involuntary unemployment
in the sense of Keynes (1936), p.15, where at a given real wage labor supply exceeds labor
demand, cannot exist. Small departures from this framework are models with either sticky
real wages as, e.g., in Blanchard and Galí (2007) and Uhlig (2007), or with nominal price and
wage rigidities as, e.g., in the New Keynesian models of Christiano et al. (2005) and Smets and
Wouters (2003). While in these models workers might want to work more hours at the given
real wage, they still are unable to explain a well-documented feature of labor markets: the
coexistence of unemployed workers and open vacancies.

The search and matching literature, developed by Diamond, Mortensen and Pissaridies and
reviewed in Rogerson et al. (2005) and Rogerson and Shimer (2011), can account for this fact.
It considers labor turnover as a resource consuming process. Neither the search of unemployed
workers for new jobs nor the recruiting activities of firms are costless. Search and recruiting
effort are viewed as inputs into a technology that matches unemployed workers to newly created
jobs. Since this process is not frictionless, as is the working of the Walrasian auctioneer, there
will be both unemployed workers and unfilled vacancies. In this framework the real wage
distributes the value of a newly created job between employer and employee. The outcome
depends on the assumptions about the bargaining process.

The papers by Merz (1995), Andolfatto (1996), and den Haan et al. (2000) embed this
framework into real business cycle models. Walsh (2005), Trigari (2009), and Christiano et al.
(2010), to name but a few, introduced search and matching into monetary models of the New
Keynesian variety.

The ability of the benchmark search and matching model to account for the stylized facts of the
labor market has been seriously challenged by Shimer (2005, 2010). In the data unemployment
and vacancies are 10 times more volatile than in simulations of the model. Shimer attributes this
failure to the flexibility of real wages. They absorb a large part of the shocks to labor productivity
so that there is little room for fluctuations in unemployment and vacancies. Since then, many
attempts have been made to solve the puzzle. Cardullo (2010) distinguishes three strands of the
respective literature. The first group modifies the process of wage determination, the second

*I continue to use the pronoun ”we” in order to refer to author and reader in this paper.
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group enriches the matching process, while the third group argues that the puzzle vanishes if
the model is properly calibrated.

This paper is concerned with the third group. Hagedorn and Manovskii (2008) suggest
a parametrization of the benchmark search and matching model, where the period value of
unemployment is close to labor productivity and where the household’s bargaining power is small.
As a consequence, the worker’s reservation wage is close to labor productivity and bargained
wages are insensitive to productivity shocks. Accordingly, these shocks trigger large swings
in the firm’s effort to recruit new workers, and thus, in posted vacancies and unemployment.
Kuehn et al. (2012) argue that this model is even able to explain periods of extremely high
unemployment. This feature of the model has remained unobserved because researchers have
employed inadequate solution methods.

The most frequently employed technique to solve dynamic general equilibrium (DSGE) models
are perturbation methods. They provide linear or higher order Taylor polynomial approximations
to the model’s policy functions. Near the point of approximation these solutions are usually
sufficiently accurate (see Heer and Maußner (2008), Aruoba et al. (2006)). Yet, if a model
drifts away from this point, global methods are called for. Kuehn et al. (2012) therefore use
a projection method (see Heer and Maußner (2009), Chapter 6) to study the Hagedorn and
Manovskii (2008) version of the benchmark search and matching model.

The model’s potential to endogenously explain rare but severe economic downturns raises
hope that it may also contribute to resolve the equity premium puzzle. In their seminal work
Mehra and Prescott (1985) argue that the neoclassical stochastic growth model is unable to
explain the historically observed risk premium on stocks of about 6 percent. A promising line of
research from Rietz (1988) over Barro (2006) to Gourio (2012, 2013) introduces disaster risk
exogenously in otherwise standard DSGE models and is able to predict sizeable risk premia. The
question, thus, is whether Hagedorn and Manovskii (2008)’s model with endogenous disasters
is also able to replicate the empirically observed risk premia. Kuehn et al. (2012) answer this
question in the affirmative.

It is therefore of particular interest to understand what drives the results of Kuehn et al. (2012,
2015) and whether their results change if those crucial assumptions are modified or extended.
Accordingly, the present paper is structured as follows.

We start with the same model as in Kuehn et al. (2012) as our baseline model. First, in order to
allow for an accurate analysis of the model, we describe in great detail different approximation
methods for the model’s policy functions within the framework of mean weighted residuals.
We find that, in order to accurately display the model’s dynamics in artificial simulations, a
high amount of degrees of freedom for the underlying approximation function is necessary.
For example, a comparison of the simulation results based on an approximation with a total
of 35 Chebyshev polynomials to the results obtained with an approximation with over 11000
piecewise (bi)cubic polynomials yields deviations in the computed time paths of the employment
rate by over 40 percent points. As found by Kuehn et al. (2012), the model gives rise to periods
of extremely high unemployment rates. A second order perturbation solution fails to reproduce
these results.

The model’s dynamics yield a significantly more volatile labor market than reported by Shimer
(2005). The standard deviation of the unemployment rate in the model is similar to the value
found in the data while the standard deviation of vacancies is only moderately lower than
empirically observed. Moreover, the periods of extremely high unemployment imply rare but
huge declines in consumption. The model generates a sizeable equity premium if generalized
recursive preferences of the class introduced by Epstein and Zin (1989) are assumed. However,
for standard additive time separable expected utility preferences this is not the case. Different
from models where disaster risk is introduced by an exogenous shock leading to a sudden and
drastic decline in consumption, risk about next period’s consumption is only limited in the
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labor market model. Economic downturns may evolve only gradually over a longer time span
of increasing unemployment. Consequently, with only comparable small variability in next
period’s marginal utility of consumption, the model fails to predict a sizeable equity premium
under additive time separable preferences. Yet, the risk of entering an economic downturn
in the upcoming periods may differ substantially amongst different states of the economy in
the next period. As a result, the lottery over the household’s lifetime utility in the next period
exhibits much more risk. Since this lottery enters the stochastic discount factor under Epstein-Zin
preferences, the model can generate a significantly higher equity premium with this preference
structure.

In the next step, we consider a corresponding social planner problem, where the employment
rate does not fluctuate much around the deterministic steady state. By adding the distortions
from social optimum, which are incorporated in the baseline model, separately to the model, we
find the interaction of three mechanisms to play a particular important role for generating the
huge unemployment rates in the model. First, a high and fixed period value of unemployment
activities implies that the workers’ reservation wage in the model is close to labor productivity
and does not adjust to the state of the economy. Consequently, reflecting the results from
Hagedorn and Manovskii (2008), negative shocks to labor productivity implicate large relative
declines in the excess of labor productivity over wage costs and therefore in the present value of
a worker to the firm. Second, high elasticities of the number of open vacancies posted and of
realized job matches with respect to the present value of a worker to the firm further amplify
the relative declines of these quantities, while separations result exogenously at a fixed rate.
Finally, with unemployment quickly rising in the following periods, more unemployed members
enter the matching process and the probability to fill a vacancy from the firm’s perspective
ceteris paribus increases. However, with increasing marginal utility of consumption, the firm
also discounts expected future profits gained from a worker in the long run at a higher rate
so that the present value of a worker from the firm’s perspective will decline further—even if
labor productivity remains the same. Since realized job matches become even more sensitive to
changes in the present value of a worker, the last effect turns out to prevail and even less new
jobs are created. Consequently, unemployment will rise further and the economy won’t stabilize
but is destined to enter a downward spiral until productivity sufficiently recovers.

A high and fixed period value of unemployment activities in the model turns out crucial
for setting off the mechanism that leads the economy to plunge into disasters. Hagedorn and
Manovskii (2008) motivate this high value for the standard search and matching model in that
they argue that it should not only reflect unemployment insurance in this framework1, but also
other factors for which a worker demands to be compensated for by the wage and which are not
included otherwise in the model, as e.g. the foregone value from leisure over work effort, the
value of home production, etc. This point can also be made for our baseline model following
Kuehn et al. (2012, 2015), since only consumption but not leisure enters the household’s utility
function and since home production is not included endogenously. The baseline model intro-
duces the period value of unemployment activities in form of fixed compensation payments to
unemployed members in the representative household’s budget constraint, therefore establishing
his reservation wage. However, this modeling has three consequences. First, the fact that the
complete period value of unemployment, which determines the household’s reservation wage,
is summarized in a fixed parameter, also includes the implicit assumption that this value does
not adjust over the business cycle indifferent to the fact how far unemployment eventually rises.
Second, it is assumed that the compensation payments unemployed household members receive
are redistributed from taxes in equilibrium. While this implies that unemployment cannot yield

1Different from our setting with a risk averse household, the standard search and matching model in Hagedorn
and Manovskii (2008) considers the case of a risk neutral household maximizing his expected, discounted
income stream.
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an aggregate income effect which increases total consumption, the model on the other hand
ignores the positive effects on the household’s utility from unemployment—the same effects
which are (implicitly) essential to keep his reservation wage high. Yet, return rates crucially
depend on such (cross) effects on the household’s marginal utility of consumption, or even
on the direct effects on his lifetime utility in case of Epstein-Zin preferences. Third, as direct
consequence of the fact that taxes equal total transfer payments to unemployed members, taxes
rise to a multitude of the household’s labor income during periods of very high unemployment
in the model.

We analyze how the model’s dynamics change once we modify these assumptions. For example,
if we add leisure to the household’s utility, the value of unemployment due to leisure arises
endogenously in the model. If the marginal rate of substitution (MRS) between leisure and the
consumption good is not constant, the value will then adjust over the business cycle. We find the
huge declines in the employment rate to disappear from the model in consequence.2 Even if we
set the total period value of unemployment activities to the same high level in the deterministic
steady state, the marginal rate of substitution between leisure and consumption will be declining
during a recession with increasing unemployment and less consumption. Different from the
baseline model, the workers’ reservation wage reduces moderately and the mechanism leading
the model’s economy into a downward spiral does not take effect anymore. This result maintains,
if we allow the employed members and the firm to decide about the working hours and assume
unemployed members to actively decide about their job searching effort. Finally, a similar
argument is also true for the value of unemployment from home production. Since no huge
drops in the employment rate appear in the model’s extensions, we find that a second order
perturbation solution can already provide a much better approximation. Differences to a global
solution method in simulations of the models turn out to be only small.

Without the occurrence of periods with extremely high unemployment in the model’s exten-
sions, the volatility of the labor market reduces significantly. Moreover, huge but severe declines
in consumption, as observed in the baseline model, also disappear. If working hours are variable,
employed household members will spend more time working once unemployment increases and
consumption decreases. With home production in the model, the output of the home produced
good will additionally increase during periods of higher unemployment. Consequently, declines
in consumption are reduced even further. As a result, we find that the model extensions can no
longer generate a sizeable equity premium even if Epstein-Zin preferences are assumed.

The remainder of the paper is organized as follows. Section 4.2 presents the baseline model.
In section 4.3 we give a detailed description of the global solution methods, while the numerical
results are provided in section 4.4. Section 4.5 gives an overview of the economic disasters,
the equity premium and the second moments in the baseline model. We analyze the effects
in the model’s economy, which lead to economic disasters in section 4.6, before studying the
extensions of the model in section 4.7. Finally, section 4.8 concludes.

4.2 Baseline Model
In the following section, we review the search and matching labor market model used by Kuehn
et al. (2012), in which rare disasters in form of periods with extremely high unemployment
arise endogenously. The economy consists of a representative household and a representative

2Kuehn et al. (2015) also consider an extension of the model with leisure in the utility in their appendix, but arrive
at a different conclusion. Yet, their specification of the utility function implies a constant MRS between leisure
and consumption. Note however that, as long as the MRS is not too low, the effects of huge declines in the
employment rate on the household’s lifetime utility should be significantly dampened compared to the baseline
model in that case. It is therefore questionable if the model can still generate a sizeable equity premium even
under this specification.
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firm. Time is discrete and the planning horizon is infinite so that the periods are indexed by
t ∈ N. The household itself consists of a unit mass of members.

4.2.1 Search and Matching
In any time period t, each member of the household is either employed by the representative
firm, taking part in the economy’s production process, or unemployed, searching for a job. The
mass of employed household members is denoted by Nt , while Ut = 1− Nt denotes the mass of
unemployed members. Further, in each period t, the representative firm chooses an amount
Vt ≥ 0 of open vacancies to post. It is assumed that the outcome Mt = M(Ut , Vt) of newly
created jobs during the unmodeled process of all unemployed members searching for jobs and
the representative firm recruiting is described by a matching function M : [0, 1]×R≥0→ R with

M(Ut , Vt) =





Ut Vt�
Uτt + V τt

� 1
τ

, if (Ut , Vt) 6= (0, 0);

0, if (Ut , Vt) = (0, 0);

(4.2.1)

where τ > 0. 3 Further, employed workers depart from their jobs at the exogenously given rate
ω> 0. Hence, employment in the model evolves according to

Nt+1 = (1−ω)Nt +Mt . (4.2.2)

The functional form of M guarantees that the amount of newly formed jobs can neither exceed
the mass of unemployed household members nor the amount of open vacancies posted, i.e.

Mt ≤min {Ut , Vt},
with equality if and only if one of the two input factors is zero. Together with the strictly positive
separation rate ω in (4.2.2) this already implies Ut > 0 for all t ∈ N (except possibly for the first
period, if the economy was set to start with all the household’s members employed). We will
therefore assume without any loss of generality Ut > 0 in the following. From the representative
firm’s perspective the average probability for an open vacancy to be filled is

κ f ,t :=
Mt

Vt
=

1
�
1+

�
Vt
Ut

�τ� 1
τ

, if Vt > 0.

In case of Vt = 0 the probability is formally not defined, but we will set it to the limit κ f ,t = 1
for notational convenience. Analogously, the average probability for an unemployed member of
the household to find a job is

κw,t :=
Mt

Ut
=





1
�

1+
�

Vt
Ut

�−τ� 1
τ

, if Vt > 0;

0, if Vt = 0;

We define θt := Vt
Ut

as the vacancy-unemployment ratio. In terms of θt , we can then equivalently
write

κ f ,t =
1

�
1+ θτt

� 1
τ

,

3Note, that the function M is continuous in (0, 0).
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and

κw,t =





1
�
1+ θ−τt

� 1
τ

, if θt > 0;

0, if θt = 0.

Note that κ f ,t is strictly monotonously decreasing, while κw,t is strictly monotonously increasing
in θt . We can interpret θt as a measure of the labor market tightness. The higher the value of
θt , the more open vacancies per unemployed member and the lower becomes the probability of
an open vacancy being filled from the representative firm’s perspective, yet the higher becomes
the probability of an unemployed member finding a job.

4.2.2 Representative Household
To avoid heterogeneity amongst the employed and unemployed members of the household, we
assume that the members of the representative household pool their income before deciding
about per capita consumption. We further assume the household’s lifetime utility, derived from
a probability distribution over a consumption stream {Ct+s}∞s=0 as of period t, to be the expected
sum of discounted CRRA within period utility, i.e.

Et

�∞∑
s=0

β s C1−η
t+s − 1

1−η

�
, β ∈ (0,1),η > 0,η 6= 1. (4.2.3)

At any period t, the household’s budget constraint is given by

Ct + vt(St+1 − St)≤ wt Nt + b(1− Nt) + dtSt − Tt , (4.2.4)

where wt , b, dt , St , vt and Tt denote period t ’s wage, the (fixed) period value of unemployment
activities (measured in consumption units)4, dividend payment per share, the number of shares
hold by the household, the share price and lump sum taxes, respectively. Employed members
of the household depart from their jobs at the rate ω, while unemployed members find a job
with probability κw,t . I.e. from the representative household’s perspective the mass of employed
members evolves according to

Nt+1 = (1−ω)Nt +κw,t Ut = (1−ω)Nt + κw,t(1− Nt). (4.2.5)

Households in the economy do not coordinate in any way in their job searching activities and
have no influence on the average job finding rate on their own. Consequently, the representative
household treats the probability κw,t as strictly exogenous in all of his decisions. The representa-
tive household chooses consumption and stock holdings to maximize (4.2.3) under the series of
budget constraints (4.2.4) and the dynamic (4.2.5) given initial values Nt and St . If Jh(Nt , St)
denotes the household’s value function, then

Jh(Nt , St) = max
Ct ,St+1

C1−η
t − 1
1−η + βEt

�
Jh
�
(1−ω)Nt +κw,t(1− Nt), St+1

��

s.t. Ct ≤ wt Nt + dtSt − vt(St+1 − St) + b(1− Nt)− Tt ,

given Nt , St .

4As will become apparent immediately, the parameter b defines the workers’ reservation wage in the model. It
will therefore be understood to include all the value from unemployment a worker demands to be compensated
for at minimum, i.e. unemployment benefits but also the foregone value from leisure, home production etc.
Hence, we will call b the period value of unemployment activities instead of unemployment benefits.
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Observing that the budget constraint has to be fulfilled with equality in an optimum, the first
order condition of the maximization problem on the right hand side with respect to Ct is

λt = C−ηt , (4.2.6)

where λt denotes the Lagrange multiplier of the budget constraint. For a bounded solution with
respect to St+1 to exist it must hold that

λt vt = βEt

�
∂ Jh

∂ S
(Nt+1, St+1)

�
.

Further, by the envelope theorem, we find the derivative of the value function with respect to St

to be

∂ Jh

∂ S
(Nt , St) = λt(dt + vt).

Plugging this expression for (t + 1) into the first order condition for St+1 results in the following
Euler condition for the share price

vt = Et

�
β
λt+1

λt
(dt+1 + vt+1)

�
. (4.2.7)

Further, the value of employment over unemployment to the household can also be derived via
the envelope theorem by

∂ Jh

∂ N
(Nt , St) = λt(wt − b) + βEt

�
∂ Jh

∂ N
(Nt+1, St+1)(1−ω−κw,t)

�
.

Measuring this value in consumption units by defining ξh
t := 1

λt

∂ Jh

∂ N (Nt , St), we arrive at the
recursive formulation

ξh
t = wt − b+ (1−ω− κw,t)Et

�
β
λt+1

λt
ξh

t+1

�
. (4.2.8)

Equation (4.2.8) is interpreted as follows. The household’s instantaneous within period value
from employment over unemployment is given by the excess of the wage over the period value of
unemployment activities, i.e. wt − b. Moreover, a worker keeps his job with probability 1−ω in
the next period, whereas he would have found a job with probability κw,t if he was unemployed.
Thus the total value of employment (over unemployment) from the household’s perspective
is the sum of wt − b and the continuation value of next period’s expected discounted value of
employment weighted with (1−ω−κw,t).

4.2.3 Representative Firm
At any period t, the representative firm produces the amount Yt of the final good with the
employed workers via a linear technology

Yt = exp(Zt)Nt . (4.2.9)

Labor productivity (LP) exp(Zt) evolves randomly with the stationary and causal fist order
autoregressive process Zt , i.e.

Zt+1 = ρZt + εt , εt ∼ iidN(0,σ2
ε
), |ρ|< 1.
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In order to adjust the labor input for the next period, the firm can post vacancies Vt ≥ 0, which
are filled with probability κ f ,t . Posting an open vacancy is associated with fixed costs c > 0,
which are then lost from total output. Job arrangements are only quit at the exogenous rate ω.
I.e. from the firm’s perspective employment evolves according to

Nt+1 = (1−ω)Nt +κ f ,t Vt . (4.2.10)

The representative firm takes the probability κ f ,t as exogenously given in its decisions reflecting
the assumptions that firms in the economy are assumed to not coordinate their recruiting efforts
and to be too small to have influence on the average probability on their own. The representative
firm’s profit πt in period t amounts to revenue less labor and recruiting costs, i.e

πt := Yt −wt Nt − cVt . (4.2.11)

Profits beyond dividend payments are used to buy back shares, while any eventual loss after
dividend payments is covered by the issuance of new shares

−vt(St+1 − St) = πt − dtSt . (4.2.12)

The ex-dividend firm value at the end of the current period t, denoted by FVt , is defined as the
number of outstanding shares St+1 times the current stock price vt . Repeatedly using the Euler
equation (4.2.7) for the share price together with

St dt + St vt = πt + St+1vt

from (4.2.12) implies

FVt := St+1vt
(4.2.7)
= Et

�
β
λt+1

λt
(St+1dt+1 + St+1vt+1)

�
= Et

�
β
λt+1

λt
(πt+1 + St+2vt+1)

�
= . . .=

= Et

�∞∑
s=1

β sλt+s

λt
πt+s

�
,

(4.2.13)

if we additionally assume that

lim
s→∞Et

�
β sλt+s

λt
vt+sSt+s+1

�
= 0.

Thus, the firm value at the end of period t is the expected present value of its profits to come.
Subject to the production technology (4.2.9) and the dynamics of employment (4.2.10), the
representative firm decides about the number of open vacancies in order to maximize the
beginning-of-period firm value FV bop

t , which is defined as the firm’s current period profits plus
the ex-dividend firm value, i.e.

FV bop
t := πt + FVt = Et

�∞∑
s=0

β sλt+s

λt
πt+s

�
. (4.2.14)

Let J f (Nt) denote the value function of the firm’s maximization problem. Then

J f (Nt) = max
Vt

exp(Zt)Nt −wt Nt − cVt +Et

�
β
λt+1

λt
J f
�
(1−ω)Nt +κ f ,t Vt

��

s.t. Vt ≥ 0,

given Nt .
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Note that we do not impose any particular dividend policy or strategy regarding the number of
outstanding shares. After determining the optimal amount of open vacancies, any dt , St+1 and
vt which satisfy (4.2.12) and (4.2.7) are admissible. The Karush-Kuhn-Tucker (KKT) conditions
for a bounded solution of the maximization problem on the right hand side are

c = κ f ,tEt

�
β
λt+1

λt

∂ J f

∂ N
(Nt+1)

�
+µt , (4.2.15)

Vt ≥ 0, (4.2.16)

µt ≥ 0, (4.2.17)

µt Vt = 0, (4.2.18)

with µt denoting the KKT multiplier of the non-negativity constraint. Next, we are introducing
additional notation to keep the upcoming derivations short

ξ f
t :=

∂ J f

∂ N
(Nt),

ξ̂ f
t := Et

�
β
λt+1

λt
ξ

f
t+1

�
= Et

�
β
λt+1

λt

∂ J f

∂ N
(Nt+1)

�
.

Hence, ξ f
t denotes this period’s marginal value of a worker to the firm, while ξ̂ f

t denotes the
present value of a worker in the next period, or equivalently of a filled position in the next
period, to the firm. Equation (4.2.15) can then also be written as

c = κ f ,t ξ̂
f
t +µt . (4.2.19)

If the non-negativity constraint on open vacancies is non-binding, i.e. Vt > 0 and µt = 0, the
present value of a filled position in the next period times the probability of a vacancy getting
filled must equal the costs of posting an open vacancy in order for a bounded solution to exist.
The representative firm is then indifferent between posting any amount of open vacancies. In
case of the non-negativity constraint binding, Vt = 0 (and κ f ,t = 1 in equilibrium), the Lagrange
multiplier µt measures the amount by which the costs of posting an open vacancy exceed the
expected return from it. Applying again the envelope theorem, we can derive

ξ f
t =

∂ J f

∂ N
(Nt) = exp(Zt)−wt +Et

�
β
λt+1

λt

∂ J f

∂ N
(Nt+1)(1−ω)

�
=

= exp(Zt)−wt + (1−ω)ξ̂ f
t .

(4.2.20)

Hence, the value of an employed worker to the representative firm can be expressed recursively
as the sum of the within period profit obtained from a worker, i.e. labor productivity less wage
costs, exp(Zt)− wt , and the present value of a worker in the next period weighted with the
probability 1−ω of the worker keeping his job. Moreover,

ξ̂ f
t = Et

�
β
λt+1

λt

�
exp(Zt+1)−wt+1 + (1−ω)ξ̂ f

t+1

��
. (4.2.21)

4.2.4 Wage Bargaining
The wage rate is the outcome of a bargaining process between the household and the firm over
the total surplus from the employment of a household member. More specifically, we assume
the wage to be the result of maximizing the Nash product of the value of employment to the
household ξh

t and to the firm ξ
f
t , i.e.

max
wt

(ξh
t )
ϕ(ξ f

t )
1−ϕ, ϕ ∈ (0,1), (4.2.22)
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where ϕ ∈ (0,1) can be interpreted as a measure of the household’s bargaining power. First,
using (4.2.8) and (4.2.20) the total surplus ξt := ξh

t + ξ
f
t generated by the employment of a

worker in the economy is

ξt = exp(Zt)− b− κw,tEt

�
β
λt+1

λt
ξh

t+1

�
+ (1−ω)Et

�
β
λt+1

λt
ξt+1

�
. (4.2.23)

Since the total surplus is independent of this period’s wage, maximizing (4.2.22) is equivalent
to determining the shares ξh

t and ξ f
t maximizing the geometric mean with weights ϕ and 1−ϕ

given a fixed total surplus and then solving for the wage leading to this sharing rule. The sharing
rule maximizing the Nash product given the total surplus is the outcome of

max
ξh

t ,ξ f
t

(ξh
t )
ϕ(ξ f

t )
1−ϕ

s.t. ξh
t + ξ

f
t = ξt

given ξt .

Plugging in the constraint ξ f
t = ξt − ξh

t and differentiating with respect to ξh
t yields the first

order condition

0= ϕ(ξh
t )
ϕ−1(ξt − ξh

t )
1−ϕ − (1−ϕ)(ξh

t )
ϕ(ξt − ξh

t )
−ϕ

or equivalently

ξh
t = ϕξt ,

and therefore

ξ f
t = (1−ϕ)ξt .

The assumed bargaining process thus implies the representative household and the representative
firm to receive the shares ϕ and 1−ϕ, respectively, of the total surplus from the employment of
the worker. We can now use equations (4.2.8) and (4.2.20) to determine the wage resulting in
this sharing rule. We have for all periods t

ξh
t = ϕξt = ϕ(ξ

h
t + ξ

f
t )

⇔(1−ϕ)ξh
t = ϕξ

f
t

⇔(1−ϕ)
�

wt − b+ (1−ω− κw,t)Et

�
β
λt+1

λt

ϕ

1−ϕξ
f
t+1

��
= ϕ

�
exp(Zt)−wt + (1−ω)ξ̂ f

t

�

⇔(1−ϕ) (wt − b) +ϕ(1−ω−κw,t)ξ̂
f
t = ϕ

�
exp(Zt)−wt + (1−ω)ξ̂ f

t

�

⇔wt = ϕ exp(Zt) + (1−ϕ)b+ϕκw,t ξ̂
f
t . (4.2.24)

Now, since κ f ,t > 0, equation (4.2.19) yields ξ̂ f
t =

c
κ f ,t
− µt
κ f ,t

, so that

κw,t ξ̂
f
t =

κw,t

κ f ,t
c − κw,tµt

κ f ,t
.

But, if Vt = 0 then κw,t = 0 and if Vt > 0 then µt = 0 so that κw,tµt = 0 always holds and
therefore

κw,t ξ̂
f
t =

κw,t

κ f ,t
c =

Vt

Ut
c. (4.2.25)
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The wage equation can thus be written as

wt = ϕ exp(Zt) + (1−ϕ)b+ϕ
Vt

1− Nt
c. (4.2.26)

I.e. ignoring the last term, the wage is a weighted mean of the revenue gained by the represen-
tative firm through the employment arrangement—the marginal product of labor—weighted
with the household’s bargaining power and the household’s fall back value if unemployed—the
period value of unemployment activities—weighted with the firm’s bargaining power. Moreover,
if a position is filled, the representative firm saves the costs c for posting a vacancy. The last
term constitutes a compensation to the worker for these saved costs where he is rewarded more
the less likely an open vacancy can currently be filled.

Note that we did not additionally impose the restriction that labor productivity always exceeds
the period value of unemployment b. This is the case for the following reason. Although it
follows from (4.2.26) that in the event of exp(Zt)< b, the wage wt will exceed labor productivity,
it remains optimal for the firm to continue an already existing employment arrangement as long
as ξ f

t is non-negative and to even hire some new workers if ξ̂ f
t > c. Expected discounted future

profits realized from the employment of the worker exceed the current loss faced from it in
that case. For analogous reasons it remains optimal for a worker to continue an employment
arrangement and for an unemployed member to look for jobs, respectively, as long as ξh

t is
non-negative, indifferent of the fact whether wt might fall below b in some periods.5 Hence,
only ξ f

t and ξh
t becoming negative would pose a problem in the model since it would then be

optimal for the firm to shut down, all the workers to quit their jobs and unemployed members
to stop searching for jobs. However, while labor productivity (very rarely) does fall below the
period value of unemployment activities in simulations, the value ξ f

t of a worker to the firm as
well as the value ξh

t of employment over unemployment to the household remain significantly
positive throughout.

4.2.5 Government sector
Unemployment activities of unemployed household members in the model do not increase
the aggregate amount of the consumption good Ct available. Accordingly, it is assumed that
the complete value bUt the household receives from his unemployed members in the budget
constraint (4.2.4) does not yield an aggregate income effect but is financed completely by
transfer payments instead. Further, the government runs a balanced budget so that taxes equal
the total period value from unemployment activities, i.e.

Tt = b(1− Nt). (4.2.27)

Consequently, the model includes no aggregate value from unemployment.

4.2.6 General Equilibrium
In a general equilibrium the goods market has to be cleared, i.e. Yt − cVt = Ct , the share
market clears, the representative household as well as the representative firm mutually act
optimally while obeying their respective constraints, the wage equation holds, the state’s budget
is balanced, employment evolves according to the dynamic implied by the matching process,
the probability of filling a vacancy from the firm’s perspective equals the average matches per
vacancy and the probability of an unemployed member finding a job from the household’s

5Despite this fact we will refer to the household’s fall back value in case of unemployment, given by the value of
unemployment activities, as the households’s reservation wage throughout this article.
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perspective is the average matches per unemployed member. As already mentioned, the values
for dt , St+1 and vt are not uniquely determined in equilibrium without assuming the firm to
follow a particular dividend policy. Note however, that it follows from the household’s budget
constraint (4.2.4) together with (4.2.12) and (4.2.27) that the goods market clearing condition
is already necessary and sufficient for the stock market to clear too. Moreover, the return on
equity can be computed from the other variables so that we are not interested in the share price,
dividend payment per share and the number of outstanding shares per se. Hence, we can ignore
(4.2.4), (4.2.7) and (4.2.12) without any loss.

To sum up, the equilibrium is determined by the following system of equations

Ut = 1− Nt , (4.2.28)

Mt =
Ut Vt�

Uτt + V τt
� 1
τ

, (4.2.29)

κ f ,t =





Mt

Vt
if Vt > 0,

1 if Vt = 0,
(4.2.30)

κw,t =
Mt

Ut
, (4.2.31)

Nt+1 = (1−ω)Nt +Mt , (4.2.32)

Yt = exp(Zt)Nt , (4.2.33)

Yt = Ct + cVt , (4.2.34)

λt = C−ηt , (4.2.35)

wt = ϕ exp(Zt) + (1−ϕ)b+ϕ
Vt

1− Nt
c, (4.2.36)

c = κ f ,t ξ̂
f
t +µt , (4.2.37)

µt ≥ 0, (4.2.38)

Vt ≥ 0, (4.2.39)

µt Vt = 0, (4.2.40)

ξ̂ f
t = Et

�
β
λt+1

λt

�
exp(Zt+1)−wt+1 + (1−ω)ξ̂ f

t+1

��
. (4.2.41)

Next, we show how all period t variables (and Nt+1) can be derived analytically from the
state variables (Nt , Zt) and the present value ξ̂ f

t of a worker in the next period to the firm in
such way that all equations except for the last one (4.2.41) are satisfied.

Let us first only consider the KKT conditions (4.2.37)-(4.2.40), where we plug in the definition
of κ f ,t from (4.2.30), of Ut from (4.2.28) and of Mt from (4.2.29) and already bear in mind,
that µt = 0 in the case of the non-negativity constraint on Vt not binding by (4.2.40). We then
get

c =





1− Nt�
(1− Nt)τ + V τt

� 1
τ

ξ̂ f
t if Vt > 0,

ξ̂ f
t +µt if Vt = 0,

, (4.2.42)
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µt ≥ 0, (4.2.43)

Vt ≥ 0, (4.2.44)

µt Vt = 0. (4.2.45)

If we solve this reduced system for Vt and µt dependent on the state variables Nt and Zt and
the value of ξ̂ f

t , all remaining variables can be derived directly from (4.2.28)-(4.2.36). For the
reduced system, we can rewrite the first case in (4.2.42) equivalently as

c =
1− Nt�

(1− Nt)τ + V τt
� 1
τ

ξ̂ f
t ⇔ c

�
(1− Nt)

τ + V τt
� 1
τ = (1− Nt)ξ̂

f
t

⇔ V τt = (1− Nt)
τ

��
ξ̂

f
t

c

�τ
− 1

�

⇔ Vt = (1− Nt)

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

.

But this can be satisfied with Vt > 0 iff ξ̂ f
t > c. On the other hand, in the second case of Vt = 0,

(4.2.42), yields

µt = c − ξ̂ f
t ,

so that (4.2.43) is satisfied iff ξ̂ f
t ≤ c. Summing up, setting

Vt =





0, if ξ̂ f
t ≤ c,

(1− Nt)

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

, if ξ̂ f
t > c,

and µt =

¨
c − ξ̂ f

t , if ξ̂ f
t ≤ c,

0, if ξ̂ f
t > c,

. (4.2.46)

the KKT conditions are met. As noted above, Ut , Mt ,κ f t ,κwt , Nt+1Yt , Ct ,λt and wt can then be
computed successively from (4.2.28)-(4.2.36). By plugging all the derived expressions into
(4.2.41), the system of equations defining the equilibrium thus reduces to a single equation in
the single remaining variable ξ̂ f

t (next to the predetermined state variables). We will exploit
this fact in the solution methods described in the next section.

4.3 Solutionmethods
We proceed to describe the framework for the methods used in order to find the solution to the
stochastic dynamic system implicitly defined by the equilibrium conditions (4.2.28)-(4.2.41).

We already showed in the previous section how the system of equations defining the economy’s
equilibrium can be reduced analytically to the single Euler equation (4.2.41) in the unknown
variable ξ̂ f

t . The model’s equilibrium is therefore fully characterized once we have solved the
Euler equation for ξ̂ f

t and set the remaining variables as described. Since the policy function
of ξ̂ f

t identifies the variable dependent on the state variables, the Euler equation constitutes
an equation the policy function of ξ̂ f

t has to solve. The equation involves an integral since the
expectation on the right hand side is taken with respect to a normal distributed random variable.
The task of finding the policy function for ξ̂ f

t is thus equivalent to solving a functional integral
equation. More specifically, the policy function of ξ̂ f

t is characterized as follows.
Let

g : [0, 1]×R→ R
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denote the (time invariant) policy function for next period’s expected discounted marginal value
of a worker to the firm, i.e.

ξ̂ f
t = g(Nt , Zt).

Then, according to the Euler equation (4.2.41) and the characterization of the other variables
described in the preceding subsection, g must solve the equation

R(g, x , z) := lhs(g, x , z)− rhs(g, x , z) = 0 for all x ∈ [0,1], z ∈ R, (4.3.1)

with

lhs(g, x , z) := g(x , z) (4.3.2)

and

rhs(g, x , z) := E
�
β

�
Ct+1

Ct

�−η
(exp(Zt+1)−wt+1 + (1−ω)g(Nt+1, Zt+1))

�
, (4.3.3)

where Ct , Nt+1, Zt+1, Ct+1 and wt+1 in rhs are short for the expressions of the respective variables
dependent on x = Nt , z = Zt , g(x , z) = ξ̂ f

t and the innovation ε∼ N(0,σ2
ε
), i.e.

Vt := V (g, x , z) :=





0, if g(x , z)≤ c

(1− x)
��

g(x , z)
c

�τ
− 1

� 1
τ

, if g(x , z)> c
(4.3.4)

Mt := M(g, x , z) =
(1− x)V (g, x , z)

((1− x)τ + V (g, x , z)τ)
1
τ

, (4.3.5)

Ct := C(g, x , z) := exp(z)x − cV (g, x , z), (4.3.6)

wt := w(g, x , z) := ϕ exp(z) + (1−ϕ)b+ϕc
V (g, x , z)

1− x
, (4.3.7)

Nt+1 := N(g, x , z) := (1−ω)x +M(g, x , z), (4.3.8)

Zt+1 := ρz + ε, ε∼ N(0,σ2
ε
), (4.3.9)

Ct+1 := C(g, N(g, x , z),ρz + ε), (4.3.10)

wt+1 := w(g, N(g, x , z),ρz + ε). (4.3.11)

4.3.1 Method of meanweighted residuals

We identify the policy function g of ξ̂ f
t as the solution to the above stated functional integral

equation. Since there is no analytical solution available, we will rely on approximation methods
applicable to solutions of functional equations as the one at hand. The approximation methods
we used all fall within the framework of mean weighted residuals.6 We will therefore first
describe the common basic idea of the framework, before laying out the details for the specific
methods used.

6See, for instance Judd (1998), Chapter 11, Heer and Maußner (2009), Chapter 6, Judd (1992) or McGrattan
(1999).
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Let X ⊂ Rn denote a compact subset of Rn and F (X ,R) the vector space of real valued
functions on X . Further, let

R: F (X ,R)× X → R
and consider the problem of finding a function g ∈ F (X ,R) with

R(g, x) = 0, for all x ∈ X . (4.3.12)

In a first step, the complexity of the problem to find a function which adequately approximates
the unknown solution to (4.3.12) is reduced by restricting the approximation to a specific
parametric family { ĝa : X → R | a ∈ RK}. Instead of searching for an appropriate function, only
K suitable parameter values must be determined. More specifically, we may choose a set of
basis functions Φk, k = 1, . . . , K and restrict ourselves to approximate the solution g within the
subspace spanned by these functions, i.e. by a linear combination

ĝa(x) =
K∑

k=1

akΦk(x), x ∈ X , a = (a1, . . . , aK)
′ ∈ RK .

More generally, the approximation may also be non-linear in the parameters, i.e. the approxima-
tion ĝa may be found from a class

ĝa(x) = Φ(a, x), x ∈ X , a = (a1, . . . , aK)
′ ∈ RK .

In the second step, a criteria which allows to compute the free parameters ak in a way
rendering the approximation fitting to the problem must be provided. The criteria for the
choice of the parameter values is such that weighted averages of R( ĝa, .) on X vanish. Note that
R( ĝa, .) = 0 almost everywhere on X would be equivalent to

〈R( ĝa, .),Ψ〉 :=

∫

X

R( ĝa, x)Ψ(x)d x = 0 for all Ψ ∈ L2(X ), (4.3.13)

where L2(X ) is the space of square-integrable functions on X and 〈., .〉 is the canonical inner
product on L2(X ). Since the solution in general does not lie within the class we restricted
ourselves to, it may not be possible to choose the parameter vector a ∈ RK in such way that
(4.3.13) holds for every admissible function Ψ. But given another choice of K test functions
Ψi, i = 1, . . . , K , we can try to find parameters ak, k = 1, . . . , K , so that (4.3.13) holds for these
test functions, i.e. so that the K equations

〈R( ĝa, .),Ψi〉 :=

∫

X

R( ĝa, x)Ψi(x)d x = 0 for i = 1, . . . , K , (4.3.14)

are met. In other words, we choose the parameters such way that R( ĝa, .) is orthogonal to all of
our test functions and hence, although R( ĝa, .) may not equal zero, the orthogonal projection
of R( ĝa, .) on the subspace spanned by the test functions is zero. Equivalently, the conditions
(4.3.14) state that the approximation error R( ĝa, .) vanishes on average over X when weighted
with the test functions Ψi. Since evaluating the conditions in (4.3.14) involves the computation
of another integral, the inner product on L2 is often endowed with an additional weight function
w: X → R>0 so that the parameters can be determined from a suitable quadrature formula to

〈R( ĝa, .),Ψi〉w :=

∫

X

R ( ĝa, x)Ψi(x)w(x)d x = 0, i = 1, . . . , K . (4.3.15)
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In the following, we will present four methods based on this framework that allow us to find
an approximation to the policy function g of ξ̂ f

t characterized as the solution to the functional
equation stated in (4.3.1). Essentially, these four methods differ regarding two aspects, namely
the choice of basis functions the approximation is restricted by and the numerical computation
of the expectation operator appearing in the functional equation through (4.3.3). Two of the
methods will rely on linear combinations of Chebyshev polynomials, while the other two are
based on piecewise (bi)cubic polynomials. In the first case, each of the parameters ak affects
the shape of the approximation function ĝa on the whole domain and ĝa is called a spectral
function, whereas in the second case, a change in one of the parameters affects the shape of
ĝa only on a limited range and ĝa is called a finite element function. For both choices of basis
functions the expectation appearing in the functional equation will be numerically computed in
two ways. The first approach uses a Gauss-Hermite quadrature. In the second approach the
AR(1) process governing log labor productivity will be replaced by a finite state space Markov
chain so that the expectation reduces to a sum.

4.3.2 Spectral Methods
We present the details for the approximation by a spectral method. More specifically, as already
mentioned, we choose Chebyshev polynomials as basis functions throughout this approach.

4.3.2.1 A Chebyshev-Galerkin Method

We begin the description for the case where the expectation in the functional equation is
computed numerically by a Gauss-Hermite quadrature. First, in order to evaluate the functional
rhs(g, x , z) defined by (4.3.3), one needs to compute an integral since

rhs(g, x , z) =

∫

R
f (x , z,ε)

1Æ
2πσ2

ε

e
− ε2

2σ2
ε dε,

where

f (x , z,ε) :=β
�

C(g, N(g, x , z),ρz + ε)
C(g, x , z)

�−η
·

· (exp(ρz + ε)−w(g, N(g, x , z),ρz + ε) + (1−ω)g(N(g, x , z),ρz + ε)) .

By substitution with ε̃ := εp
2σ2

ε

, we get

∫

R
f (x , z,ε)

1Æ
2πσ2

ε

e
− ε2

2σ2
ε dε=

∫

R
f
�

x , z,
Æ

2σ2
ε
ε̃
� 1p
π

e−ε̃
2
dε̃,

so that we can approximate the integral by Gauss-Hermite quadrature with n nodes through
∫

R
f
�

x , z,
Æ

2σ2
ε
ε̃
� 1p
π

e−ε̃
2
dε̃≈ 1p

π

n∑
i=1

wi f
�

x , z,
Æ

2σ2
ε
εi

�
,

where the weights wi and nodes εi can be computed as described in Golub and Welsch (1969).
Hence,

rhs(g, x , z)≈ rhsGH(g, x , z) :=
1p
π

n∑
i=1

wiβ

�
C(g, N(g, x , z),ρz +

p
2σεεi)

C(g, x , z)

�−η
·

· �exp(ρz +
p

2σεεi)−w(g, N(g, x , z),ρz +
p

2σεεi) + (1−ω)g(N(g, x , z),ρz +
p

2σεεi)
�

.
(4.3.16)
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We will now apply the framework of mean weighted residuals to find an approximation to the
solution of

RGH(g, x , z) := lhs(g, x , z)− rhsGH(g, x , z) = 0, for all x ∈ [0, 1], z ∈ R. (4.3.17)

instead of the original functional equation (4.3.1).

Let [
¯
x , x̄] ⊂ [0,1], [

¯
z, z̄] ⊂ R and X := [

¯
x , x̄]× [

¯
z, z̄]. Further, let Ti : [−1,1] → R denote

the i-th Chebyshev polynomial (of the first kind). We choose degrees dx , dz ∈ N and set the
K = dx dz basis functions to

Φk,l(x , z) := Tk−1(ψx(x))Tl−1(ψz(z)), (x , z) ∈ [
¯
x , x̄]× [

¯
z, z̄]

for k = 1, . . . , dx , l = 1, . . . , dz
7, where ψx and ψz are bijections between the domains of x and

z, respectively, and the domain [−1,1] of Chebyshev polynomials

ψx : [
¯
x , x̄]→ [−1,1], x 7→ 2

x −
¯
x

x̄ −
¯
x
− 1;

ψz : [
¯
z, z̄]→ [−1,1], z 7→ 2

z −
¯
z

z̄ −
¯
z
− 1.

After having fixed the basis functions, we restrict the approximation ĝa over the domain X to
the class of linear combinations

ĝa(x , z) =
dx∑

k=1

dz∑
l=1

ak,l Tk−1(ψx(x))Tl−1(ψz(z)), (x , z) ∈ X = [
¯
x , x̄]× [

¯
z, z̄], (4.3.18)

with a =
�
ak,l

�
k=1,...,dx ,
l=1,...,dz

∈ Rdx×dz denoting the free parameters in matrix form.

In order to determine parameter values ak,l that render the approximation ĝa fitting, we
will next choose test functions Ψk,l as well as a weight function w and derive the parameters
from the conditions in (4.3.15) where R is replaced by RGH . Yet, solving the equations in
(4.3.15) for the free parameters will in general require to evaluate RGH( ĝa, x , z) and therefore
rhsGH( ĝa, x , z) over the whole domain X = [

¯
x , x̄]× [

¯
z, z̄]. When we take a look at (4.3.16),

one further problem regarding this becomes evident. Namely, it might be the case that for
some values of this period’s state variables (x , z) ∈ X and realizations εi of the shock, next
period’s state (N( ĝa, x , z),ρz+

p
2σεεi) appearing in rhsGH( ĝa, x , z)might not be included in the

domain X anymore, i.e. it may occur that (N( ĝa, x , z),ρz +
p

2σεεi) /∈ X . Yet, if this is the case,
ĝa

�
N( ĝa, x , z),ρz +

p
2σεεi

�
from (4.3.18) and consequently rhsGH( ĝa, x , z) from (4.3.16) is

not well defined up to this point. We therefore continue the approximation ĝa on [0,1]×R
as follows by extrapolation. We choose a discrete two-dimensional grid Γ ⊂ [

¯
x , x̄]× [

¯
z, z̄] and

calculate the corresponding function values of ĝa at the grid points. If (x , z) /∈ [
¯
x , x̄]× [

¯
z, z̄], we

use a 2-dimensional extrapolation method, e.g. linear or by bicubic splines, to compute ĝa(x , z)
from the values at the grid points. This guarantees that rhsGH( ĝa, x , z) is well-defined for all
(x , z) ∈ X = [

¯
x , x̄]× [

¯
z, z̄] and parameters a ∈ Rdx×dz . 8

7We choose double indexation for the basis functions Φk,l to allow easier notation.
8Another approach to deal with the eventual problem of next period’s state variables not necessarily lying in

the chosen domain for the approximation, i.e.
�
N( ĝa, x , z),ρz +

p
2σεεi

�
/∈ X = [

¯
x , x̄]× [

¯
z, z̄], would be to

formally define the approximation on a broader domain than initially of interest. That is, we may additionally
choose [

¯
xψ, x̄ψ]× [¯zψ, z̄ψ] ⊃ [¯x , x̄]× [

¯
z, z̄] and set the bijections ψx and ψz to

ψx : [
¯
xψ, x̄ψ]→ [−1, 1], x 7→ 2

x −
¯
xψ

x̄ψ − ¯
xψ
− 1 and ψz : [

¯
zψ, z̄ψ]→ [−1,1], z 7→ 2

z −
¯
zψ

z̄ψ −¯
zψ
− 1.

The approximation ĝa in (4.3.18) is then defined on the larger domain, which should be chosen broad enough
to guarantee

�
N( ĝa, x , z),ρz +

p
2σεεi

� ∈ [
¯
xψ, x̄ψ]× [¯zψ, z̄ψ] for all (x , z) ∈ X = [

¯
x , x̄]× [

¯
z, z̄] and i = 1, . . . , n.

We will add some remarks for the reasons we preferred to use extrapolation over this method at the appropriate
places in the following.
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We employ the Galerkin method and set the test functions in (4.3.15) equal to the basis
functions, i.e.

Ψi, j(x , z) := Ti−1(ψx(x))T j−1(ψz(z)), for all i = 1, . . . , dx , j = 1, . . . , dz.

Moreover, the weight function is chosen as

w: [
¯
x , x̄]× [

¯
z, z̄]→ R, (x , z) 7→ 1p

1−ψx(x)2
1p

1−ψz(z)2
.

With these choices (4.3.15) becomes
∫ x̄

¯
x

∫ z̄

¯
z

RGH( ĝa, x , z)Ti−1(ψx(x))T j−1(ψz(z))
1p

1−ψx(x)2
1p

1−ψz(z)2
dzd x = 0,

for all i = 1, . . . , dx , j = 1, . . . , dz. By substituting r =ψx(x) and q =ψz(z) we get

( x̄ −
¯
x)(z̄ −

¯
z)

4

∫ 1

−1

∫ 1

−1

RGH

�
ĝa,ψ−1

x (r),ψ
−1
z (q)

�
Ti−1(r)T j−1(q)

1p
1− r2

1p
1− s2

dqdr = 0.

We approximate both integrals by Chebyshev-Gauss quadrature with mx ≥ dx and mz ≥ dz nodes,
respectively. Therefore, let r1, . . . , rmx

and q1, . . . , qmz
denote the roots of the mx -th and mz-th

Chebyshev polynomial. Further, let x t :=ψ−1
x (rt), t = 1, . . . , mx , and zs :=ψ−1

z (qs), s = 1, . . . , mz,
denote the corresponding values in [

¯
x , x̄] and [

¯
z, z̄]. The Chebyshev-Gauss quadrature then

yields

∫ 1

−1

∫ 1

−1

RGH

�
ĝa,ψ−1

x (r),ψ
−1
z (q)

�
Ti−1(r)T j−1(q)

1p
1− r2

1p
1− s2

dqdr ≈

≈ π

mx

π

mz

mx∑
t=1

mz∑
s=1

RGH( ĝa, x t , zs)Ti−1(rt)T j−1(qs).9

Hence, the unknown parameters ak,l are determined as the solution to the system of equations

mx∑
t=1

mz∑
s=1

RGH( ĝa, x t , zs)Ti−1(rt)T j−1(qs) = 0, (4.3.19)

or equivalently

mx∑
t=1

mz∑
s=1

lhs( ĝa, x t , zs)Ti−1(rt)T j−1(qs) =
mx∑
t=1

mz∑
s=1

rhsGH( ĝa, x t , zs)Ti−1(rt)T j−1(qs) (4.3.20)

for i = 1, . . . , dx , j = 1, . . . , dz.

9If we follow the approach mentioned in footnote 8 and choose a sufficiently broader domain for the bijections ψx
and ψz in order to guarantee that rhsGH( ĝa, x t , zs) is always well-defined, the formula for the Chebyshev-Gauss
quadrature would read the same. Yet, with the different definition of ψx and ψz , the definitions of x t and zs
must also be adjusted accordingly. The integration for determining the parameter values is still carried out
only on the smaller region [

¯
x , x̄]× [

¯
z, z̄] so that the substitution of variables would yield x t = ψ̃−1

x (rt) and
zs = ψ̃−1

z (qs), where ψ̃x and ψ̃z denote the bijections on the original, smaller domains

ψ̃x : [
¯
x , x̄]→ [−1, 1], x 7→ 2

x −
¯
x

x̄ −
¯
x
− 1 and ψ̃z : [

¯
z, z̄]→ [−1,1], z 7→ 2

z −
¯
z

z̄ −
¯
z
− 1.
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To write the system of equations more compactly in matrix form, we define for any d, m ∈
N, d ≤ m, the matrices

Tm,d :=




T0(v1) . . . Td−1(v1)
T0(v2) . . . Td−1(v2)

...
...

...
T0(vm) . . . Td−1(vm)


 , (4.3.21)

where v1, . . . , vm are the roots of the m-th Chebyshev polynomial. Further let

lhs( ĝa) :=




lhs( ĝa, x1, z1) . . . lhs( ĝa, x1, zmz
)

lhs( ĝa, x2, z1) . . . lhs( ĝ, x2, zmz
)

...
. . .

...
lhs( ĝa, xmx

, z1) . . . lhs( ĝa, xmx
, zmz
)




and analogously

rhsGH( ĝa) :=




rhsGH( ĝa, x1, z1) . . . rhsGH( ĝa, x1, zmz
)

rhsGH( ĝa, x2, z1) . . . rhsGH( ĝ, x2, zmz
)

...
. . .

...
rhsGH( ĝa, xmx

, z1) . . . rhsGH( ĝa, xmx
, zmz
)




Then the (i, j)-th elements of T ′mx ,dx
lhs( ĝa)Tmz ,dz

and T ′mx ,dx
rhsGH( ĝa)Tmz ,dz

equal the left hand
and right hand side of (4.3.20) so that the system of equations determining the parameter values
can be written equivalently in matrix form as

T ′mx ,dx
lhs( ĝa)Tmz ,dz

= T ′mx ,dz
rhsGH( ĝa)Tmz ,dz

. (4.3.22)

Moreover,

lhs( ĝa) =




ĝa(x1, z1) . . . ĝa(x1, zmz
)

ĝa(x2, z1) . . . ĝa(x2, zmz
)

...
. . .

...
ĝa(xmx

, z1) . . . ĝa(xmx
, zmz
)




=




∑dx

k=1

∑dz

l=1 ak,l Tk−1(r1)Tl−1(q1) . . .
∑dx

k=1

∑dz

l=1 ak,l Tk−1(r1)Tl−1(qmz
)∑dx

k=1

∑dz

l=1 ak,l Tk−1(r2)Tl−1(q1) . . .
∑dx

k=1

∑dz

l=1 ak,l Tk−1(r2)Tl−1(qmz
)

...
. . .

...∑dx

k=1

∑dz

l=1 ak,l Tk−1(rmx
)Tl−1(qmz

) . . .
∑dx

k=1

∑dz

l=1 ak,l Tk−1(rmx
)Tl−1(qmz

)




= Tmx ,dx
aT ′mz ,dz

, 10

so that equation (4.3.22) can also be written as

T ′mx ,dx
Tmx ,dx

aT ′mz ,dz
Tmz ,dz

= T ′mx ,dx
rhsGH( ĝa)Tmz ,dz

. (4.3.23)

10It would not be possible to write lhs( ĝa) this way, if we use the approach of a broader domain for the bijections
ψx and ψz . The different definitions of x t and zs pointed out in footnote 9 in this case, would imply the (t, s)-th
component of lhs( ĝa) to read

ĝa(x t , zs) =
dx∑

k=1

dz∑
l=1

ak,l Tk−1(ψx(ψ̃
−1
x (rt)))Tl−1(ψz(ψ̃

−1
z (qs))) 6=

dx∑
k=1

dz∑
l=1

ak,l Tk−1(rt)Tl−1(qs).

The following derivations depending on this particular form of lhs( ĝa) would then no longer be valid. This is
the reason we chose extrapolation to compute ĝa for states not included in the original domain instead the
approach of defining a wider domain for the bijections.
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Now note that for any m, d ∈ N, m≥ d, we have

T ′m,d Tm,d =




∑m
k=1 T0(vk)T0(vk) . . .

∑m
k=1 T0(vk)Td−1(vk))∑m

k=1 T1(vk)T0(vk) . . .
∑m

k=1 T1(vk)Td−1(vk)
...

. . .
...∑m

k=1 Td−1(vk)T0(vk) . . .
∑m

k=1 Td−1(vk)Td−1(vk)




=




m 0 . . . 0
0 m

2 . . . 0
...

. . . . . .
...

0 0 . . . m
2


=: Dm.

Finally, (4.3.23)is equivalent to

a = D−1
mx

T ′mx ,dx
rhsGH( ĝa)Tmz ,dz

D−1
mz

(4.3.24)

or

a1,1 =
1

mx mz

mx∑
t=1

mz∑
s=1

rhsGH( ĝa, x t , zs)T0(rt)T0(qs);

a1,l =
2

mx mz

mx∑
t=1

mz∑
s=1

rhsGH( ĝa, x t , zs)T0(rt)Tl−1(qs), 2≤ l ≤ dz;

ak,1 =
2

mx mz

mx∑
t=1

mz∑
s=1

rhsGH( ĝa, x t , zs)Tk−1(rt)T0(qs), 2≤ k ≤ dx ;

ak,l =
4

mx mz

mx∑
t=1

mz∑
s=1

rhsGH( ĝa, x t , zs)Tk−1(rt)Tl−1(qs), 2≤ k ≤ dx , 2≤ l ≤ dz;

where rhsGH is defined by equation (4.3.16). 11

4.3.2.2 A Chebyshev-Galerkin Method with discretized Labor Productivity (LP)

In the last subsection we replaced the expectation operator in (4.3.3) by a quadrature rule and
approximated the solution to the emerging functional equation (4.3.17) on some rectangle
X = [

¯
x , x̄]× [

¯
z, z̄]. In this subsection, we will describe another approach, where we replace the

AR(1) process Zt by a finite state space Markov chain. The problem of finding an approximation
to g on a (connected) two-dimensional domain then reduces to finding an approximation on a
subspace of [0, 1] for each of the finite states of the Markov chain. Also, if Zt follows a finite state
space Markov chain, the expectation in (4.3.3) reduces to a sum via the transition probabilities.

First, we choose a number of states n and employ the algorithm proposed by Rouwenhorst
(1995) to find a Markov chain with finite state space Z := {z1, . . . , zn} and a transition matrix
P = (p j,s) j=1,...,n,

s=1,...,n
, which approximates the AR(1) process governing log LP. Instead of (4.3.1) we

then solve for g : [0, 1]×Z → R satisfying

RRO(g, x , z j) := lhs(g, x , z j)− rhsRO(g, x , z j) = 0 for all x ∈ [0,1], j = 1, . . . , n, (4.3.25)

where rhsRO is defined analogously to (4.3.3) only with the expression for Zt+1 in (4.3.9) replaced
by the transition process

Pr
�
Zt+1 = zs|z = z j

�
= p js for j, s = 1, . . . , n.

11Note that this is no closed form solution for the coefficients ak,l , since they also appear on the right hand side of
the equation.
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Hence, we can write

rhsRO(g, x , z j) :=
n∑

s=1

p jsβ

�
C(g, N(g, x , z j), zs)

C(g, x , z j)

�−η
·

· �exp(zs)−w(g, N(g, x , z j), zs) + (1−ω)g(N(g, x , z j), zs)
�

.
(4.3.26)

We choose a subset [
¯
x , x̄] ⊂ [0,1] and try to approximate g(., z j) on that domain for each

j ∈ {1, . . . , n} with Chebyshev polynomials as basis functions. In order to eventually improve
the accuracy of the approximation for states z j, where the approximation turns out to be more
difficult, we will allow the number of basis functions used to differ along the states z j. Formally,
we choose a vector of degrees d := (d1, . . . , dn)′ and set the K = d1 + . . .+ dn basis functions to

Φk,l(x , z) := Tk−1(ψx(x))1zl
(z), (x , z) ∈ [

¯
x , x̄]×Z

for l = 1, . . . , n and k = 1, . . . , dl . Thereby,ψx is the bijection defined in the preceding subsection
and 1zl

denotes the indicator function

1zl
: Z → {0, 1}, 1zl

(z) :=

¨
1, if z = zl

0, if z 6= zl .

The approximation is then chosen from the set of linear combinations

ĝa(x , z j) =
n∑

l=1

dl∑
k=1

ak,l Tk−1(ψx(x))1zl
(z j) =

d j∑
k=1

ak, j Tk−1(ψx(x)), x ∈ [
¯
x , x̄], j = 1, . . . , n,

We use the notation a· j := (a1 j, . . . , ad j j)′ ∈ Rd j , j = 1, . . . , n, and a := (a′·1, . . . , a′·n)
′ ∈ Rd1+...+dn

for the vector of all parameters.
Fitting values for the free parameters in the approximation will again be determined from

the conditions in (4.3.15) where R is now replaced by RRO. Since we use a finite state space
Markov chain, it is now guaranteed by definition that next period’s state zs for log LP appearing
in (4.3.26) lies in Z . But it is still possible that some parameter values a, some x ∈ [

¯
x , x̄] and

j ∈ {1, . . . , n} yield N( ĝa, x , z j) ∈ [0,1] \ [
¯
x , x̄] so that rhsRO( ĝa, x , z j) as in (4.3.26) is not yet

well-defined. We therefore proceed analogously as in the previous subsection. We choose a
one-dimensional grid Γ ⊂ [

¯
x , x̄] and determine the corresponding function values of ĝa(., z j) at

the grid points for each j ∈ {1, . . . , n}. If x /∈ [
¯
x , x̄], we then use a one-dimensional extrapolation

method, e.g. linear or by cubic splines, to compute ĝa(x , z j) from the values at the grid points.
We employ the Galerkin method with test functions equal to the basis functions, i.e.Ψi, j(x , z) :=

Ti−1(ψx(x))1z j
(z), and the weight function is set to w(x , z) := 1p

1−ψx (x)2
. Condition (4.3.15)

determining the parameter values hence becomes

∫ x̄

¯
x

∫

Z
RRO( ĝa, x , z)Ti−1(ψx(x))1z j

(z)
1p

1−ψx(x)2
dzd x = 0

or equivalently

∫ x̄

¯
x

RRO( ĝa, x , z j)Ti−1(ψx(x))
1p

1−ψx(x)2
d x = 0
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for all j = 1, . . . , n and i = 1, . . . , d j. By substituting r =ψx(x), we get

x̄ −
¯
x

2

∫ 1

−1

RRO

�
ĝa,ψ−1

x (r), z j

�
Ti−1(r)

1p
1− r2

dr = 0.

We evaluate the integral numerically by Chebyshev-Gauss quadrature with m j ≥ d j nodes for
each j ∈ {1, . . . , n}. Hence, let r1 j, . . . , rm j j denote the roots of the m j-th Chebyshev polynomial
and let x t j := ψ−1

x (rt j), t = 1, . . . , m j, denote the corresponding values in [
¯
x , x̄]. Then the

Chebyshev-Gauss quadrature yields

∫ 1

−1

RRO

�
ĝa,ψ−1

x (r), z j

�
Ti−1(r)

1p
1− r2

dr ≈ π

m j

m j∑
t=1

RRO

�
ĝa, x t j, z j

�
Ti−1(rt j). (4.3.27)

Therefore, the parameter values in the approximation are determined as the solution to the
system of equations

m j∑
t=1

RRO( ĝa, x t j, z j)Ti−1(rt j) = 0,

or equivalently

m j∑
t=1

lhs( ĝa, x t j, z j)Ti−1(rt j) =
m j∑
t=1

rhsRO( ĝa, x t j, z j)Ti−1(rt j)

for j = 1, . . . , n, i = 1, . . . , d j.
Again, we can write the system of equations more compactly in matrix notation. For any

j ∈ {1, . . . , n}, let Tm j d j
be as defined in (4.3.21), let

lhs( ĝa, z j) :=




lhs( ĝa, x1 j, z j)
lhs( ĝa, x2 j, z j)

...
lhs( ĝa, xm j j, z j)




and let rhsRO( ĝa, z j) be defined analogously. Then the system of equations for a can be written
as

T ′m j d j
lhs( ĝa, z j) = T ′m j d j

rhsRO( ĝa, z j), for all j = 1, . . . , n.

Note that now lhs( ĝa, z j) = Tm j d j
a· j so that finally

a· j = D−1
m j

T ′m j d j
rhsRO( ĝa, z j), for all j = 1, . . . , n, (4.3.28)

or element by element for j = 1, . . . , n

a1, j =
1

m j

m j∑
t=1

rhsRO( ĝa, x t , z j)T0(rt),

ak, j =
2

m j

m j∑
t=1

rhsRO( ĝa, x t , z j)Tk−1(rt), 2≤ k ≤ d j.
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4.3.3 Finite Element Methods
Next, we present approximation methods with piecewise (bi)cubic polynomials as basis functions.
Different from the Chebyshev polynomials, they are non-zero only over a limited range so that a
change in one parameter consequently changes the shape of the approximation function only
locally. We distinguish the same two cases for handling the expectations operator in (4.3.3) as
in the previous subsection.

4.3.3.1 A Cubic Spline Collocation Method

The first approach again makes use of the Gauss-Hermite quadrature (4.3.16) and solves the
resulting functional equation (4.3.17).

Let [
¯
x , x̄] ⊂ [0, 1], [

¯
z, z̄] ⊂ R and X := [

¯
x , x̄]×[

¯
z, z̄]. Further, we choose some two dimensional

rectilinear grid

∆ := {(x i, z j) | i = 1, . . . , dx , j = 1, . . . dz},
where

¯
x =: x1 < x2 < . . . < xdx

:= x̄ and
¯
z =: z1 < z2 < . . . < zdz

:= z̄. Our goal is to find
piecewise bicubic polynomials approximating g on the grid cells. For any set of parameters in
matrix notation a =

�
ak,l

�
k=1,...,dx ,
l=1,...,dz

∈ Rdx×dz let

S∆(a, .): [
¯
x , x̄]× [

¯
z, z̄]→ R

denote the bicubic C2-spline through the points (x i, z j, ai j), i = 1, . . . , dx , j = 1, . . . , dz.
12 We then

set

ĝa(x , z) := S∆(a, x , z), for all (x , z) ∈ [
¯
x , x̄]× [

¯
z, z̄].13

Again, in order for rhsGH as in (4.3.16) to be well-defined on [
¯
x , x̄]×[

¯
z, z̄], we use extrapolation

methods to determine ĝa(N( ĝa, x , z),ρz + εi) whenever (N( ĝa, x , z),ρ + zεi) ∈ ([0, 1]×R) \
([

¯
x , x̄]× [

¯
z, z̄]).

We employ a collocation method in this approach. For every (i, j) ∈ {1, . . . , dx} × {1, . . . , dz}
the test functions are chosen equal to the dirac delta functions at the respective grid point (x i, z j)
in ∆, i.e.

Ψi j(x , z) := δx i
(x)δz j

(z), (x , z) ∈ [
¯
x , x̄]× [

¯
z, z̄],

The equations in (4.3.15) determining the fitting parameter values thus reduce to

RGH( ĝa, x i, z j) = 0 for all i = 1, . . . , dx , j = 1, . . . , dz,

or equivalently stated

lhs( ĝa, x i, z j) = rhsGH( ĝa, x i, z j) for all i = 1, . . . , dx , j = 1, . . . , dz.

Since lhs( ĝa, x i, z j) = ĝa(x i, z j) = S∆(a, x i, z j) = ai j, we can also write

ai j = rhsGH( ĝa, x i, z j) for all i = 1, . . . , dx , j = 1, . . . , dz. (4.3.29)

12We choose Matlab’s not-a-knot end condition.
13Note that the approximation ĝa can be written as the sum of piecewise bicubic polynomials, non-zero only on

one gird cell, but ĝa is non-linear in the parameters in this case.
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4.3.3.2 A Cubic Spline Collocation Method with discretized Labor Productivity (LP)

The second approach using finite element functions relies on the discretization of the process
governing LP by the method of Rouwenhorst (1995) and subsequently solving the functional
equation (4.3.25).

Let Z = {z1, . . . , zn} denote the state space and P the transition matrix and let [
¯
x , x̄] ⊂ [0, 1].

For each of the states z j, j = 1, . . . , n, we choose a grid

∆ j := {
¯
x =: x1 j < x2 j < . . .< xd j j := x̄},

of size d j ∈ N. Our goal is then to find piecewise cubic polynomials approximating g(., z j) for
each j = 1, . . . , n. We allow the amount of grid points to differ along the different states of log
LP in order to improve the approximation by adding nodes at states z j where the approximation
turns out to be more difficult. For any j ∈ {1, . . . , n} and a· j := (a1 j, . . . , ad j j)′ ∈ Rd j , we denote
the cubic C2-spline through the points (x i j, ai j), i = 1, . . . , d j, by S∆ j

(a· j, .).14 We then set

ĝa(x , z j) := S∆ j
(a· j, x), for all x ∈ [

¯
x , x̄], j = 1 . . . , n,

where a := (a′·1, . . . , a′·n)
′ ∈ Rd1+...+dn is the vector of all parameters. Again, in order for rhsRO

to be well-defined on [
¯
x , x̄]×Z , we use extrapolation methods to compute ĝa(N( ĝa, x , z j), zl)

whenever N( ĝa, x , z j) ∈ [0,1] \ [
¯
x , x̄]. Employing a collocation method with the dirac delta

functions at the respective grid points as test functions, i.e.

Ψi j(x , z) := δx i j
(x)1z j

(z), (x , z) ∈ [
¯
x , x̄]×Z ,

the system of equations (4.3.15) pinning down the fitting parameter values becomes

RRO( ĝa, x i j, z j) = 0 for all j = 1, . . . , n, i = 1, . . . , d j,

or equivalently

lhs( ĝa, x i j, z j) = rhsRO( ĝa, x i j, z j) for all j = 1, . . . , n, i = 1, . . . , d j.

Since lhs( ĝa, x i j, z j) = ĝa(x i j, z j) = S∆ j
(a· j, x i j) = ai j, we can also write

ai j = rhsRO( ĝa, x i j, z j) for all j = 1, . . . , n, i = 1, . . . , d j. (4.3.30)

We discussed four different approaches for computing an approximation to the policy function
g of the present value ξ̂ f

t of a worker (or equivalently of a filled position) in the next period to
the representative firm. All of the approaches ultimately result in solving a system of non-linear
equations in order to determine fitting values for the free parameters in the approximation
function. We will now proceed to present the numerical results.

4.4 Numerical analysis
In this section, we will describe the calibration of the model’s parameters, characterize the deter-
ministic steady state and lay out the details for the numerical computation of the approximations
introduced in the preceding section. We will further discuss eventual differences between the
approximations as well as goodness of fit dependent on the used methods. Moreover, we will
study how eventual differences in the approximations manifest in simulations of the model’s
equilibrium outcomes. Last, we will also compute a second order perturbation solution and
compare it to the solutions based on the mean weighted residuals framework.

14We again choose Matlab’s not-a-knot end condition.
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4.4.1 Calibration
The model is calibrated at a monthly frequency in the same way as in Kuehn et al. (2012). They
set the discount factor to β = 0.991/3, the autocorrelation of log LP to ρ = 0.951/3 and the
standard deviation of the innovations to log LP to σε = 0.0077 in line with Gertler and Trigari
(2009). Following den Haan et al. (2000) the probability for an unemployed member to find
a job within the period is set to κw = 0.45, while the probability that an open vacancy can be
filled is set to κ f = 0.71 in steady state. Further, the authors choose a steady state value of
U = 0.1 for unemployment within the range of 7% in Gertler and Trigari (2009) and 12% in
Krause and Lubik (2007).

The authors partly follow the calibration proposed in Hagedorn and Manovskii (2008) for the
period value of unemployment activities and the workers’ bargaining weight. They set b = 0.85,
somewhat lower than the value of 0.955 in Hagedorn and Manovskii (2008), while the workers’
bargaining weight ϕ = 0.052 is the same. Hagedorn and Manovskii (2008) measure the costs of
posting vacancies and the cyclicality of wages in the data and find that in order to match these
quantities in the model a relative low bargaining weight of the household but a high period
value of unemployment activities is necessary. In comparison, Shimer (2005), who identifies
the period value from unemployment with unemployment benefits, sets b = 0.4 significantly
lower while the household’s bargaining weight is noticeably higher at 0.72. Hagedorn and
Manovskii (2008) motivate the in comparison high period value of unemployment activities
as follows. In the standard search and matching model15 the period value of unemployment
activities defines a worker’s fall back value if unemployed and consequently his reservation
wage. It should therefore not only reflect unemployment insurance but also other factors for
which a worker demands compensation by the wage and which are not included otherwise in
the model, as e.g. foregone value from leisure over work effort or from home production etc.
In consequence b should be close to labor productivity. The same argument can be made for
the present model, where only consumption but not leisure enters the household’s utility and
where home production is not endogenously determined. However, following this logic and
summarizing the complete period value of unemployment activities into the fixed parameter b
also implies that the value remains fixed over the business cycle. I.e. we implicitly assume that
the period value the household associates to unemployment due to leisure or home production
may not change indifferent to the fact how far unemployment, leisure and home production may
rise and consumption may fall. Comparing to the case where these factors are endogenously
determined by adding them to the utility function, a constant marginal rate of substitution
(MRS) between leisure and the consumption good as well as between home production and
the consumption good is assumed. Moreover, since the whole value bUt the household receives
from unemployed members is redistributed from taxes (see (4.2.27)) the model at the same
time ignores the positive effects on the household’s utility from increasing unemployment. We
analyze how the results in the model change once we renounce on these assumptions in the
extensions of the model in section 4.7.16

Kuehn et al. (2012) use a recursive utility function of the class introduced by Epstein and Zin

15Hagedorn and Manovskii (2008) consider the (standard) case of a risk neutral household maximizing his expected,
discounted income stream in this framework.

16We want to note that Kuehn et al. (2015) also mention that the high value of b symbolizes some unmodeled wage
rigidities from their point of view. However, once leisure is added to the utility function in a way that renders
the MRS non-constant, introducing a wage rigidity in this form and size is not possible anymore. First, the fixed
period value of unemployment activities in b can no longer be set as high since the household’s reservation
wage—determined by the sum of b and the MRS—would then, at least for common utility specifications
regarding leisure, already exceed labor productivity in steady state. Second, the wage has to become more
flexible since the MRS in the household’s reservation wage adjusts. Such wage rigidities hence have to be
introduced differently into the model and call for alternative motivation in a framework with a non-constant
MRS between leisure and consumption.
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(1989) and follow Bansal and Yaron (2004) in setting the parameter of relative risk aversion
to 10 and the elasticity of intertemporal substitution to 1.5. We distinguish two cases. For
the baseline case presented in section 4.2, where the household’s lifetime utility is defined
as the expected sum of discounted CRRA within period utility, we set η = 2 but also check
results regarding the equity premium for η = 10. Further, as in Kuehn et al. (2012), we also
considered the case of Epstein-Zin preferences with the parameter values from Bansal and Yaron
(2004). However, we restrict the discussion of the model in the following to the case of standard
preferences with η = 2 and only add the results for η = 10 and for Epstein-Zin preferences
where necessary.

The numerical values for the elasticity τ in the matching function, the separation rate ω and
the costs of posting an open vacancy c are derived in such a way that the chosen steady state
values of U , κ f and κw arise. An overview for all the model’s parameters is presented in table
4.1.

Table 4.1: Calibration I

Variable Value Description

U 0.1 unemployment rate
κ f 0.71 probability of filling an open vacancy
κw 0.45 probability of finding a job

Parameter Value Description

β 0.991/3 discount factor
η 2 relative risk aversion
ϕ 0.052 workers’ bargaining weight
b 0.85 value of unemployment activities
ρ 0.951/3 Autocorrelation of log LP
σε 0.0077 Standard deviation of shocks to log LP

4.4.2 Steady State
We will next characterize the model’s deterministic steady state as well as the values of the
remaining, not calibrated parameters. Note that in the deterministic steady state, where Nt

is constant, the non-negativity condition on open vacancies must be non-binding (since the
separation rate ω> 0).

In deterministic steady state the natural logarithm of LP equals

Z = 0

and from the definition of unemployment, we get

N = 1− U ,

so that the production technology immediately yields

Y = N .

The vacancy-unemployment-ratio is determined by the probabilities κw and κ f through

θ =
V
U
=

M
U
M
V

=
κw

κ f
.



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 116

Job matches in steady state must be

M = κwU ,

while open vacancies in steady state are then pinned down by

V =
M
κ f

.

On the other hand, considering the definition of the matching function (4.2.29), it must also
hold that

M =
UV

(Uτ + V τ)
1
τ

.

We can numerically solve this equation for the parameter τ from the already determined values
of U , V and M . Next, by the dynamics (4.2.32) of employment, the separation rate must be

ω=
M
N

.

At this point, next period’s discounted marginal value of a worker to the firm ξ̂ f , the costs of
posting an open vacancy c, the wage w and consumption C remain to be determined. First, since
the non-negativity condition is non-binding in steady state, i.e. µ = 0, we see from (4.2.37) that

c = κ f ξ̂
f . (4.4.1)

Replacing c in (4.2.36) with the expression on the right hand side in the above equation, we get

w= ϕ exp(Z) + (1−ϕ)b+ϕ V
1− N

κ f ξ̂
f .

Plugging the term for w into (4.2.41) then yields

ξ̂ f = β
�

exp(Z)−ϕ exp(Z)− (1−ϕ)b−ϕ V
1− N

κ f ξ̂
f + (1−ω)ξ̂ f

�
.

Solving the equation for ξ̂ f finally results in

ξ̂ f =
β(1−ϕ)(exp(Z)− b)

1− β(1−ω−ϕ V
1−Nκ f )

=
β(1−ϕ)(exp(Z)− b)
1− β(1−ω−ϕκw)

, (4.4.2)

so that the vacancy costs c as well as the wage w can be computed from the above provided
equations.

Last, consumption in steady state is determined by

C = Y − cV

and marginal utility from consumption by

λ= C−η.
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Table 4.2: Calibration II

Parameter Value Description

τ 1.2897 elasticity in matching function
ω 0.05 separation rate
c 1.3154 cost of posting an open vacancy

Remarks on the Calibration The resulting values for the free parameters are displayed in
table 4.2. Note in particular that imposing the steady state and parameter values from table 4.1
leads to c = 1.3154, so that costs of approximately 1.3 times the monthly output of a worker
are incurred by posting an open vacancy. In comparison, Hagedorn and Manovskii (2008), who
measure these costs from the data, arrive at a much smaller value for c equal to 0.584. Yet, the
comparably high value for the costs of posting open vacancies is an immediate consequence
of the fact that we set the value of unemployment activities to b = 0.85, notably lower than
the value of b = 0.955 used in Hagedorn and Manovskii (2008). The smaller value of b in
our calibration implies a higher present value ξ̂ f of a filled position in the next period to the
representative firm in (4.4.2) and consequently higher costs c of posting an open vacancy from
(4.4.1). Silva and Toledo (2005) report hiring costs (expenses on job advertising, search firm
fees, and compensation of applicants) of approximately 3% of the annual labor costs per worker,
while training costs of new employees are noticeably higher at approximately 14% of the annual
labor costs per worker. Due to the lack of any additional costs in the model faced by the firm only
after a new hire is realized, the total costs per hire in the model account to c

κ f
. If we understand

all the aforementioned costs to be included in this term, hiring and training costs in the model
would account for (c/κ f )/(12 · w) of the annual labor costs of a worker.17 Since w ≈ 0.9 in
steady state and therefore (c/κ f )/(12 ·w) ≈ 0.17, hiring and training costs of approximately
17% of the annual labor costs in the model are in accordance to the findings reported by Silva
and Toledo (2005).

4.4.3 Numerical Computation
In section 4.3 we derived, for different approaches of finding an approximation to the policy
function of ξ̂ f

t , in each case a system of non-linear equations pinning down the free parameters in
the respective approximation function. In order to solve the system of equations, we proceeded
the following way. First, we computed a second order perturbation solution, which we used to
derive an initial guess for the parameters in the approximation when restricted only to a small
interval [

¯
x , x̄] around the steady state value of employment. After determining the solution on

the small domain around the steady state, we then decreased the lower bound and increased
the upper bound step by step until reaching the desired domain for the approximation. In each
step the initial guess for the parameters in the approximation defined on the wider domain was
derived by extrapolation from the solution computed in the preceding step. Throughout all of
the computations, we used the trust-region dogleg algorithm employed in Matlab for finding
the zeros.

We present the number of basis functions, the number of underlying grid points etc. employed
for computing the four approximations.

17Note however that, different from the present setting, Silva and Toledo (2005) understand training costs as a
percentage loss in productivity of newly hired workers.
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Chebyshev-Galerkin and Gauss-Hermite We set the domain for ĝa to

[
¯
x , x̄]× [

¯
z, z̄] := [0.05,0.97]× [−0.16,0.16]

and computed the approximation with dx = 7 and dz = 5 Chebyshev polynomials along the
employment and the log LP axis, respectively, so that a total of K = 35 basis functions are used.
We chose mx = mz = 19 nodes for the Chebyshev-Gauss quadrature in (4.3.19) and n = 13
nodes for the Gauss-Hermite quadrature in (4.3.16).18

Chebyshev-GalerkinanddiscretizedLP We replaced the AR(1) process for log LP by a Markov
chain with n = 15 states by the method proposed by Rouwenhorst (1995), resulting in the lowest
state z1 = −0.1571 and a highest state z15 = 0.1571. For each of the 15 states, j ∈ {1, . . . , 15},
we allowed d j = 7 Chebyshev polynomials as basis functions on the domain [

¯
x , x̄] = [0.05, 0.97]

and computed the Chebyshev-Gauss quadrature in (4.3.27) with m j = 19 grid points.

Cubic-Spline-Collocation and Gauss-Hermite Since we ultimately relied on this solution in
the upcoming analysis of the model, the domain was set somewhat broader to

[
¯
x , x̄]× [

¯
z, z̄] := [0.05,0.97]× [−0.21,0.21]

guaranteeing that all states encountered during simulations were included. We chose a two-
dimensional rectilinear grid with dx = 130 and dz = 85 nodes along the axes, i.e. a total of
11050 grid points. We evaluated the Gauss-Hermite quadrature in (4.3.16) with n = 13 nodes.19

Cubic-Spline-Collocation and discretized LP As in the Chebyshev-Galerkin approach with
discretized labor productivity, the AR(1) process is replaced by a finite state space Markov chain
a la Rouwenhorst (1995) with n= 15 states. We set [

¯
x , x̄] = [0.05, 0.97]. The number of grid

points in [
¯
x , x̄] are chosen differently and non-equidistant for the different states of log LP in

such way to allow for a finer fragmentation in areas where the residuals remained comparatively
high. Nonetheless, the number of grid points are relatively high for all of LP’s states ranging
from 48 for z1 to 125 for z15.

Both approaches making use of the discretized process for LP generate an approximation
ĝa initially defined only on [

¯
x , x̄]×Z . But since we want to use the original AR(1) process

assumption for log LP in simulations, we need the solution to be defined also for values of log
LP not in Z . This is again achieved through one-dimensional cubic spline interpolation along
the z-axis, where the nodes are the states in Z .

As already mentioned, the domain for the cubic spline, where expectations are computed by
Gauss-Hermite quadrature, was chosen wide enough to never be exceeded in simulations. For
the remaining approximations this is only true with regard to employment. In the rare cases
where the bounds for log LP were exceeded in simulations, we therefore used extrapolation
methods to compute ĝa from these approximations.

18Note that the fact that we use 13 nodes in the Gauss-Hermite quadrature implies that extrapolation relatively
far outside the domain of the approximation is necessary in order to compute the integrals for states with log
LP close to the bounds. However, the (monotonic) shape of the policy function in log LP and comparison to
results where the domain was widened suggests that extrapolation errors (especially combined with the very
low weights for these nodes) should not become too large.

19The same remark for the Gauss-Hermite quadrature as in the Chebyshev-Galerkin approach holds here too.
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4.4.4 Comparison of the Numerical Results
In this subsection, we will first present the obtained approximations to the policy functions and
provide some economic intuition for their shape. We will then analyze eventual discrepancies
between the different solution methods and check their accuracy. Lastly, we will also examine if
differences in simulations of the model’s equilibrium outcomes arise.

Approximations to the Policy Functions Figure 4.1 contains the plots for all four approxi-
mations to the policy function of the present value ξ̂ f

t of a worker in the next period to the
firm. Before comparing the results from the different methods employed in more detail, some

Figure 4.1: Approximations to the Policy Function of ξ̂ f
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remarks regarding the general shape of the policy function are in order since it will prove helpful
in later discussions of the model. First, the present value of a worker in the next period to
the representative firm turns out to be strictly increasing in both employment and log LP on
the considered domain. We will explain the rationale for this immediately. For the moment,
figure 4.2 displays in its four panels a) - d) the resulting policy functions for the amount of
open vacancies posted, the realized job matches and the dynamics of employment in the model,
respectively (all for the case of a cubic spline and Gauss-Hermite quadrature).

The amount of open vacancies posted crucially depends on the unemployment rate—affecting
the average rate κ f ,t at which posted vacancies will be filled—and the ratio of the expected
value of a filled vacancy to the costs of posting (see (4.2.46)). Since ξ̂ f

t is strictly increasing
in LP, so must be the amount of open vacancies. Along the employment axis, the slope of the
policy function of open vacancies depends on the level of the employment rate. There are two
opposing effects which are reflected in the first and second factor in the non-binding case of
(4.2.46). With increasing employment it is ceteris paribus harder to fill open vacancies, but ξ̂ f

t

is rising on the other hand. More specifically (4.2.46) yields (if the non-negativity constraint on
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Figure 4.2: Policy Functions and Dynamics of Employment by Cubic Spline and Gauss-Hermite
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(ĝ

a
,x

,z
)

(a) Policy Function for Open Vacancies

0
0.5

1 −0.2

0

0.2
0

0.05

0.1

x (Employment) z (log LP)

M
(ĝ
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(ĝ

a
,x

,z
)−

x

(c) Change in Employment

0
0.5

1 −0.2

0

0.2
0

0.1

x (Employment) z (log LP)

N
(ĝ
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The negative term captures the effect of a declining probability to fill a vacancy, while the second
term reflects the positive effect of the increasing present value ξ̂ f

t of a filled position in the next
period. The negative effect becomes smaller the closer ξ̂ f falls to c, while the opposite is true for
the positive effect. Hence, taking a look at the shape of the policy function for ξ̂ f

t in figure 4.1
reveals that the positive effect in the second term should dominate in the region for lower and
moderate employment rates where ξ̂ f

t is small and close to (but above) c, while the negative
effect in the first term should eventually prevail at high employment rates. This is reflected in
the slope of the policy function of open vacancies along the employment axis.

The amount of realized job matches is determined by two input factors: the amount of open
vacancies and the number of unemployed members entering the matching process. Regarding LP,
holding employment constant, matches must react the same way as vacancies, i.e. matches are
increasing with LP. Along the employment axis, the amount of open vacancies is first inclining,
then declining, while the second input factor of unemployed members is falling throughout.
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For lower employment rates, the two variables determining the matches in the economy move
in opposite directions, but with many unemployed members in the economy and only few
open vacancies Vt exerts the crucial effect on Mt so that realized matches increase with the
employment rate. At higher employment rates the input of unemployed workers in the matching
process becomes more and more scarce so that changes in Ut affect the number of realized job
matches more. Moreover, vacancies also begin to decline. Consequently, realized job matches
eventually begin to decrease.

Lastly, we show the resulting change in the economy’s employment rate from one period
into the next one, i.e. Nt+1 − Nt , in figure 4.2c as well as the corresponding growth rate of
employment, i.e. Nt+1−Nt

Nt
, in figure 4.2d. We can see that employment in the model can climb

only moderately above its steady state value before declining again. Independent of the behavior
in the economy it is even inherent to the model that employment must decline once it exceeds

1
1+ω

≈ 0.9524.

This applies, since in the case of Nt ≥ 1
1+ω , input of unemployed members in the matching

process is so low that newly realized job matches are always lower than exogenous separations

Mt ≤ Ut = 1− Nt ≤
Nt≥ 1

1+ω

1− 1
1+ω

=
ω

1+ω
≤

Nt≥ 1
1+ω

ωNt

and therefore

Nt+1 = Nt −ωNt +Mt ≤ Nt .

Moreover, for levels of log LP under a threshold of approximately −0.08 the present value ξ̂ f
t of a

worker in the next period to the firm falls so low that open vacancies become too scarce to allow
for job matches covering the amount of exogenous separations. Note that once the economy
arrives at a productivity level under this threshold, the economy’s employment will decline
until LP recovers even without substantial additional negative shocks lowering productivity any
further. This is due to the fact that once employment begins to fall, ξ̂ f

t will be decreasing along
the employment axis and so will open vacancies and realized job matches as already described.
Hence, the increasing unemployment rate itself yields the economy to enter a downward spiral
until LP recovers without the necessity of LP declining any further. This will be an important
factor in the explanation of disasters in the model in the later sections.

We have now seen how the dynamics of employment in the model can be explained to a
certain level dependent on the shape of the policy function of ξ̂ f

t . We have also stressed the
importance of the fact that ξ̂ f is increasing with the employment rate, respectively falling
with the unemployment rate, for the possibility of the economy drifting to periods with high
unemployment. We will now try to provide some intuition for the shape of the policy function
of ξ̂ f

t . First, observe that the recursive formulation of the Euler equation (4.2.41) can also be
written as

ξ̂ f
t = Et

�∞∑
s=1

(1−ω)s−1β sλt+s

λt
(exp(Zt+s)−wt+s)

�
,

under the condition that the series on the right hand side converges. I.e. the present value of a
worker in the next period from the firm’s perspective is the sum of expected discounted future
productivity less wage costs weighted with the probability of the worker still being employed
in the respective period. Now, since Zt follows an exogenous, positively autocorrelated AR(1)
process and wages do not absorb an increase in productivity completely, an increase in this
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Figure 4.3: Deviations amongst Approximations
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period’s productivity must lead to an increase in expected future within period profits obtained by
the firm from a worker, i.e. in exp(Zt+s)−wt+s. Moreover, current consumption increases relative
to expected future consumption so that future excess returns gain in weight. Consequently, ξ̂ f

t

must increase in log LP. The fact that ξ̂ f
t is increasing in employment holding LP constant may

seem counterintuitive at first glance. Equation (4.2.46) shows that the labor market tightness
depends solely and positively on ξ̂ f

t and must therefore also increase with the employment rate
if ξ̂ f

t does. The wage must then do the same (see equation (4.2.36)) and hence expected within
period profits from a worker in future periods, productivity level net wage costs exp(Zt+s)−wt+s,
must be declining along the employment axis. Although this seems to be contradictory at
first to the fact that ξ̂ f

t is increasing along the employment-axis, it is not, since at higher
employment levels consumption also increases. Consequently, while expectations in the long
run about exp(Zt+s)−wt+s differ only marginally for large s between different levels of today’s
employment, they are discounted less the higher employment and ergo consumption is today.
The effect of less discounting of excess generated by a worker in the long run due to higher
consumption at higher employment rates must dominate the decrease in within period profits
to the firm in the short run due to higher wages. This yields ξ̂ f

t to turn out to be increasing in
the employment rate.

Deviations in the Approximations We want to compare the approximations in figure 4.1
regarding the different approaches employed. The upper part of figure 4.3 displays the deviations
in the solutions for the two methods of numerically computing the expectations operator, while
the lower part shows the deviations between the corresponding spectral and finite element
methods. The deviations between the spectral and finite element solutions in the lower part
turn out to be at least one order of magnitude larger than between the different approaches
of computing the expectations operator in the upper part. Since we allowed significantly less
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degrees of freedom in the spectral methods compared to the finite element methods20, the
result might already suggest that the number of Chebyshev polynomials used in the spectral
methods is too low to allow for a fitting approximation. The fact whether we use Gauss-Hermite
quadrature or a discretization of the log LP process seems to affect the solution significantly less
in comparison.

However, the absolute deviations of the policy function are not meaningful without providing
a point of reference. Therefore, we will next examine some statistics regarding the goodness of
fit of the approximations, before we analyze if the deviations encountered in the policy functions
also yield different simulation results.

Euler Equation Residuals In figure 4.4 we first display the residuals of the functional equation
RGH( ĝa, ., .) = 0—evaluated on a significantly finer grid than used for the computation of the
approximations—for all four approximation methods. 21 The errors displayed in figure 4.4 are

Figure 4.4: Euler Residuals
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deviations in next period’s discounted marginal value of a worker to the representative firm
measured in consumption units. To allow for an easier interpretation of the magnitude, we also
calculate interpretable Euler equation residuals similar to Christiano and Fisher (2000). The
exact solution satisfies

C(g, x , z)−ηlhs(g, x , z) = C(g, x , z)−ηrhs(g, x , z), for all (x , z) ∈ [0, 1]×R,

20Remember, we used only 35 Chebyshev polynomials, yet over 11000 piecewise bicubic polynomials, in the
approximation for the case of computing the expectations operator by Gauss-Hermite quadrature.

21In simulations of the model’s equilibrium outcomes we rely on the AR(1) process assumption for log LP. Since the
two methods using the Rouwenhorst (1995) algorithm are initially only defined on the underlying finite state
space Z for log LP, we need to use interpolation methods regarding the state of log LP in simulations. However,
the residuals RRO are only defined for states of log LP in Z . Therefore, in order to consider the goodness of fit
over the whole range of LP, we only examine the residuals of the functional equation RGH = 0 for these two
approximations, too.
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Figure 4.5: Interpretable Euler Residuals
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where C is the policy function of consumption as defined in equation (4.3.6)22. For any of the
approximations ĝa, the equation will in general not hold exactly even when rhs is replaced by
rhsGH .23 But, we can calculate C̃ so that

C̃( ĝa, x , z)−ηlhs( ĝa, x , z) = C( ĝa, x , z)−ηrhsGH( ĝa, x , z).

Solving for C̃ then yields

C̃( ĝa, x , z) = C( ĝa, x , z)
�

rhsGH( ĝa, x , z)
lhs( ĝa, x , z)

�− 1
η

and one can interpret C̃( ĝa, x , z) as the amount today’s consumption would have to equal in order
for the Euler equation to hold exactly, if all other variables including next period’s consumption
are computed from the obtained approximations.24 The interpretable Euler residuals are then
defined by

R̃GH( ĝa, x , z) :=
C̃( ĝa, x , z)
C( ĝa, x , z)

− 1=
�

rhsGH( ĝa, x , z)
lhs( ĝa, x , z)

�− 1
η

− 1

and can be interpreted as the fraction by which today’s consumption would have to be raised
compared to the value computed from the approximated policy function in order for the Euler
equation to hold exactly. Figure 4.5 displays the interpretable Euler residuals computed again on
a significantly finer grid than used in the computation of the approximations.25 We can see that

22Note, that C(g, x , z) cancels out on the right hand side.
23Except at the nodes in the collocation method.
24Since C( ĝa, x , z) cancels out on the right hand side, all other variables excluding this period’s consumption, but

including next period’s consumption, are computed from the approximations to the policy functions.
25Note that figure 4.5 displays the decimal values of R̃GH , i.e. the interpretable Euler residuals are not in percentage

points.
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in particular our benchmark solution, the cubic spline paired with Gauss-Hermite quadrature,
provides a sufficiently good approximation. The value for this period’s consumption computed
from the policy function would have to be changed even at most only about 0.001% in order for
the Euler equation to hold exactly. For the cubic spline computed from a discretized Markov
process governing LP, the interpretable Euler residuals rise somewhat higher at the borders for
log LP due to extrapolation used for states of LP below and above −0.16 and 0.16, respectively.
The solutions relying on Chebyshev polynomials produce significantly worse approximations,
which affirms the conjecture that the degrees of freedom selected for the spectral methods are
too low to render the approximations fitting.

Simulated Time Path Last, we want to examine whether the deviations between the approxi-
mations also manifest in different results in simulations of the model’s equilibrium outcomes.
We therefore computed a time path of equilibrium outcomes for a total of 1200000 time periods
starting from the deterministic steady state where we used the same realization of pseudorandom
iidN(0,σ2

ε
) distributed shocks to the AR(1) process governing log LP for all four approximation

methods. In figure 4.6 we display the outcome for the time paths of employment during the

Figure 4.6: Comparison: Dynamics of Employment

37,000 38,000 39,000 40,000

0.2
0.4
0.6
0.8

1

t (Period (Month))

N
t

(E
m

pl
oy

m
en

t)

Chebyshev & Gauss-Hermite
Cubic Splines & Gauss-Hermite

periods 37000 to 40000, computed either by the spectral or finite element approximation, each
with Gauss-Hermite quadrature. From this segment of the whole realization we can already
observe that the time paths of employment show rare steep drops and while the time paths from
the different approximations coincide for the most part, huge deviations during these drops
become noticeable. To confirm this first impression, table 4.3 summarizes the maximal absolute
deviations between the time paths of employment computed from the different approximations.
First, we can see that for the solutions using a cubic spline, the fact whether the expectations

Table 4.3: Comparison: Maximal Deviations in Employment Time Paths

Chebyshev&Gauss-Hermite Chebyshev&Rouwenhorst Cubic Spline&Gauss-Hermite Cubic Spline&Rouwenhorst

Chebyshev&Gauss-Hermite 0 0.4015 0.4411 0.4400
Chebyshev&Rouwenhorst 0 0.4338 0.4327
Cubic Spline&Gauss-Hermite 0 0.0034
Cubic Spline&Rouwenhorst 0

operator in the functional equation is evaluated by Gauss-Hermite quadrature or discretization
of the LP process a la Rouwenhorst does not change much for the simulation outcome; the
computed time paths of employment do not deviate by more than 0.0034.26 This is consistent
to the previous result from figure 4.3b that the differences between these two approximations
to the policy function are only small. For the case of Chebyshev polynomials serving as basis

26Since the solution relying on the discretized LP process was computed only on a smaller domain for log LP where
extrapolation has to be used much more frequently in simulations, the conjecture that errors by extrapolation
remain only small as long as the approximation is sufficiently accurate on its domain is additionally reinforced
by this fact.
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functions, the differences between the two approximations making use of different ways to
compute the expectations operator, displayed in figure 4.3a, were one order of magnitude higher.
Yet, these, on average, also seemingly not too large differences in the policy functions give
rise to significant deviations between the respective simulated time paths. The employment
rate deviates up to 0.4015 between the two solutions. Hence, the dynamics in the model seem
sensitive to rather small differences in the policy function of ξ̂ f

t . Further, the already discussed
discrepancies between the spectral and finite element solutions result in huge deviations in the
simulation.

Yet, the exact time path of equilibrium outcomes is only rarely of interest by itself. More
common, properties of the variables’ distribution in simulations are summarized by statistical
measures. In order to analyze whether and in which way the differences in the time paths
eventually translate into different results for such measures, table 4.4 shows the mean, the
maximum and minimum value, certain quantiles as well as the standard deviation, the skewness
and the kurtosis for the monthly employment rate. While the maximal deviations between the

Table 4.4: Comparison: Distribution of Monthly Employment Rates

Chebyshev&Gauss-Hermite Chebyshev&Rouwenhorst Cubic Spline&Gauss-Hermite Cubic Spline&Rouwenhorst

N̄ 0.8757 0.8768 0.8751 0.8753
max(Nt) 0.9423 0.9426 0.9395 0.9394
min(Nt) 0.0912 0.0601 0.0595 0.0596
q0.01(Nt) 0.5481 0.5481 0.5164 0.5170
q0.05(Nt) 0.6983 0.7117 0.7347 0.7354
q0.1(Nt) 0.7854 0.7928 0.8068 0.8075
q0.5(Nt) 0.9042 0.9038 0.8998 0.8998
q0.9(Nt) 0.9259 0.9262 0.9215 0.9215
q0.95(Nt) 0.9293 0.9295 0.9249 0.9249
q0.99(Nt) 0.9340 0.9341 0.9299 0.9299
sN 0.0817 0.0799 0.0773 0.0772
vN -3.3499 -3.5237 -3.9332 -3.9473
wN 18.0385 20.0432 23.9280 24.0846

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for
cumulative distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment
rate. Statistics are computed from the outcome of a simulation of 1200000 (monthly) periods.

time paths of employment were comparably high—except between the two approximations
based on cubic splines—the computed statistic indicators do not differ too much. This is in
accordance to the fact that the employment rates coincide for most periods and seem to only
deviate during the rare huge declines. Note already that the model gives rise to unemployment
rates over 90%.

4.4.5 Approximation by Second Order Perturbation
Approximations, which rely on the basic idea of mean weighted residuals described in section
4.3.1, are constructed in such manner to provide a solution globally accurate on the chosen
domain. The conditions (4.3.15), from which fitting parameter values in the approximation
are derived, yield the errors in the Euler equation to vanish on average over the whole domain
when weighted with the test functions. More concretely, the weighting by the test functions
specifies, where on the domain residuals of the functional equation are more significant.27 We
will therefore also call these approximation methods global methods in the following. Differently,
an approximation to the model’s policy functions by perturbation, which relies solely on the
policy functions derivatives in deterministic steady state, can in general only provide a locally,

27 For example, for the cubic spline collocation method with test functions equal to Dirac delta functions at the
grid points, the residuals RGH vanish exactly at all grid points over the domain, whereas no condition on the
residuals in between is imposed.
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around the steady state accurate solution to the model. The fact that employment drops to low
levels far away from its steady state in the present model might therefore cause the perturbation
solution to fail to adequately reproduce the model’s dynamics.

We will use the solution based on a cubic spline paired with Gauss-Hermite quadrature as the
reference solution for comparison in the following, since it proved to display a sufficiently good
approximation in the discussion of the last subsection.

Approximation to the Policy Function We present the approximation to the policy function
of ξ̂ f

t from a second order perturbation method in figure 4.7. Moreover, for more detailed

Figure 4.7: Policy Function obtained from Second Order Perturbation I
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comparison we display cross-sections of the policy functions along different values of log LP in
figure 4.8, namely for approximately the 99.9%, the 95%, the 66%, the 33%, the 5% and the
0.1% quantiles of log LP. As mentioned, an approximation by perturbation is expected to provide

Figure 4.8: Policy Function obtained from Second Order Perturbation II
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a good approximation locally in some area ’near’ the steady state, but there is no guarantee for
it delivering a suitable approximation farther away from the steady state. In the case at hand
and with the global solution serving as reference, it becomes apparent that the perturbation
solution gives a very poor approximation when employment declines, whereas the inaccuracies,
although noticeable, remain only small for a broad range of log LP as long as employment stays
near to its steady state value of 0.9.
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Simulated Time Path Next, let us look at the consequences of these differences in the ap-
proximations when we use the perturbation solution to simulate the time series of the model’s
equilibrium outcomes from the same sample of pseudorandom shocks to log LP as before. It is
important to note that—as in the case of the global solution—we only computed the outcomes
for ξ̂ f

t from the second order approximation to the variable’s policy function. All other period t
variables and Nt+1 were then derived from ξ̂

f
t (and the state variables) in the way described in

section 4.2.6.28

The outcomes for employment in the first 5000 periods are displayed in figure 4.9. We observe

Figure 4.9: Dynamics of Employment: Second Order Perturbation vs. Cubic Spline
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that the perturbation solution fails to adequately reproduce the occurrence of periods with very
large unemployment rates in the model. The reason behind this result can immediately be
deduced from the shape of the approximation to the policy function of ξ̂ f

t under a second order
perturbation in figures 4.7 and 4.8. Contrary to the global solution, where ξ̂ f

t is throughout
decreasing with the unemployment rate, the approximation by perturbation yields ξ̂ f

t to increase
with the unemployment rate once employment falls below approximately 0.8. Hence, in the
simulation using the perturbation solution, once the unemployment rate rises to ca. 20%, the
present value ξ̂ f

t of a filled position in the next period from the firm’s perspective will begin
to increase, leading the representative firm to post more open vacancies and preventing the
employment rate to fall any further. Consequently, we cannot expect to see unemployment rates
above roughly 20% when the series of equilibrium outcomes is computed with the second order
perturbation approximation. This is also illustrated in figure 4.10, which shows the growth
rate of employment from period t into t + 1 using the perturbation solution. Contrary to the
result in figure 4.2d for the global solution, the lower bound for possible employment rates at
approximately 0.8 is clearly visible. The poor approximation to the policy function of ξ̂ f

t for
lower employment rates has serious implications for the dynamics of employment in simulations.
The rare but steep declines in the unemployment rate cannot be replicated. The employment
rate deviates up to 0.81 from the one computed by the cubic spline solution.

Yet, although all the global solution methods showed the huge declines in employment in
simulations, the deviations during these periods in the time paths were also remarkably large.
Nevertheless, these deviations had only comparable small impact if one is only interested in
the distribution of employment in the simulation. This is different now. An illustration of the

28If one, as commonly applied, computes all variables’ outcomes from the second order approximations to their
policy functions, larger deviations of LP and employment from steady state would at some point lead the model’s
dynamics to leave their basin of attraction under the second order approximation. The employment rate, and
therefore also the other variables, would eventually tend to ±∞.
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Figure 4.10: Second Order Perturbation: Relative Change in Employment
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differences in the distribution of employment in the simulation is provided by the histograms
in figure 4.11 and by the summary of statistical measures in table 4.5. Since the perturbation
solution does not display the huge drops in employment, the minimum value as well as the
quantiles for smaller probabilities greatly differ from the respective values obtained by the
global solution methods. Yet, since these declines only rarely occur and since the perturbation
solution resembles the global solution in the remaining periods, where employment is not too
far from its steady state value, the average value, the maximal value and the quantiles for
higher probabilities are similar. However, without accurately displaying the rare huge drops,
the perturbation solution also fails to reproduce the volatility of employment in the model, the
distribution is far less left skewed and the kurtosis is significantly smaller.

Figure 4.11: Distribution of Employment I: Second Order Perturbation vs. Cubic Spline
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(a) Distribution of Employment computed by Cu-
bic Spline
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(b) Distribution of Employment computed by Sec-
ond Order Perturbation

Table 4.5: Distribution of Employment II: Second Order Perturbation vs. Cubic Spline

N̄ max(Nt) min(Nt) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8751 0.9395 0.0595 0.5164 0.7347 0.8068 0.8998 0.9215 0.9249 0.9299 0.0773 -3.9332 23.9280
Perturbation 0.8925 0.9396 0.8273 0.8293 0.8381 0.8482 0.9000 0.9215 0.9249 0.9298 0.0269 -0.7587 2.5413

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for cumulative distribu-
tion of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment rate. Statistics are computed from
the outcome of a simulation of 1200000 (monthly) periods.

4.5 Endogenous Disasters, the Equity Premium and Second
Moments of the Labor Market

In the previous section we observed that, if accurately solved, the model gives rise to periods
of extremely high unemployment. In this chapter we will introduce a definition for the term
’disaster’ and use this definition to compute disaster probabilities, disaster sizes and disaster
durations in the model. Moreover, we will analyze whether the dynamics in the model help to
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replicate the high historical equity premium and the second moments of the labor market found
in the data. All the upcoming results were computed from the solution using a cubic spline and
Gauss-Hermite quadrature.

4.5.1 Endogenous Disasters in the Baseline Model
Before discussing the occurrence of disasters in the model, we first have to define the term for
our purposes. Kuehn et al. (2015) compare disasters generated in the model to disasters found
in data regarding several statistics. Following Barro and Ursua (2008) they use a peek-to-trough
method to identify disasters from consumption and output data across different countries and
apply the same method to simulations of the model’s outcomes. Our main concern on the
other hand will be to identify the reasons for the occurrence of disasters in the model and to
subsequently check how the model’s behavior changes to slight modifications. Since we are
therefore not interested in possible resemblances of the disasters in the model to empirical
patterns, we will employ a different approach to classify disasters in the model. We examine
the same long time series of simulated equilibrium outcomes in the model for 1200000 periods,
which we have already used in order to compare the different solution methods in section 4.4.4.
We convert the sample for each variable to 400000 observations of quarterly averages and
distinguish disasters from the resulting times series of consumption and output. We define a
disaster to start in quarter t, if the quarterly average value of consumption, respectively output,
falls below a given threshold fraction of the steady state value. The disaster ends in the period,
where the value exceeds the threshold for the first time again, periods in between are called
disaster periods. The size of the disaster is the fraction of decline from the steady state value to
the lowest value during the disaster. The disaster probability measures the probability to fall
from a non-disaster period into a disaster and is hence the number of disasters in the sample over
the number of total non-disaster periods (with the selected threshold). In the segment of 1000
quarters from the time series of consumption pictured in the upper part of figure 4.12 and with
a threshold fraction of 90% of the steady state value, there appear six disasters lasting for 11, 7,
49, 13, 19 and 12 quarters and which are of sizes 17.89%,13.68%,47.86%,19.80%,28.50%
and 17.36% respectively according to this definition. There are 889 non-disaster periods, hence

Figure 4.12: Measurement of Disasters in Consumption
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the disaster probability, measuring the relative frequency to enter a disaster from a non-disaster
period is 6

889 ≈ 0.67%. The lower part of figure 4.12 displays the quarterly average labor
productivity. We can already observe that the declines in consumption are far more pronounced
than in LP, which gives a first indication that calling the disasters endogenous is somewhat
justified.

We computed the number of disasters appearing, the total number of disaster periods, the
disaster probability, the average duration of disasters and the average size of disasters for both
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consumption and output for different threshold fractions ranging from 90% to 30% from the
complete sample. The results, together with the respective statistics for LP, are summarized in
table 4.6. Further, the histograms for consumption and output are displayed in figure 4.13.

Table 4.6: Disasters in the Baseline Model

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 3806 56934 1.11% 19.35% 14.96
Y 4801 64607 1.43% 18.76% 13.46
LP 663 2086 0.17% 11.05% 3.15

85% threshold
C 2166 35559 0.59% 25.67% 16.42
Y 2715 40355 0.75% 24.95% 14.86
LP 5 10 0.0013% 15.68% 2

80% threshold
C 1355 23183 0.36% 31.24% 17.11
Y 1711 26489 0.46% 30.33% 15.48
LP 0 0 0% – –

75% threshold
C 857 15881 0.22% 36.96% 18.53
Y 1007 17767 0.26% 36.54% 17.64
LP 0 0 0% – –

70% threshold
C 566 11243 0.15% 42.44% 19.86
Y 668 12472 0.17% 41.85% 18.67
LP 0 0 0% – –

50% threshold
C 124 2881 0.03% 61.59% 23.23
Y 142 3132 0.04% 61.07% 22.06
LP 0 0 0% – –

30% threshold
C 25 673 0.0063% 78.15% 26.92
Y 30 718 0.0075% 77.33% 23.93
LP 0 0% – – 0

Figure 4.13: Histograms for Consumption and Output in the Baseline Model
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model
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(b) Distribution of output in the baseline model

As a direct consequence of the already observed pattern of employment in the model exhibiting
rare but huge declines, the same is true for consumption and output. For example, consumption
in the model is less than 50% of its steady state value in 2881 of 400000 quarters in the
simulation. These periods arise during 124 disasters lasting on average for approximately 23
periods. The probability of entering a period with consumption less than half of its steady state
value is 0.03% conditional on the fact that consumption is more than half of its steady state
value in the preceding period.
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Epstein-Zin-Preferences As already mentioned in the calibration of the model, we also used
an Epstein-Zin specification for the household’s preferences as in Kuehn et al. (2012). The
representative household’s value function Jh is then defined in such way to satisfy

Jh(Nt , Zt , St) = max
Ct ,St+1
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where γ > 0,γ 6= 1, defines the coefficient of relative risk aversion and ψ > 0,ψ 6= 1, the
elasticity of intertemporal substitution and where we make explicit that the value function also
depends on the exogenously determined states of LP. With the Epstein-Zin specification for the
household’s preferences the stochastic discount factor in the model changes as follows. First,
with λt denoting the Lagrange multiplier of the budget constraint as before, the first order
conditions for a bounded solution for the maximization problem on the right hand side are
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Invoking the envelope theorem we further get

∂ Jh

∂ S
(Nt , Zt , St) = λt(dt + vt).

Plugging the equations for λt and ∂ Jh

∂ S into the Euler condition for the share price consequently
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which differs from equation (4.2.7) only by the different stochastic discount factor M EZ
t,t+1. If the

parameter of relative risk aversion coincides with the reciprocal of the elasticity of intertemporal
substitution, i.e. γ = 1

ψ , the stochastic discount factor reduces to the standard case from the
baseline model. Moreover, the envelope theorem also yields (when plugging in the dynamics
for Nt+1)
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,

which differs from equation (4.2.8) again only by the stochastic discount factor. Finally, adjusting
the stochastic discount factor accordingly in the representative firm’s objective function (4.2.14),
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yields the same conditions as in (4.2.15)-(4.2.21) with β λt+1
λt

replaced by M EZ
t,t+1. Note further

that the household’s value function in equilibrium must be independent of the amount of
outstanding shares St since neither total dividend payments less expenditures on shares, dtSt −
vt(St+1 − St) =

(4.2.12)
πt , nor the firm value, FVt = St+1vt = Nt+1ξ̂

f
t , depend on the amount of

outstanding shares. Therefore, we may use the simplified notation of just Jh(Nt , Zt) instead.
Since the stochastic discount factor now contains the household’s value function Jh, the

model’s equilibrium conditions can no longer be reduced to a single functional equation for the
policy function g of the present value ξ̂ f of a worker to the firm in the next period. Instead, the
policy function g of ξ̂ f and the household’s value function Jh have to mutually solve the two
functional equations

R1(J
h, g, x , z) := lhs1(J

h, g, x , z)− rhs1(J
h, g, x , z) = 0,

R2(J
h, g, x , z) := lhs2(J

h, g, x , z)− rhs2(J
h, g, x , z) = 0,

for all x ∈ [0,1], z ∈ R, with

lhs1(J
h, g, x , z) := Jh(x , z),

rhs1(J
h, g, x , z) :=


(1− β)C1− 1

ψ

t + β
�
E
��

Jh (Nt+1, Zt+1)
�1−γ�� 1− 1

ψ
1−γ




1

1− 1
ψ

,

and

lhs2(J
h, g, x , z) := g(x , z),

rhs2(J
h, g, x , z) := E


β


 Jh (Nt+1, Zt+1)�
E
�
(Jh (Nt+1, Zt+1))

1−γ�� 1
1−γ




1
ψ−γ�

Ct+1

Ct

�− 1
ψ

·

· (exp(Zt+1)−wt+1 + (1−ω)g(Nt+1, Zt+1))] ,

where Ct , Nt+1, Zt+1 and wt+1 in rhs1 and rhs2 are short for the expressions of the variables
dependent on x = Nt , z = Zt , g(x , z) = ξ̂ f

t and the innovation ε∼ N(0,σ2
ε
) as before.29

In order to approximate both, the value function Jh as well as the policy function g, we adapt
the mean weighted residual methods described in section 4.3 to the case of two functions mutu-
ally solving the two above functional equations. Since the procedure is completely analogous,
we keep the explanation short. First, we replace all expectations appearing in rhs1 and rhs2

with corresponding Gauss-Hermite quadrature formulas with n = 13 nodes. We then choose
degrees of freedom K1 and K2 and restrict the approximations to parameterized families

{Ĵh
aJ

: X → R|aJ ∈ RK1} and { ĝag
: X → R|ag ∈ RK2}.

After choosing as many test functions Ψ1,i and Ψ2,i as degrees of freedom, the parameters in the

29For numerical reasons we use the following expression in the accompanying Matlab code:

rhs1 =

�
(1− β)C1− 1

ψ

t + β
��
E
��

Jh
t+1

�
Jh

t

�1−γ�� 1
1−γ

Jh
t

�1− 1
ψ

� 1

1− 1
ψ

rhs2(J
h, g, x , z) := E


β


 Jh

t+1

�
Jh

t�
E
��

Jh
t+1

�
Jh

t

�1−γ�� 1
1−γ




1
ψ−γ �

Ct+1

Ct

�− 1
ψ

(exp(Zt+1)−wt+1 + (1−ω)g(Nt+1, Zt+1))


 .



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 135

Figure 4.14: Epstein-Zin Preferences: Approximation of Policy and Value Function
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ĝ a
g
(x

,z
)

1 1.8 2.2 2.6 3c

(b) Approximation to Policy Function of ξ̂ f

0 0.2 0.4 0.6 0.8 1 −0.2

0
0.2−5

0

·10−3

x (Employment) z (log LP)

R̃
1,

G
H

� Ĵh a J
,ĝ
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(d) Interpretable Euler Residuals of R2

approximations are determined as the solution to the system of equations
∫

[
¯
x , x̄]×[

¯
z,z̄]

R1

�
Ĵh

aJ
, ĝag

, x , z
�
Ψ1,i(x , z)w(x , z)d(x , z) = 0, i = 1, . . . , K1, and

∫

[
¯
x , x̄]×[

¯
z,z̄]

R2

�
Ĵh

aJ
, ĝag

, x , z
�
Ψ2,i(x , z)w(x , z)d(x , z) = 0, i = 1, . . . , K2.

The obtained approximations by a finite element collocation method, where we set γ= 10
and ψ= 1.5 as in Bansal and Yaron (2004) and Kuehn et al. (2012), are pictured in the upper
part of figure 4.14. Comparing to the results with additive time separable preferences in figure
4.1 shows that, although the shape of the policy function of ξ̂ f remains similar for the most
part, there is one major difference. For values of log LP less than approximately -0.115 the
present value of a worker in the next period to the firm now falls below the costs of posting a
vacancy so that the non-negativity constraint on open vacancies becomes binding. The policy
function of ξ̂ f apparently turns out to be non-smooth displaying a kink at the points where
the amount of open vacancies falls to zero. In order to allow for the approximation to better
copy this pattern, we used piecewise linear functions between the grid points (dx = 50, dz = 43)
instead of a cubic C2-spline. However, computing an appropriate approximation turned out
much more difficult nonetheless. In particular, the interpretable Euler residuals of the functional
equation R2 = 0 fall down to approximately −0.03 near the kink as shown in the lower right
part of figure 4.14.30 I.e. consumption would have to be decreased by approximately 3% in

30The interpretable Euler residuals for the functional equation R2 = 0 are computed as before. For the functional
equation R1 = 0 one could introduce a similar definition in terms of the consumption good. However, since the
weight, 1− β , of Ct in rhs1 is small, even comparable small absolute residuals of R1 would imply that large
changes in consumption are necessary for the functional equation to be satisfied exactly. Yet, the functional
equation R1 = 0 only contains the definition of the value function Jh which in turn is only needed to compute
part of the stochastic discount factor, while all the other variables are derived from ξ̂

f
t . In order to display

inaccuracies in the part of the stochastic discount factor containing the value function, it is sufficient to consider
relative deviations of Jh. We therefore set R̃1 := lhs1

rhs1
− 1.
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Table 4.7: Disasters in the Baseline Model with Epstein-Zin preferences

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 5694 67378 1.71% 22.19% 11.83
Y 6630 76551 2.05% 21.46% 11.55
LP 663 2086 0.17% 11.05% 3.15

85% threshold
C 3559 43486 1.00% 29.43% 12.22
Y 4079 48793 1.16% 28.64% 11.96
LP 5 10 0.0013% 15.68% 2

80% threshold
C 2402 30584 0.65% 36.31% 12.73
Y 2663 33709 0.73% 35.73% 12.66
LP 0 0 0% – –

75% threshold
C 1680 22751 0.45% 42.87% 13.54
Y 1878 24730 0.50% 41.96% 13.17
LP 0 0 0% – –

70% threshold
C 1221 17649 0.32% 49.22% 14.45
Y 1331 18905 0.35% 48.53% 14.20
LP 0 0 0% – –

50% threshold
C 478 8388 0.12% 69.03% 17.55
Y 505 8729 0.13% 68.57% 17.29
LP 0 0 0% – –

30% threshold
C 230 4166 0.0581% 81.88% 18.11
Y 232 4311 0.0586% 82.12% 18.58
LP 0 0% – – 0

order for the Euler equation to hold exactly at these points. Yet, larger residuals appear only
around the kink and on the edges while the approximation seems better for the remaining parts.
We could not increase accuracy of the approximation by adding nodes to the grid near the kink
since the solution algorithm failed to find the zeros from the system of nonlinear equations
defining the free parameter values in this case. Moreover, in long simulations of the model’s
equilibrium outcomes the unemployment rate falls even below the lower bound of 0.024 we
used for this approximation. Using linear extrapolation the value of ξ̂ f declines too strongly in
these periods leading the unemployment rate to eventually converge to zero. On the other hand,
relying on cubic spline extrapolation the value of ξ̂ f declines too slowly so that the same is true
for the amount of open vacancies and, given very low employment rates and LP, consumption
may become even negative. We therefore artificially prevent the employment rate from falling
below 0.024 in simulations. Again, we could not extend the approximation to cover even lower
rates of employment since the system of nonlinear equations could not be solved anymore. Yet,
we note that the upcoming results regarding the equity premium for Epstein-Zin preferences do
not critically hinge on periods where LP is low or the unemployment rate is high.

The disaster statistics with Epstein-Zin preferences are summarized in table 4.7. Compared to
the case of standard preferences, disasters appear more frequently and are even more drastic in
size but do not last as long on average.

4.5.2 Equity Premium in the Baseline Model
The fact that the baseline model produces rare but severe economic downturns suggests that
the model can potentially contribute to resolve the equity premium puzzle.31 Rietz (1988),

31see Mehra and Prescott (1985).
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Barro (2006) or Gourio (2012, 2013) are able to predict sizeable risk premia by introducing a
possibility of economic disasters exogenously. The question therefore is, whether the baseline
model with the endogenously arising rare but huge declines in consumption can also replicate
the size of the historically observed U.S. risk premium summarized in table 4.8, taken from
Mehra and Prescott (2003).

Table 4.8: U.S. equity premium in the data

real return on real return on equity premium (mean)
a market index (mean) a relatively riskless security (mean)

8.06% 1.14% 6.92%

Source: Mehra and Prescott (2003), Table 1. For the time period 1889-2000.

Return on Equity The return on equity in the model is defined by

Re
t+1 =

dt+1 + vt+1

dt
.

We have already observed in equation (4.2.13) that the ex-dividend firm value equals the present
value of future profits. Moreover, multiplying equation (4.2.19) with Vt and using µt Vt = 0
yields

cVt = κ f ,t Vt ξ̂
f
t = Mt ξ̂

f
t = (Nt+1 − (1−ω)Nt) ξ̂

f
t

so that the firm’s profits as defined in equation (4.2.11) equal

πt = exp(Zt)Nt −wt Nt − (Nt+1 − (1−ω)Nt) ξ̂
f
t = Nt

�
exp(Zt)−wt + (1−ω)ξ̂ f

t

�− Nt+1ξ̂
f
t .

(4.5.2)

Thus, the firm value can also be written as32
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�∞∑
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Using once more (4.5.2), it follows that the firm value at the beginning of period t, i.e. including
period t ’s profits, is given by

FV bop
t := πt + FVt = Nt

�
exp(Zt)−wt + (1−ω)ξ̂ f

t

�− Nt+1ξ̂
f
t + Nt+1ξ̂

f
t =

= Nt

�
exp(Zt)−wt + (1−ω)ξ̂ f

t

�
.

32The derivation applies analogously for Epstein-Zin preferences with β λt+1
λ1

replaced by M EZ
t,t+1.
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The return on equity thus equals

Re
t+1 =

dt+1 + vt+1

dt
=

St+1dt+1 + St+1vt+1

St+1dt

(4.2.12)
=

πt+1 + (St+2 − St+1)vt+1 + St+1vt+1

St+1dt
=

=
πt+1 + St+2vt+1

St+1dt
=

FV bop
t+1

FVt
=

exp(Zt+1)−wt+1 + (1−ω)ξ̂ f
t+1

ξ̂
f
t

.
(4.5.3)

Risk Free Return The price v f
t of an asset which guarantees with certainty one unit of the

consumption good in the next period has to satisfy

v f
t = Et

�
β
λt+1

λt
· 1
�

with standard preferences and

v f
t = Et

�
M EZ

t,t+1 · 1
�

with Epstein-Zin preferences. The risk free return defined by R f
t := 1

v f
can therefore be computed

by

R f
t =

1

Et

�
β
λt+1
λt

� or R f
t =

1

Et

�
M EZ

t,t+1

�

where we use Gauss-Hermite quadrature with 13 nodes to numerically compute the expectation.

Equity-Premium The equity premium in the model is computed as the average excess return
on equity beyond the risk free rate, Re

t+1 − R f
t .

Results Table 4.9 summarizes the average annualized return on equity, the average annualized
risk free return as well as the average annualized equity premium in the baseline model.
Although the baseline model generates huge declines in consumption indifferent of the fact

Table 4.9: Annualized Equity Premium in the Baseline Model

η= 2 η= 10 EZ preferences (RRA=10, EIS=1.5)

((R̄ f )12 − 1)100% 4.12% 2.02% 0.99%
((R̄e)12 − 1)100% 4.27% 2.85% 10.51%
EP 0.15% 0.81% 9.43%

Notes: R̄ f = 1
T−1

∑T−1
t=1 R f

t=average monthly risk free return rate, R̄e = 1
T−1 =

∑T−1
t=1 Re

t=average monthly return on equity, EP=((1+ R̄e −
R̄ f )12 − 1)100%. All return rates are computed from the outcome of a simulation of 1200000 (monthly) periods.

whether additive time separable preferences or Epstein-Zin preferences are assumed, a sizeable
equity premium results only with Epstein-Zin preferences even when the coefficient of relative
risk aversion is the same. Under Epstein-Zin preferences, the average risk free rate is close to
the value found in the data, while the return on equity and the equity premium even exceed
their empirical counterparts by approximately 2.5 percentage points.

Two questions arise. In which regard does the model differ from a framework as in Rietz
(1988) so that no significant equity premium is generated under standard preferences despite the
fact that huge declines in consumption occur? And what changes once Epstein-Zin preferences
are assumed?
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Figure 4.15: Monthly Equity Premium in the Model
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We show the monthly equity premium (as a decimal number), Et[Re
t+1 − R f

t ], dependent
on the state variables in figure 4.15. In the case of additive time separable preferences the
equity premium is throughout only of magnitude 10−4; only moderate increases for relative high
rates of employment are visible. On the other hand, with Epstein-Zin preferences the expected
excess of the (monthly) return on equity beyond the risk free rate is higher by at least an
order of magnitude at around 0.8% for most states in the model. It moreover harshly increases
even further at lower levels of LP where the non-negativity constraint on open vacancies is
binding. Note however that these states where the equity premium rises up to 2% per month,
i.e. approximately 26% per year, are not essential for the sizeable equity premium in the model
with Epstein-Zin preferences. For example, computing the average return rates only from
periods where the state variables are not too far from steady state, i.e. more specifically where
employment is in [0.8; 0.95] and log LP in [−0.05; 0.05], yields the annualized average risk free
rate, the annualized average return on equity as well as the average annualized equity premium
to be 1.35%,11.55% and 10.08%, respectively. Hence, although the results for Epstein-Zin
preferences have to be considered with some caution due to substantially larger errors in the
approximations in particular for lower LP and lower unemployment rates, there seems to be
strong evidence for a sizeable equity premium which is mainly generated around the steady
state, where the errors are only small, nonetheless.

In order to analyze why the (monthly) risk premium is mostly close to zero with standard pref-
erences but rises to approximately 0.8% in most states with Epstein-Zin preferences, we consider
the risky steady state to provide an example.33 First, note that the equity premium equals

Et

�
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t+1 − R f
t

�
= −
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h
β
�

Ct+1
Ct

�−η
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t+1

i

Et
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�
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�
Re

t+1 − R f
t

�
=

Cov
�
M EZ

t,t+1, Re
t+1

�

Et

�
M EZ

t,t+1

�

respectively. Figure 4.16 shows, for the case of standard preferences with η= 10, next period’s
consumption, the stochastic discount factor as well as the return on equity dependent on the
realization of the N(0,σ2

ε
) distributed shock εt+1 to LP when the economy is in its risky steady

state in the current period. From period t ’s point of view, next period’s employment rate is

33We define the risky steady state as the fix point of the approximation to the dynamic of employment in the model
when LP is set to one. We consider the risky steady state as an example in order to abstract from effects induced
by a change in the employment rate even when no shock hits the economy.
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Figure 4.16: Intuition Equity Premium: Additive Time Separable CRRA (η= 10)
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already determined and the only uncertainty regarding period t + 1 lies in the level of LP.
Consequently, output may only fluctuate proportionally to exp(εt+1) and since the amount of
open vacancies is procyclical the effect on consumption Ct+1 is even dampened. In particular, for
the displayed range of εt+1 the lottery over next period’s consumption is limited to approximately
2.5% increases or decreases over this period’s consumption level.34 Compared to models where
disasters in t + 1 are the result of an exogenous, in period t yet to be observed, shock leading to
a sudden and drastic decline in consumption from one period into the next one, the uncertainty
about next period’s consumption in the present model is only very limited. Severe declines
in consumption may occur only gradually over a longer time span of decreasing employment.
Although the model may exhibit much uncertainty regarding employment in the long run, there
is no uncertainty regarding next period’s employment rate. Assuming a relatively high coefficient
of relative risk aversion, η = 10, fluctuations in the stochastic discount factor are amplified, yet
its standard deviation is limited to approximately
s

Var
h
β
�

Ct+1
Ct

�−ηi≈ 0.0574

while

Et

�
β

�
Ct+1

Ct

�−η�
≈ 0.9990.

Moreover, fluctuations in the return on equity are even smaller with a standard deviation of
Ç

Var
�
Re

t+1

�≈ 0.0127.

Consequently, even though the stochastic discount factor and the return on equity are almost
perfectly negatively correlated with

Corr
�
β

�
Ct+1

Ct

�−η
, Re

t+1

�
≈ −0.9953

the risk premium can account only to

Et

�
Re

t+1 − R f
t

�≈ 0.9953 · 0.0574 · 0.0127
0.9990

≈ 0.0007= 0.07%.

Hence, the annualized equity premium is only 0.84% in the risky steady state, similar to the
average value from a long simulation of the model in table 4.9. We identify a lack of variability
in next period’s stochastic discount factor implied by a lack of variability in next period’s

34The displayed range for εt+1 includes all nodes appearing in an Gauss-Hermite quadrature with n=13 nodes and
therefore all numerically relevant outcomes in the computation of the results.
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consumption level as well as only small fluctuations in the return on equity as the main factors
for the model not generating a substantial risk premium.

So what changes if Epstein-Zin preferences are assumed? Figure 4.16 displays next period’s
realizations for the same variables already discussed for the standard case, but also for the
household’s lifetime utility, dependent on the N(0,σ2

ε
) distributed shock εt+1 to LP when the

economy is again in the risky steady state in the current period. First, we observe that next

Figure 4.17: Intuition Equity Premium: Epstein-Zin Preferences (RRA=10, EIS=1.5)
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period’s consumption is now subject to even less fluctuations. Within the displayed range
consumption may rise or fall only by approximately 0.6% compared to the current period.
However, the lottery over next period’s lifetime utility turns out to be much more risky with
gains or losses by approximately 15%. Consequently, the stochastic discount factor, which now
contains the factor


 Jh

t+1�
Et

��
Jh

t+1

�1−γ�� 1
1−γ




1
ψ−γ

regarding lotteries over next period’s lifetime utility, underlies much stronger fluctuations. More
concretely, now
Ç

Var
�
M EZ

t,t+1

�≈ 0.3572

is more than 6 times higher than in the case of standard preferences while

Et

�
M EZ

t,t+1

�
≈ 0.9991

remains very similar. An ad hoc interpretation would be that although the gradually developing
disasters in the model imply only small risk regarding consumption one period ahead, the
probability of entering a disaster in the longer run may change significantly depending on the
shock’s realization. The household’s lifetime utility is strongly influenced by the risk of an
eventual downturn in the economy approaching. Further, the higher uncertainty regarding the
stochastic discount factor also has a second effect. The fact that the firm’s expected future profits
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are discounted more or less strongly in the next period also implies more fluctuations in the
firm value and ultimately in the return on equity (see 4.5.3). The standard deviation
Ç

Var
�
Re

t+1

�≈ 0.0250

doubles. Although the stochastic discount factor and the return on equity are less negatively
correlated with

Corr
�
M EZ

t,t+1, Re
t+1

�
≈ −0.9519

the risk premium rises due to more volatility in both variables by an order of magnitude to

Et

�
Re

t+1 − R f
t

�≈ 0.9519 · 0.3572 · 0.0250
0.9991

≈ 0.0085= 0.85%.

This already corresponds to a large annualized equity premium of approximately 10.69%, even
one percentage point above the average value from a long simulation given in table 4.9.

4.5.3 Second Moments of the Labor Market
Finally, we want to analyze the model’s ability to replicate labor market moments. Shimer
(2005) showed that in a textbook search and matching model, similar to the one considered
here, unemployment, vacancies and the labor market tightness are far less volatile than in the
data. The variables’ standard deviations in simulations of the model are only approximately
10% of the values empirically observed. This gives rise to the so called Shimer puzzle. Hagedorn
and Manovskii (2008) have argued that with a high value of unemployment activities and a
low bargaining power of the household the model is consistent with the data.35 We evaluate
whether the model is able to generate the observed fluctuations.

First, table 4.10a, taken from Kuehn et al. (2012), provides some facts on the labor market
moments. In order to evaluate the model’s ability to replicate the second moments from the data,
we simulated 5000 time series a 1666 (monthly) periods of the model’s equilibrium outcomes
starting in deterministic steady state. For each of the 5000 simulations, we throw away the
first 1000 periods, convert the remaining observations to 222 quarterly averages and determine
the moments from the cyclical components of the HP-filtered (λ = 1600) relative deviations
from the mean. We report the average moments over the 5000 simulations along the 2.5% and
97.5% quantiles in tables 4.10b and 4.10c. It turns out that the volatility in the model is higher
with Epstein-Zin preferences than with standard preferences. The average standard deviation
of unemployment in the model among the 5000 simulations is slightly above the empirical
counterpart with standard preferences but substantially higher with Epstein-Zin preferences.
However, the empirical value lies between the 2.5% and 97.5% quantiles from the model in
both cases. Yet, it should also be noted that the high volatility of unemployment in the model is
primarily caused by infrequent but extreme deviations as opposed to more frequent but modestly
sized deviations (the kurtosis of the cyclical components from the HP-filtered relative deviations
from the mean is 8.67 and 13.09, respectively). It is questionable if this holds in this form for
the empirical counterpart. For both preference structures, the average standard deviation of
vacancies and the labor market tightness in the model are too low. With the exception of the
standard deviation of vacancies for Epstein-Zin preferences, the empirical values even exceed
the 97.5% quantiles in the model. Hence, although vacancies and the labor market tightness in
the present model are more volatile than in Shimer (2005), who finds the standard deviations
to be less than 10% of the value in the data, the volatility in the labor market model is still too

35Note however that Hagedorn and Manovskii (2008) set b = 0.955 even higher.
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Table 4.10: Labor Market Moments in the Data and the Baseline Model

(a) Labor Market Moments in the Data

U V θ p = Y
N

sx 0.119 0.134 0.255 0.012
sx
sp

9.917 11.167 21.250 1

rx 0.902 0.922 0.889 0.761
Cross Correlations

U 1 -0.913 -0.801 -0.224
V 1 0.865 0.388
θ 1 0.299

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The moments were computed from weekly series from January 1951 to June

2006 converted to 222 quarterly averages. Source: Kuehn et al. (2012), Table 3.

(b) Labor Market Moments in the Baseline Model with additive time separable preferences (η= 2)

U V θ p = Y
N

sx 0.131 [0.071; 0.204] 0.088 [0.067;0.117] 0.164 [0.115;0.239] 0.016 [0.013;0.019]
sx
sp

8.167 [4.653;12.374] 5.501 [4.496;6.924] 10.203 [7.754;14.182] 1.000 [1.000;1.000]
rx 0.913 [0.837;0.960] 0.724 [0.621;0.810] 0.843 [0.775;0.896] 0.774 [0.693;0.840]

Cross Correlations
U -0.572 [−0.716;−0.408] -0.687 [−0.869;−0.405] -0.541 [−0.789;−0.217]
V 0.889 [0.778;0.949] 0.972 [0.900;0.987]
θ 0.923 [0.740;0.987]

(c) Labor Market Moments in the Baseline Model with Epstein-Zin preferences (RRA=10, EIS=1.5)

U V θ p = Y
N

sx 0.178 [0.087;0.310] 0.115 [0.077;0.183] 0.186 [0.129; 0.275] 0.016 [0.013;0.019]
sx
sp

11.092 [5.711;18.918] 7.169 [5.054;11.091] 11.580 [8.648; 16.386] 1.000 [1.000;1.000]
rx 0.900 [0.813;0.957] 0.651 [0.520;0.772] 0.813 [0.740; 0.872] 0.774 [0.693;0.840]

Cross Correlations
U -0.480 [−0.638;−0.347] -0.626 [−0.839;−0.321] -0.554 [−0.806;−0.204]
V 0.823 [0.642; 0.924] 0.913 [0.788;0.951]
θ 0.963 [0.820;0.997]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies from

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

low compared to the data. Moreover, the fact that the volatility in the model is mainly induced
by rare outliers may further be in sharp contrast to the data. Finally, the model reproduces
the negative correlation between the unemployment rate and vacancies from the Beveridge
curve, yet also not in the magnitude found in the data. The empirical value lies below the 2.5%
quantile from simulations for both preference structures.

4.6 Analysis of Endogenous Disasters in the Baseline Model
In this section, we want to find the key assumptions incorporated in the baseline model which
prove essential for the occurrence of disasters and therefore drive the results in the labor market
model. We will then check how the results change if these assumptions are modified in the
extensions of the model.
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4.6.1 Variants of the Baseline Model
In order to get a better understanding of which assumptions included in the baseline model
lead to the periods of high unemployment and disasters in consumption and output, we want
to analyze four basic variations of the model. In particular, we first consider a corresponding
social planner’s problem for which the unemployment rate proves to be stable around the steady
state value. The baseline model differs from the social optimum by three distortions. We will
then add these separately to the social optimal case. For each of the versions, we compare the
results obtained by a global solution to the results from a second order perturbation solution
and compute the disaster statistics. We want to single out, which of the three distortions is the
main cause for the fact that the economy drifts to periods of huge unemployment which render
the perturbation solution inadequate and imply disasters in consumption and output. When
computing the global solution, we have stuck throughout to the method relying on cubic splines
and Gauss-Hermite quadrature.

4.6.1.1 Social Planner

The first version of the baseline model is a corresponding social planner problem. We want to
establish, whether the periods of high unemployment and low consumption also occur when
social welfare is maximized or if they are the result of some distortions from social optimum in
the baseline model.

Social Planner Problem Consider a social planner maximizing the representative household’s
lifetime utility (4.2.3). The representative household consists again of a unity mass of members.
Each period t only the fraction Nt of the representative household’s members can take part in the
workforce, producing output according to the linear production technology (4.2.9). Members
not capable of taking part in the production process, forming mass Ut = 1− Nt , can be trained
to eventually become productive in the next period. In order to train them, training vacancies
Vt are necessary, which generate costs c > 0 lost from total output. The friction on the labor
market implied by the fact that transitions from unemployment to taking part in production
demand costly effort hence still persists. All of the unemployed members take part in training
leading to a total of Mt = M(Ut , Vt) newly skilled members in the next period. Moreover, each
period the fraction ω ∈ (0,1) of the working members of the representative household loses
their working ability. As in the baseline model, we can assume without any loss of generality
that Ut > 0 for all t ∈ N and use the notation

κw,t :=
Mt

Ut

for the fraction of successful training of the unemployed household members and

κ f ,t :=





Mt

Vt
, if Vt > 0

1, if Vt = 0

for the rate of successful training relative to training vacancies. Summing up, if we denote the
social planner’s value function by J soc, we get

J soc(Nt) = max
Ct ,Vt

C1−η
t − 1
1−η + βEt [J

soc ((1−ω)Nt +M(1− Nt , Vt))]

s.t. Ct ≤ exp(Zt)Nt − cVt ,

Vt ≥ 0,

given Nt .
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Note that different from the baseline model, where it was assumed that neither the households
nor the firms in the economy coordinate their job searching and recruiting decisions and are too
small to have influence on average probabilities on their own, the social planner exploits the
exact form of the matching process. The budget constraint has to hold with equality in optimum
again. The KKT conditions for the maximization problem on the right hand side thus are

λt = C−ηt , (4.6.1)

λt c = βEt

�
∂ J soc

∂ N
(Nt+1)

∂M
∂ V
(Ut , Vt)

�
+λtµt , (4.6.2)

Vt ≥ 0, (4.6.3)

λtµt ≥ 0, (4.6.4)

λtµt Vt = 0. (4.6.5)

where λt is the Lagrange multiplier of the budget constraint and λtµt is the KKT multiplier for
the non-negativity constraint.36 We introduce the following notation in the same fashion as in
the baseline model

ξsoc
t :=

1
λt

∂ J soc

∂ N
(Nt) and ξ̂soc

t := Et

�
β
λt+1

λt
ξsoc

t+1

�
.

Now, ξsoc
t denotes this period’s marginal social value of an additional worker measured in

consumption units, while ξ̂soc
t denotes the present value of a worker in the next period from the

social planner’s point of view. Invoking the envelope theorem we can derive

∂ J soc

∂ N
(Nt) = λt exp(Zt) + βEt

�
∂ J soc

∂ N
(Nt+1)

�
1−ω− ∂M

∂ U
(Ut , Vt)

��

so that

ξsoc
t = exp(Zt) +

�
1−ω− ∂M

∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξsoc

t+1

�

= exp(Zt) +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
ξ̂soc

t .
(4.6.6)

The social value of a working member is the sum of this period’s labor productivity and the
continuation value of expected discounted next period’s social value weighted with the probability
of him remaining operative less the change in matches induced by one less unemployed member
entering training. Consequently, we can write

ξ̂soc
t = Et

�
β
λt+1

λt

�
exp(Zt+1) +

�
1−ω− ∂M

∂ U
(Ut+1, Vt+1)

�
ξ̂soc

t+1

��
, (4.6.7)

and the second KKT condition (4.6.2) can equivalently be stated as

c =
∂M
∂ V
(Ut , Vt)Et

�
β
λt+1

λt
ξsoc

t+1

�
+µt =

∂M
∂ V
(Ut , Vt)ξ̂

soc
t +µt . (4.6.8)

Further, since λt > 0 the KKT conditions (4.6.4) and (4.6.5) are equivalent to µt Vt = 0 and
µt ≥ 0. The interpretation of the optimality conditions is analogous to the baseline model.
First, ∂M

∂ V ξ̂
soc
t is the social return of a marginal training vacancy, i.e. the amount of newly skilled

workers in the next period generated by an additional marginal training vacancy times the
present value of a worker in the next period. Equation (4.6.8) then states that in the case of a

36We can write the KKT multiplier in this form since λt > 0.
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positive amount of training vacancies being posted, i.e. µt = 0, training vacancies are posted up
to the point, where the return of a training vacancy equals its cost. Else, the KKT multiplier µt

measures the amount by which the costs c exceed the return.
Finally, note that

∂M
∂ U
(Ut , Vt) =

�
Uτt + V τt

� 1
τ Vt − Ut Vt

1
τ

�
Uτt + V τt

� 1
τ−1
τUτ−1

t

(Uτt + V τt )
2
τ

=

�
Uτt + V τt

�
Vt − Uτt Vt

(Uτt + V τt )
1
τ+1

=

=
V τ+1

t

(Uτt + V τt )
τ+1
τ

=
�

Mt

Ut

�τ+1

= κτ+1
w,t .

(4.6.9)

and for symmetry reasons

∂M
∂ V
(Ut , Vt) =

Uτ+1
t

(Uτt + V τt )
τ+1
τ

= κτ+1
f ,t . (4.6.10)

Equilibrium Summing up, the equilibrium conditions for the social planner’s problem are

Ut = 1− Nt , (4.6.11)

Mt =
Ut Vt�

Uτt + V τt
� 1
τ

, (4.6.12)

Nt+1 = (1−ω)Nt +Mt , (4.6.13)

Yt = exp(Zt)Nt , (4.6.14)

Yt = Ct + cVt , (4.6.15)

λt = C−ηt , (4.6.16)

c =
∂M
∂ V
(Ut , Vt)ξ̂

soc
t +µt , (4.6.17)

µt ≥ 0, (4.6.18)

Vt ≥ 0, (4.6.19)

µt Vt = 0, (4.6.20)

ξ̂soc
t = Et

�
β
λt+1

λt

�
exp(Zt+1) +

�
1−ω− ∂M

∂ U
(Ut+1, Vt+1)

�
ξ̂soc

t+1

��
, (4.6.21)

where ∂M
∂ U and ∂M

∂ V are determined by (4.6.9) and (4.6.10), respectively.
Similar to the baseline model, all other variables in the model can again be expressed by ξ̂soc

t
and the state variables. First, by plugging in (4.6.10) and using µt = 0 in case of Vt > 0 from
(4.6.20) we can rewrite (4.6.17) equivalently as

c =





Uτ+1
t

(Uτt + V τt )
τ+1
τ

ξ̂soc
t , if Vt > 0

ξ̂soc
t +µt , if Vt = 0,

In the first case, Vt > 0, we get

c =


 Ut�

Uτt + V τt
� 1
τ



τ+1

ξ̂soc
t ⇔ �

Uτt + V τt
� 1
τ = Ut

�
ξ̂soc

t

c

� 1
τ+1
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⇔ V τt = Uτt

 �
ξ̂soc

t

c

� τ
τ+1

− 1

!
⇔ Vt = (1− Nt)

 �
ξ̂soc

t

c

� τ
τ+1

− 1

! 1
τ

.

Hence, Vt > 0 is satisfied if and only if ξ̂soc
t > c. In the second case, i.e. Vt = 0, equation (4.6.17)

yields µt = c − ξ̂soc
t , so that (4.6.18) is satisfied if and only if ξ̂soc

t ≤ c. Summing up, setting

Vt =





0 if ξ̂soc
t ≤ c,

(1− Nt)
��

ξ̂soc
t
c

� τ
τ+1 − 1

� 1
τ

if ξ̂soc
t > c,

and µt =

¨
c − ξ̂soc

t if ξ̂soc
t ≤ c,

0 if ξ̂soc
t > c,

.

the KKT conditions are met. The remaining variables are then easily derived from the equations
(4.6.11)-(4.6.16).

Hence, the policy function g : [0, 1]×R→ R for ξ̂soc
t can again be characterized as the solution

to a functional equation, namely

R(g, x , z) := lhs(g, x , z)− rhs(g, x , z) = 0 for all x ∈ [0,1], z ∈ R, (4.6.22)

now with

lhs(g, x , z) := g(x , z) (4.6.23)

and

rhs(g, x , z) := E
�
β

�
Ct+1

Ct

�−η�
exp(Zt+1) +

�
1−ω−

�
Mt+1

Ut+1

�τ+1
�

g(Nt+1, Zt+1)

��
, (4.6.24)

where Ct , Nt+1, Zt+1, Ct+1, Ut+1 and Mt+1 in rhs are short for

Vt := V (g, x , z) :=





0, if g(x , z)≤ c

(1− x)

��
g(x , z)

c

� τ
τ+1

− 1

� 1
τ

, if g(x , z)> c
, (4.6.25)

Ct := C(g, x , z) := exp(z)x − cV (g, x , z), (4.6.26)

Mt := M(g, x , z) =
(1− x)V (g, x , z)

((1− x)τ + V (g, x , z)τ)
1
τ

, (4.6.27)

Nt+1 := N(g, x , z) := (1−ω)x +M(g, x , z), (4.6.28)

Zt+1 := ρz + ε, ε∼ N(0,σ2
ε
), (4.6.29)

Ct+1 := C(g, N(g, x , z),ρz + ε), (4.6.30)

Ut+1 := U(g, x , z) := 1− N(g, x , z), (4.6.31)

Mt+1 := M(g, N(g, x , z),ρz + ε). (4.6.32)

Calibration To allow comparison with the baseline model, all parameter values, including
the parameters that were left free in the baseline model, remain the same and are repeated in
table 4.11. Note however that this implies different steady state values for variables, for which
the steady state values were fixed in the baseline model, i.e. for unemployment, for the rate of
successful training in unemployed workers κw and for the rate of successful training relative to
training vacancies κ f .
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Table 4.11: Social Planner: Calibration

Parameter Value Description

β 0.991/3 discount factor
η 2 relative risk aversion
ρ 0.951/3 Autocorrelation of LP shock
σ 0.0077 Standard deviation of innovations of LP shock
τ 1.2897 elasticity in matching function
ω 0.05 separation rate
c 1.3154 cost of posting an open vacancy

Steady State The deterministic steady state can be determined in a way similar to the baseline
model. First, the steady state for log LP equals

Z = 0.

Next, we will derive an equation from which we can solve for the steady state value of employ-
ment. From the definition of unemployment, we get

U = 1− N ,

new matches in steady state must equal

M =ωN ,

and the number of training vacancies can be derived from (4.6.12) as

V = (1− N)
��

1− N
ωN

�τ
− 1

�− 1
τ

.

Hence,

M
V
=
ωN

��
1−N
ωN

�τ − 1
� 1
τ

1− N
=
�

1−
�
ωN

1− N

�τ� 1
τ

.

Further, from (4.6.21), we get

ξ̂soc =
β exp(Z)

1− β
�
1−ω− � ωN

1−N

�τ+1� (4.6.33)

so that plugging the obtained expressions for M
V and ξ̂soc into (4.6.17) finally yields

�
1−

�
ωN

1− N

�τ� τ+1
τ β exp(Z)

1− β
�
1−ω− � ωN

1−N

�τ+1� − c = 0.

We solve this equation numerically for N and use the above expressions to derive U , M , V and
ξ̂soc afterwards. Finally, we have C = N − cV and λ= C−η.

The resulting steady state values for variables, for which the steady state was fixed in the
baseline model, are presented in table 4.12.
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Table 4.12: Social Planner: Steady State Values

Variable Value Description

U 8.75% Unemployment Rate
κ f 0.6451 Ratio of successful training relative to vacancies
κw 0.5215 Fraction of skilless members being successfully trained

Figure 4.18: Social Planner: Approximation of Policy Function and Interpretable Euler Residuals
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(b) Interpretable Euler Residuals for Cubic Spline
Solution

Dynamics of Employment Figure 4.18a displays approximations to the policy function of ξ̂soc
t

computed either from the global finite element method using cubic splines or from a second
order perturbation. Further, in order to establish the goodness of fit for the finite element
solution, which we want to use as the reference solution, the interpretable Euler residuals
are pictured in figure 4.18b. With interpretable Euler residuals that do not exceed 2 · 10−6 in
absolute value, the approximation seems sufficiently accurate for our purposes. The second
order perturbation solution on the other hand again fails to provide a good approximation for
employment rates below approximately 0.8.

But do the differences in the approximations also transform into deviations, when simulating
a time path of the model’s equilibrium outcomes? In the baseline model such deviations only
occurred, because the dynamics of the model led to periods of relative high unemployment where
the second order approximation becomes inaccurate. We computed the series of equilibrium
outcomes for 1200000 periods from the same sample of pseudorandom iidN(0,σ2

ε
) distributed

shocks to log LP. In figure 4.19 we display the employment rate during the first 5000 periods
for both the cubic spline and perturbation solution. Additionally, the resulting histograms for

Figure 4.19: Social Planner: Dynamics of Employment

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0.91
0.912
0.914

t (Period (Month))

N
t

(E
m

pl
oy

m
en

t)

Second Order Perturbation
Cubic Spline & Gauss-Hermite

the distribution of employment are shown in figure 4.20. When comparing to the dynamics of
employment in the baseline model in figures 4.9 and 4.11, one can immediately observe two
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Figure 4.20: Social Planner: Histograms for Distribution of Monthly Employment Rates

0.908 0.912 0.916
0

0.5

1

·10−2

Employment

R
el

at
iv

e
Fr

eq
ue

nc
y

(a) Distribution of Employment computed by Cu-
bic Spline
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(b) Distribution of Employment computed by Sec-
ond Order Perturbation

things. First, the periods of high unemployment are no more present in the social planner’s
solution. Second, as a consequence since employment stays close to its steady state value,
the time paths computed by a global method and by perturbation do not differ anymore. The
maximal absolute deviation between the two paths for all 1200000 periods is only 2.5·10−5. Table
4.13 summarizes statistical measures for the distribution of employment in the simulation.37

Both solution methods deliver the same results. The standard deviation of the monthly (non

Table 4.13: Social Planner: Statistic Measures for Distribution of Monthly Employment Rates

N̄ max(Nt) min(Nt) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.9125 0.9169 0.9077 0.9101 0.9108 0.9112 0.9125 0.9138 0.9141 0.9148 0.0010 -0.0935 2.9884
Perturbation 0.9125 0.9169 0.9078 0.9101 0.9108 0.9112 0.9125 0.9138 0.9141 0.9148 0.0010 -0.0930 2.9829

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for cumulative
distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment rate. Statistics are
computed from the outcome of a simulation of 1200000 (monthly) periods.

HP-filtered) employment rate declines by the factor 77 compared to the baseline model.

Endogenous Disasters? Examining the time path of employment already showed that em-
ployment stays throughout very close to its steady state value in social optimum. Output can
therefore only fluctuate in the same magnitude as labor productivity and not decline as far as in
the baseline model. Consequently, neither consumption can decline too much.38 Nonetheless,
we computed the number of disasters, the number of disaster periods, the disaster probability, av-
erage disaster size and disaster duration for both consumption and output for different threshold
fractions. The results, along the respective outcomes for labor productivity, are summarized in
table 4.14. We conclude that in the social planner’s solution disasters only arise in the magnitude
as directly induced by the exogenous process for LP. Declines by more than 20% from steady
state did not appear at all in the simulation.

Second Moments of the Labor Market Table 4.15 displays the second moments in the social
planner’s problem. All volatilities drop substantially compared to the baseline model. Unem-
ployment, vacancies and labor market tightness now fluctuate even less than labor productivity
so that the variables’ standard deviations found in the data are more than 25 times the standard
deviations generated in the model. On the other hand, the negative correlation between unem-
ployment and vacancies is closer to the value found in the data than it was for the baseline model.
Yet, the empirical value is still below the 2.5% quantile computed from the 5000 simulations.

37Note that the steady state value of employment is 0.9125 here.
38Since employment stays stable, so must the amount of open vacancies and hence the cost inferred by them.

Hence consumption should move similar to output.
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Table 4.14: Endogenous Disasters in the Social Planner’s Problem

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 1207 4431 0.31% 11.32% 3.67
Y 792 2552 0.20% 11.10% 3.22
LP 663 2086 0.17% 11.05% 3.15

85% threshold
C 29 73 0.0073% 15.97% 2.52
Y 8 19 0.0020% 15.78% 2.38
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 0 0 0% – –
Y 0 0 0% – –
LP 0 0 0% – –

Table 4.15: Labor Market Moments in the Social Planner Model

U V θ p = Y
N

sx 0.004 [0.003;0.005] 0.005 [0.004;0.006] 0.009 [0.007; 0.010] 0.016 [0.013;0.019]
sx
sp

0.267 [0.259;0.276] 0.298 [0.287;0.311] 0.531 [0.524; 0.538] 1.000 [1.000;1.000]
rx 0.830 [0.767;0.879] 0.630 [0.516;0.731] 0.792 [0.717;0.853] 0.774 [0.693;0.840]

Cross Correlations
U -0.762 [−0.823;−0.693] -0.931 [−0.951;−0.905] -0.910 [−0.936;−0.878]
V 0.946 [0.933; 0.958] 0.961 [0.952;0.969]
θ 0.998 [0.998;0.999]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies from

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

4.6.1.2 Distortions from Social Optimum in the Baseline Model

The baseline model differs from the social planner’s problem regarding three aspects, which
distort the amount of open vacancies posted from the social optimum. These three distortions
ultimately manifest in the different equilibrium conditions

c = κ f ,t ξ̂
f
t +µt , (4.6.34)

ξ̂ f
t = Et

�
β
λt+1

λt

�
exp(Zt+1)−wt+1 + (1−ω)ξ̂ f

t+1

��
,

in the baseline model, whereas

c =
∂M
∂ V
(Ut , Vt)ξ̂

soc
t +µt , (4.6.35)

ξ̂soc
t = Et

�
β
λt+1

λt

�
exp(Zt+1) +

�
1−ω− ∂M

∂ U
(Ut+1, Vt+1)

�
ξ̂soc

t+1

��

in social optimum. The recursive formulation for the present value of a worker in the next period
from the representative firm’s and the social planner’s view, respectively, can also be written as

ξ̂ f
t = Et

�∞∑
s=1

(1−ω)s−1β sλt+s

λt
(exp(Zt+s)−wt+s)

�
, (4.6.36)

and

ξ̂soc
t = Et

�∞∑
s=1

�
s−1∏
k=1

�
1−ω− ∂M

∂ U
(Ut+k, Vt+k)

��
β sλt+s

λt
exp(Zt+s)

�
, (4.6.37)
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if the series on the right hand side converge. We will now proceed to describe the three
distortions from social optimum present in the baseline model and explain step by step how
they manifest in the different equilibrium conditions stated above. Since the baseline model
produces endogenous disasters, whereas this is not the case in the social planner’s problem, the
distortions must play a crucial role in this regard. We will then try to single out the main cause
amongst them for the disasters in the baseline model.

The first distortion in the baseline model stems from the fact that the representative household
regards the taxes Tt in his budget constraint (4.2.4) as exogenous, while in equilibrium the
whole value b(1−Nt) of unemployment activities is redistributed from taxes. As a consequence,
the representative household attributes a period value of b to unemployment while there is no
aggregate value of unemployment incorporated in the baseline model—apart from unemployed
members serving as an essential input factor for generating job matches for the next period.
Hence, any b > 0 will lower the total surplus attributed to a working member compared to the
social value in (4.6.37). If we add the first distortion into the social planner’s case by lowering
the within period value from employment over unemployment by b each period too, the social
value ξ̂soc

t in (4.6.37) would accordingly change to

ξ̂soc,b
t = Et

�∞∑
s=1

�
s−1∏
k=1

�
1−ω− ∂M

∂ U
(Ut+k, Vt+k)

��
β sλt+s

λt
(exp(Zt+s)− b)

�
. (4.6.38)

Moreover, as already noted in the discussion of the calibration of the model in subsection 4.4.1,
part of the justification for the high value of b = 0.85 is the view that b should not be identified
solely with unemployment benefits but rather also include other factors for which a worker
wants to be compensated by the wage and which are not endogenously determined in the model.
However, this interpretation hast two consequences. First, summing up all such factors for
which a worker demands compensation in a fixed parameter also implies that the value may not
change dependent on the state of the economy. Second, since all the value from unemployment
in b is redistributed from taxes, the model ignores the positive effects on the household’s utility
from unemployment. Further, it also implicates that taxes exceed the household’s wage income
by a multitude (up to a factor of 16) in periods with high unemployment in the baseline model.

The second distortion from social optimum is caused by the fact that in a competitive equilib-
rium, as in the baseline model, the representative firm alone decides about the amount of open
vacancies to post and bears all ensuing costs. Consequently, vacancies in 4.6.34 are posted up to
the point, where the value of a filled position in the next period ξ̂ f

t from the firm’s perspective
times the probability of the vacancy being filled equals the cost of posting. On the other hand,
for a social optimum as in (4.6.35) not the return of an open vacancy to the firm is decisive,
but the total surplus generated. Using the fact that the firm receives a share of 1−ϕ from the
total surplus in the baseline model, the second distortion can be implemented—next to the first
one—into the social planner’s case by changing (4.6.35) to

c =
∂M
∂ V
(Ut , Vt)(1−ϕ)ξ̂soc,b

t +µt (4.6.39)

Since the first distortion—the household values unemployment by b—lowers the total surplus
generated by a working member and in addition only the firm’s share in it plays a role in the
decision about posting open vacancies through the second distortion, the expected return of an
open vacancy in (4.6.39) is, all things equal, smaller than in condition (4.6.35) for the social
optimum. Hence, the first two distortions both decrease the amount of open vacancies in the
economy.

Finally, the third distortion in the baseline model emerges from the assumption that neither
households nor firms in the economy coordinate their decisions on the labor market by taking
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the complete matching function M into account. Both, the representative household and the
representative firm, consider the average probabilities of finding a job and successfully filling a
vacancy, respectively, as exogenously given. They have no influence on average probabilities on
their own without coordinating. Since it proves more comprehensible, instead of showing how
adding the third distortion into (4.6.39) and (4.6.38) finally yields the equilibrium conditions
(4.6.34) and (4.6.36) from the baseline model, we will argue how removing the third distortion
from the baseline model yields the conditions (4.6.39) and (4.6.38) including only the first two
distortions. First, when deciding about the amount of open vacancies to post, the firm considers
the average rate at which a vacancy can be filled to determine the benefit from posting a vacancy
but neglects the influence of its own decision on that average probability. The socially relevant
change in job matches in the economy induced by an additional marginal open vacancy is not
determined by the average rate but the marginal change ∂M

∂ V . Correcting for this aspect would
hence first yield

c =
∂M
∂ V
(Ut , Vt)ξ̂

f
t +µt . (4.6.40)

Since the average rate of successfully matched vacancies exceeds the marginal rate, too many
open vacancies are posted. This reflects the fact that individual firms in the economy are
assumed to ignore the side effect that posting open vacancies is making it harder for other
firms to successfully recruit. Yet, condition (4.6.40) is still affected by the third distortion.
The circumstance that the representative firm regards the probability κ f ,t as exogenous also
manifests in the value ξ̂ f

t . The firm does not correct the continuation value in (4.2.20) for
the marginal decrease in matches induced by one unemployed member less in the economy.
Removing this effect of the distortion would yield

ξ f ,b,ϕ
t = exp(Zt)−wt +

�
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∂ U
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�
Et

�
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�
. (4.6.41)

This second effect of the distortion hence causes the representative firm to overestimate the
value of a worker reflecting the fact that it is of no interest for individual firms in the economy
how quickly a worker could find a job elsewhere. Consequently, the optimality condition (4.6.34)
for open vacancies completely corrected for the third distortion is not (4.6.40), but

c =
∂M
∂ V
(Ut , Vt)Et

�
β
λt+1

λt
ξ

f ,b,ϕ
t+1

�

︸ ︷︷ ︸
:=ξ̂ f ,b,ϕ

t

+µt =
∂M
∂ V
(Ut , Vt)ξ̂

f ,b,ϕ
t +µt . (4.6.42)

To complete our goal to show that removing the third distortion from the baseline model yields
the conditions (4.6.39) and (4.6.38), it only remains to be shown that ξ̂ f ,b,ϕ

t = (1−ϕ)ξ̂soc,b
t at

this point. This follows, if we observe that the representative household, too, was assumed to
neglect side effects when deciding about the value of employment in (4.2.8). The continuation
value is weighted with the probability of a working member remaining employed less the
probability κw,t =

Mt
Ut

for him finding a job for the next period elsewhere if he was unemployed.

Yet, aggregate matches would only increase by the marginal matching rate ∂M
∂ U with one marginal

unemployed member more. With this adjustment in (4.2.8), the value of employment to the
household would become

ξh,b,ϕ
t = wt − b+

�
1−ω− ∂M

∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ

h,b,ϕ
t+1

�
.

Since the average matching rate of unemployed members exceeds the marginal rate, the rep-
resentative household underestimates the value of employment (over unemployment). This
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reflects the fact that workers ignore the effect that their employment makes it ceteris paribus
easier for not yet employed members to find jobs. Or inversely stated, if a worker becomes
unemployed and has to search for jobs too, the average probability for unemployed members
to successfully find a job decreases. With the representative firm overestimating and the rep-
resentative household underestimating the respective value they receive from an employment
arrangement, the effect on the total surplus is not yet clear. In particular, with the discussed
adjustments for completely removing the third distortion, the total surplus from an employment
accounts to

ξb,ϕ
t := ξh,b,ϕ

t + ξ f ,b,ϕ
t = exp (Zt)− b+

�
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,

while the total surplus in the baseline model, according to (4.2.23) together with ξh
t+1 = ϕξt+1

from the sharing rule, is
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Hence, whether the third distortion increases or decreases the total surplus attributed to an
additional working member in the economy depends on whether ϕ Mt

Ut
exceeds ∂M

∂ U or not. 39

Moreover, comparing to (4.6.38) shows ξb,ϕ
t = ξsoc,b

t so that

ξ̂ f ,b,ϕ
t = (1−ϕ)ξ̂soc,b

t .

Completely removing the third distortion from the baseline model hence yields (4.6.42) with
ξ̂

f ,b,ϕ
t = (1−ϕ)ξ̂soc,b

t which is equal to (4.6.39). The third distortion causes the representative
firm to overestimate the probability at which marginal vacancies can be filled and moreover
leads the firm to overestimate, while the household underestimates, the value of a worker. The
effect on the total surplus is not clear so that the net effect of the third distortion on the amount
of open vacancies is ambiguous.40

39Under the first Hosios (1990) condition ϕ Mt
Ut
= ∂M

∂ U (Ut , Vt) the effect of the firm overestimating and the household
underestimating the value of a worker would cancel out. The total surplus in the baseline model would be
equal to the total surplus from which the third distortion is removed, i.e. ξt = ξ

b,ϕ
t . Yet, with the matching

function chosen, this condition can not be fulfilled.
40We already mentioned in footnote 39 that under the first Hosios condition ϕ Mt

Ut
= ∂M

∂ U (Ut , Vt) the effect of the firm

overestimating and the household underestimating the value of a worker would cancel out so that ξt = ξ
b,ϕ
t .

This would also imply ξ̂ f
t = (1−ϕ)ξ̂t = (1−ϕ)ξ̂b,ϕ

t = ξ̂ f ,b,ϕ
t = (1−ϕ)ξ̂soc,b

t . Now, if additionally the second
Hosios condition (1−ϕ)Mt

Vt
= ∂M

∂ V (Ut , Vt) was also met, the optimality condition (4.6.34) from the baseline
model would already be equivalent to
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t +µt =
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∂ V
(Ut , Vt)(1−ϕ)ξ̂soc,b

t +µt =
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soc,b
t +µt .

Under this condition, the effect of the firm overestimating the probability of an additional vacancy being filled
caused by the third distortion and the effect of the second distortion, that only the firm’s share in the total
surplus is accounted for in its decision about the amount of open vacancies to be posted, exactly cancel out.
Summing up, given both Hosios conditions the second and third distortion together would have zero net effect
on the decisions in the economy. The baseline model would then differ from the social planner’s problem only
due the value b attributed by the household to unemployment—the first distortion. Yet, the Hosios conditions
can not be fulfilled given the chosen functional form of the matching function.
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Summing up the above description, the first distortion of the household appreciating the in
aggregate non-existent unemployment value in b as well as the second distortion of only the
firm’s share in total surplus generated by a working member playing a role in the decision about
the amount of open vacancies in a competitive equilibrium both lower the amount of vacancies
and hence should favor the occurrence of disasters. Moreover, since b was set to a high value
not too far from the productivity level in steady state, the effect of the first distortion should
be rather high. On the other hand, the household’s bargaining power was set to a relatively
small value so that the firm receives most of the total surplus generated by a working member.
Consequently, the impact of the second distortion can be expected to be rather small. The net
effect of the third distortion—firms and households in the economy not coordinating in such
way to exploit the whole form of the matching function optimally—is not clear. We therefore
conjecture in particular the high value of b to be of importance for the formation of disasters in
the baseline model. We will now proceed to separate the effects caused by the single distortions
by adding them separately to the social planner’s solution. Moreover, if our conjecture that
the high value of b plays a crucial role for the model’s dynamics turns out to be true, we may
rethink the already mentioned assumptions which were made in the calibration of b.

4.6.1.3 Adding the first Distortion to the Social Planner’s Problem

We will now add the first distortion from the baseline model to the social planner’s case—
unemployed members receive a value from unemployment of b consumption units per period,
which in aggregate is completely redistributed from taxes that are considered exogenous. The
equilibrium conditions are the same as for the social planner’s problem only with ξ̂soc

t replaced
by ξ̂soc,b

t from (4.6.38). For the sake of exposition, we repeat the derivations.

Social Planner Problemwith first Distortion Essentially everything remains the same as in
the social planner’s problem from subsection 4.6.1.1. Only now unemployed members in the
economy receive a value b from unemployment activities, which is completely financed by taxes
Tt . Yet, the social planner does neglect the fact that Tt = bUt in his optimization problem. With
J soc,b denoting the value function of the social planner including the first distortion, we get

J soc,b(Nt) = max
Ct ,Vt

C1−η
t − 1
1−η + βEt

�
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�
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Vt ≥ 0,

given Nt .

The social planner considers taxes Tt as exogenous in his optimization. The KKT conditions
remain as in (4.6.1)-(4.6.5), only now the value of an additional worker in this period measured
in consumption units, i.e. ξsoc,b

t := 1
λt

∂ J soc,b

∂ N (Nt), satisfies
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Consequently the expected discounted value from next period, ξ̂soc,b
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which is equivalent to (4.6.38).
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Equilibrium Summing up, the optimality conditions for the social planner’s problem including
the first distortion are as in (4.6.11)-(4.6.21) only with ξ̂soc

t replaced by ξ̂soc,b
t as stated in the

equation above.
Since the only difference from the original social planner’s problem is the presence of the

parameter b in the within period value of a worker in ξ̂soc,b compared to (4.6.21), all the
derivations, how the model’s variables can be expressed dependent on ξ̂soc,b

t and the state
variables, remain valid. Hence, the policy function g : [0, 1]×R→ R for ξ̂soc,b

t can equivalently
be characterized as the solution to the functional equation in (4.6.22)-(4.6.32) only with rhs in
(4.6.24) adjusted to

rhs(g, x , z) := E
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g(Nt+1, Zt+1)

��
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Calibration The calibration of all parameters remains the same as in the baseline model and
the original social planner’s problem, i.e. as in table 4.11 and with b = 0.85.

Steady State Again, since the only difference in the equilibrium conditions compared to the
original social planner’s problem is the presence of the parameter b in ξ̂soc,b, the steady state
can be determined the same way only adjusting (4.6.33) to

ξ̂soc,b =
β(exp(Z)− b)

1− β
�
1−ω− � ωN

1−N

�τ+1� . (4.6.44)

The resulting steady state values for the variables, for which the steady state was fixed in the
baseline model, are presented in table 4.16.

Table 4.16: Model with the first Distortion: Steady State Values

Variable Value Description

U 18.19% Unemployment Rate
κ f 0.8849 Ratio of successful training relative to vacancies
κw 0.2249 Fraction of skilless members being successfully trained

Dynamics of Employment As before, we computed an approximation to the policy function
of ξ̂soc,b with a global finite element method using cubic splines and with a second order
perturbation method. First, figure 4.21a displays both approximations. Further, in order to
establish the goodness of fit for the finite element solution, we computed the interpretable Euler
residuals pictured in figure 4.21b. The interpretable Euler residuals of magnitude 10−6 suggest
the approximation to be sufficiently accurate for our purposes. The same way as in the baseline
model and the social planner’s problem, the second order perturbation solution fails to provide
a good approximation for lower employment rates. Yet, with an already lower steady state value
of employment in the present version of the model, significant inaccuracies in the second order
perturbation solution now appear only at even lower rates of employment (below approximately
0.7).

We want to analyze the dynamics of employment in the model and to observe whether and
how the discrepancies in the approximations transform into deviations in simulations of the
model’s equilibrium outcomes. Therefore, we computed the series of equilibrium outcomes
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Figure 4.21: Model with first Distortion: Approximation of Policy Function and Interpretable Euler Residuals

0
0.5

1 −0.2

0
0.2

2

3

x (Employment) z (log LP)

ĝ a
(x

,z
)

Cubic Spline & Gauss Hermite

Second Order Perturbation

(a) Approximations to Policy Function of ξ̂soc,b

0
0.5

1 −0.2

0
0.2

−4

−2

0

·10−6

x (Employment) z (log LP)

R̃
G

H
(ĝ
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Figure 4.22: Model with the first Distortion: Dynamics of Employment
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for 1200000 periods from the same sample of pseudorandom iidN(0,σ2
ε
) distributed shocks

to log LP. In figure 4.22 we display the dynamics of employment in the first 5000 periods for
both solutions. Additionally, the resulting histograms for the distribution of employment in the
simulation are shown in figure 4.23, while table 4.17a summarizes some statistical properties of
the distribution.41 A comparison to the dynamics of employment in the social planner’s case
and in the baseline model shows that employment behaves similar as in the baseline model.
If accurately solved by the global solution method, the model generates rare, huge drops in
the employment rate. The second order perturbation solution cannot accurately reproduce this
behaviour but shows high deviations in the time path of employment, up to 0.68 in absolute
value, during these periods.

We further want to check how sensitive the dynamics of employment react to changes in the
value of b. We therefore set b = 0.75 moderately lower and show the statistical measures for the
resulting distribution of employment in a simulation from the same sample of pseudorandom
shocks to log LP in table 4.17b.42 With this modification, the dynamics of employment change
substantially. Employment does not fall lower than 0.7424 anymore, the rare and huge declines
disappear. Moreover, the perturbation solution already provides a much better approximation
to the model’s dynamics.

We conclude that once we assume that the social planner considers unemployed members

41Note that the steady state value of employment is 0.8181 here.
42Setting b = 0.75 results in a steady state value of 0.8612 for the employment rate.
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Figure 4.23: Model with the first Distortion: Histograms for Distribution of Monthly Employment Rates
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Table 4.17: Model with the first Distortion: Statistic Measures for Distribution of Monthly Employment Rates

(a) Value of Unemployment b = 0.85

N̄ max(Nt ) min(Nt ) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8001 0.8804 0.0730 0.5278 0.6928 0.7397 0.8170 0.8469 0.8524 0.8612 0.0629 -3.6853 24.4154
Perturbation 0.8065 0.8797 0.6060 0.6729 0.7203 0.7489 0.8172 0.8468 0.8523 0.8610 0.0406 -1.3534 4.8395

(b) Value of Unemployment b = 0.75

N̄ max(Nt ) min(Nt ) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8596 0.8907 0.7424 0.8251 0.8388 0.8447 0.8612 0.8724 0.8750 0.8793 0.0114 -1.0272 5.3433
Perturbation 0.8596 0.8904 0.7640 0.8259 0.8390 0.8448 0.8612 0.8724 0.8749 0.8792 0.0112 -0.9509 4.8037

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate,
qp(Nt) =p-quantile for cumulative distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis
of the cumulative distribution of employment rate. Statistics are computed from the outcome of a simulation of
1200000 (monthly) periods.

in the economy to receive a value of b = 0.85 consumption units per period and ignores the
fact that the value is redistributed from taxes, it would be ’socially optimal’ for periods of high
unemployment to arise. This makes sense. Note for example that the huge drop of employment
appearing around period 4500 in figure 4.22 is caused by a decline in labor productivity to
approximately 0.9. The social planner consequently expects a not working household member
to contribute only moderately less to consumption with 0.85 units than a worker currently does.
Although the difference between the productivity of a worker and the expected contribution of
an unemployed member to consumption is predicted to increase again in the long run, there
is only little incentive to train unemployed members in such periods. Consumption is already
low and c consumption units can be saved for the moment if training is postponed into future
periods when labor productivity is recovering. Yet, this result is highly sensitive to the value of
b.

Endogenous Disasters? The discussion of the dynamics of employment already showed that
the model will produce huge disasters in consumption and output for the case of b = 0.85.
Table 4.18 confirms. In parenthesis are the results for b = 0.75. In accordance to the fact that
huge declines in employment are highly sensitive to the value of b, the same holds for disasters
in the model. While consumption is less than half of its steady state value during 1861 of the
400000 quarters in the simulation with b = 0.85, consumption does not decline by more than
approximately 25% from its steady state at all with b = 0.75

Concluding, the high value of b = 0.85 seems to play a crucial role for generating the disasters
in the model. Further, the behavior in the economy is highly sensitive to seemingly small changes
in b. We will describe the economic intuition for this result in more detail in subsection 4.6.2.
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Table 4.18: Endogenous Disasters in the Model with the first Distortion

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 4373 (2487) 64733 (14328) 1.30% (0.64%) 18.06% (12.10%) 14.80 (5.76)
Y 4791 (2554) 65092 (13393) 1.43% (0.66%) 17.71% (12.04%) 13.59 (5.24)
LP 663 2086 0.17% 11.05% 3.15

85% threshold
C 2445 (331) 36354 (1569) 0.67% (0.08%) 23.81% (16.78%) 14.87 (4.74)
Y 2654 (336) 36773 (1409) 0.73% (0.08%) 23.48% (16.77%) 13.86 (4.19)
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 1401 (29) 21060 (137) 0.37% (0.0073%) 29.46% (21.66%) 15.03 (4.72)
Y 1538 (31) 21341 (122) 0.41% (0.0078%) 28.99% (21.57%) 13.88 (3.94)
LP 0 0 0% – –

75% threshold
C 792 (1) 13041 (5) 0.20% (0.0003%) 35.59% (26.88%) 16.47 (5.00)
Y 852 (2) 13229 (5) 0.22% (0.0005%) 35.22% (25.88%) 15.53 (2.50)
LP 0 0 0% – –

70% threshold
C 489 (0) 8490 (0) 0.12% (0%) 41.14% (–) 17.36 (–)
Y 528 (0) 8621 (0) 0.13% (0%) 40.68% (–) 16.33 (–)
LP 0 0 0% – –

50% threshold
C 91 (0) 1861 (0) 0.02% (0%) 61.03% (–) 20.45 (–)
Y 95 (0) 1890 (0) 0.02% (0%) 60.82%(–) 19.89 (–)
LP 0 0 0% – –

30% threshold
C 18 (0) 435 (0) 0.0045% (0%) 77.52% (–) 24.17 (–)
Y 19 (0) 440 (0) 0.0048% (0%) 77.28%(–) 23.16 (–)
LP 0 0 0% – –

Second Moments of the Labor Market Tables 4.19a and 4.19b show the second moments in
the model with b = 0.85 and b = 0.75, respectively. Compared to the social planner’s case, the
standard deviations of unemployment, vacancies and the labor market tightness gain remarkably
in size. As argued by Hagedorn and Manovskii (2008), increasing the value of unemployment
activities in b yields higher fluctuations in all variables. Yet, even with b=0.85 the standard
deviations found in the data lie well above the 97.5% quantiles from repeated simulations of
the model. The correlation between unemployment and vacancies is negative in both cases and
seems to decline with increasing b.

4.6.1.4 Adding the second Distortion to the Social Planner’s Problem

We will next also introduce the second distortion separately to the model. The second distortion
was caused by the fact that in a competitive equilibrium, in which the representative firm alone
decides about the amount of open vacancies posted in the economy, not the total surplus gener-
ated by an additional worker is decisive, but only the share the firm receives. Different from
the baseline model however, the first and third distortion remain removed. The representative
household acknowledges in his evaluation that there is no aggregate benefit to him from unem-
ployed members. Moreover, firms and households in the economy are assumed to coordinate
in their decisions. Consequently, the whole endogenous nature of the probabilities of an open
vacancy being filled and of finding a job in equilibrium is accounted for by the representative
entities. Note that due to the low bargaining power of the representative household in the
baseline model, it should be expected that the effect from the second distortion is rather small.
Yet, we also check robustness by setting ϕ to a value that renders the size of the distortion from
social optimum in steady state the same between the first and second distortion.
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Table 4.19: Labor Market Moments in the Model with the first Distortion

(a) Value of Unemployment Activities b = 0.85

U V θ p = Y
N

sx 0.068 [0.041;0.107] 0.052 [0.034;0.077] 0.087 [0.060; 0.125] 0.016 [0.013;0.019]
sx
sp

4.195 [2.742;6.366] 3.213 [2.213;4.708] 5.384 [4.062; 7.338] 1.000 [1.000;1.000]
rx 0.930 [0.886;0.964] 0.712 [0.590;0.822] 0.866 [0.808;0.912] 0.774 [0.693;0.840]

Cross Correlations
U -0.450 [−0.543;−0.357] -0.793 [−0.880;−0.598] -0.537 [−0.723;−0.243]
V 0.794[0.682;0.833] 0.910 [0.834;0.953]
θ 0.922 [0.810;0.968]

(b) Value of Unemployment Activities b = 0.75

U V θ p = Y
N

sx 0.028 [0.020;0.038] 0.022 [0.017;0.027] 0.041 [0.032; 0.053] 0.016 [0.013;0.019]
sx
sp

1.715 [1.392;2.229] 1.354 [1.137;1.647] 2.573 [2.229; 3.032] 1.000 [1.000;1.000]
rx 0.888 [0.841;0.925] 0.604[0.498; 0.705] 0.830 [0.765;0.882] 0.774 [0.693;0.840]

Cross Correlations
U -0.514 [−0.599;−0.426] -0.881 [−0.915;−0.837] -0.781 [−0.844;−0.696]
V 0.842 [0.823; 0.862] 0.908 [0.889;0.920]
θ 0.982 [0.971;0.989]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies from

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

In order to derive the equilibrium conditions for the model that contains the second distortion
only, it is sufficient to adjust the optimality condition (4.6.17) for the amount of open vacancies
from the social planner’s case to include (1−ϕ)ξ̂soc

t instead of ξ̂soc
t . Equivalently, we can also

consider the competitive equilibrium. For the sake of exposition we will repeat the derivations.

Representative Household As in the baseline model, the representative household chooses
consumption and stock holdings to maximize (4.2.3). Yet, we assume the representative
household to take into account that in aggregate the value of unemployment activities is paid
by taxes, i.e. Tt = b(1−Nt) in the budget constraints (4.2.4). Further, we assume households to
coordinate in such way that they also consider side effects of their decisions on the labor market
and therefore recognize

Nt+1 = (1−ω) +M(Ut , Vt).

If Jh,ϕ(Nt , St) denotes the household’s value function, then

Jh,ϕ(Nt , St) = max
Ct ,St+1

C1−η
t − 1
1−η + βEt[J

h,ϕ((1−ω)Nt +M(1− Nt , Vt))]

s.t. Ct ≤ wt Nt + dtSt − vt(St+1 − St),
given Nt , St .

The first order condition with respect to Ct for the maximization problem on the right hand
side remains as in (4.2.6). Since we are not interested in asset prices, we skip the first order
condition for St+1. The value of employment (over unemployment) to the household can be
calculated via the envelope theorem as

∂ Jh,ϕ

∂ N
(Nt , St) = λt wt + βEt

�
∂ Jh,ϕ

∂ N
(Nt+1)

�
1−ω− ∂M

∂ U
(Ut , Vt)

��
,
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and measured in consumption units ξh,ϕ
t := 1

λt

∂ Jh,ϕ

∂ N (Nt , St) therefore becomes

ξh,ϕ
t = wt +

�
1−ω− ∂M

∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ

h,ϕ
t+1

�
. (4.6.45)

The interpretation is the same as in the baseline model. Yet, since the household now takes
into account that in aggregate he gains no value from unemployed members, the instantaneous
within period value of employment over unemployment is simply the wage payment. Moreover,
since we assumed the households to coordinate, the weighing factor for the continuation value
as of next period includes the marginal rather than the average change in job matches by an
unemployed member.

Representative Firm The representative firm chooses the amount of open vacancies to post in
order to maximize the beginning-of-period firm value FV bop

t (4.2.14) subject to the production
technology (4.2.9). But now, it also takes into account that employment in the economy evolves
according to

Nt+1 = (1−ω) +M(Ut , Vt).

Let J f ,ϕ(Nt) denote the value function of the firm’s maximization problem, then

J f ,ϕ(Nt) = max
Vt

exp(Zt)Nt −wt Nt − cVt +Et

�
β
λt+1

λt
J f ,ϕ((1−ω)Nt +M(Ut , Vt))

�

s.t. Vt ≥ 0,

given Nt .

With µt denoting the KKT multiplier of the non-negativity constraint as before, the KKT conditions
for the maximization problem on the right hand side are

c = Et

�
β
λt+1

λt

∂ J f ,ϕ

∂ N
(Nt+1)

∂M
∂ V
(Ut , Vt)

�
+µt , (4.6.46)

Vt ≥ 0, (4.6.47)

µt ≥ 0, (4.6.48)

µt Vt = 0. (4.6.49)

Introducing the notation

ξ f ,ϕ
t :=

∂ J f ,ϕ

∂ N
(Nt), and ξ̂ f ,ϕ

t := Et

�
β
λt+1

λt
ξ

f ,ϕ
t+1

�
= Et

�
β
λt+1

λt

∂ J f ,ϕ

∂ N
(Nt+1)

�
.

the first KKT condition can be reformulated as

c =
∂M
∂ V
(Ut , Vt)ξ̂

f ,ϕ
t +µt . (4.6.50)

Applying again the envelope theorem, we can derive

ξ f ,ϕ
t =

∂ J f ,ϕ

∂ N
(Nt) = exp(Zt)−wt +Et

�
β
λt+1

λt

∂ J f ,ϕ

∂ N
(Nt+1)

�
1−ω− ∂M

∂ U
(Ut , Vt)

��
=

= exp(Zt)−wt +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
ξ̂ f ,ϕ

t ,

(4.6.51)
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so that

ξ̂ f ,ϕ
t = Et

�
β
λt+1

λt

�
exp(Zt+1)−wt+1 +

�
1−ω− ∂M

∂ U
(Ut+1, Vt+1)

�
ξ̂

f ,ϕ
t+1

��
.

Again, the interpretation remains the same as in the baseline model. Only now, the representative
firm corrects the weighting factor for the continuation value of an employee in the next period
for the marginal change in job matches induced by one less unemployed household member in
the economy.

Wage Bargaining We employ the same sharing rule as in the baseline model for the total
surplus ξϕt := ξh,ϕ

t + ξ f ,ϕ
t generated by a working member, i.e.

ξh,ϕ
t = ϕξϕt and ξ f ,ϕ

t = (1−ϕ)ξϕt .

From equations (4.6.45) and (4.6.51) we can derive the total surplus as

ξϕt = wt + exp(Zt)−wt +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt

�
ξ

h,ϕ
t+1 + ξ

f ,ϕ
t+1

��

= exp(Zt) +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ
ϕ
t+1

�
,

(4.6.52)

so that the total surplus is the same as in (4.6.6) for the social planner, i.e. ξϕt = ξ
soc
t . Yet, the

sharing rule implies the firm to only receive the share of 1−ϕ from the total surplus, which
equivalently requires the wage to account for ϕ times the labor productivity:

ξ f ,ϕ
t = (1−ϕ)ξϕt

⇔ exp(Zt)−wt +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ
ϕ,ad j
t+1

�
=

= (1−ϕ)
�

exp(Zt) +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ
ϕ
t+1

��

⇔ exp(Zt)−wt +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
(1−ϕ)Et

�
β
λt+1

λt
ξ
ϕ
t+1

�
=

= (1−ϕ)
�

exp(Zt) +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ
ϕ
t+1

��

⇔ exp(Zt)−wt = (1−ϕ)exp(Zt)
⇔ wt = ϕ exp(Zt). (4.6.53)

Government sector The government runs a balanced budget, i.e. taxes equal the overall value
of unemployment activities

Tt = b(1− Nt).

General Equilibrium The general equilibrium in the model is thus defined by the system of
equations (4.6.11)-(4.6.21) with ξ̂soc

t replaced by ξ̂ f ,ϕ
t and the additional wage equation stated

above. Since all equations remain the same, all the model’s variables can be expressed dependent
on ξ̂ f ,ϕ

t and the state variables completely analogous to the social planner’s case. Moreover the
wage is completely determined by LP. Consequently, the policy function g : [0,1]×R→ R of
ξ̂

f ,ϕ
t can be characterized as the solution to the functional equation in (4.6.22)-(4.6.32) only

with rhs adjusted to

rhs(g, x , z) := E
�
β

�
Ct+1

Ct

�−η�
(1−ϕ)exp(Zt+1) +

�
1−ω−

�
Mt+1

Ut+1

�τ+1
�

g(Nt+1, Zt+1)

��
.
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Calibration The calibration of the model’s parameters remains the same as in the baseline
model, i.e. as in table 4.11 together with ϕ = 0.052.

Moreover, to check robustness, we also considered a second calibration of ϕ. We set ϕ in
such way that the model yields the same steady state as in the model containing only the first
distortion with b = 0.85, i.e. so that the extent of the distortion from social optimum in steady
state is the same between the two cases. The within period value exp(Z)− b of a worker in
the model containing the first distortion only is lowered by 85% in steady state compared to
the within period value exp(Z) in the social planner’s case. The same effect on the value of a
worker that is decisive in the decision about posting open vacancies in the model, can therefore
be achieved from the second distortion by setting ϕ = 0.85.

Steady State First, the wage equation simply yields w = ϕ exp(Z) so that the recursion for
ξ̂

f ,ϕ
t in deterministic steady state immediately shows

ξ̂ f ,ϕ =
β(1−ϕ)exp(Z)

1− β
�
1−ω− � ωN

1−N

�τ+1� .43

The remaining steady state values can then be computed the same way as in the social planner’s
case.

The steady state values for the variables, for which the steady state was fixed in the baseline
model, are presented in table 4.20 for the case of ϕ = 0.052. The values are similar to the ones

Table 4.20: Model with second Distortion: Steady State Values (ϕ = 0.052)

Variable Value Description

U 8.87% Unemployment Rate
κ f 0.6523 Probability of filling an open vacancy
κw 0.5138 Probability of finding a job

from the social planner’s case in table 4.12 since the effect of the second distortion is only small
if the value of ϕ is small. For the second case of ϕ = 0.85, the steady state is the same as in
table 4.16 for the model containing the first distortion.

Dynamics of Employment Figure 4.24 shows, for both values assigned to ϕ, the resulting
approximations to the policy function of ξ̂soc,ϕ from a finite element method and from a second
order perturbation. Additionally, the interpretable Euler residuals for the global method are
provided. With interpretable Euler residuals of magnitude 10−5 and 10−6, respectively, we
consider the approximations by a cubic spline sufficiently accurate (the model’s dynamics will
not lead to states with very low employment where the Euler residuals are largest). As in the
other models before, the perturbation solution again fails to provide a proper approximation to
the policy function for lower employment rates.

Figure 4.25 displays the time path of employment during the first 5000 periods in the simula-
tion of the model’s equilibrium outcomes for a total of 1200000 periods from the same sample
of pseudorandom iidN(0,σ2

ε
) distributed shocks to log LP. Moreover, the histograms in figure

4.26 show the distribution of employment in the simulation and table 4.21 summarizes the
statistical measures.
43Comparing to (4.6.44) for the model containing only the first distortion shows that setting ϕ = b yields the same

steady state (since exp(Z) = 1) for the value of a worker that is decisive in the vacancy posting decision and
therefore also for the remaining variables.
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Figure 4.24: Model with second Distortion: Approximation of Policy Function and Interpretable Euler Residuals
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(b) Interpretable Euler Residuals for Cubic Spline Solution
(ϕ = 0.052)
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(d) Interpretable Euler Residuals for Cubic Spline Solution
(ϕ = 0.85)

Figure 4.25: Model with second Distortion: Dynamics of Employment
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As expected, for ϕ = 0.052 the model’s dynamics are very similar to the social planner’s
solution. Employment stays very close to its steady state value for the whole simulation and the
solution by perturbation gives virtually the same results as the global solution. For ϕ = 0.85 the
magnitude of distortion from social optimum in the deterministic steady state is the same as in
the model including only the first distortion with b = 0.85. However, the effects on the dynamics
in the model turn out completely different. Although employment becomes more volatile than
in the case of ϕ = 0.052, the standard deviation is still only approximately 10% of the standard
deviation in the model with b = 0.85. Moreover, there are no huge declines in employment, the
model does not drift to states where the approximation by a second order perturbation method
fails and consequently the perturbation solution reproduces the model’s dynamics as well as the
global solution. Finally, whereas a change in b from 0.85 to 0.75 already had major impact on
the dynamics of employment, the model seems far less sensitive to changes in ϕ.
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Figure 4.26: Model with second Distortion: Histogram for Distribution of Monthly Employment Rates
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(a) Distribution of Employment computed by Cubic Spline
(ϕ = 0.052)
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(b) Distribution of Employment computed by Second Order
Perturbation (ϕ = 0.052)
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(c) Distribution of Employment computed by Cubic Spline
(ϕ = 0.85)
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(d) Distribution of Employment computed by Second Order
Perturbation (ϕ = 0.85)

Table 4.21: Model with second Distortion: Statistic Measures for Distribution of Monthly Employment Rates

(a) Household’s Bargaining Power ϕ = 0.052

N̄ max(Nt ) min(Nt ) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.9113 0.9159 0.9064 0.9088 0.9095 0.9099 0.9113 0.9126 0.9130 0.9136 0.0010 -0.0948 2.9888
Perturbation 0.9113 0.9159 0.9064 0.9088 0.9095 0.9099 0.9113 0.9126 0.9130 0.9136 0.0010 -0.0944 2.9834

(b) Household’s Bargaining Power ϕ = 0.85

N̄ max(Nt ) min(Nt ) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8179 0.8413 0.7843 0.8017 0.8068 0.8094 0.8182 0.8258 0.8278 0.8314 0.0064 -0.2957 3.1325
Perturbation 0.8179 0.8413 0.7847 0.8017 0.8068 0.8094 0.8182 0.8258 0.8278 0.8313 0.0064 -0.2924 3.1196

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate,
qp(Nt) =p-quantile for cumulative distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis
of the cumulative distribution of employment rate. Statistics are computed from the outcome of a simulation of
1200000 (monthly) periods.

EndogenousDisasters? Table 4.22 summarizes the disaster statistics in the model. The results
for ϕ = 0.85 are in brackets. With no steep drops in employment, disasters in consumption or
output in the magnitude observed in the baseline model cannot arise. More precisely, we do not
observe any declines below 80% of the steady state value in both consumption or output for
ϕ = 0.052. With ϕ = 0.85 the model is further away from social optimum, yet consumption falls
only once during the 400000 quarters below 80% of its steady state value while output does not
at all. We conclude that the second distortion—introduced through the fact that in a competitive
equilibrium only the firm’s share in the surplus generated by a working household member plays
a role in the decision about the amount of open vacancies in the economy—cannot generate
disasters in the magnitude observed for the first distortion with b = 0.85.

Second Moments of the Labor Market Table 4.23 shows the second moments in the model
with ϕ = 0.052 and ϕ = 0.85, respectively. Here too, for ϕ = 0.052 the results are very similar
to the social planner problem. An increase of the household’s bargaining power to ϕ = 0.85
yields the standard deviations to become twice as large, yet still only approximately 1

6 -th of the
values found in the model including the first distortion with b = 0.85. As argued in Hagedorn
and Manovskii (2008), modifications in b have significantly more impact on the second moments
of the labor market (see table 4.19) than changes in the bargaining power ϕ.
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Table 4.22: Endogenous Disasters in the Model with second Distortion

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 1208 (1920) 4435 (8648) 0.31% (0.49%) 11.32% (11.53%) 3.67 (4.50)
Y 799 (1521) 2570 (6639) 0.20% (0.39%) 11.10% (11.44%) 3.22 (4.36)
LP 663 2086 0.17% 11.05% 3.15

85% threshold
C 29 (103) 74 (379) 0.0073% (0.0258%) 15.98% (16.21%) 2.55 (3.68)
Y 8 (67) 19 (225) 0.0020% (0.0168%) 15.80% (16.07%) 2.38 (3.36)
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 0 (1) 0 (1) 0% (0.0003%) – (20.71%) – (1.00)
Y 0 (0) 0 (0) 0% (0%) – (–) – (–)
LP 0 0 0% – –

75% threshold
C 0 (0) 0 (0) 0% (0%) – (–) – (–)
Y 0 (0) 0 (0) 0% (0%) – (–) – (–)
LP 0 0 0% – –

Table 4.23: Labor Market Moments in the Model with second Distortion

(a) Household’s Bargaining Power ϕ = 0.052

U V θ p = Y
N

sx 0.004 [0.004;0.005] 0.005 [0.004;0.006] 0.009 [0.007; 0.010] 0.016 [0.013;0.019]
sx
sp

0.273 [0.264;0.282] 0.298 [0.287;0.311] 0.535 [0.528; 0.542] 1.000 [1.000;1.000]
rx 0.831 [0.769;0.880] 0.626 [0.511;0.727] 0.793 [0.718;0.853] 0.774 [0.693;0.840]

Cross Correlations
U -0.755 [−0.816;−0.684] -0.930 [−0.950;−0.904] -0.908 [−0.934;−0.876]
V 0.943[0.930;0.955] 0.959 [0.950;0.967]
θ 0.998 [0.998;0.999]

(b) Household’s Bargaining Power ϕ = 0.85

U V θ p = Y
N

sx 0.011 [0.008;0.014] 0.009 [0.007;0.010] 0.017 [0.013; 0.021] 0.016 [0.013;0.019]
sx
sp

0.670 [0.609;0.738] 0.552 [0.512;0.593] 1.042 [0.979; 1.109] 1.000 [1.000;1.000]
rx 0.915 [0.883;0.940] 0.672 [0.578;0.755] 0.861 [0.804;0.903] 0.774 [0.693;0.840]

Cross Correlations
U -0.459 [−0.540;−0.376] -0.879 [−0.912;−0.838] -0.706 [−0.773;−0.629]
V 0.823 [0.812; 0.837] 0.949 [0.939;0.958]
θ 0.958[0.948; 0.966]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies of

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

4.6.1.5 Adding the first and second Distortion to the Social Planner’s Problem

We have now separately introduced the first two distortions into the social planner’s solution.
Last, we also consider the model containing both distortions at the same time to see if important
cross effects between the two distortions arise. Different from the baseline model however,
firms and households in the economy still coordinate and take side effects of their decisions on
average probabilities in the matching process into account. We can then also illustrate the effect
of the third distortion in the baseline model by comparing the results to the model from this
subsection.

In order to derive the equilibrium conditions which contain the first two distortions, it is
sufficient to adjust the present value of a worker and the optimality condition for the amount
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of open vacancies from the social planner’s problem to (4.6.41) and (4.6.42). For the sake of
exposition we will repeat the derivations.

Representative Household The only difference from the previous model in section 4.6.1.4
regarding the representative household is the fact that he does no more acknowledge that
Tt = b(1− Nt). Consequently, the value of an employed (over an unemployed) member to the
household in (4.6.45) changes to

ξh,b,ϕ
t = wt − b+

�
1−ω− ∂M

∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ

h,b,ϕ
t+1

�
. (4.6.54)

Representative Firm On the representative firm’s side nothing changes compared to the
previous model in section 4.6.1.4. The KKT conditions for the optimization problem as well as
the value of an employee to the firm remain the same, i.e. using the same notation

ξ f ,b,ϕ
t = exp(Zt)−wt +

�
1−ω− ∂M

∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ̂ f ,b,ϕ

t

�
. (4.6.55)

Wage Bargaining We employ the same sharing rule as in the baseline model for the total
surplus ξb,ϕ

t := ξh,b,ϕ
t + ξ f ,b,ϕ

t generated by a working member, i.e.

ξh,b,ϕ
t = ϕξb,ϕ

t and ξ f ,b,ϕ
t = (1−ϕ)ξb,ϕ

t .

From equations (4.6.54) and (4.6.55) we can derive the total surplus as

ξb,ϕ
t = wt − b+ exp(Zt)−wt +

�
1−ω− ∂M

∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt

�
ξ

h,b,ϕ
t+1 + ξ

f ,b,ϕ
t+1

��

= exp(Zt)− b+
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ

b,ϕ
t+1

�
.

(4.6.56)

Hence, the total surplus is the same as in (4.6.43) for the model including only the first distortion,
i.e. ξb,ϕ

t = ξsoc,b
t , while the second distortion additionally implies the firm to only receive the

share of 1−ϕ from the total surplus so that ξ̂ f ,b,ϕ
t = (1−ϕ)ξ̂soc,b

t .
We can deduce the corresponding wage equation from

ξ f ,ad j
t = (1−ϕ)ξad j

t

⇔ exp(Zt)−wt +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ

f ,ad j
t+1

�
=

= (1−ϕ)
�

exp(Zt)− b+
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ

ad j
t+1

��

⇔ exp(Zt)−wt +
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
(1−ϕ)Et

�
β
λt+1

λt
ξ

ad j
t+1

�
=

= (1−ϕ)
�

exp(Zt)− b+
�

1−ω− ∂M
∂ U
(Ut , Vt)

�
Et

�
β
λt+1

λt
ξ

ad j
t+1

��

⇔ exp(Zt)−wt = (1−ϕ) (exp(Zt)− b)
⇔ wt = ϕ exp(Zt) + (1−ϕ)b.

The wage is hence determined by a weighted mean of the LP and the value of unemployment
activities.
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Government sector The government runs a balanced budget, i.e. taxes equal the overall value
of unemployment activities

Tt = b(1− Nt).

General Equilibrium The general equilibrium is again determined by equations (4.6.11)-
(4.6.21), only this time with ξ̂soc

t replaced by ξ̂ f ,b,ϕ
t where the wage is defined by the above

stated equation. Consequently, the model’s variables can be expressed dependent on ξ̂ f ,b,ϕ
t and

the state variables in the same way as before. Moreover the wage can easily be determined as
the weighted mean of LP and the value of unemployment activities b. Hence, the policy function
g : [0,1]×R→ R of ξ̂ f ,b,ϕ

t can be characterized as the solution to the functional equation in
(4.6.22)-(4.6.32) only with rhs in (4.6.24) adjusted to

rhs(g, x , z) := E
�
β

�
Ct+1

Ct

�−η�
exp(Zt+1)−wt+1 +

�
1−ω−

�
Mt+1

Ut+1

�τ+1
�

g(Nt+1, Zt+1)

��
.

Calibration The calibration of the model’s parameters remains the same as in the baseline
model and the previous two variations of the model, i.e. as in table 4.11 together with ϕ = 0.052
and b = 0.85.

Steady State Since the wage equation simply implies

w= ϕ exp(Z) + (1−ϕ)b,

the value of a worker to the firm in deterministic steady state must satisfy

ξ̂ f ,b,ϕ =
β(1−ϕ)(exp(Z)− b)

1− β
�
1−ω− � ωN

1−N

�τ+1� .

The remaining steady state values can then be computed in the same way as before.
The steady state values for the variables, for which these were fixed in the baseline model,

are presented in table 4.24. The values differ only slightly from the steady state values in table
4.16 for the model including the first distortion only, since the additional effect of the second
distortion in the present model is only small due to the low value assigned to ϕ.

Table 4.24: Model including the first two Distortions: Steady State Values

Variable Value Description

U 18.85% Unemployment Rate
κ f 0.8913 Probability of filling an open vacancy
κw 0.2153 Probability of finding a job

A comparison between the steady states in the baseline model and the present model reveals
the net effect of the third distortion, at least for the deterministic steady state in the economy.
First, the present value of a worker in the next period to the firm in the baseline model, i.e. ξ̂ f ,
exceeds the corresponding value ξ̂ f ,b,ϕ for the model at hand. This is the case for the following
reason. While the value is determined by

ξ̂ f =
β(1−ϕ)(exp(Z)− b)
1− β(1−ω−ϕ M

U )
,
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in the baseline model (see (4.4.2)), removing the third distortion results in

ξ̂ f ,b,ϕ =
β(1−ϕ)(exp(Z)− b)

1− β
�
1−ω− �M

U

�τ+1� =
β(1−ϕ)(1− b)

1− β �1−ω− ∂M
∂ U (U , V )

� .

We already argued in section 4.6.1.2 that the third distortion causes the representative firm
to overestimate and the representative household to underestimates the respective value of a
worker to them. Both effects would cancel out in the total surplus in case of the first Hosios
condition, ∂M

∂ U = ϕ
M
U , holding. Yet here, with the low bargaining power of the household, the

effect concerning the firm dominates, i.e. ∂M
∂ U > ϕ

M
U . Hence, once the first two distortions are in

the model, the third one has a positive effect on the total surplus attributed to a worker and
therefore on the firm’s share in it in steady state. Moreover, the firm additionally overestimates
the probability at which a vacancy can be filled under the third distortion so that the positive
effect on the amount of vacancies in the economy is even further reinforced.

Dynamics of Employment We show the approximations to the policy function of ξ̂ f ,b,ϕ
t from

a global finite element method and from a second order perturbation method in figure 4.27a.
The interpretable Euler residuals for the global solution are displayed in figure 4.27b. The Euler

Figure 4.27: Model including the first two Distortions: Approximation of Policy Function and Interpretable Euler
Residuals
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(b) Interpretable Euler Residuals for Cubic Spline
Solution

residuals do not exceed 4 · 10−6 in absolute value so that we consider the approximation by the
cubic spline sufficiently accurate.

Figure 4.28 pictures the outcome for the series of employment during the first 5000 periods
in the simulation of the model’s equilibrium outcomes for 1200000 periods from the same
sample of pseudorandom iidN(0,σ2

ε
) distributed shocks to log LP, while figure 4.29 displays the

histograms for the ensuing distribution. Moreover, some statistical measures for the distribution
of employment in the simulation are summarized in table 4.25. Compared to the model
including only the first distortion in section 4.6.1.3, the distribution of employment is slightly

Table 4.25: Model including the first two Distortions: Statistic Measures for Distribution of Monthly Employment
Rates

N̄ max(Nt) min(Nt) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.7907 0.8779 0.0573 0.4853 0.6666 0.7217 0.8102 0.8426 0.8485 0.8578 0.0700 -3.4369 20.8303
Perturbation 0.7989 0.8774 0.6009 0.6616 0.7062 0.7355 0.8104 0.8425 0.8484 0.8576 0.0435 -1.2549 4.3736

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for cumulative distribu-
tion of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment rate. Statistics are computed from
the outcome of a simulation of 1200000 (monthly) periods.
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Figure 4.28: Model including the first two Distortions: Dynamics of Employment
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Figure 4.29: Model including the first two Distortions: Histograms for Distribution of Monthly Employment Rates
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ond Order Perturbation

shifted to the left due to the additional negative effect on vacancies by the firm receiving only
a share of 1−ϕ of the total surplus generated by a working member in the economy. Apart
from that, adding the second distortion does not change much for the dynamics in the model
once the first distortion is already included, i.e. no significant cross effects between the two
distortions can be identified.

Moreover, we can also identify the effect of the third distortion by comparing the results to the
ones from the baseline model shown in figures 4.9, 4.11 and table 4.5. As already mentioned,
the third distortion has a positive net effect on the amount of open vacancies in the economy’s
deterministic steady state and therefore leads to a higher steady state level of employment in
the baseline model. Yet, the minimum employment rate in the simulation is similar to the one
in the present model so that introducing the third distortion yields even higher relative drops in
the economy’s employment. The distribution of employment becomes slightly more volatile and
left skewed with an even higher kurtosis.

Endogenous Disasters? The similarity of the dynamics of employment in the present model to
the model with only the first distortion implies that the disaster statistics should also be similar.
This is confirmed by the results in table 4.26.

Second Moments of the Labor Market Table 4.27 summarizes the second moments for the
labor market. Again, the results are almost the same as in table 4.19a for the model containing
only the first distortion. Hence, with the small value assigned to ϕ no important cross effects
between the two distortions become apparent. Moreover, a comparison with the results in table
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Table 4.26: Endogenous Disasters in the Model including the first two Distortions

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 4403 71133 1.34% 18.81% 16.16
Y 4832 71386 1.47% 18.41% 14.77
LP 663 2086 0.17% 11.05% 3.15

85% threshold
C 2589 42208 0.72% 24.56% 16.30
Y 2823 42548 0.79% 24.15% 15.07
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 1607 25988 0.43% 29.88% 16.17
Y 1732 26268 0.46% 29.55% 15.17
LP 0 0 0% – –

75% threshold
C 922 16493 0.24% 36.17% 17.89
Y 991 16699 0.26% 35.76% 16.85
LP 0 0 0% – –

70% threshold
C 599 11141 0.15% 41.48% 18.60
Y 637 11289 0.16% 41.14% 17.72
LP 0 0 0% – –

50% threshold
C 120 2618 0.03% 61.01% 21.82
Y 126 2637 0.03% 60.77% 20.93
LP 0 0 0% – –

30% threshold
C 25 608 0.0063% 77.48% 24.32
Y 26 615 0.0065% 77.36% 23.65
LP 0 0 0% – –

Table 4.27: Labor Market Moments the Model including the first two Distortions

U V θ p = Y
N

sx 0.068 [0.042;0.104] 0.053 [0.035;0.079] 0.089 [0.061; 0.129] 0.016 [0.013;0.019]
sx
sp

4.218 [2.797;6.180] 3.313 [2.286;4.767] 5.524 [4.163; 7.538] 1.000 [1.000;1.000]
rx 0.933 [0.891;0.964] 0.723 [0.602;0.828] 0.870 [0.813;0.915] 0.774 [0.693;0.840]

Cross Correlations
U -0.450 [−0.542;−0.357] -0.787 [−0.878;−0.590] -0.513 [−0.707;−0.228]
V 0.792 [0.677; 0.833] 0.915 [0.833;0.959]
θ 0.912 [0.786;0.964]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies from

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

4.10b for the baseline model shows the effect of the third distortion on the second moments.
When the third distortion is added to the model, the volatility in all three variables considered
increases. The average standard deviations of unemployment and labor market tightness in
the baseline model are almost double the values from the present model. Further, the negative
correlation between unemployment and vacancies is also closer to the value found in the data.

4.6.2 Comparison and Intuition
We have now separated the effects of the single distortions which set apart the baseline model
from the social planner’s solution. The first distortion, introduced through the fact that the
representative household does not take into account that unemployment activities summarized
in b yield no aggregate value to him, has major impact on the model’s dynamics. It proved
crucial for generating periods of huge unemployment rates in the economy which result in
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disasters in both consumption and output. Moreover, the dynamics in the economy appear highly
sensitive to seemingly small changes in the period value b attributed to unemployment activities.
On the other hand, the second distortion—only the firm’s share in the total surplus generated by
an employment is decisive for the amount of open vacancies in a competitive equilibrium—had
only minor impact on the model’s dynamics. Even if the size of the distortion is adjusted in
such way to yield the same steady state as in the model with the first distortion, the model
shows no steep drops in the employment rate. The third distortion—firms and households in the
economy do not coordinate in such way to account for marginal changes instead of only average
probabilities in the job matching process—results in a higher steady state level of employment,
while employment drops as low as in the model excluding the distortion. Consequently, the
labor market becomes more volatile when the third distortion is added. Before we proceed to
endogenize some of the assumptions made in order to calibrate b at the high value and analyze
how these changes alter the economy’s behavior, we first want to provide some further intuition
for the observed results.

Elasticity of Realized Matches with Respect to Present Value of a Worker Let us first exam-
ine the effect in the model including only the first distortion. Figure 4.30 shows the employment
rate between periods 4420 and 4540 in the simulation of the equilibrium outcomes for a value
of unemployment activities equal to b = 0.85. The huge drop in the employment rate, to below

Figure 4.30: Drop in Employment for the Model including the first Distortion with b=0.85
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0.5, is triggered by a series of (mainly) negative shocks to log LP lowering labor productivity to
below 0.95 for approximately 50 consecutive periods. We simplify the model’s dynamics during
these periods by considering the following (unrealistic) scenario, which should nonetheless
render the crucial mechanism leading to the huge drop. We suppose the economy to start in the
steady state in period t = 1. Instead of a series of negative shocks affecting labor productivity,
we assume log LP to fall at once by two unconditional standard deviations in period t = 2 and
to remain at the value for the following 50 periods, i.e.

Zt = −2
σεp

1−ρ2
, t ≥ 2.44

Figure 4.31 shows the resulting reactions for the employment rate, open vacancies, matches
and the present value ξ̂soc,b of a working member in the next period with b = 0.85 and b = 0.75,
respectively. We can immediately observe the substantial differences in the impact on the
employment rate. While the employment rate stabilizes after a few periods after dropping
only by approximately 3% in the case of b = 0.75, the employment rate has already fallen by

44This implies labor productivity to fall approximately to exp(Z2)≈ 0.92> b.
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Figure 4.31: First Distortion: Effects of Drop in Labor Productivity

10 20 30 40 50

−0.4

−0.3

−0.2

−0.1

0

R
el

at
iv

e
D

ev
ia

ti
on

fr
om

St
ea

dy
St

at
e (a) First Distortion b=0.85

Employment Vacancies Matches ξ̂
soc,b
t

10 20 30 40 50

−0.15

−0.1

−0.05

0

R
el

at
iv

e
D

ev
ia

ti
on

fr
om

St
ea

dy
St

at
e (b) First Distortion b=0.75

10 20 30 40 50

1.4

1.6

1.8

2

c

t (Period (Month))

ξ̂
so

c,
b

t

(c) Level of ξ̂soc,b
t

b = 0.85 b = 0.75

10 20 30 40 50

−0.08

−0.06

−0.04

−0.02

0

t (Period (Month))

ex
p(

Z t
)−

1

(d) LP

approximately 25% after 50 periods with b = 0.85 and even keeps dropping (and in fact will
converge to 0 as long as labor productivity does not recover).

Now why is this the case? First, the drop in labor productivity in period t = 2 lowers the
expectation about future within period value from an employed over an unemployed member,
i.e. of exp(Zt+s)− b, s ≥ 1, in

ξ̂soc,b
t = Et

�∞∑
s=1

�
s−1∏
k=1

�
1−ω− ∂M

∂ U
(Ut+k, Vt+k)

��
β sλt+s

λt
(exp(Zt+s)− b)

�
,

so that the present value of a worker (over an unemployed member) in the next period declines.
Consequently, the equilibrium condition for the amount of open vacancies, i.e.

c =
∂M
∂ V
(Ut , Vt)ξ̂

soc,b
t (4.6.57)

demands the marginal rate at which a vacancy can be filled, i.e. ∂M
∂ V (Ut , Vt), to rise. With the

unemployment rate fixed in t = 2 the amount of open vacancies posted and ergo the realized
matches have to decline. Now, the first important difference between the two cases shows
in the magnitude of the effects in period t = 2. For b = 0.85 the present value of a worker
ξ̂soc,b

t falls by approximately 10%, while it declines only moderately less by 8% for b = 0.75.
However, the impact on the amount of realized matches differs significantly with declines of
approximately 29% and 14%, respectively. Hence, the amount of realized matches seems to
react noticeably more sensitive to changes in ξ̂soc,b in the case of b = 0.85 than for b = 0.75. As
already shown, the optimality condition (4.6.57) yields (since the non-negativity constraint on
Vt remains non-binding)

Vt = Ut

 �
ξ̂soc,b

t

c

� τ
τ+1

− 1

! 1
τ

,
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so that

Mt =
Ut Vt�

Uτt + V τt
� 1
τ

=
Vt�

1+
�

Vt
Ut

�τ� 1
τ

=
Ut

��
ξ̂

soc,b
t
c

� τ
τ+1 − 1

� 1
τ

�
1+

�
ξ̂

soc,b
t
c

� τ
τ+1 − 1

� 1
τ

= Ut

 
1−

�
ξ̂soc,b

t

c

�− τ
τ+1
! 1
τ

.

(4.6.58)

Therefore, the elasticity of realized matches Mt with respect to ξ̂soc,b
t given Ut (fixed in t=2)

turns out to be

εMt ,ξ̂
soc,b
t
= Ut

1
τ

 
1−

�
ξ̂soc,b

t

c

�− τ
τ+1
! 1
τ−1

τ

τ+ 1

�
ξ̂soc,b

t

c

�− τ
τ+1−1

1
c

ξ̂soc,b
t

Mt
=

=
1

τ+ 1

�
ξ̂

soc,b
t
c

�− τ
τ+1

1−
�
ξ̂

soc,b
t
c

�− τ
τ+1
=

1
τ+ 1

1
�
ξ̂

soc,b
t
c

� τ
τ+1 − 1

.45

As a consequence, the amount of realized matches reacts more sensitive to changes in ξ̂soc,b
t

the closer the present value ξ̂soc,b
t of a worker in the next period is to the costs c of posting

an open vacancy. Now, a higher value of b implies ξ̂soc,b
t to be already lower in steady state

and consequently yields a higher elasticity εMt ,ξ̂
soc,b
t

(given the same costs c).46 In particular,
the elasticity turns out to be approximately 2.5 for b = 0.85 and 1.5 for b = 0.75 in steady
state. This explains why the seemingly small difference in the relative decline of ξ̂soc,b

t leads to
substantial different declines in the amount of matches in period t = 2.

Now, with no further changes to LP for the remaining periods, the further progression in
the economy is induced solely by the dynamics of employment from this point forward. The
lower amount of Mt in period t = 2 yields the unemployment rate to rise in t=3 in both cases.
An inclining unemployment rate has three effects on the amount of realized job matches in
the economy. First, more unemployed members enter the matching process. Second, other
things equal, the marginal rate ∂M

∂ V for an open vacancy to be filled increases47 which exercises
a positive effect on the expected return of an open vacancy and therefore on the number of
vacancies. Yet third, consumption is decreasing and future within period value generated by an
employed member in ξ̂soc,b

t is discounted more so that the present value of a worker continues
to fall further—even though expectations about future labor productivity do not change—which
exercises a negative effect on the number of vacancies. The first two effects yield the amount of
successful job matches to increase with the unemployment rate and are rendered in the first
factor in the right hand side of (4.6.58), while the third effect causes a decline in realized job
matches and is contained in the second factor in brackets in the right hand side of (4.6.58).
Moreover, (4.6.58) shows that the positive effect becomes smaller, while the negative effect
increases the closer the present value ξ̂soc,b

t of a worker in the next period falls to the costs c
of posting vacancies. We can see from figure 4.31 that the positive effect is dominating in the
next periods and the amount of realized job matches rises again compared to period t=2 for
both values of b. Nonetheless, with ξ̂soc,b

t closer to c in the case of b = 0.85, the positive net

45Equivalently, in the baseline model Vt = Ut

��
ξ̂

f
t /c
�τ − 1

� 1
τ

implies εMt ,ξ̂
f
t
= 1��

ξ̂
f
t /c

�τ−1
� .

46Note that the calibration strategy in the baseline model did not fix c but rather implied ξ̂ f

c =
1
κ f
= 1

0.71 to be fixed
in steady state.

47Since ∂M
∂ V∂ U > 0.
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Figure 4.32: First Distortion: Effects of Drop in Labor Productivity II
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effect on matches turns out much weaker in comparison. As long as the decline in matches
still exceeds the decline in the employment rate, exogenous separations exceed the number of
realized job matches and employment continues to fall. While in the case of b = 0.75 matches
eventually recover enough after some more periods to stop the economy’s employment to fall
any further, this is different with b = 0.85. Matches recover too weakly, unemployment increases
faster, which further lowers ξ̂soc,b

t and increases the elasticity εMt ,ξ̂
soc,b
t

until the effect of ξ̂soc,b
t on

matches eventually becomes dominant. Matches start to decline again, unemployment is not
stopped from falling any further, ξ̂soc,b

t decreases even more and the economy enters a downward
spiral.

We conclude from this scenario that once negative shocks to LP render ξ̂soc,b
t to fall close

enough to c in order for the high elasticity εMt ,ξ̂
soc,b
t

to play a dominant role in the reaction of
matches during rising unemployment, the economy wont stabilize until LP and consequently
ξ̂soc,b

t recover. Now, ξ̂soc,b
t depends on the expectation about future excess of labor productivity

net value of unemployment activities, i.e. exp(Zt+s)− b. Hence, in order for ξ̂soc,b
t to decline

to approximately the same level with b = 0.75 as it is the case for b = 0.85 in the scenario
pictured in figure 4.31, LP would have to decline by 0.1 more. We therefore repeat the scenario
for b = 0.75 in figure 4.32, where we now assume log LP to jump in period t = 2 to

Zt = ln

�
exp

�
−2

σεp
1−ρ2

�
− 0.1

�
, t ≥ 2.48

Employment does not stabilize after some periods anymore, but has declined by over 25% after
50 periods and keeps dropping until LP recovers. Hence, disasters in the model with the first
distortion and b = 0.75 would arise in the same fashion, if LP would only fall low enough. Yet,
while a decline in log LP below −2 σεp

1−ρ2
appears with a probability of approximately 2.5%,

an additional drop as low as in the second scenario becomes disproportionately less likely.49

In consequence, the formation of disasters seems to depend sensitively on the value of the
parameter b in the results in table 4.18.

We have identified the present value of a worker in the next period falling close to the costs of
posting an open vacancy for lower (but plausible) states of labor productivity as a first important
factor for the occurrence of disasters in the model. The elasticity of realized matches with
regard to ξ̂soc,b

t becomes large and amplifies declines in the present value for realized matches
and—even more importantly—prevents the economy from stabilizing during periods of rising
unemployment. Following the calibration strategy for the model with the first distortion, where
c was fixed, a higher value of unemployment activities implicates a lower steady state value

48This implies labor productivity to fall approximately to exp(Z2)≈ 0.82> b = 0.75.
49Log LP would also have to stay at the low level for some periods in order for disasters to arise.
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for the present value of a worker so that the condition will be satisfied more quickly. However,
following the initial calibration strategy from the baseline model from which the costs c were
computed, the value of b is not important. The average probability κ f that a vacancy can be

filled was set to 0.71 in steady state so that the ratio ξ̂ f

c =
1
κ f

is fixed independently of b. A higher
value of b in this calibration strategy would only imply a lower cost parameter c. Nonetheless,
an already high elasticity of realized job matches with respect to the present value of a worker
can not be the only factor in generating disasters in the model. A high value of the household’s
bargaining power of ϕ = 0.85 in the model containing only the second distortion from section
4.6.1.4 yields the same steady state and therefore the same high elasticity as it is the case for
b=0.85. Yet, employment did not fall by more than approximately 4% in the simulation results
in table 4.21. So why is this the case?

Relative Changes in the Present Value of a Worker Loosely speaking, if realized job matches
react highly sensitive to changes in the present value of a worker, mechanisms that render relative
changes in the present value of a worker more or less pronounced in response to fluctuations in
productivity should affect the model’s dynamics significantly. In order to get an intuition about
the economy’s dynamics in the model containing only the second distortion with ϕ = 0.85,
we consider the same artificial scenario of 50 periods, where log LP drops to Z2 = −2 σεp

1−ρ2

in the second period and remains at the level for the remaining periods, in figure 4.33. With

Figure 4.33: Second Distortion: Effects of Drop in Labor Productivity
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only the second distortion in the model, the employment rate falls by approximately 2% before
stabilizing after some periods. Compared to the model including only the first distortion the
most important difference can already be identified in the immediate impact of the drop in LP
in period t = 2 on the present value of a worker. While ξ̂soc,b

t falls by 10% due to the shock to
LP, ξ̂ f ,ϕ

t does only by 2%. Now,

ξ̂soc,b
t = Et

�∞∑
s=1

�
s−1∏
k=1

�
1−ω− ∂M

∂ U
(Ut+k, Vt+k)

��
β sλt+s

λt
(exp(Zt+s)− b)

�
,
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and

ξ̂ f ,ϕ
t = Et

�∞∑
s=1

�
s−1∏
k=1

�
1−ω− ∂M

∂ U
(Ut+k, Vt+k)

��
β sλt+s

λt
(exp(Zt+s)−wt+s)

�
=

(4.6.53)
= Et

�∞∑
s=1

�
s−1∏
k=1

�
1−ω− ∂M

∂ U
(Ut+k, Vt+k)

��
β sλt+s

λt
(1−ϕ)exp(Zt+s)

�
.

In the model including the first distortion a decline in labor productivity by approximately 8%
from exp(Z1) = 1 to exp(Z2)≈ 0.92 yields the within period value attributed to an employed
over an unemployed member to fall from exp(Z1)− b = 0.15 to exp(Z2)− b ≈ 0.07 by over 50%.
On the other hand, in the model containing only the second distortion the firm’s profit after
wage payments from a worker drop from (1−ϕ)exp(Z1) = 0.15 to (1−ϕ)exp(Z2)≈ 0.138 only
by 8%. Similar, until LP recovers the expectation about future within period value from a worker
declines significantly more in the case with b = 0.85 compared to the case with ϕ = 0.85. As a
consequence, ξ̂soc,b

t is much more affected than ξ̂ f ,ϕ
t by the sudden decline in LP, although the

effect on both values is smaller than on the corresponding within period value in t = 2, since
LP is expected to eventually recover in the long run. For the model with the first distortion the
economy enters a downward spiral as laid out in the preceding paragraph. This is different
for the model including only the second distortion. The elasticity of matches with respect to
the present value of a worker is the same in the steady state for both scenarios. Therefore, in
the model with the second distortion only, the (much smaller) decline of ξ̂ f ,ϕ

t also triggers a
relative drop of matches almost three times as large. However, as can be seen in the lower
left part of figure 4.33, the decline of ξ̂ f ,ϕ

t relative to the costs c of posting vacancies remains
moderate so that εMt ,ξ̂

f ,ϕ
t

does not increase by as much as in the case of the first distortion. In
the subsequent periods with unemployment rising, the input of unemployed members in the
matching process increases, the marginal vacancy filling rate ∂M

∂ V ceteris paribus also increases,
while ξ̂ f ,ϕ

t continues to decline. However, with εMt ,ξ̂
f ,ϕ
t

not having gained too much, the first two
effects yield matches to recover enough in order for the economy to eventually stabilize.

In the model containing the first distortion only, the value the social planner attributes each
period to unemployed members is fixed by b. Contrarily, in the model containing only the
second distortion the wage, wt = ϕ exp(Zt), firms have to pay partly absorbs declines in LP.
Since the within period value from a worker, i.e. exp(Zt)− b or exp(Zt)− wt , respectively, is
small to begin with in both cases, the fact whether part of a decline in labor productivity is
absorbed or not yields highly different relative declines which manifest in ξ̂soc,b

t and ξ̂ f ,ϕ
t . The

high elasticity of matches additionally magnifies these differences for the further progress of
employment.

Disasters in the Baseline Model To sum up, there are three important factors in the baseline
model favoring the occurrence of disasters. First, the high and fixed value of unemployment
activities in b renders the wage

wt = ϕ exp(Zt) + (1−ϕ)b+ϕ
Vt

1− Nt
c.

close to labor productivity in steady state but also inflexible to fluctuations in productivity. Small
changes in LP implicate high relative variations in the within period value exp(Zt)−wt of a worker
to the firm, which manifest in high relative changes in ξ̂ f

t . Second, the calibration strategy in the

baseline model implied a ratio ξ̂ f

c =
1
κ f
= 1

0.71 and therefore an elasticity εMt ,ξ̂
f
t
= 1�

ξ̂
f
t /c

�τ−1
≈ 1.8

in steady state so that high relative declines in the present value of a worker to the firm will
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entail even larger relative declines in realized job matches. Third and particularly important,
with unemployment rising in the following periods, the present value of a worker to the firm will
decline further even without labor productivity continuing to decline—due to higher discounting
of future profits obtained from a worker. Although more unemployed members are searching
for jobs and vacancies are more likely to be filled, the now even higher elasticity with respect to
ξ̂

f
t implicates that realized matches will not recover sufficiently in the subsequent periods. On

the contrary, realized matches eventually begin to decline even more so that unemployment
is not stopped from increasing and the economy is destined to enter a downward spiral until
productivity sufficiently recovers.

Modifications to the model, which imply the wage to absorb declines in LP only slightly
better, should already have substantial effects on the relative declines of newly created jobs and
therefore significantly alter the model’s dynamics. Hence, the already mentioned assumption
which were made in order to justify the high value of b become particularly important at
this point. First, summarizing the complete period value of unemployment activities into the
fixed parameter b implies that the value remains fixed over the business cycle. A worker’s
reservation wage does not adjust indifferent from the fact how much unemployment rises
and how low consumption falls. However, this changes once leisure is introduced into the
utility function in such way that the marginal rate of substitution with the consumption good
is not constant. During a recession with decreasing consumption and increasing free time the
value of unemployment from leisure measured in units of the consumption good for which
a worker demands compensation will decline. An equivalent argument might be made for
the value of unemployment due to home work if the MRS between the home produced good
and the market good is not constant. Second, the baseline model neglected all positive effects
from unemployment on the household’s utility. This also changes, if we add leisure and home
production to the household’s utility.

4.7 Extensions
In this section we consider several extensions of the baseline model. In particular, we will
endogenize the household’s utility drawn from free time of unemployed members, introduce
variable working hours for the household’s working members, introduce variable search effort
for the household’s unemployed members and endogenize home production. We will analyze
for each variation of the model, how the dynamics of employment change in simulations and
if a solution by perturbation50 can reproduce the results in an accurate way. We present the
disaster statistics as well as the second moments of the labor market. Finally, we also summarize
the implications for the equity premium in the models with standard preferences and under
Epstein-Zin preferences.

4.7.1 Leisure in Utility
We will first endogenize the household’s utility from leisure when unemployed in the spirit of
Merz (1995).

Search and Matching The matching process between unemployed members and open vacan-
cies posted by the representative firm (4.2.1) as well as the dynamics of employment in the
economy (4.2.2) remain the same as in the baseline model. In particular, we still assume all
unemployed members to enter the matching process with fixed search intensity.

50Note that we still only compute the variables’ values as far as needed from the second order perturbation
approximation in the following and derive all other variables’ outcomes as will be described.
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Representative Household Different from the baseline model, the representative household’s
aggregate utility drawn from leisure of his unemployed members or equivalently disutility
from work of his employed members51 is explicitly contained in his utility function, i.e. the
representative household is now assumed to maximize lifetime utility

Et

�∞∑
s=0

β s

�
C1−η

t+s − 1

1−η − ν0

1+ ν1
N 1+ν1

t+s

��
, η,ν0,ν1 > 0,η 6= 1.

In this model we will consider working hours to be fixed. Moreover, the chosen utility func-
tion implies the representative household’s marginal disutility from a working member to be
increasing with the employment rate or, identically, the marginal utility from an unemployed
member due to leisure to be decreasing with the unemployment rate. With fixed working hours
this can equivalently be interpreted as increasing marginal disutility from total working hours
or decreasing marginal utility from total leisure of the household’s members. The representative
household maximizes his lifetime utility under the budget constraints (4.2.4) and the dynamics
(4.2.5) of employed members, taking the probability of an unemployed member finding a job as
exogenous. With Jh as before denoting the value function, we now have

Jh(Nt , St) = max
Ct ,St+1

C1−η
t − 1
1−η − ν0

1+ ν1
N 1+ν1

t + βEt[J
h((1−ω)Nt +κw,t(1− Nt), St+1)]

s.t. Ct ≤ wt Nt + dtSt − vt(St+1 − St) + b(1− Nt)− Tt ,

given Nt , St .

The household’s optimality conditions (4.2.6) and (4.2.7) for the maximization problem on
the right-hand side remain the same. However, the value of an employed over an unemployed
member from the household’s perspective now explicitly contains the utility from leisure over
work effort by unemployed members included in the utility function, i.e.

∂ Jh

∂ N
(Nt) = λt(wt − b)− ν0Nν1

t + βEt

�
∂ Jh

∂ N
(Nt+1) (1−ω−κw,t)

�
.

With the established notation of ξh
t := 1

λt

∂ Jh

∂ N denoting the value of an employed (over an
unemployed) member to the representative household measured in consumption units, we now
get

ξh
t = wt − b− ν0Nν1

t

λt
+ (1−ω−κw,t)Et

�
β
λt+1

λt
ξh

t+1

�
(4.7.1)

The interpretation for (4.7.1) is the same as for (4.2.8) in the baseline model with the only
difference that the fixed value b is replaced by

zt := b+
ν0Nν1

t

λt
.

In the baseline model the parameter b contained the total per period value of all unemployment
activities, while b now only measures the period value of unemployment except for leisure and

the value due to leisure (over work effort) is explicitly contained in the term ν0N
ν1
t

λt
.

51We use ’disutility from work effort of employed household members’ and ’utility from leisure (over work effort)
of unemployed members’ synonymously.
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Representative Firm Nothing changes from the side of the representative firm. The KKT
conditions are as in (4.2.16)-(4.2.19). The marginal value of a worker to the representative
firm ξ f

t as well as the present value of a worker in the next period to the firm ξ̂ f
t satisfy (4.2.20)

and (4.2.21), respectively.

Wage Bargaining As in the baseline model, the wage is determined in such way to maximize
(4.2.22), which was shown to imply the following sharing rule in total surplus ξt := ξh

t + ξ
f
t

generated by a working member in the economy

ξh
t = ϕξt and ξ f

t = (1−ϕ)ξt .

Observing that the only difference to the baseline model lies in the value ξh
t now containing

b+ ν0N
ν1
t

λt
as the within period value of an unemployed member instead of only b, we obtain the

wage equation (4.2.26) only with b replaced by b+ ν0N
ν1
t

λt
, i.e.

wt = ϕ exp(Zt) + (1−ϕ)
�

b+
ν0Nν1

t

λt

�
+ϕ

Vt

1− Nt
c. (4.7.2)

Government Sector The government runs a balanced budget and we assume, as before, the
value of all unemployment activities contained in the parameter b to be just redistributed from
taxes, i.e.

Tt = b(1− Nt).

Consequently, the only aggregate value from unemployment in the economy stems from leisure
over work effort in the household’s utility.

General Equilibrium The only thing changed compared to the baseline model is the fact that
a worker’s reservation wage now explicitly contains the endogenously determined foregone
utility from leisure, or suffered disutility from work effort, for which he demands compensation.
Hence, the general equilibrium is determined by equations (4.2.28)-(4.2.41) only with the
wage equation (4.2.36) replaced by (4.7.2). As a consequence, all of the model’s variables
can again be determined dependent on ξ̂ f

t and the state variables in the exact same way. The
policy function g : [0,1]×R→ R of the present value of a worker in the next period to the
representative firm is the solution to the functional equation (4.3.1)-(4.3.11) only now with

wt := w(g, x , z) = ϕ exp(z) + (1−ϕ)
�

b+
ν0 xν1

C(g, x , z)−η

�
+ϕ

V (g, x , z)
1− x

c

in rhs.

Calibration The calibration of the model’s parameters follows the calibration in the baseline
model. More specifically, all steady state values and all calibrated parameter values in table 4.1
except for the value of b remain the same. The definition of the parameter b is different now.
In the baseline model b denoted the total period value of all unemployment activities which pin
down a worker’s reservation wage. In the present model the value of unemployment obtained by
leisure is incorporated endogenously through the utility function and the parameter b captures
only the value from remaining factors. We assume the total period value of unemployment
activities in steady state to remain at the same level as in the baseline model, i.e.

z = b+
ν0Nν1

λ
= 0.85. (4.7.3)
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Figure 4.34: Leisure in Utility: Approximation of Policy Function and Interpretable Euler Residuals
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This also guarantees that the numeric steady state values for all other variables as well as the
free parameter values do not change. We set ν1 = 2. At this point, we are now free to choose
any allocation of the total period value of unemployment between unemployment activities still
captured by b and the value of leisure in ν0Nν1

λ . This will be different in the upcoming models.
In foresight, we choose the value of unemployment due to leisure to be 1

3 and accordingly set
b = 0.85− 1

3 . Finally, we compute ν0 for ν0Nν1

λ = 1
3 to hold.

We also employed two other calibrations, in which we set ν1 = 0.8 as in Merz (1995) and
b = 0.65 or b = 0.42. We will only report the disaster statistics for these cases in the following.

Steady State The remaining variables’ steady state values and the free parameter values can
be computed the same way as in the baseline model, only with b replaced by b + ν0Nν1

λ . I.e.
(4.4.2) now becomes

ξ̂ f =
β(1−ϕ)(exp(Z)− b− ν0Nν1

λ )

1− β(1−ω−ϕκ f )
=
β(1−ϕ)(exp(Z)− 0.85)

1− β(1−ω−ϕκ f )
,

the costs of posting a vacancy are

c =
βκ f (1−ϕ)(exp(Z)− b− ν0Nν1

λ )

1− β(1−ω−ϕκ f )
=
βκ f (1−ϕ)(exp(Z)− 0.85)

1− β(1−ω−ϕκ f )
(4.7.4)

and the wage is determined by

w= ϕ exp(Z) + (1−ϕ)
�

b+
ν0Nν1

λ

�
+ϕ

V
1− N

c = ϕ exp(Z) + (1−ϕ)0.85+ϕ
V

1− N
c.

More importantly, all the resulting numeric steady state values and free parameter values remain
the same as in the baseline model.

Dynamics of Employment We present approximations to the policy function of ξ̂ f
t , computed

either from the finite element method or from a second order perturbation approach, in figure
4.34a. Interpretable Euler residuals of magnitude 10−7 for the finite element solution in figure
4.34b suggest that the global solution is sufficiently accurate. On the other hand, it is obvious
that the second order perturbation solution again fails to provide a correct approximation to the
policy function of ξ̂ f

t for higher rates of unemployment.
Once more, we computed the series of equilibrium outcomes for 1200000 periods from the

same sample of pseudorandom iidN(0,σ2
ε
) distributed shocks to log LP. In figure 4.35 we display



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 182

Figure 4.35: Leisure in Utility: Dynamics of Employment
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the dynamics of employment in the first 5000 periods, computed by both the cubic spline and
perturbation solution. Additionally, the resulting histograms for the distribution of employment
in the simulation are shown in figure 4.36, while table 4.28 summarizes some statistical measures
of the distribution. As expected, once the utility drawn from leisure of unemployed members is

Figure 4.36: Leisure in Utility: Histograms for Distribution of Monthly Employment Rates
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(a) Distribution of Employment computed by Cu-
bic Splines
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(b) Distribution of Employment computed by Sec-
ond Order Perturbation

Table 4.28: Leisure in Utility: Statistic Measures for Distribution of Monthly Employment Rates

N̄ max(Nt) min(Nt) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8994 0.9144 0.8645 0.8850 0.8901 0.8925 0.9000 0.9056 0.9069 0.9091 0.0052 -0.6384 3.6479
Perturbation 0.8994 0.9156 0.8620 0.8847 0.8900 0.8924 0.9000 0.9056 0.9070 0.9093 0.0053 -0.6626 3.8008

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for cumulative
distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment rate. Statistics are
computed from the outcome of a simulation of 1200000 (monthly) periods.

endogenized in the assumed form, the periods of extremely high unemployment disappear. The
employment rate does not fall below 0.86 anymore. This is in sharp contrast to the baseline
model where employment declined to approximately 0.06. Moreover, the standard deviation of
employment drops by the factor 15. With only moderate fluctuations around the steady state,
the fact that the approximation to the policy function of ξ̂ f

t by a second order perturbation
fails for lower rates of employment has no consequences for the simulation outcomes. The
perturbation solution gives an accurate view of employment’s dynamics in the model, deviating
even at most only by 0.0025 from the global solution in the whole simulation.
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Table 4.29: Disasters in the Model with Leisure in Utility

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 1449 (2292, 1288) 6265 (13400, 4980) 0.37% (0.59%, 0.33%) 11.48%(12.14%, 11.35%) 4.32 (5.85, 3.87)
Y 1393 (3008, 983) 5741 (16534, 3591) 0.35% (0.78%, 0.25%) 11.47%(12.22%, 11.28%) 4.12 (5.50, 3.65)
LP 663 2086 0.1667% 11.05% 3.15

85% threshold
C 59 (320, 39) 209 (1491, 113) 0.0148% (0.08%, 0.0098%) 16.18% (16.77%, 15.95%) 3.54 (4.66, 2.90)
Y 61 (473, 23) 178 (2077, 57)) 0.0153% (0.12%, 0.0058%) 16.02% (16.82%, 15.91%) 2.92 (4.39, 2.48)
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 1 (27, 0) 1 (112, 0) 0.0003% (0.0068%, 0%) 20.03%(21.45%, –) 1 (4.15, –)
Y 0 (42, 0) 0 (168, 0) 0% (0.0105%, 0%) – (21.64%, –) – (4, –)
LP 0 0 0% – –

75% threshold
C 0 (1, 0) 0 (4, 0) 0% (0.0003%, 0%) – (25.52%, –) – (4, –)
Y 0 (1, 0) 0 (4, 0) 0% (0.0003%, 0%) – (26.46%, –) – (4, –)
LP 0 0 0% – –

70% threshold
C 0 (0, 0) 0 (0, 0) 0% (0%, 0%) – (–, –) – (–, –)
Y 0 (0, 0) 0 (0, 0) 0% (0%, 0%) – (–, –) – (–, –)
LP 0 0 0% – –

Endogenous Disasters? Table 4.29 shows the disaster statistics for the model with leisure
in the utility. In parenthesis are the results for the alternative calibrations with ν1 = 0.8 and
b = 0.65 or b = 0.42. Compared to the baseline model disasters become much less likely for all
of the calibrations. Declines by over 30% from steady state disappear completely. Moreover, as
should be expected, the more of the total period value of unemployment activities is still captured
in the fixed parameter b and the less is attributed to the variable value from leisure, the more
likely can disasters in the model’s economy arise. For our standard calibration consumption
did fall only once during the 400000 quarters in the simulation below a threshold of 80%
of its steady state value, while output did not at all. For comparison, in the baseline model
consumption and output were less than 30% of the steady state value during approximately 700
periods. Endogenizing the value of unemployment from leisure changes the disaster statistics in
the model substantially.

Second Moments of the Labor Market Table 4.30 summarizes the second moments for the
labor market. We only show the results for the calibration with ν1 = 2 and b = 0.85− 1

3 . Since
employment is far more stable in the model with leisure in the utility compared to the baseline
model, the labor market variables fluctuate significantly less. The average standard deviations
are only approximately 1

5 -th of the values obtained in the baseline model. The correlation
between unemployment and vacancies becomes more negative, yet the value found in the data
is still lower than the 2.5% quantile from the simulations.

Comparison and Intuition We show the reaction to the scenario of the economy starting in
steady state, log LP dropping at once by two unconditional standard deviations in the second
period and remaining at the level for the remaining periods in figure 4.37 for the model
with leisure in the utility and the baseline model. The baseline model enters a downward
spiral, whereas with endogenous utility from leisure the employment rate stabilizes quickly after
dropping only by approximately 1.5%. The explanation provided in section 4.6.2 for the different
reactions between the models including only the first and second distortion, respectively, carries
over. The impact of the drop in labor productivity in period t = 2 differs substantially. With
leisure in the utility the present value of a worker to the firm declines by less than 5%, while
it declines by over 15% in the baseline model. The already high elasticity of vacancies and
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Table 4.30: Labor Market Moments in the Model with Leisure in Utility

U V θ p = Y
N

sx 0.019 [0.014;0.024] 0.017 [0.014;0.020] 0.032 [0.026; 0.040] 0.016 [0.013;0.019]
sx
sp

1.159 [0.992;1.363] 1.059 [0.951;1.171] 2.008 [1.799; 2.219] 1.000 [1.000;1.000]
rx 0.857 [0.801;0.900] 0.633 [0.523;0.730] 0.817 [0.748;0.870] 0.774 [0.693;0.840]

Cross Correlations
U -0.693 [−0.765;−0.615] -0.918 [−0.941;−0.889] -0.856 [−0.895;−0.809]
V 0.916 [0.898; 0.934] 0.954 [0.944;0.963]
θ 0.990 [0.986;0.993]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies from

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

Figure 4.37: Leisure in Utility: Effects of Drop in Labor Productivity
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matches with respect to ξ̂ f
t yields the amount of realized matches to decrease by less than 10%

in the first case, whereas matches fall by over 37% in the baseline model. The different reaction
of ξ̂ f

t between the two models is amplified for the amount of matches. In the present model
matches do not decline by too much. The growing unemployment rate in the subsequent periods
increases the probability for the firm to fill a vacancy and provides more unemployed members
entering the matching process. Matches partially recover despite the further decreasing ξ̂ f

t due
to higher discounting. Since the elasticity of matches with respect to ξ̂ f

t becomes not as high
as in the baseline model, where ξ̂ f

t dropped substantially more, matches eventually recover
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enough to stop the unemployment rate from falling further.
Now,

ξ̂ f
t = Et

�∞∑
s=1

(1−ω)s−1β sλt+s

λt
(exp(Zt+s)−wt+s)

�
,

is the sum of expected discounted future labor productivity net wage costs from an employee to
the firm. Expectations about future labor productivity are the same between the models. Yet, in
the model with leisure in the utility the wage falls by approximately 6% in the second period
from w1 ≈ 0.9 to w2 ≈ 0.845, whereas the wage declines by less than 2% from w1 ≈ 0.9 to
w2 ≈ 0.877 in the baseline model. The seemingly small differences in the decline of the wage
between the two models however lead to substantial different relative declines in the excess
of labor productivity net wage costs from exp(Z1)−w1 ≈ 0.1 to exp(Z2)−w2 ≈ 0.075 by 25%
in the first and to exp(Z2)− w2 ≈ 0.043 by 57% in the second case. Similar, the expectation
about future labor productivity net wage costs declines, in percentage points, substantially less
in the model with leisure in the utility so that ξ̂ f

t falls less. The wage in the present model is
determined by

wt = ϕ exp(Zt) + (1−ϕ)
�

b+
ν0Nν1

t

λt

�
+ϕ

Vt

1− Nt
c.

In period t = 2 the marginal disutility from work or utility from leisure of unemployed members,
i.e. ν0Nν1

t , is fixed, but the marginal utility of consumption λt is increasing strongly due to
less output and consumption in response to the negative shock to labor productivity. The total

period value of unemployment activities b+ ν0N
ν1
t

λt
and therefore the workers’ reservation wage

starts to decline. The effect persists in the following periods. Unemployment is increasing while
consumption is decreasing so that the MRS between the two variables and consequently the
reservation wage further declines, whereas it was fixed to stay throughout at 0.85 in the baseline
model. Hence, with leisure in the utility function, the wage is firstly absorbing more of the
decline of LP in t = 2, but also adjusts better to the rising unemployment in subsequent periods.

Remarks In their appendix Kuehn et al. (2015) also consider an extension of the baseline
model with leisure in the utility. However, they arrive at a contradictory conclusion. They note
that the model with leisure in utility produces results similar to the ones in the baseline model.
The probability of disasters is only moderately lower, while the average size of disasters even
increases. Yet, their results are not so much a contradiction to ours, when taking a closer look.
They assume the representative household’s within period utility to be

log(Ct + hUt), h> 0.

This utility function yields a constant marginal rate of substitution of h between leisure from
unemployed members and consumption. In particular, instead of (4.7.1) the value of an
employed over an unemployed member to the household would become

ξh
t = wt − (b+ h) +

�
1−ω−κw,t

�
Et

�
β
λt+1

λt
ξh

t+1

�

so that the wage equation (4.7.2) would change to

wt = ϕ exp(Zt) + (1−ϕ) (b+ h) +ϕ
Vt

1− Nt
c.
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Assuming the total value of unemployment activities to stay at the level from the baseline model
implies b+ h= 0.85. Consequently, apart from a different stochastic discount factor nothing
changes compared to the baseline model. Most important, the value of unemployment due to
leisure measured in consumption units is again fixed by h and will not decline during recessions.
The mechanism rendering the wage to become more flexible caused by a declining MRS is
absent.

In the models prior to the present one there was no aggregate value in the economy from
unemployment. It was assumed throughout that all the value from unemployment activities was
redistributed from taxes. Disasters were consequently measured solely in output or consumption.
Yet, in the present model leisure from unemployed members increases the household’s lifetime
utility. Measuring disasters only in output and consumption does not take this effect into account.
To some extent decreasing consumption could also be the result of a shift to drawing utility
from leisure during periods of lower productivity. Therefore, we could adjust the definition of
disasters to consider the achieved within period utility instead. For example, one could transform
the total within period utility from consumption and leisure into a consumption equivalent and
consider declines in the consumption equivalent. I.e. for each period t we compute Ceq,t so that

C1−η
eq,t − 1

1−η =
C1−η

t − 1
1−η − ν0

1+ ν1
N 1+ν1

t ,

which yields

Ceq,t =

�
(1−η)

�
C1−η

t − 1
1−η − ν0

1+ ν1
N 1+ν1

t

�
+ 1

� 1
1−η

.

We then simply adopt the definition of disasters in consumption Ct for Ceq,t . The results are
summarized in table 4.31. In parentheses are the results for the alternative calibrations with
ν1 = 0.8 and b = 0.65 or b = 0.42. In terms of the consumption equivalent, no declines by

Table 4.31: Disasters in Consumption Equivalent in the Model with Leisure in Utility

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
Ceq 650 (1146, 253) 2413 (6244, 781) 0.16% (0.29%, 0.06%) 11.17% (11.76%, 10.86%) 3.71 (5.45, 3.09)
LP 663 2086 0.1667% 11.05% 3.15

85% threshold
Ceq 9 (83, 1) 23 (390, 1) 0.0023% (0.02%, 0.0003%) 15.86% (16.56%, 15.18%) 2.56 (4.70, 1.00)
LP 5 10 0.0013% 15.68% 2.00

80% threshold
Ceq 0 (4, 0) 0 (12, 0) 0% (0.001%, 0%) – (20.83%, –) – (3, –)
LP 0 0 0% – –

75% threshold
Ceq 0 (0, 0) 0 (0, 0) 0% (0%, 0%) – (–, –) – (–, –)
LP 0 0 0% – –

more than 25% from its steady state value can be observed during the 400000 quarterly periods
in the simulation. For our standard calibration, the consumption equivalent did only decline
during 23 periods below 85% of its steady state value.

4.7.2 Endogenous Hours
In the previous model, working hours of the household’s employed members were fixed. It
was then assumed that the marginal disutility from work effort was increasing in total working
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hours and therefore in the employment rate. Moreover, the marginal disutility could react only
delayed in the period following a shock to the economy once the employment rate changes. In
this subsection we will introduce one more building block into the labor market model. We will
allow for variable working hours in a way similar to Andolfatto (1996). The marginal disutility
the household faces from work effort will be increasing in the working hours per worker but not
in the employment rate. Dependent on the reaction of working hours, the marginal disutility
will already react in the period a shock hits the economy. Moreover, adjustments in working
hours may dampen or amplify declines in output and consumption.

Search and Matching The matching process between unemployed members and open va-
cancies posted by the representative firm (4.2.1) and the dynamics of employment in the
economy (4.2.2) remain unchanged from the baseline model. In particular, we still assume all
the unemployed members to enter the matching process with fixed search intensity.

Representative Household The representative household draws utility from consumption,
but faces disutility from the hours (measured as fraction of total time endowment) ht ∈ [0,1]
worked by employed members. More concretely, we assume the representative household’s
lifetime utility to be

Et

�∞∑
s=0

β s

�
C1−η

t+s − 1

1−η − Nt+s
ν0

1+ ν1
h1+ν1

t+s

��
, η,ν0,ν1 > 0,η 6= 1.

Different from the model with fixed hours in the previous subsection, the marginal disutility of
work to the representative household is no more increasing in the employment rate, but only in
the individual hours worked by employed members. The budget constraint in period t is

Ct + vt(St+1 − St)≤ wt Nt
ht

h
+ b(1− Nt) + dtSt − Tt ,

where h is the steady state value of the fraction of hours spent working by the employed
members. We introduce the normalization in order for wt to denote—in the same way as in
the baseline model—the wage rate per steady state working hours. Employment from the
household’s perspective evolves as in (4.2.5), where the household considers κw,t as exogenous.
The representative household chooses consumption and share holdings. He does not decide
about the hours employed members work, but they will be the outcome of a bargaining process
with the representative firm. With Jh(Nt , St) as the household’s value function, we can write

Jh(Nt , St) = max
Ct ,St+1

C1−η
t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t + βEt

�
Jh
�
(1−ω)Nt + κw,t(1− Nt), St+1

��

s.t. Ct ≤ wt Nt
ht

h
+ dtSt − vt(St+1 − St) + b(1− Nt)− Tt ,

given Nt , St .

The household’s optimality conditions (4.2.6) and (4.2.7) for the maximization problem on the
right-hand side remain the same. The value of an employed over an unemployed member from
the household’s perspective now becomes

∂ Jh

∂ N
(Nt , St) = λt

�
wt

ht

h
− b

�
− ν0

1+ ν1
h1+ν1

t + βEt

�
∂ Jh

∂ N
(Nt+1)

�
1−ω− κw,t

��
.

Hence, measured in consumption units by ξh
t := 1

λt

∂ Jh

∂ N (Nt , St), we get

ξh
t = wt

ht

h
−
�

b+
ν0

1+ ν1

h1+ν1
t

λt

�
+
�
1−ω−κw,t

�
Et

�
β
λt+1

λt
ξh

t+1

�
. (4.7.5)



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 188

The interpretation remains analogously to the one of equation (4.7.1) in the previous model.
The total wage payment an employed member receives in the period now becomes wt

ht
h , while

the total period value of unemployment activities (over work effort) becomes

zt = b+
ν0

1+ ν1

h1+ν1
t

λt

with the last term representing the value from leisure. Yet, as already mentioned and different
from the model with leisure in the utility from the previous subsection, the value of unemploy-
ment due to leisure is no more increasing in the employment rate but only in individual working
hours of a worker.

Representative Firm On the representative firm’s side everything remains essentially the same.
With endogenous working hours ht , total output is now determined by

Yt = exp(Zt)Nt
ht

h
,

where we again introduce the normalization of labor productivity with the steady state value h
in order for total output in steady state to remain at the same level as before. Let J f (Nt) denote
the value function of the firm’s maximization problem, then

J f (Nt) = max
Vt

exp(Zt)Nt
ht

h
−wt Nt

ht

h
− cVt +Et

�
β
λt+1

λt
J f
�
(1−ω)Nt + κ f ,t Vt

��

s.t. Vt ≥ 0,

given Nt .

The KKT conditions for the maximization problem on the right hand side remain as in (4.2.16)-
(4.2.19), only now we have to adjust the value of a worker to the representative firm to

ξ f
t :=

∂ J f

∂ N
(Nt) = exp(Zt)

ht

h
−wt

ht

h
+ (1−ω)Et

�
β
λt+1

λt
ξ

f
t+1

�
. (4.7.6)

Consequently, the present value of a worker in the next period from the firm’s perspective
becomes

ξ̂ f
t := Et

�
β
λt+1

λt
ξ

f
t+1

�
= Et

�
β
λt+1

λt

�
exp(Zt+1)

ht+1

h
−wt+1

ht+1

h
+ (1−ω)ξ̂ f

t+1

��
. (4.7.7)

Hours andWage Bargaining The hours worked and the wage are determined jointly by the
representative household and the representative firm through a Nash bargain maximizing the
weighted geometric mean of the respective shares in total surplus created by an additional
worker in the economy, i.e. by the solution to

max
wt ,ht

(ξh
t )
ϕ(ξ f

t )
1−ϕ with 0≤ ht ≤ 1. (4.7.8)

First, using (4.7.5) and (4.7.6) the total surplus ξt := ξh
t + ξ

f
t generated by a worker is

ξt = exp(Zt)
ht

h
− b− ν0

1+ ν1

h1+ν1
t

λt
−κw,tEt

�
β
λt+1

λt
ξh

t+1

�
+ (1−ω)Et

�
β
λt+1

λt
ξt+1

�
.

Since the total surplus is again independent of period t ’s wage, maximizing (4.7.8) is equivalent
to first solving for working hours that maximize the total surplus, then determining the shares
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ξh
t and ξ f

t which maximize the geometric mean given the amount of total surplus and finally
establishing the wage which implicates this sharing rule.

Working hours maximizing the total surplus must be strictly positive, since the marginal
product of labor is always strictly positive while the marginal disutility of working hours is zero
in ht = 0. Hence, the KKT conditions are

ν0hν1
t =

exp(Zt)
h

λt −µw
t , 0≤ ht ≤ 1, µw

t ≥ 0 and µw
t (1− ht) = 0. (4.7.9)

Note that the period value of unemployment due to leisure (over work effort) therefore satisfies

ν0

1+ ν1

h1+ν1
t

λt
=

exp(Zt)
1+ ν1

ht

h
−µw

t

ht

(1+ ν1)λt
. (4.7.10)

Moreover, the sharing rule for the total surplus which maximizes the geometric mean in 4.7.8
was shown to be

ξh
t = ϕξt and ξ f

t = (1−ϕ)ξt .

Proceeding along the same lines as in the baseline model, we hence can determine the wage by

ξh
t = ϕξt = ϕ(ξ

h
t + ξ

f
t )

⇔(1−ϕ)ξh
t = ϕξ

f
t

⇔(1−ϕ)
�
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�
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= ϕ exp(Zt)
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+ϕκw,t ξ̂

f
t . (4.7.11)

As in (4.2.25) for the baseline model, we can use κw,tξ
f
t = c Vt

1−Nt
to write

wt
ht

h
= ϕ exp(Zt)

ht

h
+ (1−ϕ)

�
b+

ν0

1+ ν1

h1+ν1
t

λt

�
+ϕc

Vt

1− Nt
.

Government Sector The government runs a balanced budget and we assume the value of all
unemployment activities contained in the parameter b to be just redistributed from taxes, i.e.

Tt = b(1− Nt).

Consequently, aside from leisure in the household’s utility unemployment yields no aggregate
value in the economy.
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General Equilibrium The system of equations defining the general equilibrium is similar to
the baseline model. Working hours are determined by the additional equations (4.7.9) and
the wage equation is adjusted to include the endogenous value from leisure (over work) of
unemployed members:

Ut = 1− Nt , (4.7.12)

Mt =
Ut Vt�

Uτt + V τt
� 1
τ

, (4.7.13)

κ f ,t =

¨
Mt
Vt

, if Vt > 0,

1, if Vt = 0,
(4.7.14)

κw,t =
Mt

Ut
, (4.7.15)

Nt+1 = (1−ω)Nt +Mt , (4.7.16)

Yt = exp(Zt)Nt
ht

h
, (4.7.17)

Yt = Ct + cV t, (4.7.18)

λt = C−ηt , (4.7.19)

ν0hν1
t =

exp(Zt)
h

λt −µw
t , 0≤ ht ≤ 1, µw

t ≥ 0, µw
t (1− ht) = 0, (4.7.20)

wt
ht

h
= ϕ exp(Zt)

ht

h
+ (1−ϕ)

�
b+

ν0

1+ ν1

h1+ν1
t

λt

�
+ϕc

Vt

1− Nt
, (4.7.21)

c = κ f ,t ξ̂
f
t +µ

f
t , (4.7.22)

µ f
t ≥ 0, (4.7.23)

Vt ≥ 0, (4.7.24)

µ f
t Vt = 0, (4.7.25)

ξ̂ f
t = Et

�
β
λt+1

λt

�
exp(Zt+1)

ht+1

h
−wt+1

ht+1

h
+ (1−ω) ξ̂ f

t+1

��
. (4.7.26)

There is one major difference from the previous models however. We can now analytically
solve for all the other period t variables in the model (and Nt+1) only dependent on ξ̂ f

t and, e.g.,
λt next to the state variables. Specifically, since nothing has changed in the search and matching
process and the firm’s decision problem compared to the baseline model, Vt , µt , Mt , κw,t and
κ f ,t can be computed the same way as before. Subsequently, one can determine working hours
from (4.7.20) by

ht =min

¨�
exp(Zt)λt

ν0h

� 1
ν1

, 1

«
and µw

t =
exp(Zt)

h
λt − ν0hν1

t ,

so that output Yt and consumption Ct can then be derived from (4.7.17) and (4.7.18). Finally
wt can be computed from (4.7.21).

This way the model’s remaining variables are pinned down dependent on λt , ξ̂
f
t and the state

variables in such way that all equilibrium conditions except (4.7.19) and (4.7.26) hold.



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 191

Solution Method We reduced the system of equations determining the model’s equilibrium to
two equations in two variables. Hence, the conditions give rise to two functional equations the
policy functions of ξ̂ f

t and λt have to mutually solve. We can easily adjust the solution methods
presented in section 4.3 to the present case.

More specifically let

gλ : [0,1]×R→ R and gξ̂ f : [0, 1]×R→ R
denote the (time invariant) policy functions for the marginal utility of consumption and the
present value of a worker in the next period to the firm, i.e.

λt = gλ(Nt , Zt) and ξ̂ f
t = gξ̂ f (Nt , Zt).

Then according to the preceding paragraph, gλ and gξ̂ f have to mutually solve

R1(gλ, gξ̂ f , x , z) := lhs1(gλ, gξ̂ f , x , z)− rhs1(gλ, gξ̂ f , x , z) = 0,

R2(gλ, gξ̂ f , x , z) := lhs2(gλ, gξ̂ f , x , z)− rhs2(gλ, gξ̂ f , x , z) = 0,
(4.7.27)

for all x ∈ [0,1], z ∈ R, with

lhs1(gλ, gξ̂ f , x , z) := gλ(x , z),

rhs1(gλ, gξ̂ f , x , z) := C−ηt ,
(4.7.28)

and

lhs2(gλ, gξ̂ f , x , z) := gξ̂ f (x , z),

rhs2(gλ, gξ̂ f , x , z) := E
�
β

gλ(Nt+1, Zt+1)
gλ(x , z)

�
ht+1

h
(exp(Zt+1)−wt+1) + (1−ω)gξ̂ f (Nt+1, Zt+1)

��

(4.7.29)

where Ct , Nt+1, Zt+1, ht+1 and wt+1 in rhs1 and rhs2 are short for the respective expressions of
the variables dependent on x = Nt , z = Zt , gξ̂ f (x , z) = ξ̂ f

t , gλ(x , z) = λt and the innovation
ε∼ N(0,σ2

ε
) as described.

In order to approximate the policy functions, we again adapt the mean weighted residual
methods from section 4.3 to the case of two policy functions solving the two above stated
functional equations. We do this analogous to the discussion in section 4.5.1 for the case of
Epstein-Zin preferences in the baseline model, where the household’s value function needed to
be approximated next to the policy function of ξ̂ f

t .

Calibration The calibration of the model’s parameters follows the calibration in the baseline
model. All fixed steady state values and calibrated parameters except for b remain as in table
4.1. We stick to ν1 = 2 equal to the previous model. Moreover, the total period value of
unemployment activities (over work effort) to the representative household in steady state is set
to remain at 0.85, i.e.

z = b+
ν0

1+ ν1

h1+ν1

λ
= 0.85.52

Different from the previous model, the value of unemployment to the representative household
due to leisure is already pinned down by the calibration of ν1 so that no more allocation to b and

52Note that although employed members now only work a fraction of total time, the productivity was adjusted in
such way that the output from a worker remains at the same level in steady state. The interpretation that the
total period value of unemployment activities equals 85% of a worker’s output in steady state hence carries over.
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Figure 4.38: Endogenous Hours: Approximation of Policy Function
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Figure 4.39: Endogenous Hours: Interpretable Euler Residuals
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ν0
1+ν1

h1+ν1

λ must be chosen. It follows from (4.7.10) that the value of unemployment attributed to
leisure must satisfy

ν0

1+ ν1

h1+ν1

λ
=

exp(Z)
1+ ν1

.

The fact that we set ν1 = 2 hence yields the value of leisure to be 1
3 and consequently b = 0.85− 1

3 .
In foresight, we had already chosen the same allocation for the value in the previous model
with leisure in the utility. We set working hours in steady state to h= 0.33 and determine the
parameter ν0 from (4.7.20).

Finally, the chosen calibration together with the normalization of the wage rate in the house-
hold’s budget constraint and of productivity in the production technology guarantees that all
numeric steady state values as well as the free parameter values remain the same as in the
baseline model.

Steady State The steady state can be computed the same way as in the baseline model only
with b replaced by b+ ν0

1+ν1

h1+ν1

λ = 0.85. The parameter ν0 is given by

ν0 =
exp(Z)λ

hν1+1
.

Dynamics of Employment Figure 4.38 pictures the obtained approximations to the policy
functions of λt and ξ̂ f

t by a cubic spline and by a second order perturbation. Since it proved
sufficient for simulations, we solved for the global solution only on the smaller domain [

¯
x , x̄]×

[
¯
z, z̄] = [0.7, 0.97]× [−0.21, 0.21] with dx = 61 and dz = 85 non-equidistant grid points. The

interpretable Euler residuals of the cubic spline solution for both functional equations defined
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Figure 4.40: Endogenous Hours: Dynamics of Employment
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in (4.7.27)—where the expectation in rhs2 is replaced by the Gauss-Hermite quadrature—are
shown in figure 4.39. For the functional equation R2 = 0 the interpretable Euler residuals remain
as defined in section 4.4.3, while they are computed analogously for the functional equation
R1 = 0 as follows. We compute C̃1 such way that

ĝλ,aλ(x , z) = C̃−η1 ( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z),

which yields

C̃1( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z) = ĝ
− 1
η

λ,aλ
(x , z).

The interpretable Euler residuals R̃1 are then defined by

R̃1 :=
C̃1( ĝλ,aλ , ĝξ̂ f ,a

ξ̂ f
, x , z)

C( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)
− 1=

 
ĝλ,aλ(x , z)

C( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)

!− 1
η

− 1=

=

 
lhs1( ĝλ,aλ , ĝξ̂ f ,a

ξ̂ f
, x , z)

rhs1( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)

!− 1
η

− 1.

A size of 10−9 for the interpretable Euler residuals in both functional equations indicates that
the global approximations are sufficiently accurate. The perturbation solution is close to the
global solution on the pictured domain, yet deviations between the two methods for lower rates
of employment already become visible.

We computed the series of equilibrium outcomes for 1200000 periods from the same sample of
pseudorandom iidN(0,σ2

ε
) distributed shocks to log LP. In figure 4.40 we show the employment

rate in the first 5000 periods, when we use either the global or the perturbation solution.
Additionally, the resulting histograms for the distribution of employment in the simulation
are displayed in figure 4.41, while table 4.32 summarizes some statistical measures of the
distribution. Compared to the baseline model the periods of extremely high unemployment
disappear. Unemployment does not rise above 20% in the simulation. However, this is higher
than for the model with leisure in the utility but fixed working hours, where unemployment did
not rise above 13.5%. Further, the volatility of employment increases compared to the previous
model with a standard deviation approximately 2.5 times as large, but still only approximately
17% of the standard deviation obtained in the baseline model.
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Figure 4.41: Endogenous Hours: Histograms for Distribution of Monthly Employment Rates
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Table 4.32: Endogenous Hours: Statistic Measures for Distribution of Monthly Employment Rates

N̄ max(Nt) min(Nt) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8981 0.9307 0.8009 0.8597 0.8742 0.8809 0.9001 0.9126 0.9154 0.9198 0.0128 -0.9372 4.4356
Perturbation 0.8982 0.9306 0.8301 0.8618 0.8747 0.8811 0.9001 0.9126 0.9154 0.9198 0.0125 -0.7978 3.7492

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for cumulative
distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment rate. Statistics are
computed from the outcome of a simulation of 1200000 (monthly) periods.

With no too huge deviations of the employment rate from steady state during the simulation,
the perturbation solution gives an accurate view of the model’s dynamics for the most part.
It fails to reproduce the highest unemployment rate as well as the skewness and kurtosis of
employment’s distribution in the simulation, yet the standard deviation and most quantiles differ
only marginally.53

Endogenous Disasters? We computed the number of disasters, the number of disaster periods
as well as the disaster probability, average disaster size and disaster duration for both consump-
tion and output for different threshold fractions. Moreover, we also computed the disaster
statistics for a consumption equivalent analogously to the one introduced in the preceding
model, i.e. we compute Ceq,t satisfying

C1−η
eq,t − 1

1−η =
C1−η

t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t ,

which yields

Ceq,t =

�
(1−η)

�
C1−η

t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t

�
+ 1

� 1
1−η

.

The results, along the respective outcomes for labor productivity, are summarized in table 4.33.
Neither output nor consumption did fall below 80% of its steady state value in the simulation.
In particular, for consumption declines by 10% or 15% from its steady state value did occur only
more rarely than equivalent declines in the exogenous LP process. Moreover, compared to the
model with leisure in the utility but fixed working hours from the previous section, declines in
both variables become less frequent despite the fact that unemployment in the present model
does rise somewhat higher. Variable working hours hence tend to additionally dampen the
occurrence of disasters in the model.
53Note however that for the case that all variables’ outcomes are computed from the second order approximations

to their policy functions, larger declines of LP still lead the model’s dynamics to leave their basin of attraction
under the second order approximation. The outcomes would at some point tend to ±∞.
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Table 4.33: Disasters in the Model with Endogenous Hours

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 343 1312 0.0860% 11.11% 3.83
Y 761 2854 0.1916% 11.26% 3.75
Ceq 264 1047 0.0662% 11.07% 3.97
LP 663 2086 0.1667% 11.05% 3.15

85% threshold
C 3 9 0.0008% 15.91% 3.00
Y 18 51 0.0045% 16.00% 2.83
Ceq 3 8 0.0008% 15.49% 2.67
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 0 0 0% – –
Y 0 0 0% – –
Ceq 0 0 0% – –
LP 0 0 0% – –

Second Moments of the Labor Market The second moments for the labor market are shown
in table 4.34. The average standard deviations of unemployment, vacancies and the labor
market tightness found from repeated simulations of the present model are more than double
the values found in the model with leisure in the utility but fixed working hours. Yet, while
introducing variable working hours increases the volatility on the labor market, the standard
deviations still lie substantially below the values from the baseline model.

Table 4.34: Labor Market Moments in the Model with Endogenous Hours

U V θ p = Y
N

sx 0.046 [0.034;0.060] 0.041 [0.035;0.049] 0.077 [0.062; 0.095] 0.011 [0.009;0.013]
sx
sp

4.084 [3.263;5.147] 3.698 [3.364;4.096] 6.889 [6.106; 7.798] 1.000 [1.000;1.000]
rx 0.853 [0.791;0.901] 0.609 [0.492;0.713] 0.804 [0.731;0.861] 0.696 [0.591;0.784]

Cross Correlations
U -0.651 [−0.743;−0.552] -0.871 [−0.916;−0.802] -0.742 [−0.825;−0.635]
V 0.913 [0.883; 0.940] 0.986 [0.985;0.989]
θ 0.966 [0.941;0.981]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies from

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

Comparison and Intuition Figure 4.42 shows the reactions in the model to a sudden and
lasting drop in log LP by two unconditional standard deviations starting from steady state.
With endogenous working hours the immediate impact of the shock on the value of a worker
to the firm ξ̂

f
t turns out to be stronger. This manifests even more clearly in the reaction of

open vacancies and job matches due to the high elasticities of these variables. Nonetheless,
the economy stabilizes in the subsequent periods in the same way. Unemployment declines by
approximately 4% compared to only about 1.4% in the case of fixed working hours. We will
now try to lay out the reasons for the differently sized impact of the shock to LP.

In the present model working hours start to increase following the shock. Equation (4.7.20)
shows that a decline in LP has two opposing effects on optimal working hours. On the one
hand side output per hour decreases, but at the same time an increasing marginal utility of
consumption raises its value. The second, positive effect is dominating the first, negative one
and working hours increase in response to the shock. Increasing working hours then yield three
effects on the present value of a worker in the next period to the firm which we want to illustrate
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Figure 4.42: Endogenous Hours: Effects of Drop in Labor Productivity
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separately. First, different from the previous model, there now is a second channel through
which the effect of a decline in productivity on ξ̂ f

t can be dampened next to the wage absorbing
the decline to some extent. We can write ξ̂ f

t as

ξ̂ f
t = Et

�∞∑
s=1

(1−ω)s−1β sλt+s

λt

ht+s

h
(exp(Zt+s)−wt+s)

�
,

where we have to keep in mind that the introduced normalization implies that exp(Zt) and wt
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denote the labor productivity and the wage rate per h working hours, respectively.54 Hence,
increasing working hours yield a higher value of a worker to the firm as long as productivity net
wage costs per hour remain positive. The second and third effect of increasing working hours
on ξ̂ f

t appear through the wage equation. The wage is determined by

wt
ht

h
= ϕ exp(Zt)

ht

h
+ (1−ϕ)

�
b+

ν0

1+ ν1

h1+ν1
t

λt

�
+ϕc

Vt

1− Nt
,

where the total period value of unemployment activities (in consumption units)

b+
ν0

1+ ν1

h1+ν1
t

λt

defines a worker’s reservation demand for his total wage income wt
ht
h in the period. Since hours

are increasing, the utility from leisure (over work effort) of unemployed members ν0
1+ν1

h1+ν1
t

does the same. However, the marginal utility of consumption is also increasing. In the period of
the shock the second effect prevails and the total period value of unemployment activities in con-
sumption units decreases, before partially climbing back up during the subsequent periods. The
third and last effect of increasing working hours manifests through the fact that the reservation
demand for the hourly wage wt does not depend on the whole period value of unemployment
activities, but on the value per h working hours, i.e.
�

b+
ν0

1+ ν1

h1+ν1
t

λt

�
h
ht

.

On top of the total period value of unemployment activities falling moderately below its initial
value, the fraction per working hour is decreasing even more.55 In particular, the net effect of
increasing working hours on the hourly reservation wage can be deduced from (4.7.10) as
�

b+
ν0

1+ ν1

h1+ν1
t

λt

�
h
ht
= b

h
ht
+

exp(Zt)
1+ ν1

. (4.7.30)

Since the period value b of unemployment activities next to leisure is fixed, it is declining when
converted to the value per working hour. Moreover, the value of unemployment due to leisure
ν0

1+ν1

h
1+ν1
t
λt

converted to the ratio per working hour moves proportional to LP. However, the value
of unemployment activities declines still less than in the model with fixed hours even when
converted to the value per working hour. Consequently, the hourly wage rate wt drops also less.
We want to stress again that the seemingly small differences in the decline of wt imply highly
different relative declines in productivity net wage costs of a worker. With endogenous hours
the hourly wage falls to approximately 0.837 in the long run so that output less wage per h
working hours falls from approximately 0.1 to 0.083 by 17%.56 Even when considering the total
output less total wage costs of a worker, i.e. ht

h (exp(Zt)−wt), the increase in working hours by
approximately 3.5% dampens the decline only slightly to 14%. With fixed hours on the other
hand, the wage declines slightly more to approximately 0.825 so that exp(Zt)−wt drops only
to 0.095 by 5%.

Summing up, the effects of increasing working hours are as following. First, there is a direct
positive effect on the value of a worker to the firm as long as productivity per hour exceeds the

54For simplification, we will also call wt simply the hourly wage rate without explicitly mentioning ’per h working
hours’ in the following.

55The same is also true for the last term in the wage equation.
56Remember that labor productivity falls to approximately 0.92.
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wage per hour. Second, the utility from leisure over work effort by unemployed members in
the period is increasing. Yet, when measured in consumption units the effect of an increasing
marginal utility of consumption dominates moderately. Third, the value of unemployment
activities per working hour is decreasing. The second effect implies the hourly wage to fall less
compared to the case of fixed hours despite the third effect. The higher wage has a comparatively
strong impact on the relative decline of productivity less wage costs per working hour which
also maintains when considering total output less total wage costs. This leads ξ̂ f

t to decline
more following the shock to LP with the laid out consequences for the unemployment rate.

However, consumption drops less than in the case of fixed working hours despite unemploy-
ment rising higher. This is explained mainly by the fact that employed members are working
more hours, but also by the fact that less output is wasted on vacancy posting.

4.7.3 Endogenous Hours and Search Intensity
In this subsection we will extend the labor market model with one further building block. When
unemployed, the household’s members now have to actively decide about their job seeking
effort in a fashion similar to Andolfatto (1996).

Search and Matching Different from the previous models unemployed members may now
adjust their job searching effort which has influence on their probability to find jobs. We denote
the time fraction unemployed members decide to spend seeking job offers by et ∈ [0, 1]. From
the firm’s perspective nothing changes and Vt denotes the amount of open vacancies posted as
before. The amount of resulting job matches is then given by

Mt :=min{M � et
e Ut , Vt

�
, Ut}, (4.7.31)

where the functional form of M remains as defined in (4.2.1). The parameter e denotes the
steady state value of et and serves as normalization to ease comparison with the baseline model.
Since the functional form of M only guarantees M( et

e Ut , Vt) ≤ min{ et
e Ut , Vt}, the amount of

matches is additionally bounded by Ut to ensure that it does not exceed the mass of unemployed
members no matter how much search activities eventually exceed their steady state level. Yet,
to simplify the upcoming analysis, we will assume Mt = M

� et
e Ut , Vt

�
in the following without

any further theoretical justification and only check afterward in the numerical solution that the
obtained policy function of matches never exceeds the unemployment rate.

We stick to the assumption of the constant fraction ω of workers separating from their job
each period so that the dynamics of employment remain as in (4.2.2). As before, we can assume
without any loss of generality that Ut > 0 for all t ∈ N. Yet, it might now be the case that the
representative household decides to not search for jobs at all in some period, i.e. it might be the
case that et = 0. We therefore define the average probability for an unemployed member to find
a job per (relative) time unit spent searching by

κw,t :=
Mt

et
e Ut

=
Vt�� et

e Ut

�τ
+ V τt

� 1
τ

, if et > 0,

and set

κw,t :=

�
1, if et = 0, Vt > 0;

0, if et = 0, Vt = 0.

Analogously, from the representative firm’s perspective the average probability of filling an open
vacancy is

κ f ,t :=
Mt

Vt
=

et
e Ut

�� et
e Ut

�τ
+ V τt

� 1
τ

, if Vt > 0,
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and we set

κ f ,t :=

�
1, if Vt = 0, et > 0;

0, if Vt = 0, et = 0.

Note that κw,t is continuous in (0,0) along the et-axis but not along the Vt-axis and vice versa
for κ f ,t .

Representative Household The representative household draws utility from consumption,
but faces disutility from the hours (measured as fraction of total time) ht ∈ [0,1] worked by
employed members as well as from time et spent searching for jobs by unemployed members.
More concretely, we assume the representative household’s lifetime utility to be

Et

�∞∑
s=0

β s

�
C1−η

t+s − 1

1−η − Nt+s
ν0

1+ ν1
h1+ν1

t+s − Ut+s
γ0

1+ γ1
e1+γ1

t+s

��
, η,ν0,ν1,γ0,γ1 > 0,η 6= 1.

The budget constraint in period t is

Ct + vt(St+1 − St+s)≤ wt Nt
ht

h
+ b(1− Nt) + dtSt − Tt ,

and from the household’s perspective the mass of employed members develops according to

Nt+1 = (1−ω)Nt +κw,t
et

e
Ut ,

where the household considers κw,t as exogenous. The representative household chooses
consumption, share holdings and the time unemployed members spend searching for jobs. He
does not decide about the hours employed members work, but they will still be the outcome
of a bargaining process with the representative firm. With Jh(Nt , St) as the household’s value
function, we can write

Jh(Nt , St) = max
Ct ,et St+1

C1−η
t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t − Ut
γ0

1+ γ1
e1+γ1

t +

+ βEt

h
Jh
�
(1−ω)Nt +κw,t

et

e
(1− Nt), St+1

�i

s.t. Ct ≤ wt Nt
ht

h
+ dtSt − vt(St+1 − St) + b(1− Nt)− Tt ,

and 0≤ et ≤ 1,

given Nt , St .

In addition to conditions (4.2.6) and (4.2.7) which remain as before, the following KKT condi-
tions determine the search intensity et of unemployed household members

γ0eγ1
t =

κw,t

e
βEt

�
∂ Jh

∂ N
(Nt+1, St+1)

�
+µh

1,t −µh
2,t , (4.7.32)

0≤ et ≤ 1, (4.7.33)

µh
1,t ≥ 0, µh

2,t ≥ 0, (4.7.34)

µh
1,t et = 0, µ2,t(1− et) = 0, (4.7.35)

where Utµ
h
1,t and Utµ

h
2,t are the KKT multipliers on the constraint of et .

57

57We can write the KKT multipliers this way, since Ut > 0.
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First, if the probability κw,t of finding a job and the expected value Et

�
∂ Jh

∂ N (Nt+1, St+1)
�

of a
marginal worker in the next period to the representative household both are strictly positive,
so must be the time et unemployed members search for jobs (otherwise the left hand side of
(4.7.32) would equal zero, but the right hand side would be strictly positive). On the other hand,
if κw,t = 0, then et = 0 (if κw,t = 0 and et > 0 then µh

1,t = 0 for (4.7.35) to hold and (4.7.32)
can not be fulfilled with µh

2,t ≥ 0), i.e. it can not be optimal for the representative household to
search a strictly positive amount of time for jobs, if there is no chance of finding one. Summing
up, as long as the value of a worker to the household remains strictly positive (which is the
case), hours spent for job searching will vanish if and only if κw,t = 0, i.e. if and only if the firm
posts no vacancies. The KKT conditions (4.7.32)-(4.7.35) are thus already equivalent to

γ0eγ1
t =

κw,t

e
βEt

�
∂ Jh

∂ N
(Nt+1, St+1)

�
−µh

2,t , , (4.7.36)

0≤ et ≤ 1, (4.7.37)

µh
2,t ≥ 0, (4.7.38)

µ2,t(1− et) = 0. (4.7.39)

The first term on the right hand side of equation (4.7.36) is the expected return from unem-
ployed household members investing an additional marginal time unit into job searching, i.e.
the average amount of new employments realized from the increase in search intensity times
the expected marginal utility gained from an additional employed member in the next period.
The optimality condition (4.7.36) states that unemployed household members invest time into
job searching activities up to the point, where this expected return equals the marginal disutility
from an additional marginal time unit spent searching for jobs, eventually capped by the upper
bound of available total time.

Proceeding along the lines from the previous sections, we can derive

∂ Jh

∂ N
(Nt , St) = λt

�
wt

ht

h
− b

�
−
�
ν0

1+ ν1
h1+ν1

t − γ0

1+ γ1
e1+γ1

t

�
+

+ βEt

�
∂ Jh

∂ N
(Nt+1)

�
1−ω− κw,t

et

e

��
.

Hence, the value of an employed (over an unemployed) member to the representative household
measured in consumption units, ξh

t := 1
λt

∂ Jh

∂ N (Nt , St), is

ξh
t = wt

ht

h
−
�

b+
ν0

1+ ν1

h1+ν1
t

λt
− γ0

1+ γ1

e1+γ1
t

λt

�
+
�

1−ω− κw,t
et

e

�
Et

�
β
λt+1

λt
ξh

t+1

�
.

(4.7.40)

The interpretation is analogous to the previous models. Only now, the period value of unem-
ployment activities (over work effort) to the household

zt := b+
ν0

1+ ν1

h1+ν1
t

λt
− γ0

1+ γ1

e1+γ1
t

λt

explicitly contains the endogenously determined disutility from searching for jobs if unemployed.
Note that with the introduced notation, equations (4.7.36)-(4.7.39) can also be written as

γ0eγ1
t =

κw,t

e
Et

�
β
λt+1

λt
ξh

t+1

�
λt −µh

2,t , 0≤ et ≤ 1, µh
2,t ≥ 0, µh

2,t(1− et) = 0. (4.7.41)
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Representative Firm On the representative firm’s side everything remains the same as in the
previous model. The KKT conditions are as in (4.2.16)-(4.2.19) and the value of a worker to the
representative firm is given by (4.7.6), while the present value of a worker in the next period
from the firm’s perspective remains as in (4.7.7).

Hours andWage Bargaining The same way as in the previous model, the hours worked and
the wage are determined jointly by the representative household and the representative firm
through a Nash bargain maximizing (4.7.8). Hence, since the only difference in ξh

t in the present

model in (4.7.40) compared to the previous model in (4.7.5) is that ν0
1+ν1

h
1+ν1
t
λt

is now replaced

by ν0
1+ν1

h
1+ν1
t
λt
− γ0

1+γ1

e
1+γ1
t
λt

and κw,t by et
e κw,t , while ξ f

t remains unchanged, the KKT conditions for
working hours (4.7.9) stay the same and the wage equation (4.7.11) becomes

wt
ht

h
= ϕ exp(Zt)

ht

h
+ (1−ϕ)

�
b+

ν0

1+ ν1

h1+ν1
t

λt
− γ0

1+ γ1

e1+γ1
t

λt

�
+ϕκw,t

et

e
ξ̂ f

t .

Note that the fixed ratio between the shares ξh
t and ξ f

t in total surplus, i.e. ξh
t =

ϕ

1−ϕξ
f
t , lets us

rewrite (4.7.41) as

γ0eγ1
t =

ϕ

1−ϕ
κw,t

e
ξ̂ f

t λt −µh
2,t , 0≤ et ≤ 1, µh

2,t ≥ 0, µh
2,t(1− et) = 0. (4.7.42)

Government Sector As before, the government runs a balanced budget and we assume the
value of all unemployment activities contained in the parameter b to be just redistributed from
taxes, i.e.

Tt = b(1− Nt).

General Equilibrium The system of equations determining the general equilibrium is similar
to the previous model. The additional equations (4.7.42) determine the search effort by
unemployed members in the economy. Further, the wage equation is adjusted to take the
disutility from search effort in the period value of unemployment activities into account. The
equilibrium in the model’s economy is thus defined by:

Ut = 1− Nt , (4.7.43)

Mt =





et
e Ut Vt

(( et
e Ut)τ+Vτt )

1
τ

, if (et , Vt) 6= (0,0)

0, if (et , Vt) = (0,0)
(4.7.44)

κ f ,t =





Mt
Vt

, if Vt > 0,

1, if Vt = 0, et > 0,

0, if Vt = 0, et = 0,

(4.7.45)

κw,t =





Mt
et
e Ut

, if et > 0,

1, if et = 0, Vt > 0,

0, if et = 0, Vt = 0,

(4.7.46)

Nt+1 = (1−ω)Nt +Mt , (4.7.47)

Yt = exp(Zt)Nt
ht

h
, (4.7.48)
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Yt = Ct + cVt , (4.7.49)

λt = C−ηt , (4.7.50)

γ0eγ1
t =

ϕ

1−ϕ
κw,t

e
ξ̂ f

t λt −µh
2,t , 0≤ et ≤ 1, µh

2,t ≥ 0, µh
2,t(1− et) = 0, (4.7.51)

ν0hν1
t =

exp(Zt)
h

λt −µw
t , 0≤ ht ≤ 1, µw

t ≥ 0, µw
t (1− ht) = 0, (4.7.52)

wt
ht

h
= ϕ exp(Zt)

ht

h
+ (1−ϕ)

�
b+

ν0

1+ ν1

h1+ν1
t

λt
− γ0

1+ γ1

e1+γ1
t

λt

�
+ϕκw,t

et

e
ξ̂ f

t , (4.7.53)

c = κ f ,t ξ̂
f
t +µ

f
t , (4.7.54)

µ f
t ≥ 0, (4.7.55)

Vt ≥ 0, (4.7.56)

µ f
t Vt = 0, (4.7.57)

ξ̂ f
t = Et

�
β
λt+1

λt

�
exp(Zt+1)

ht+1

h
−wt+1

ht+1

h
+ (1−ω) ξ̂ f

t+1

��
, (4.7.58)

We can again solve analytically for all the other period t variables in the model (and Nt+1)
dependent on λt , ξ̂

f
t and the state variables. However, there is an important assumption we must

make in the following. It would now always be mutually optimal for neither the unemployed
members to search for jobs nor for the firm to post any open vacancies, since given one party
chooses zero, the average matching probability for the other party is zero no matter the other
party’s choice. We will exclude this case in the following and only assume zero vacancies and
search effort in case no other equilibrium exists.

First, consider the case of Vt > 0 and µ f
t = 0. We already showed that et > 0 must hold in

this case (from (4.7.51), since κw,t > 0). Further, plugging (4.7.45) into (4.7.54) now yields

c =
et
e (1− Nt)

�� et
e (1− Nt)

�τ
+ V τt

� 1
τ

ξ̂ f
t ⇔

� et

e
(1− Nt)

�τ
+ V τt =

� et

e
(1− Nt)

�τ� ξ̂ f
t

c

�τ

⇔ Vt =
et

e
(1− Nt)

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

⇔ Vt
et
e (1− Nt)

=

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

.

Using ξ̂ f
t =

c
κ̂ f ,t

from (4.7.54), since κ f ,t > 0 and µ f
t = 0, we can write the first equation in

(4.7.51) equivalently as

γ0eγ1
t =

ϕ

1−ϕ
c
e

κw,t

κ f ,t
λt −µh

2,t =
ϕ

1−ϕ
c
e

Vt
et
e (1− Nt)

λt −µh
2,t =

ϕ

1−ϕ
c
e

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

λt −µh
2,t ,

so that the KKT conditions (4.7.51) are met if and only if

et =min






 ϕ

1−ϕ
c
γ0e

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

λt




1
γ1

, 1





and

µh
2,t =

ϕ

1−ϕ
c
e

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

λt − γ0eγ1
t .
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Then vacancies are given by

Vt =
1
e
(1− Nt)min






 ϕ

1−ϕ
c
γ0e

��
ξ̂

f
t

c

�τ
− 1

� 1
τ

λt




1
γ1

, 1





��
ξ̂

f
t

c

�τ
− 1

� 1
τ

.

Finally Vt > 0 and et > 0 are satisfied if and only if ξ̂ f
t > c.

Let us now consider the second case, where Vt = 0. We already showed that also et = 0 in
this case. From (4.7.45) and (4.7.46) it follows that κw,t = 0 and κ f ,t = 0 so that (4.7.54) is met
for µ f

t = c ≥ 0. As we already mentioned, this always yields a possible equilibrium indifferent
of the value of ξ̂ f

t . Expressed in words, the difference to the previous models is as follows. In
the previous models, where unemployed members were always passively searching for jobs and
unemployment was guaranteed to be strictly positive, the probability for the ’first’ marginal
vacancy posted in the economy being filled was 1. Hence, if ξ̂ f

t exceeded the cost c of posting a
vacancy, it could not be optimal for the firm to post no vacancies at all, since starting from zero
open vacancies a marginal additional vacancy would be filled with probability 1 and the return
would therefore exceed the cost of posting. This is different now, if the representative household
on the other side too puts no effort into searching for jobs. Then both, the representative firm
as well as the representative household would act mutually optimal given the other’s choice, if
neither the firm posts vacancies nor the household searches jobs. Nonetheless, we will assume
the representative household and firm to coordinate in such way that we suppose this case only,
if the first case is not possible, i.e. if and only if ξ̂ f

t ≤ c.
Specifying et and Vt the way derived above, equations (4.7.51) and (4.7.54)-(4.7.57) are

always met. We can then proceed to derive ht from (4.7.52) by

ht =min

¨�
exp(Zt)λt

ν0h

� 1
ν1

, 1

«
and µw

t =
exp(Zt)

h
λt − ν0hν1

t ,

and Mt , κ f ,t , κw,t , Nt+1, Yt , Ct and wt arise successively from (4.7.44), (4.7.45), (4.7.46),
(4.7.47), (4.7.48), (4.7.49) and (4.7.53). Summing up, by substituting the model’s variables
with the derived expressions in ξ̂ f

t , λt and the state variables, the system of equations defin-
ing the model’s equilibrium reduces to the two equations (4.7.50) and (4.7.58) in two (not
predetermined) variables.

Solution Method As in the previous model, we reduced the system of equations determining
the model’s equilibrium to two equations in two variables. Hence, the policy functions for the
marginal utility of consumption gλ : [0, 1]×R→ R and next period’s discounted marginal value
of a worker to the firm gξ̂ f : [0,1]×R→ R have to mutually solve the functional equations
(4.7.27)-(4.7.29), where the definitions of Ct , Nt+1, Zt+1, ht+1 and wt+1 dependent on x = Nt , z =
Zt , gξ̂ f (x , z) = ξ̂ f

t , gλ(x , z) = λt and the innovation ε∼ N(0,σ2
ε
) are adjusted according to the

preceding paragraph. The mean weighted residual methods can thus be applied as before.

Calibration The calibration of the model’s parameters follows the calibration in the baseline
model. All steady state values and calibrated parameters except for b remain as in table 4.1. We
stick to ν1 = 2 and assume γ1 = ν1. Moreover, the total period value of unemployment activities
to the representative household is set to remain at 0.85 in steady state, i.e.

z = b+
ν0

1+ ν1

h1+ν1

λ
− γ0

1+ γ1

e1+γ1

λ
= 0.85.58
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Figure 4.43: Endogenous Hours and Search Intensity: Approximation of Policy Function
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The value of unemployment to the representative household from leisure and the costs of
unemployment from job search, both measured in consumption units, are already pinned down
by the chosen values for ν1 and γ1. First, as in the previous model (4.7.52) determines the value
of unemployment due to leisure by ν0

1+ν1

h1+ν1

λ = exp(Z)
1+ν1

= 1
3 . Further, (4.7.54) in (4.7.51) yields

γ0eγ1
λ
=

ϕ

1−ϕ
c
e
κw

κ f

so that the cost of unemployment due to job searching activities is pinned down by

γ0

1+ γ1

e1+γ1

λ
=

ϕ

1−ϕ
c

1+ γ1

κw

κ f
≈ 0.0152.59

Consequently the value of unemployment activities still contained in b becomes b ≈ 0.85−
1
3 + 0.0152 ≈ 0.5319. As before, we set working hours in steady state to h = 0.33. We
follow Andolfatto (1996) in setting the steady state value of hours spent searching for jobs by
unemployed members to e = 1

2h. We then determine the parameters ν0 and γ0 for (4.7.52) and
(4.7.51) to hold.

Finally, the chosen calibration together with the normalization of search effort in the matching
function, of the wage rate in the household’s budget constraint and of productivity in the
production technology guarantees that all numeric steady state values and free parameter values
remain the same as in the baseline model.

Steady State The steady state can be computed the same way as in the baseline model only
now with b replaced by b+ ν0

1+ν1

h1+ν1

λ − γ0
1+γ1

e1+γ1

λ = 0.85. The parameters γ0 and ν0 are given by

γ0 =
ϕ

1−ϕ
c

eγ1+1

κw

κ f
λ and ν0 =

exp(Z)λ
hν1+1

.

Dynamics of Employment We present approximations to the policy functions of λt and ξ̂ f
t ,

computed either from the finite element method or from a second order perturbation approach,
in figure 4.43. We again solved for the global approximation only on the smaller, but still
sufficient, domain [

¯
x , x̄]× [

¯
z, z̄] = [0.7,0.97]× [−0.21,0.21] with dx = 61 and dz = 85 non-

equidistant grid points. The interpretable Euler residuals of the finite element solution for both

58Note that although employed members now only work a fraction of total time, the productivity was adjusted in
such way that the output from a worker remains at the same level in steady state. The interpretation that the
total period value of unemployment activities equals 85% of a worker’s output in steady state carries over.

59The parameter c, although not calibrated, is already determined as in equation (4.7.4).



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 205

Figure 4.44: Endogenous Hours and Search Intensity: Interpretable Euler Residuals
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Figure 4.45: Endogenous Hours and Search Intensity: Dynamics of Employment

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0.825
0.85

0.875
0.9

0.925

N
t

(E
m

pl
oy

m
en

t)

Second Order Perturbation
Cubic Splines & Gauss-Hermite

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0.8
0.9

1
1.1
1.2

t (Period (Month))

ex
p(

Z t
)

(L
P)

Figure 4.46: Endogenous Hours and Search Intensity: Histograms for Distribution of Monthly Employment Rates
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functional equations are shown in figure 4.44. The interpretable Euler residuals do not exceed
10−9 in magnitude so that the global solution should again be accurate enough for the upcoming
results. Deviations of the approximation by a second order perturbation from the global solution
appear for lower rates of employment.

Figure 4.45 displays the employment rate during the first 5000 periods in the simulation of the
model’s equilibrium outcomes from the same sample of pseudorandom iidN(0,σ2

ε
) distributed

shocks to log LP. The distribution of employment in the whole simulation for 1200000 periods
is illustrated by the histograms in figure 4.46 and by the statistical indicators summarized in
table 4.35. First, no huge drops in the employment rate occurred in the simulation. The
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Table 4.35: Endogenous Hours and Search Intensity: Statistical Measures for Monthly Employment Rates

N̄ max(Nt) min(Nt) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8975 0.9431 0.7764 0.8451 0.8641 0.8732 0.9001 0.9180 0.9219 0.9282 0.0179 -0.8443 4.0276
Perturbation 0.8978 0.9429 0.8251 0.8518 0.8660 0.8740 0.9001 0.9180 0.9218 0.9280 0.0170 -0.6130 3.1210

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for cumulative
distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment rate. Statistics are
computed from the outcome of a simulation of 1200000 (monthly) periods.

unemployment rate did not rise above 22.5% in the simulation. However, employment declines
slightly more than in the model with endogenous hours but exogenous search intensity from
the previous subsection. The standard deviation of employment increases by the factor 1.4, the
distribution is a little less left skewed with a lightly smaller kurtosis.The solution by perturbation
deviates up to 0.05 from the global solution, fails to reproduce the maximal unemployment rate
as well as the skewness and kurtosis of employment’s distribution, while the standard deviation
is similar.60

Endogenous Disasters? We computed the number of disasters, the number of disaster periods
as well as the disaster probability, average disaster size and disaster duration for consump-
tion, output and a consumption equivalent for different threshold fractions. The consumption
equivalent Ceq,t is now defined through

Ceq,t =

�
(1−η)

�
C1−η

t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t − Ut
γ0

1+ γ1
e1+γ1

t

�
+ 1

� 1
1−η

.

The results, along the respective values for labor productivity, are summarized in table 4.36.
Compared to the previous model extensions, disasters appear more frequently than in the model

Table 4.36: Disasters in the Model with Endogenous Hours and Search Intensity

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 558 2521 0.1404% 11.28% 4.52
Y 1091 4576 0.2759% 11.46% 4.19
Ceq 448 2052 0.1126% 11.25% 4.58
LP 663 2086 0.1667% 11.05% 3.15

85% threshold
C 13 48 0.0033% 16.03% 3.69
Y 45 139 0.0113% 16.04% 3.09
Ceq 12 32 0.0030% 15.72% 2.67
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 0 0 0% – –
Y 0 0 0% – –
Ceq 0 0 0% – –
LP 0 0 0% – –

with endogenous working hours but fixed search effort discussed in section 4.7.2, yet still
substantially less frequently than in the model with leisure in the utility but fixed working hours
from section 4.7.1.
60Note however that for the case that all variables’ outcomes are computed from the second order approximations

to their policy functions, larger declines of LP still lead the model’s dynamics to leave their basin of attraction
under the second order approximation so that the outcomes would at some point tend to ±∞.
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Second Moments of the Labor Market Table 4.37 summarizes the second moments of the
labor market. Unemployment and the labor market tightness become more volatile than in the

Table 4.37: Labor Market Moments in the Model with Endogenous Hours and Search Intensity

U V θ p = Y
N

sx 0.063 [0.049;0.080] 0.046 [0.039;0.054] 0.096 [0.077; 0.119] 0.011 [0.009;0.013]
sx
sp

5.888 [4.921;7.049] 4.320 [3.838;4.839] 8.989 [7.976;10.154] 1.000 [1.000;1.000]
rx 0.858 [0.799;0.904] 0.572 [0.455;0.678] 0.811 [0.740;0.867] 0.656 [0.542;0.754]

Cross Correlations
U -0.594 [−0.690;−0.496] -0.862 [−0.914;−0.782] -0.678 [−0.783;−0.550]
V 0.864 [0.832; 0.897] 0.986 [0.981;0.993]
θ 0.930 [0.886;0.961]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies of

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

model with endogenous hours but fixed search intensity, while the standard deviation of open
vacancies remains almost the same. However, the fluctuations remain substantially below the
values found in the data and also substantially below the values from simulations of the baseline
model.

Comparison and Intuition Figure 4.47 shows the response in the model to a sudden and
permanent drop in log LP by two unconditional standard deviations starting from steady state.
The induced decline in ξ̂ f

t following the shock is similar to the model with endogenous hours
but fixed search intensity from section 4.7.2. Vacancies and realized matches decline moderately
more and employment stabilizes at a slightly lower rate after some periods. We will try to lay
out the effects of variable search effort in the following.

First, the effort unemployed members put into job searching is declining in response to the
shock. The interpretation for the reaction can be deduced from (4.7.41). Expectations about the
value ξh

t+1 of employment from the household’s perspective are declining, since the total surplus
in the economy from a worker is declining at a lower productivity level. Moreover, with the firm
posting less vacancies, the probability κw,t for the household’s search efforts turning out to be
successful is also decreasing. However, on the other hand the marginal utility of consumption
will increase due to less consumption after the shock. The first two effects must be dominating
and unemployed members spend less time searching for jobs. As a result, the disutility γ0

1+γ1
e1+γ1

t

the representative household faces from job searching activities of an unemployed member is

decreasing and even more so when measured in consumption units, i.e. γ0
1+γ1

e
1+γ1
t
λt

. While the cost
of unemployment from job searching was contained in the fixed parameter b before, it is now
decreasing so that the total period value of unemployment activities declines less in the present
model. Yet, when converted to the value per h working hours the difference becomes small so
that the hourly wage rate differs only negligible between the models and the same is true for
the present value of a worker to the firm ξ̂

f
t . However, with less search effort of unemployed

members the average probability at which the firm can fill a vacancy is lower and leads the firm
to post fewer vacancies nonetheless. With less search effort and less vacancies fewer matches
can be realized and the unemployment rate becomes slightly higher than in the model with
fixed search effort.

In consequence, drops in output and consumption slightly regain in size compared to the model
with endogenous hours but fixed search effort. Yet, increasing working hours still significantly
dampen the drops in comparison to the model with leisure in utility but fixed working hours.
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Figure 4.47: Endogenous Hours and Search Intensity: Effects of Drop in Labor Productivity
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4.7.4 Endogenous Hours and Home Production
In the previous extensions of the model, the value of unemployment to the household from
home production was still assumed to be contained in the fixed parameter b and effects on
the household’s utility were neglected. We analyze the consequences if we endogenize home
production in this subsection.

Search and Matching We return to the assumption of unemployed members passively search-
ing for jobs. The matching process (4.2.1) and the dynamics of unemployment (4.2.2) as well
as the average probabilities of finding a job κw,t and filling an open vacancy κ f ,t are the same as
in the baseline model.

Representative Household Unemployed members of the representative household now may
decide about hours lt spent in home production.61 Following Kuehn et al. (2015), who note
that Aguiar et al. (2013) find no evidence for shocks to home production, we assume the
home production good Ch,t to be produced with a non-stochastic and linear home production

61It is assumed that all unemployed members can take part in home production while also searching for jobs.



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 209

technology, i.e.

Ch,t := X Ut lt , X > 0.

The representative household draws utility from a composite consumption good Ct consisting of
the market good Cm,t and the home produced good Ch,t , where

Ct =
�
aC e

m,t + (1− a)C e
h,t

� 1
e
, e ∈ (0,1), a ∈ (0, 1).

Moreover, the representative household faces disutility from working hours of the employed
members in market production as well as from working hours of unemployed members in home
production. Total lifetime utility is assumed to be

Et

�∞∑
s=0

β s

�
C1−η

t+s − 1

1−η − Nt+s
ν0

1+ ν1
h1+ν1

t+s − Ut+s
γ0

1+ γ1
l1+γ1
t+s

��
, η,ν0,ν1,γ0,γ1 > 0,η 6= 1.

The budget constraint in period t remains as before

Cm,t + vt(St+1 − St)≤ wt Nt
ht

h
+ b(1− Nt) + dtSt − Tt ,

and the mass of unemployed members from the household’s perspective evolves as in (4.2.5),
where the household considers κw,t as exogenous. The representative household chooses
consumption, share holdings and the time unemployed members spend working at home. He
does not decide about the hours employed members work, but they will still be subject to a
bargaining process with the firm. With Jh(Nt , St) as the household’s value function, we can
write

Jh(Nt , St) = max
Ct ,lt St+1

C1−η
t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t − Ut
γ0

1+ γ1
l1+γ1
t +

+ βEt

�
Jh
�
(1−ω)Nt +κw,t(1− Nt), St+1

��

s.t. Cm,t ≤ wt Nt
ht

h
+ dtSt − vt(St+1 − St) + b(1− Nt)− Tt ,

and Ch,t = X (1− Nt)lt ,

and Ct =
�
aC e

m,t + (1− a)C e
h,t

� 1
e
,

and 0≤ lt ≤ 1,

given Nt , St .

Since the marginal product from a working hour in home production as well as the marginal
utility drawn from the home production good are always strictly positive, while the marginal
disutility of a working hour in home production is zero in lt = 0, the optimal amount of lt must
always be strictly positive. Exploiting that the budget constraint holds with equality in optimum
and plugging the remaining constraints into the objective function, the KKT conditions for the
maximization problem on the right hand side thus are

λt = aC−ηt

�
Ct

Cm,t

�1−e

, (4.7.59)

γ0lγ1
t = (1− a)C−ηt

�
Ct

Ch,t

�1−e

X −µh
t =

1− a
a
λt

�
Cm,t

Ch,t

�1−e

X −µh
t , (4.7.60)

lt ≤ 1, µh
t ≥ 0, µh

t (1− lt) = 0, (4.7.61)
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where the condition for asset prices remains as in (4.2.7) and where λt denotes the Lagrange
multiplier on the budget constraint and Utµ

h
t the KKT multiplier on the constraint on working

hours in home production.62 The value of an employed (over an unemployed) member to the
representative household now becomes

∂ Jh

∂ N
(Nt , St) = λt

�
wt

ht

h
− b

�
−
�
ν0

1+ ν1
h1+ν1

t + (1− a)C−ηt

�
Ct

Ch,t

�1−e

X lt −
γ0

1+ γ1
l1+γ1
t

�
+

+ βEt

�
∂ Jh

∂ N
(Nt+1)

�
1−ω−κw,t

��
.

In market consumption units, ξh
t := 1

λt

∂ Jh

∂ N (Nt , St), we get

ξh
t = wt

ht

h
−
�

b+
ν0

1+ ν1

h1+ν1
t

λt
+

�
1− a

a

�
Cm,t

Ch,t

�1−e

X lt −
γ0

1+ γ1

l1+γ1
t

λt

��
+

+
�
1−ω−κw,t

�
Et

�
β
λt+1

λt
ξh

t+1

�
.

The interpretation for the value of an employed (over an unemployed) member to the represen-
tative household remains analogous to the previous models. Only now, the total period value of
unemployment activities turns out to be

zt = b+
ν0

1+ ν1

h1+ν1
t

λt
+

�
1− a

a

�
Cm,t

Ch,t

�1−e

X lt −
γ0

1+ γ1

l1+γ1
t

λt

�
.

Next to the fixed value in b, the value due to leisure over work effort in market production in the
second term as well as the value due to home production in brackets are explicitly contained. The
value of unemployment due to home production arises endogenously as the excess of marginal
utility derived from the output of the home produced good over disutility from working hours
in home production by an unemployed member—everything converted to market consumption
units, i.e.

1− a
a

�
Cm,t

Ch,t

�1−e

X lt −
γ0

1+ γ1

l1+γ1
t

λt
.

Using (4.7.60) we can simplify the value of unemployment due to home production either to

1− a
a

�
Cm,t

Ch,t

�1−e

X lt −
γ0

1+ γ1

l1+γ1
t

λt
=
γ0l1+γ1

t

λt
+
µh

t lt

λt
− γ0

1+ γ1

l1+γ1
t

λt
=
γ0γ1

1+ γ1

l1+γ1
t

λt
+
µh

t lt

λt

or equivalently to

1− a
a

�
Cm,t

Ch,t

�1−e

X lt −
γ0

1+ γ1

l1+γ1
t

λt
=

1− a
a

�
Cm,t

Ch,t

�1−e
γ1

1+ γ1
X lt +

µh
t lt

(1+ γ1)λt
.

The second equation states that as long as the constraint on lt remains non-binding, the value of
unemployment due to home production is the optimal output X lt of the home produced good
by an unemployed member adjusted for the disutility faced from work effort in the production
process with the factor γ1

1+γ1
and converted to units of the market good with the marginal rate of

substitution. The value must of course be positive, since the household acts optimal. We can
then rewrite the recursive equation for ξh

t as

ξh
t = wt

ht

h
−
�

b+
ν0

1+ ν1

h1+ν1
t

λt
+
γ0γ1

1+ γ1

l1+γ1
t

λt
+
µh

t lt

λt

�
+
�
1−ω−κw,t

�
Et

�
β
λt+1

λt
ξh

t+1

�
.

(4.7.62)
62We can write the KKT multiplier this way, since Ut > 0.
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Representative Firm Nothing changes on the side of the representative firm from the previous
model. The KKT conditions are as in (4.2.16)-(4.2.19). The marginal value of a worker to the
representative firm ξ f

t as well as next period’s discounted marginal value of an employee to the
firm ξ̂

f
t satisfy (4.7.6) and (4.7.7), respectively.

Hours and Wage Bargaining Working hours in market production and the wage are deter-
mined jointly by the representative household and the representative firm through the maxi-
mization of (4.7.8). Proceeding the same way as for the previous models, working hours in
market production must satisfy (4.7.9) while the wage equation now becomes

wt
ht

h
= ϕ exp(Zt)

ht

h
+(1−ϕ)

�
b+

ν0

1+ ν1

h1+ν1
t

λt
+
γ0γ1

1+ γ1

l1+γ1
t

λt
+
µh

t lt

λt

�
+ϕ

Vt

1− Nt
c. (4.7.63)

Government Sector As before, the government runs a balanced budget and we assume the
value of all unemployment activities still contained in the parameter b to be just redistributed
from taxes, i.e. Tt = b(1− Nt).

General Equilibrium The system of equations determining the general equilibrium remains
similar to section 4.7.2, only now augmented by equations (4.7.60) and (4.7.61) for working
hours in home production by unemployed members and by the wage equation explicitly taking
into account the value of unemployment to the household from home production:

Ut = 1− Nt , (4.7.64)

Mt =
Ut Vt�

Uτt + V τt
� 1
τ

, (4.7.65)

κ f ,t =





Mt

Vt
, if Vt > 0,

1, if Vt = 0,
(4.7.66)

κw,t =
Mt

Ut
, (4.7.67)

Nt+1 = (1−ω)Nt +Mt , (4.7.68)

Yt = exp(Zt)Nt
ht

h
, (4.7.69)

Yt = Cm,t + cV t, (4.7.70)

Ch,t = X Ut lt , (4.7.71)

Ct =
�
aC e

m,t + (1− a)C e
h,t

� 1
e
, (4.7.72)

λt = aC−ηt

�
Ct

Cm,t

�1−e

, (4.7.73)

γ0lγ1
t =

1− a
a
λt

�
Cm,t

Ch,t

�1−e

X −µh
t , lt ≤ 1, µh

t ≥ 0, µh
t (1− lt) = 0, (4.7.74)

ν0hν1
t =

exp(Zt)
h

λt −µw
t , 0≤ ht ≤ 1, µw

t ≥ 0, µw
t (1− ht) = 0, (4.7.75)
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wt
ht

h
= ϕ exp(Zt)

ht

h
+ (1−ϕ)

�
b+

ν0

1+ ν1

h1+ν1
t

λt
+
γ0γ1

1+ γ1

l1+γ1
t

λt
+
µh

t lt

λt

�
+ϕ

Vt

1− Nt
c,

(4.7.76)

c = κ f ,t ξ̂
f
t +µ

f
t , (4.7.77)

µ f
t ≥ 0, (4.7.78)

Vt ≥ 0, (4.7.79)

µ f
t Vt = 0, (4.7.80)

ξ̂ f
t = Et

�
β
λt+1

λt

�
exp(Zt+1)

ht+1

h
−wt+1

ht+1

h
+ (1−ω) ξ̂ f

t+1

��
, (4.7.81)

As in the previous model, we can analytically solve for all the other period t variables in the
model (and Nt+1) dependent on ξ̂ f

t and λt next to the state variables. Specifically, since the
search and matching process and the firm’s decision problem are the same as in the baseline
model, Vt , µt , Mt , κw,t and κ f ,t can be computed the same way. Moreover, one can determine
market working hours from (4.7.75) by

ht =min

¨�
exp(Zt)λt

ν0h

� 1
ν1

, 1

«
and µw

t =
exp(Zt)

h
λt − ν0hν1

t ,

so that market production Yt and market consumption Cm,t can then be derived from (4.7.69)
and (4.7.70). After obtaining these values, plugging (4.7.71) into (4.7.74) yields

γ0lγ1
t =

1− a
a
λt

� Cm,t

X Ut lt

�1−e

X −µh
t , 0≤ lt ≤ 1, µh

t ≥ 0, µh
t (1− lt) = 0,

which we can solve for hours worked in home production by

lt =min

(�
1− a

a

�Cm,t

Ut

�1−e X e

γ0
λt

� 1
1+γ1−e

, 1

)
and µh

t =
1− a

a
λt

� Cm,t

X Ut lt

�1−e

X − γ0lγ1
t .

The amount of the home produced good is then pinned down by (4.7.71) and the composite
consumption good by (4.7.72). Finally, wt can be computed from (4.7.76).

This way, the model’s remaining variables are determined dependent on λt and ξ̂ f
t in such

way that all equilibrium conditions except for (4.7.73) and (4.7.81) hold.

Solution Method The policy functions gλ : [0, 1]×R→ R and gξ̂ f : [0, 1]×R→ R for λt and

ξ̂
f
t , respectively, are characterized as the solution to the functional equations (4.7.27)-(4.7.29),

now with

rhs1(gλ, gξ̂ f , x , z) := aC−ηt

�
Ct

Cm,t

�1−e

, (4.7.82)

and where the definitions of Cm,t , Ct , Nt+1, Zt+1, ht+1 and wt+1 in rhs1 and rhs2 are adjusted
accordingly to the expressions of the respective variables dependent on x = Nt , z = Zt , gξ̂ f (x , z) =
ξ̂

f
t , gλ(x , z) = λt , and the N(0,σ2

ε
)-distributed innovation ε, from the preceding paragraph. The

mean weighted residual methods can be applied as before.
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Calibration The calibration of the model’s parameters follows the calibration in the baseline
model. Specifically, all the steady state values and calibrated parameters except for b remain as
in table 4.1. We follow Kuehn et al. (2015) in calibrating the additional parameters stemming
from endogenous home production. We set e = 0.85, a = 0.8 and determine X in such way
that output per hour in home production from an unemployed member equals output per hour
in market production from an employed member in steady state, i.e. X = exp(Z)

h . We stick to
ν1 = 2 and set γ1 = ν1. Moreover, the total period value of unemployment to the representative
household in steady state is set to remain at 0.85, i.e.

b+
ν0

1+ ν1

h1+ν1

λ
+
γ0γ1

1+ γ1

l1+γ1

λ
= 0.85.63 (4.7.83)

As in the already discussed models with endogenous working hours, using (4.7.75), the value
of unemployment from leisure (over market working effort) to the representative household
in steady state can again be written as ν0

1+ν1

h1+ν1

λ = exp(Z)
1+ν1

, and is thus pinned down to be 1
3 .

Nonetheless, without further assumptions we can now freely allocate the remaining value of
0.85− 1

3 to home production or other benefits of unemployment contained in the parameter b. We
choose b = 0.4 as in Shimer (2005) and consequently attribute a value of 0.85− 1

3−0.4≈ 0.117 to
home production. This allocation implies, as will be derived in the next paragraph, that working
hours in home production equal l ≈ 0.1497, i.e. unemployed members spend approximately half
the time of market working hours in home production. The parameters γ0 and ν0 are computed
from (4.7.74) and (4.7.75).

Finally, the chosen calibration together with the normalization of the wage rate in the house-
hold’s budget constraint and of productivity in the market production technology guarantees that
all numeric steady state values as well as the free parameter values remain the same as in the
baseline model. The additionally calibrated parameters and steady state values are summarized
in table 4.38.

Table 4.38: Hours and Home Production: Calibration

Variable Value Description

h 0.33 market working hours

Parameter Value Description

ν1 2 disutility market working hours
γ1 2 disutility home working hours
b 0.4 value of unemployment benefits
a 0.8 weight of market consumption in consumption bundle
e 0.85 parameter determining elasticity of substitution

between market and home production good

SteadyState The steady state values for all variables already included in the baseline model can
be computed the same way as in section 4.4.2, only with b replaced by b+ ν0

1+ν1

h1+ν1

λ +
γ0γ1
1+γ1

l1+γ1

λ =
0.85 in the respective equations. Working hours in home production can then be derived as

63 Note that although employed members now only work a fraction of total time, the productivity was adjusted in
such way that the output from a worker remains at the same level in steady state. The interpretation that the
total period value of unemployment activities equals 85% of a worker’s output in steady state hence carries over.
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Figure 4.48: Endogenous Hours and Home Production: Approximation of Policy Function
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follows. First, the value of unemployment due to home production can be transformed with
(4.7.74) and (4.7.71) to

γ0γ1

1+ γ1

l1+γ1

λ
=

γ1

1+ γ1

1− a
a

�
Cm

Ch

�1−e

X l =
γ1

1+ γ1

1− a
a

�
Cm

X Ul

�1−e

X l =

=
γ1

1+ γ1

1− a
a

�
Cm

U

�1−e

(X l)e

Hence, for (4.7.83) to hold, we can write

γ1

1+ γ1

1− a
a

�
Cm

U

�1−e

(X l)e = 0.85− b− exp(Z)
1+ ν1

,

which we can solve for working hours in home production by

l =
1
X

�
1+ γ1

γ1

a
1− a

�
U
Cm

�1−e �
0.85− b− exp(Z)

1+ ν1

�� 1
e

.

The steady state values of Ch, C and λ immediately follow from the home production technology
(4.7.71), the definition of the composite good (4.7.72) and (4.7.73). The parameters γ0 and ν0

can be derived from (4.7.74) and (4.7.75) by

γ0 = (1− a)C−η
C
Ch

1−e X
lγ1

and ν0 =
exp(Z)λ

hν1+1
.

Dynamics of Employment Figure 4.48 displays approximations to the policy functions of λt

and ξ̂ f
t from a finite element method and from a second order perturbation. We computed

the global approximation only on the smaller, but for simulations sufficient, domain [
¯
x , x̄]×

[
¯
z, z̄] = [0.7,0.97]× [−0.21,0.21] with dx = 61 and dz = 85 non-equidistant grid points. The

interpretable Euler residuals for the finite element solution in both functional equations that
define the policy functions are shown in figure 4.49. In order to compute the interpretable Euler
residuals for the functional equation R1 = 0 in the present case, we first set C̃1 such way that

ĝλ,aλ(x , z) = aC̃−η1 ( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)

 
C̃1( ĝλ,aλ , ĝξ̂ f ,a

ξ̂ f
, x , z)

Cm( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)

!1−e

,

which yields

C̃1( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z) =

 
ĝλ,aλ(x , z)

aC e−1
m ( ĝλ,aλ , ĝξ̂ f ,a

ξ̂ f
, x , z)

! 1
1−e−η
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Figure 4.49: Endogenous Hours and Home Production: Interpretable Euler Residuals
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Figure 4.50: Endogenous Hours and Home Production: Dynamics of Employment
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The interpretable Euler residuals R̃1,GH are then defined by

R̃1,GH :=
C̃1( ĝλ,aλ , ĝξ̂ f ,a

ξ̂ f
, x , z)

C( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)
− 1=




ĝλ,aλ(x , z)

aC−η( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)

�
C( ĝλ,aλ

, ĝ
ξ̂ f ,a

ξ̂ f
,x ,z)

Cm( ĝλ,aλ
, ĝ
ξ̂ f ,a

ξ̂ f
,x ,z)

�1−e




1
1−e−η

− 1

=

 
lhs1( ĝλ,aλ , ĝξ̂ f ,a

ξ̂ f
, x , z)

rhs1( ĝλ,aλ , ĝξ̂ f ,a
ξ̂ f

, x , z)

! 1
1−e−η

− 1.

The magnitude of 10−9 for the Euler residuals in both of the functional equations indicates that
the global approximations provide a satisfactory accuracy. On the other hand, the approximations
by a second order perturbation again show increasing deviations from the global solution for
lower rates of employment.

Figure 4.50 displays the outcome in the series of employment for the first 5000 periods in
the simulation of the model’s equilibrium outcomes using the same sample of pseudorandom
iidN(0,σ2

ε
) distributed shocks to log LP. Additionally, the distribution of employment in the

simulation is summarized by the histograms in figure 4.51 and by the statistical measures in
table 4.39. The results turn out very similar to the results in the model with endogenous hours
(see table 4.32). Hence, adding home production to the model changes the distribution of
employment only marginally.
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Figure 4.51: Endogenous Hours and Home Production: Histograms for Distribution of Monthly Employment
Rates
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(b) Distribution of Employment computed by Sec-
ond Order Perturbation

Table 4.39: Endogenous Hours and Search Intensity: Statistic Measures for Distribution of Monthly Employment
Rates

N̄ max(Nt) min(Nt) q0.01 q0.05 q0.1 q0.5 q0.9 q0.95 q0.99 sN vN wN

Cubic Spline 0.8981 0.9311 0.7971 0.8594 0.8740 0.8808 0.9000 0.9128 0.9156 0.9201 0.0130 -0.9343 4.4566
Perturbation 0.8982 0.9309 0.8294 0.8619 0.8746 0.8810 0.9000 0.9128 0.9155 0.9200 0.0126 -0.7815 3.7107

Notes: N̄=average employment rate, max(Nt)=maximal employment rate, min(Nt)=minimal employment rate, qp(Nt) =p-quantile for cumulative
distribution of employment rate, sN , vN , wN=standard deviation, skewness, kurtosis of the cumulative distribution of employment rate. Statistics are
computed from the outcome of a simulation of 1200000 (monthly) periods.

EndogenousDisasters? Table 4.40 summarizes the number of disasters, the number of disaster
periods as well as the disaster probability, average disaster size and disaster duration for the
consumption bundle, for market output and for market consumption. Note however that

Table 4.40: Disasters in the Model with Endogenous Hours and Home Production

number of disasters total number of disaster periods disaster probability average disaster size average disaster duration

90% threshold
C 189 709 0.0473% 10.99% 3.75
Y 978 3965 0.2469% 11.45% 4.05
Cm 520 2194 0.1307% 11.27% 4.22
Ceq 135 544 0.0338% 10.99% 4.03
LP 663 2086 0.1667% 11.05% 3.15

85% threshold
C 1 1 0.0003% 15.49% 1
Y 38 121 0.0095% 16.10% 3.18
Cm 15 43 0.0038% 15.92% 2.87
Ceq 1 1 0.0003% 15.02% 1
LP 5 10 0.0013% 15.68% 2.00

80% threshold
C 0 0 0% – –
Y 0 0 0% – –
Cm 0 0 0% – –
Ceq 0 0 0% – –
LP 0 0 0% – –

measuring disasters by declines of market output or market consumption now also neglects
potential increases in the home produced good during periods of higher unemployment. Since
productivity in the home production technology is deterministic, it might even be reasonable
to substitute production of the market good to some extent with the home produced good
during periods where productivity in the market technology becomes low. Moreover, we also
computed the disaster statistics for a consumption equivalent, which also takes the household’s
disutility from work effort in both market and home production into account, i.e. we compute
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Ceq,t satisfying

C1−η
eq,t − 1

1−η =
C1−η

t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t − Ut
γ0

1+ γ1
l1+γ1
t ,

which yields

Ceq,t =

�
(1−η)

�
C1−η

t − 1
1−η − Nt

ν0

1+ ν1
h1+ν1

t − Ut
γ0

1+ γ1
l1+γ1
t

�
+ 1

� 1
1−η

.

There are no declines by more than 20% from steady state in neither one of the variables. More-
over, the consumption bundle declined only once during the 400000 periods in the simulation
below 85% of its steady state value. Declines in the consumption bundle or the consumption
equivalent appear even significantly less frequently than declines in the exogenous LP.

Second Moments of the Labor Market We show the second moments of the labor market in
table 4.41. The results are again very similar to the results in table 4.34 for the model with

Table 4.41: Labor Market Moments and in the Model with Endogenous Hours and Home Production

U V θ p = Y
N

sx 0.047 [0.035;0.061] 0.042 [0.036;0.050] 0.079 [0.063; 0.097] 0.012 [0.010;0.014]
sx
sp

3.958 [3.196;4.939] 3.612 [3.312;3.980] 6.693 [5.999; 7.487] 1.000 [1.000;1.000]
rx 0.849 [0.787;0.898] 0.597 [0.478;0.704] 0.798 [0.724;0.858] 0.707 [0.606;0.792]

Cross Correlations
U -0.644 [−0.738;−0.543] -0.868 [−0.914;−0.797] -0.766 [−0.839;−0.671]
V 0.911 [0.881; 0.939] 0.980 [0.977;0.983]
θ 0.975 [0.958;0.986]

Notes: U=unemployment, V=vacancies, θ = V
U=labor market tightness, p=output per worker, sx=standard deviation of variable X , rx=first

order autocorrelation of variable X . All moments are computed from the cyclical components of the HP-filtered (λ= 1600) relative deviations

from the mean, i.e. as the cyclical component of the series X t−X̄
X̄ . The table shows the average as well as the 2.5% and 97.5% quantilies from

5000 simulations of the model’s equilibrium outcomes for 666 periods converted to 222 quarterly observations after 1000 throw-away periods.

endogenous hours but without home production. The standard deviations are noticeably lower
than in the baseline model and the values found in data all lie above the 97.5% quantiles from
repeated simulations of the model.

Comparison and Intuition In order to provide some intuition about the effects in the economy
during a scenario, which led to a huge decline in the employment rate in the baseline model,
we show the reactions to a sudden and lasting drop in log LP by two unconditional standard
deviations from steady state in figure 4.52. Most importantly, we conclude that the employment
rate stabilizes after some periods, dropping only by approximately 4%. The size of all effects in
the model following the shock to LP is very similar to the model with endogenous hours but
without home production from section 4.7.2. We proceed to describe the implications of the
now endogenous home production in the following.

First, in the period the shock hits the economy, the household’s unemployed members increase
the hours worked in home production. The reason can be identified from the first equality in
the optimality condition in (4.7.60). The shock lowers output and consumption of the market
good implying ceteris paribus an increase in the marginal utility of the home produced good
on the right hand side.64 Hence, with a fixed amount of unemployed members taking part
in home production, the hours lt must increase in t = 2. In the subsequent periods growing

64Since ∂ u
∂ Cm,t Ch,t

= a(1− a)(1−η− e)C−η−1
t

�
Ct

Cm,t

�1−e � Ct
Ch,t

�1−e
< 0, where u denotes the household’s within period

utility.
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Figure 4.52: Endogenous Home Production: Effects of Drop in Labor Productivity
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unemployment yields market consumption to decline even further, but also allows for more
output of the home produced good with the same amount of time spent working in home
production by the unemployed members. The effects of decreasing market and increasing home
production due to higher unemployment on the marginal utility of Ch,t are opposite, but turn
out to have almost zero net effect after the second period. Consequently, working hours in home
production remain essentially constant from there on.

The implications for the period value of unemployment activities are then as follows. The
value of unemployment stemming from home production and measured in market consumption
units is now endogenously determined by the excess of the value from consumption of the output
over the cost of effort put into production of the home good, i.e. (as long as the constraint on lt

is not binding) by

1
λt

�
(1− a)C−ηt

�
Ct

Ch,t

�1−e

X lt −
γ0

1+ γ1
l1+γ1
t

�
.

Using (4.7.74), one can also rewrite the above stated value of home production as

1
λt

�
(1− a)C−ηt

�
Ct

Ch,t

�1−e

X lt −
γ0

1+ γ1
l1+γ1
t

�
=

γ1

1+ γ1

1− a
a

�
Cm,t

Ch,t

�1−e

X lt .
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As already described, in the period of the negative shock to LP, the increasing marginal utility of
the home produced good renders it optimal for unemployed members to invest more time into
home production. Consequently, the output in home production from an unemployed member,
i.e. the last term on the right hand side, is increasing. But at the same time the MRS of the
market good with the home production good is decreasing. Nonetheless, it turns out that the
first effect dominates and the value of home production in units of the market consumption
good increases in the period of the shock. However, since the MRS between the two goods
continues to decrease while working hours in home production remain essentially unchanged in
the periods following the shock, the effect eventually turns. The value of unemployment due to
home production in units of the market consumption good begins to decline and eventually falls
below the steady state value. Consequently, compared to the previous models the total period
value of unemployment activities declines less at first, but decreases more in the following
periods. However, the differences are only small. Moreover, working hours in market production
do not increase as much as in the previous models, since part of the market good is substituted
by the home production good. Once the total period value of unemployment is converted to the
value per working hour, the differences between the models almost vanish. This implies that the
hourly wage reacts almost the same and so does ξ̂ f

t as well as vacancies and realized matches.
Finally, during recessions with increasing unemployment, the decline of market consumption

in the consumption bundle can now partly be compensated by an increase in the home production
good. Thus, if disasters are measured in the consumption bundle, they become even less frequent
and less pronounced.

4.7.5 Equity Premium in the Extensions
Lastly, we also want to present the implications of the introduced extensions for the return
rates in the labor market model. The baseline model, at least when combined with Epstein-Zin
preferences, generated a sizeable equity premium. We check whether the extended models are
still capable to reproduce this result despite the fact that disasters in the size observed in the
baseline model disappear.

Epstein-Zin Preferences We also consider the case of Epstein-Zin preferences for all of the
model extensions. We therefore generalize the household’s value function from (4.5.1) in the
baseline model to

J̃h(Nt , Zt , St) = max
Ct ,St+1


(1− β)u1− 1

ψ

t + β
�
Et

��
J̃h (Nt+1, Zt+1, St+1)

�1−γ�� 1− 1
ψ

1−γ




1

1− 1
ψ

s.t. Ct ≤ . . . ,

where ut denotes the within period utility function, which will be specified immediately. We
thereby restrict ourselves to the case where ut is strictly positive in order to guarantee that J̃h as
stated above is well defined. Following e.g. Rudebusch and Swanson (2012), we define

Jh(Nt , Zt , St) :=
�
J̃h(Nt , Zt , St)

�1− 1
ψ

so that the recursive formulation for the household’s value function can equivalently be written
either as

Jh(Nt , Zt , St) = max
Ct ,St+1

(1− β)u1− 1
ψ

t + β

�
Et

��
Jh (Nt+1, Zt+1, St+1)

� 1−γ
1− 1
ψ

�� 1− 1
ψ

1−γ

s.t. Ct ≤ . . . ,
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in case of ψ > 1 or with max replaced by min in case of ψ ∈ (0,1). To allow for a more
convenient notation, we further introduce the parameter

α := 1− 1− γ
1− 1

ψ

and write

Jh(Nt , Zt , St) = max/min
Ct ,St+1

(1− β)u1− 1
ψ

t + β
�
Et

��
Jh (Nt+1, Zt+1, St+1)

�1−α�� 1
1−α

s.t. Ct ≤ . . . ,

We stick to a coefficient of relative risk aversion of γ = 10 and an elasticity of intertemporal
substitution of ψ= 1.5 as in Bansal and Yaron (2004) and Kuehn et al. (2012) so that α= 28.
Moreover, we choose the within period utility functions for the model extensions as summarized
in table 4.42. Note however that the premise that ut must be strictly positive may be violated by

Table 4.42: Overview: Within Period Utility Functions

Model Within Period Utility

Leisure in Utility ut =

�
C

1− 1
ψ

t

1− 1
ψ

− ν0
1+ν1

N1+ν1
t

� 1

1− 1
ψ

Endogenous Hours ut =

�
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1− 1
ψ

t

1− 1
ψ

− Nt
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h1+ν1

t

� 1
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ψ

Endogenous Hours and Search Intensity ut =
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ψ

t

1− 1
ψ

− Nt
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e1+γ1

t

� 1

1− 1
ψ

Endogenous Hours and Home Production ut =

�
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1− 1
ψ

t

1− 1
ψ

− Nt
ν0

1+ν1
h1+ν1

t − Ut
γ0

1+γ1
l1+γ1
t

� 1

1− 1
ψ

the chosen specifications (ut may not even be well-defined for arbitrary values ofψ ∈ R>0 \{1}).
We therefore follow Rudebusch and Swanson (2008) and assume that consumption does not fall
below some subsistence level which guarantees positivity of the terms in brackets and therefore
of ut . Yet, we do not impose this additional restriction for the optimality conditions but only
check afterwards whether the assumption is fulfilled by the obtained approximations.65

Following the explanations from section 4.5.1 for the baseline model, the Epstein-Zin specifi-
cation for the household’s preferences yields the same equilibrium conditions as with standard
preferences only with an adjusted stochastic discount factor. The stochastic discount factor can
be derived as follows. Let (1− β)λt denote the Lagrange multiplier for the household’s budget
constraint, then, for instance, the first order condition for St+1 becomes

(1− β)λt vt = β
1

1−α
�
Et

��
Jh (Nt+1, Zt+1, St+1)

�1−α�� 1
1−α−1 ·

·Et

�
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�−α ∂ Jh

∂ S
(Nt+1, Zt+1, St+1)

�
=

= Et


β


 Jh (Nt+1, Zt+1, St+1)�
Et

�
(Jh (Nt+1, Zt+1, St+1))

1−α�� 1
1−α



−α
∂ Jh

∂ S
(Nt+1, Zt+1, St+1)


 .

65More specifically, we check whether the condition is fulfilled on the domain the approximation was computed
on, which is throughout broad enough to never be left in simulations.
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Since the envelope theorem further yields

∂ Jh

∂ S
(Nt , Zt , St) = (1− β)λt(vt + dt)

the Euler condition for share prices now reads

vt = Et


β


 Jh (Nt+1, Zt+1, St+1)�
Et

�
(Jh (Nt+1, Zt+1, St+1))

1−α�� 1
1−α



−α
λt+1

λt
(dt+1 + vt+1)


 .

Noting that the household’s value function must be independent of the number of outstanding
shares in equilibrium (neither total dividend payments less expenditures on shares, dtSt −
vt(St+1 − St) =

(4.2.12)
πt , nor the firm value, FVt = St+1vt = Nt+1ξ̂

f
t , depend on the amount of

outstanding shares), the stochastic discount factor is hence defined by

M EZ
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,

where

λt = C
− 1
ψ

t

for the model’s variants without home production and

λt = aC
− 1
ψ

t

�
Ct

Cm,t

�1−e

for the version with endogenous home production.6667

Return on Equity For the model with leisure in the utility but fixed working hours the return
on equity remains as in equation (4.5.3). Observe further that the only changes in ξ̂ f

t in equation
(4.7.7) for variable working hours compared to (4.2.21) for fixed working hours is the fact that
exp(Zt) and wt are replaced by exp(Zt)

ht
h and wt

ht
h , respectively. Hence, proceeding analogously

as in (4.5.3) implies that the return on equity becomes

Re
t+1 =

exp(Zt+1)
ht+1

h −wt+1
ht+1

h + (1−ω)ξ̂ f
t+1

ξ̂
f
t

for the models from subsections 4.7.2, 4.7.3 and 4.7.4 as well as for their variations with
Epstein-Zin preferences.

66Although the Lagrange multiplier on the household’s budget constraint would be (1−β)λt , the factor 1−β only
serves as scaling for the household’s lifetime utility and therefore cancels out in all equilibrium conditions as
well as in the stochastic discount factor.

67For numerical reasons we again use the following representation in the accompanying Matlab code

M EZ
t,t+1 =


 Jh

t+1

�
Jh

t�
Et

��
Jh

t+1

�
Jh

t

�1−α�� 1
1−α



−α
λt+1

λt
.



CHAPTER 4 SEARCH FRICTIONS IN THE LABOR MARKET AND ENDOGENOUS ECONOMIC DISASTERS 222

Risk Free Return We compute the risk free rate under standard or Epstein-Zin preferences, i.e.

R f
t =

1

Et

�
β
λt+1
λt

� or R f
t =

1

Et

�
M EZ

t,t+1

� ,

again by Gauss-Hermite quadrature with 13 nodes.

Equity-Premium The equity premium in the model is computed as the average excess return
on equity beyond the risk free rate, Re

t+1 − R f
t .

Results We summarize the average annualized return rates found in the model extensions in
table 4.43. First and most importantly, even when Epstein-Zin preferences are assumed, neither

Table 4.43: Annualized Equity Premium in the Model Extensions

Leisure in Utility Endogenous Hours Endogenous Hours and Search Intensity Endogenous Hours and Home Production

η= 2
((R̄ f )12 − 1)100% 3.98 4.05 4.06 4.06
((R̄e)12 − 1)100% 4.07 4.19 4.18 4.20
EP 0.09 0.13 0.11 0.13

EZ Preferences (RRA=10, EIS=1.5)
((R̄ f )12 − 1)100% 4.04 4.02 4.02 4.02
((R̄e)12 − 1)100% 4.36 4.49 4.51 4.43
EP 0.31 0.46 0.46 0.40

Notes: R̄ f = 1
T−1

∑T−1
t=1 R f

t=average monthly risk free return rate, R̄e = 1
T−1 =

∑T−1
t=1 Re

t=average monthly return on equity, EP=((1+R̄e−R̄ f )12−1)100%.
All return rates are computed from the outcome of a simulation of 1200000 (monthly) periods.

of the extensions can generate a sizeable equity premium. Compared to table 4.8, the equity
premia in the extensions turn out lower by an order of magnitude than what can be observed in
the data. The risk free rate in the model extensions is almost four times as large as the empirical
counterpart.

Figure 4.53 shows the monthly equity premium (as a decimal number) in the model’s exten-
sions with Epstein-Zin preferences. Compared to the baseline model in figure 4.15b, the equity
premium turns out lower by an order of magnitude around the steady state. To provide some
reasoning, table 4.44 additionally summarizes the variability in the lottery over the stochastic
discount factor and over the return on equity when the economy is in the risky steady state.
The baseline model, giving rise to extreme disasters, generated a highly risky lottery regarding

Table 4.44: Intuition Equity Premium: Model Extensions with Epstein-Zin Preferences

Et

�
M EZ

t,t+1

� r
Var

�
M EZ

t,t+1

� q
Var

�
Re

t+1

�
Corr

�
M EZ

t,t+1, Re
t+1

�
Et

�
Re

t+1 − R f
t

�

Baseline 0.9991 0.3572 0.0250 -0.9519 0.85%
Leisure in Utility 0.9967 0.0171 0.0152 -0.9994 0.03%
Endogenous Hours 0.9967 0.0198 0.0196 -0.9992 0.04%
Endogenous Hours and Search Intensity 0.9967 0.0220 0.0179 -0.9992 0.04%
Endogenous Hours and Home Production 0.9967 0.0183 0.0183 -0.9994 0.03%

next period’s lifetime utility and therefore a highly variable stochastic discount factor. Although
disasters in the model extensions with Epstein-Zin preferences appear somewhat more frequently
than in the discussed counterparts with standard preferences, they are substantially less frequent
and less pronounced than in the baseline model. The standard deviation of the stochastic
discount factor declines by a factor of approximately 30 and the model can no longer produce a
considerable equity premium.
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Figure 4.53: Monthly Equity Premium in the Model Extensions with Epstein-Zin Preferences
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4.8 Conclusion
Employing the calibration strategy proposed by Hagedorn and Manovskii (2008) in a standard
search an matching model significantly increases the volatility of the labor market compared
to the results reported by Shimer (2005) for the standard calibration. However, the higher
volatility of the labor market is primarily caused by infrequent but extreme declines in the
employment rate as opposed to more frequent but modestly sized deviations. Consequently, in
order to appropriately display the model’s dynamics, globally accurate approximation methods
must be used. A second order perturbation solution can not adequately replicate these results.

The fact that the model produces rare but severe economic downturns suggests that the
model can potentially contribute to the strand of literature which explains a sizeable equity
premium through the possibility of economic disasters. Yet, with standard additive time separable
preferences this is not the case. Economic downturns may occur only gradually over a longer
time span of decreasing employment, whereas uncertainty about consumption one period ahead
is only very limited. Consequently, the volatility of the stochastic discount factor in the model
remains too low to produce an equity premium of the empirically observed size. When Epstein-
Zin preferences are introduced into the model, the equity premium rises substantially. In this
case, the stochastic discount factor also includes the lottery over the household’s lifetime utility
in the next period which exhibits much higher risk. Dependent on the realization of the shock to
labor productivity, the prospects about future consumption in the longer run may vary drastically.
The volatility of the stochastic discount factor and therefore the equity premium in the model
increase significantly.

We found the interaction of three factors essential for the occurrence of steep drops in the
employment rate. First, a high and fixed period value of unemployment activities implies
a high and fixed reservation wage a worker always demands. The wage is already close
to labor productivity in steady state so that small fluctuations in productivity which are not
likewise absorbed by adjustments of the wage imply high relative changes in the excess of labor
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productivity over the wage and consequently in the value of a worker to the firm. Second, the
elasticities of open vacancies and job matches become higher the closer the present value of a
worker to the firm falls to the costs of posting open vacancies. Third, during periods of rising
unemployment the present value of a worker to the firm will decline even further due to stronger
discounting of future profits, realized job matches react even more sensible and continue to
fall even more, unemployment will rise further and so on until labor productivity sufficiently
recovers.

The high and fixed period value of unemployment activities plays a particularly important
role for the mechanism. A worker’s reservation wage does not adjust indifferent from the fact
how much unemployment rises and how low consumption falls. However, this changes once
leisure is introduced into the utility function in such way that the marginal rate of substitution
with the consumption good is not constant. During a recession with decreasing consumption
and increasing aggregate free time, the value of unemployment from leisure measured in units
of the consumption good for which a worker demands compensation declines. The wage can
adjust more, the value of a worker to the firm does not fall as much and extreme declines in the
employment rate do not occur anymore. The result maintains if working hours and job search
effort are determined endogenously. Further, working hours in the model are increasing during
a recession so that declines in output and consumption are dampened even more. Moreover,
consumption of the market good is partially substituted with the home produced good once
home production is added to the model.

Since neither of the model’s extensions displays huge drops in the employment rate, the
volatility of the labor market decreases substantially compared to the baseline model. Moreover,
the extensions can no longer generate a sizeable equity premium indifferent from the fact
whether standard preferences or Epstein-Zin preferences are assumed. The ability of the search
and matching model calibrated in a fashion similar to Hagedorn and Manovskii (2008) to
explain the volatility of the labor market as well as a sizeable equity premium in a plausible
way critically hinges on one’s view regarding the following two points: the credibility that
disasters in the size and with the frequency observed for the baseline model may appear (and
were also responsible for the volatility observed on the labor market) and the plausibility that
high wage demands—as the main factor triggering the huge declines—persist during such
extreme recessions. Such high and inflexible wage demands cannot be explained anymore in
the framework of the model extensions but would need alternative justification. Note that even
if the workers’ reservation wage is understood to be always high and to not adjust according
to the state of the economy because a constant MRS of h between leisure and consumption is
assumed by specifying the within period utility to log(Ct + hUt), h> 0, where b+ h= 0.85 as
in the appendix of Kuehn et al. (2015), it is questionable if a sizeable equity premium can be
reproduced even when using Epstein-Zin preferences. The constant MRS (if not set too low)
implies that the effect of huge drops in the employment rate on the household’s lifetime utility
should be significantly dampened compared to the baseline model. Consequently, the volatility
of the stochastic discount factor should drop considerably under Epstein-Zin preferences and
the equity premium should be noticeably reduced.



Appendix

A Documentation of Computer Programs
We provide a short documentation for the accompanying Matlab programs used to derive the
numerical results. The programs rely on the Matlab version of CORRAM in order to compute
the perturbation solution. We illustrate the routines for the baseline model contained in the
subfolder Benchmark; the code for the remaining models is analogous.68

The script Benchmark.m replicates all the results described in the paper for the baseline model
in the following way.

Computing/Loading Approximation First, the script computes a second order perturbation
solution from the equilibrium conditions in (4.2.28)-(4.2.41) provided in Benchmark_Eqs.m by
executing the routines from CORRAM. It then loads the solution for the free parameters for each
of the four global approximation approaches described in section 4.3. More specifically, the
parameters for the Chebyshev-Galerkin method, which we characterized as the solution to the
system of nonlinear equations (4.3.24), are determined as the fixed point of the input matrix
A in galSys2.m. They are loaded from lsg_benchmark_cheb2.mat and checked. In the same
way, the parameters for the Chebyshev-Galerkin method with discretized labor productivity
from (4.3.28) are pinned down as the fixed point of the input vector a in galSysDeg.m. They
are loaded from lsg_benchmark_cheb1.mat. For the finite element methods, the solutions for
the free parameters from (4.3.29) and (4.3.30) are the zeros in the input variables xinodes
and xinodesvec to colFEMSysSplines2d.m and colFEMSysSplines.m, respectively. The func-
tional rhsGH defined in (4.3.16) is computed by getrhs2.m for the spectral method and by
getrhsFEMSplines2d.m for the finite element method. For discretized labor productivity the
functional rhsRO is evaluated in getrhs.m and getrhsFEMSplines.m.

Plots and Euler Residuals After loading and checking the free parameters for the different ap-
proximations, Benchmark.m reproduces the various plots, i.e. the approximated policy functions,
the Euler residuals etc.

Second Moments The script invokes Simulate_Benchmark_mom2.m in order to compute the
second moments from repeated simulations using the samples of shocks in eps_array3.mat.
The results are written to Momente.txt.

Dynamics, Disaster Statistics and Return Rates Last, a long time path of equilibrium out-
comes in the model is simulated from the sample of shocks in eps_array2.mat by calling
the script Simulate_Benchmark.m. The results in tables 4.3, 4.4 and 4.5 can be found in

68The included README file specifies in which subfolder the respective programs for the other model variants can
be found.
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Vergleich_Dynamik.txt, the average return rates in Equity.txt and the disaster statistics in
Desaster.txt.

For the models where additional intuition for the equity premium is provided, as displayed
in figures 4.16 and 4.17 for the baseline model or in table 4.44 for the various extensions, the
results are computed in IntPremium.m and saved to EquityVergleich.txt.

Intuition: E�ectsofDrop inLP The scripts expl1d_resp.m, expl1d_resp.m, expl2d_resp.m,
comp_endutil.m, comp_endhours.m, comp_endsearch.m and comp_endhome.m contained in
the subfolder Comparison&Intuition generate the plots pictured in figures 4.31, 4.33, 4.37,
4.42, 4.47 and 4.52.



Chapter 5

Conclusion

The thesis contains three essays commonly concerned with replicating the high equity premium
found in the data. The first two papers are dedicated to the approach of altering the standard
preference structure by using generalized recursive preferences of the class introduced by Epstein
and Zin (1989). The third paper considers a standard search and matching labor market model
that, as Kuehn et al. (2012, 2015) claim, can endogenously explain severe economic disasters
and can therefore also help to replicate the equity premium in a fashion originally introduced
by Rietz (1988).

In ”Applied Macroeconomic Analysis with Epstein-Zin Utility” (2014a) we summarize the
construction of EZ’s generalized recursive utility adding illustrative examples. We outline the
concept of temporal lotteries describing infinite probability trees over consumption and how this
concept naturally leads to a recursive utility representation which allows the disentanglement of
the RRA from the EIS. We show how EZ utility directly lends itself for dynamical programming.
Further, we discuss the stochastic discount factor under EZ preferences and the influence of
the RRA and the EIS on its volatility under a second order perturbation solution. We find that
the stochastic discount factor shows a stronger negative comovement with the return on equity
for smaller EIS given a fixed coefficient of RRA. The EZ representation offers a channel for
the replication of the empirical equity premium: one may impose a strong enough aversion to
nonsmooth consumption without having to set the risk aversion parameter unreasonably high.
The paper is accompanied by a flexible Maple-Matlab perturbation toolbox.

The paper ”Epstein-Zin Utility, Asset Prices, and the Business Cycle Revisited” (2014b) analyzes
to what extent a number of currently prevalent building blocks of DSGE models are helpful in
trying to replicate characteristic empirical figures of the German real economy within an EZ
framework. We thereby target both, classical RBC statistics as well as asset pricing figures. We
find that within the EZ utility representation, the frictionless model already yields simulation
results in good accordance with the German empirical data. Amongst the considered labor
market frictions, allowing for real wage stickiness leads to the most remarkable improvement in
fit. Compared to the results reported in Heer and Maußner (2013) for standard preferences, the
additional flexibility of the EZ framework seems to allow for significant improvements of the
models’ fit to empirical characteristics. The degree of additional flexibility, however, primarily
hinges on the allowed magnitude of deviation from the standard case and therefore to the
degree of deviation from non-indifference towards the timing of uncertainty resolution. We
were very liberal in setting the EIS substantially lower than the reciprocal of the RRA. Although
this is in accordance with empirical findings (see e.g. Hall (1988)), we note that the literature
does not provide a consensus on the extent to which such non-indifference towards the timing
of uncertainty resolution can be considered plausible.

Finally, in ”Search Frictions in the Labor Market and Endogenous Economic Disasters” (2017)
I study a standard search and matching labor market model calibrated in the fashion proposed
by Hagedorn and Manovskii (2008) where the household’s bargaining power is low but the
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period value from unemployment is high. Kuehn et al. (2012, 2015) argue that the model
provides an endogenous mechanism leading to drastic economic downturns and can replicate
a high equity premium as found in the data. The fact that the household’s period value from
unemployment activities is high and fixed implies that the workers’ reservation wage does not
adjust over the business cycle no matter how far the situation in the economy worsens. The
assumption proves crucial for the mechanism leading to severe disasters in the model. Once the
assumption is relaxed, e.g. by endogenously deriving the value of unemployment from leisure
from a utility function with a non constant marginal rate of substitution between leisure and
consumption, the dynamics of the model change substantially. Most importantly, the equity
premium in the model is again by an order of magnitude lower than in the data. Moreover, the
standard deviations from simulations of the labor market model also fall significantly below the
empirically observed values.
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