
Jahrbücher für
Nationalökonomie
und Statistik
Journal of Economics and Statistics

Begründet von

Bruno Hildebrand

Fortgeführt von

Johannes Conrad, Ludwig Elster
O tto v. Zwiedineck-Südenhorst
Gerhard Albrecht, Friedrich Lütge
Erich Preiser, Knut Borchardt
Alfred E. O tt und Adolf Wagner

Herausgegeben von

Peter Winker, Wolfgang Franz
W erner Smolny, Peter Stahlecker
Adolf Wagner, Joachim Wagner

Band 231

Lucius &C Lucius Stuttgart 2011

© Lucius Sc Lucius Verlagsgesellschaft mbH ■ Stuttgart ■ 2011
Alle Rechte Vorbehalten
Satz: Mitterweger & Partner Kommunikationsgesellschaft mbH, Plankstadt
Druck und Bindung: Neumann Druck, Heidelberg
Printed in Germany

Value Function Iteration as a Solution Method
for the Ramsey Model

By Burkhard Heer, Bozen, and Alfred Maußner, Augsburg*
JEL C63; C68; E32
Value function iteration; policy function iteration; Howard's Algorithm; acceleration;
cubic interpolation; stochastic Ramsey model; heterogeneous agents.
Received: 17.10.2008
Revision received: 16.09.2010
Accepted: 17.09.2010

Summary

Value function iteration is one of the Standard tools for the solution of dynamic general equili-
brium models if the dimension of the state space is one ore two. We consider three kinds of
models: the deterministic and the stochastic growth model and a simple heterogenous agent
model. Each model is solved with six different algorithms: (1) simple value function iteration as
compared to (2) smart value function iteration neglects the special structure of the problem. (3)
Full and (4) modified policy iteration are methods to speed up convergence. (5) linear and (6)
cubic interpolation between the grid points are methods that enhance precision and reduce the
size of the grid. We evaluate the algorithms with respect to speed and accuracy. Accuracy is
defined as the maximum absolute value of the residual of the Euler equation that determines
the household’s savings. We demonstrate that the run time of all algorithms can be reduced
substantially if the value function is initialized stepwise, starting on a coarse grid and increasing
the number of grid points successively until the desired size is reached. We find that value func
tion iteration with cubic spline interpolation between grid points dominates the other methods
if a high level of accuracy is needed.

1 Introduction

Value function iteration is among the most prominent methods in order to solve Dynamic
General Equilibrium (DGE) models. It is often used as a reference case for the compar-
ison of numerical methods because of its known accuracy as in the seminal work by
Taylor and Uhlig (1990) on the solution methods of nonlinear stochastic growth models
or in later studies on the computation of the Standard real business cycle model with
flexible labor supply by Aruoba et al. (2006) and Heer and Maußner (2008). Value func
tion iteration is safe, reliable, and easy to implement. As one of its main disadvantages, it
is slow in speed. Therefore, it is often applied in models where the dimension of the state
space is low, usually one or two dimensions. In this paper, we will analyze various forms
of value function iteration and consider the implications for speed and efficiency. We find

* We would like to thank two anonymous referees for their helpful comments. All remaining errors
are ours.

that computational time can be reduced significantly if an initial guess of the value func-
tion is computed on a coarse grid which is refined stepwise until the desired number of
grid points, and thus, accuracy, is achieved. Depending on the method and the size of the
final grid we are able to reduce run time in the deterministic Ramsey model between
forteen and several ten thousand percent.
We use value function iteration to compute the infinite-horizon Ramsey model with a
representative agent. The consideration of value function iteration and possible ways to
increase its computational speed, however, is also very important for the computation of
heterogeneous-agent economies where agents may differ with regard to their individual
state variable, for example assets or age. In these cases, value function iteration may be
one of the very few feasible solution methods since local methods like perturbation meth-
ods, which are most often applied to the solution of business cycle models in practise,
break down.1 Similarly, the use of non-local methods like projection methods or para-
meterized expectations may not be applicable since they are particularly vulnerable to a
change of behavior in the policy function if a constraint becomes binding. For example,
the labor supply of households may become zero if wealth exceeds a certain threshold
value. As a consequence, the optimal labor supply function displays a kink at this point
and function approximation methods may behave poorly.2 To study the sensitivity of our
results in such an economy, we also apply the different methods to the computation of a
simple heterogeneous agent model with a binding borrowing constraint.

In addition, the application of value function iteration methods may not be confined to
one- or two-dimensional problems: 1) With the advance of Computer technology, three or
four-dimensional problems may soon be solvable with value function iteration for ac-
ceptable accuracy. 2) In many applications, the curvature of the value function with re-
spect to some state variables may be so small that few grid points in some dimensions of
the state variable will be sufficient.3 3) Often, we need a good initial value for methods
that rely upon the approximation of a function over a large interval. In our own work, we
demonstrate in a model of the equity premium that projection methods do not find the
solution if the initialization is not very close to the solution and we therefore had to apply
time-consuming genetic search. algorithms (see Heer/Maußner 2009, Chapter 6.3). 4)
The dimension of the individual state space may sometimes be larger than the dimension
of the variables that are actually needed for the arguments of the value function. For
example, Erosa and Ventura (2002) consider a household optimization problem where
the individual household has the three-dimensional state variable consisting of his indi
vidual productivity, real money, and Capital. They solve the problem in two steps. In the

1 Another discrete-space method that may be applied in these cases is the finite-element method. For
this method, see McGrattan (1999). For an introduction to and a discussion of the different numer-
ical solution methods see Judd (1998) or Heer and Maußner (2009).

2 Christiano and Fisher (2000) have studied the use of projection methods in the case of a non-ne-
gativity constraint on investment. The constraint is accommodated by the use of a parameterized
Lagrange multiplier function and can be handled successfully. The method is fast and accurate. In
this case, however, the threshold value of the individual state variable Capital at which the constraint
becomes binding is known. In the example of the non-negativity constraint on endogenous labor
supply, on the contrary, the exact wealth value for the kink may not be known in advance and can
only be found iteratively, which may cause significant computational problems.

3 Heer (2007), for example, considers the business cycle dynamics of the income distribution in an
Overlapping Generations model. The value function of the individual is also a function of the ag-
gregate capital stock. He finds that a grid of 7 points over this variable is sufficient.

first step, they compute the value function as a function of wealth, which is the sum of
money and capital, and individual productivity. In a second stage, they solve the optimal
portfolio problem how to allocate wealth on money and Capital.

In the following, we consider various value function iteration methods for the computa-
tion of the infinite-horizon Ramsey model.4 In Section 2, we describe our six different
methods of computation. As an illustration, we will apply these value function iteration
methods to the computation of the deterministic Ramsey model. In Section 3, we present
our findings: 1) Initializing the value function stepwise reduces run time considerably. In
one case it reduces run time from five hours and 27 minutes to one hour and 25 minutes,
thus, saving more than four hours. 2) Interpolation between grid points with cubic
splines delivers highly accurate solurions with errors in the ränge between 1.4E-4
and 4.1E-7 for grids of sizes between 10 and 1000 points, respectively. 3) Except for
linear interpolation on a grid with 10 points no other method is able to compute as pre-
cise a solution at the same short run time of less than six seconds. 4) Modified policy
function iteration is superior to Howard’s algorithm. In Section 4, we extend our analysis
to the two-dimensional case. We consider two applications: the stochastic growth model
and a simple heterogeneous agent model. In this extended framework simple value func
tion iteration is no longer feasible as the computational time becomes prohibitive. Thus,
in Section 5 we determine ranking of the methods based on the time they need to solve
our three models for given levels of accuracy. We find that value function iteration with
cubic spline interpolation is still the dominant algorithm in the case of high accuracy. In
the deterministic and stochastic Ramsey model value function iteration with linear inter
polation computes less accurate solutions faster than the former method, since it requires
less floating point operations per iteration. Full policy iteration dominates modified pol
icy iteration only in two out of six simulations. Section 6 concludes.

2 Description of the algorithms

In this section, we present the following six different forms of the value function iteration
algorithm that we will analyze with regard to speed and accuracy:
1. Simple value function iteration,
2 . smart value function iteration that exploits the monotonicity of the policy function

and the concavity of the value function,
3. policy function iteration,
4. modified policy function iteration,
5. value function iteration with linear interpolation between grid-points,
6 . value function iteration with cubic interpolation between grid-points.

The algorithms are best explained by means of an example. We choose the deterministic
infinite-horizon Ramsey model that serves as the basic structure for most business-cycle
and growth models. Henceforth we will refer to this framework as Model 1.

4 We conjecture that our main result also carries over to finite-horizon models like the Overlapping
Generations model. In these models, value function iteration is usually much faster than in infinite-
horizon models as the value function is found in one iteration starting in the last period of the agent’s
life, even though there is a trade-off as the value function has to be computed and stored for each
age. Our results suggest that value function iteration with cubic spline interpolation is a very fast
and accurate method for these kinds of models as well.

2.1 Model 1

We assume that a fictitious planer5 equipped with initial capital Ko chooses a sequence of
future capital stocks {KV}^, that maximizes the life-time utility of a representative
household

OC
u 0 = ^ / M Q) , ß € (o, i) ,

(= 0

subject to the economy’s resource constraint

f (K t) > Ct + Kt+U

and non-negativity constraints on consumption Q and the capital stock Kt+\. The utility
function w(Q) is strictly concave and twice continuously differentiable. The function
f(K t) = F (N ,K t) + (1 — ö)K t determines the economy’s current resources as the sum
of output F(N, Kt) produced from a fixed amount of labor N = 1 and capital services
Kt and the amount of capital left after depreciation, which occurs at the rate <5 e (0 ,1).
The function f is also strictly concave and twice continuously differentiable.
Value function iteration rests on a recursive formulation of this maximization problem in
terms of the Bellman equation:

v (K)= max u(f(K) - K') + ßv(K'). (1)
0<K'<f(K) W

This is a functional equation in the unknown value function v. Once we know this func
tion, we can solve for K' as a function h of the current capital stock K. The function
K' = h(K) is known as the policy function. Our aim is to obtain an approximation h
of this function, which is sufficiently close to the true h.
The optimal sequence of capital stocks monotonically approaches the stationary solution
K* determined from the condition ßf'(K") = 1. Thus, the economy will stay in the inter-
val [Ko,K*] (or in the interval [K*. i<To] if Kq > K*). In order to solve the model numeri-
cally, we compute its solution on a discrete set of n points. In this way, we transform our
problem from solving the functional equation (1) in the space of continuous functions (an
infinite dimensional object) to the much nicer problem of determining a vector of n ele-
ments.6
Our next decision concerns the number of points n. A fine grid J f = {K \ ,K i, ...Kn},
Kj < Kj+1, i = 1 ,2 , provides a good approximation. On the other hand, the number
of function evaluations that are necessary to perform the maximization step on the right
hand-side (rhs) of the Bellman equation increases with n so that computation time places
a limit on n. We will discuss the relation between accuracy and computation time below.
For the moment being, we consider a given number of grid-points n.
A related question concerns the distance between neighboring points in the grid. In our
applications, we will work with equally spaced points A = Kj+1 — Kj for all
(= 1,2, — 1. Yet, as the policy and the value function of the original problem

5 Equally, we could have considered the decentralized economy where the household optimizes his
intertemporal consumption and supplies his labor and capital in competitive factor markets.

6 Note, however, that the stationary solution of this new problem will differ from K*. For this reason
we will use K > K* as an upper bound of the state space.

are more curved for low values of the Capital stock, the approximation is less accurate in
this ränge. As one solution to this problem, one might choose an unequally-spaced grid
with more points in the lower interval of state space; for instance K, = K i + A(i — l) 2,
A = (K„ - K\)/{n - l) 2, or choose a grid with constant logarithmic distance,
A = lnK,+i — ln K,. However, one can show that neither grid type dominates uniformly
across applications.
In our discrete model the value function is a vector v of n elements. Its »th element holds
the life-time utility Uo obtained from a sequence of Capital stocks that is optimal for the
given initial Capital stock Ko — Kj e J f . The associated policy function can be repre-
sented by a vector h of indices. As before, let i denote the index of K, € J f , and let
j € 1,2 , ...,n denote the index of K' = Kj G J f , that is, the maximizer of the rhs of
the Bellman equation for a given K,. Then, h, =
The vector v can be determined by iterating over

^ + 1= m a x u tflK Ö -K D + ß ifj , i = 1,2, := {K € X : K < f{K i)}.

Successive iterations will converge linearly at the rate ß to the solution v* of the discrete
valued infinite-horizon Ramsey model according to the contraction mapping theorem.7

2.2 Methods
Method 1: Simple Value Function Iteration. The following steps describe an algorithm
for the computation of v* that is very simple to program. First, we initialize the value
function. One potential candidate for the choice of the initial value function v° is the zero
vector. We will also discuss a more elaborate initialization below. In the next step, we find
a new value and policy function by iterating over all next-period Capital stocks K! = Kj
that imply strictly positive consumption. Let n(i) denote the index of the largest grid
point K' = K„(j) that implies non-negative consumption, i.e. if f(K ,) < K„, n(i) satisfies
K„(j) < f{K j) < = K„(,)+1 and n(i) = n otherwise. For each i = 1,

Step 1: compute
Wj = u(f(K j) - Kj) + ß v f, / = 1, ...,«((')■

Step 2: Find the index j* such that
Wj. > Wj'ij = 1,

Step 3: Set h) = j* and vj = Wj>.

In the final step, we check if the value function is close to its stationary solution. Let
||y0 — v1 [1̂ denote the largest absolute value of the difference between the respective
elements of v° and v1. The contraction mapping theorem implies that
||v1 — v* || < e(l — ß) for each e > 0. That is, the error from accepting v1 as solution
instead of the true solution v* cannot exceed e(l — ß). In our applications, we set
e = 0 .01.

7 See, e.g., Theorem 12.1.1 of Judd (1998: 402).

Method 2: Smart Value Function Iteration. We can improve upon the method 1, if we
take advantage of the specific nature of the problem.
First, we can exploit the monotonicity of the policy function, that is:

K, > K, ^ K 't = h(Kj) > K\ = h(Kf).

As a consequence, once we find the optimal index j\ for K\, we do not need to consider
Capital stocks smaller than Kp in the search for j\ any longer. More generally, let /'* denote
the index of the maximization problem in Step 2 for i. Then, for i + 1 we evaluate
u(F(N ,Kj) — Kj) + ßv^ only for indices / € {/*, ••■«(« + 1)}.

Second, we can shorten the number of computations in the maximization Step 2, since
the function

4>{K')-.= u { f { K) - ^) + ß v { K ') (2)

is strictly concave.8 A strictly concave function <j> defined over a grid of w points either
takes its maximum at one of the two boundary points or in the interior of the grid. In the
first case the function is decreasing (increasing) over the whole grid, if the maximum is
the first (last) point of the grid. In the second case the function is first increasing and then
decreasing. As a consequence, we can pick the mid-point of the grid, Km, and the point
next to it, K m+\, and determine whether the maximum is to the left of Km (if
<j>{Km) > $(K m+i)) or to the right of Km (if <j>(Km+1) > <f>(Km)). Thus, in the next step
we can reduce the search to a grid with about half the size of the original grid.
Kremer (2001 165f.), proves that search based on this principle needs at most
log2(«) steps to reduce the grid to a set of three points that contains the maximum.
For instance, instead of 1000 function evaluations, binary search requires no more
than 13. We describe this principle in more detail in the following algorithm:
Algorithm 2.1 Binary Search
Purpose: Find the maximum o f a strictly concave function f(x) defined over a grid o f n
points X = { * i , ...,x„}
Steps:
Step 1: Initialize: Put imm = 1 an d imax = n.

Step 2: Select two points: ii = floor([imm + imax) /2) and iu = /; + 1, w here floor{i) de
note s the largest integer less than or equal to i € R.

Step 3: l f f { x ,u) > fix ,,) set imin = O therwise put imax = iu.

Step 4: I f imax ~ imin = 2, stop and choose the largest elem ent am ong f (x imin), f{x imm+I),
and f(x jma). O therwise return to Step 2.

Finally, the closer the value function gets to its stationary solution, the less likely it is that
the policy function changes with further iterations. So usually one can terminate the al
gorithm, if the policy function has remained unchanged for a number of consecutive
iterations. Algorithm 2.2 summarizes our second method:

8 Since the value function, as well as the Utility and the production function, are strictly concave.

Algorithm 2.2 (Value Function Iteration in the Deterministic Growth Model)
Purpose: Find an approxim ate policy function o f the recursive probient (1)
Steps:
Step 1: C hoose a grid

Jr = [Ku K 2, K i < K h i < i = l , 2 ,

Step 2: Initialize the value function: V/ = 1, set
vo _ u (f (K ') - K ')
v> ~ T ^ ß ’
w here K* denotes the stationary solution to the continuous-valued Ramsey Prob
lem.

Step 3: Com pute a new value function and the associated policy function, v1 and h! ,
respectively: Put j*0 = 1. For i = 1,2, and j*_1 use Algorithm 2.1 to find
the index j* that maximizes

u (f{K t) - K ,) + ß v °

in the set o f indices + 1, ...,n (i)}. Set hj = j* and
vj = u (f (K ,) - K , :) + ß v ° .

Step 4: Check fo r convergence: I f ||v° - v1||̂ < e(l - ß), e 6 R ++ (or i f the policy func
tion has rem ained unchanged fo r a num ber o f consecutive iterations) stop, eise
replace v° with v1 and h° with h1 and return to step 3.

Method 3: Policy Function Iteration. Value function iteration is a slow procedure since
it converges linearly at the rate ß, that is, successive iterates obey

||vs+1 — V*|| <011^ - v * II,

for a given norm ||v||. Howard’s improvement algorithm or policy function iteration is a
method to enhance convergence. Each time a policy function hs is computed, we solve for
the value function that would occur, if the policy were followed forever. This value func
tion is then used in the next step to obtain a new policy function hs+1. As pointed out by
Puterman and Brumelle (1979), this method is akin to Newton’s method for locating the
zero of a function so that quadratic convergence can be achieved under certain condi-
tions.
The value function that results from following a given policy h forever is defined by

Vi = u(f{Ki) - Kf) + ßvh (= 1,2,

This is a system of n linear equations in the unknown elements v,. We shall write this
system in matrix-vector notation. Towards this purpose we define the vector
u = [u\,u2 , ■■■,u„], Uj = u{f{K i) — Kj)), where, as before, j is the index of the optimal
next-period Capital stock Kj given the current Capital stock K,. Furthermore, we intro-
duce a matrix Q with zeros everywhere except for its row i and column / elements, which
equal one. The above equations may then be written as

v = u + ßQv, (3)

with solution v = [I — j8Q]_1u.

Policy function iterations may either be started with a given value function or a given
policy function. In the first case, we compute the initial policy function by performing
Step 3 of Algorithm 2.2 once. The difference occurs at the end of Step 3, where we set
v1 = [/ — ySß^v0. Q 1 is the matrix obtained from the policy function h as explained
above.

If n is large, Q is a sizeable object and one may encounter a memory limit on the personal
Computer. For instance, if the grid contains 10,000 points Q has 108 elements. Stored as
double precision this matrix requires 0.8 gigabyte of memory. Fortunately, Q is a sparse
matrix and many linear algebra routines are able to handle this data type.9

Method 4: Modified Policy Iteration. If it is not possible to implement the solution of
the large linear system or if it becomes too time consuming to solve this system, there is
an alternative to full policy iteration. Modified policy iteration with k steps computes the
value function v1 at the end of Step 3 of Algorithm 2.2 in the following steps:

w1 = v°,
w;+1 = u 4- /?Q*w', l k, (4)

yl =

The parameter k is set by the user. Its optimal value depends on the number of grid points
n and will be discussed in the next section. As proved by Puterman and Shin (1978) this
algorithm achieves linear convergence at rate ßki 1 (as opposed to ß for value function
iteration) close to the optimal value of the current-period utility function.

Methods 5 and 6 : Interpolation Between Grid-Points. Applying methods 1-4, we con-
fine the evaluation of the next-period value v(K') to the grid points X = {K i ,K 2 ,
In methods 5 and 6, we also evaluate v(K') off grid points using interpolation techniques.
We will consider two kinds of function approximation: linear interpolation (method 5)
and cubic spline interpolation (method 6). The two interpolation schemes assume that a
function y = f ix) is tabulated for discrete pairs (xj, yi). Linear interpolation computes
y ~ f(x) for x e {x,,x,+\\ by drawing a straight line between the points (x,,y,) and
(je,-+i,y,-+i). The cubic spline determines a function f,(x) = a, + b,x + c,x2 + djX3 that
connects neighboring points and where the first and the second derivatives agree at
the nodes.10 The first method provides a smooth function between grid points that is
continuous (but not differentiable) at the nodes (K,, vi). The second method determines
a smooth (continuously differentiable) function over the complete set of points (X,, v,).
Since the current-period utility function is smooth anywhere, we are able to approximate
the rhs of the Bellman equation (2) by a continuous function

0 (K) := « (ftK .-) - * /) + * (* /) . (5)

where v is determined by interpolation, either linearly or cubically.

In the interval [K;_i, JC/+i] the maximum of <j> is located either at the end-points or in the
interior. For this reason, we need a method that is able to deal with both boundary and

9 For instance, using the Gauss sparse matrix procedures allows to Store Q in a n x 3 matrix which
occupies just 240 kilobytes of memory.

10 In particular, we use secant Hermite splines where the first derivative at the endpoints is set equal to
the slope of the secant.

interior solutions of a one-dimensional optimization problem. In order to locate the ma-
ximum, we use Golden Section Search.
Accordingly, for methods 5 and 6 , we need to modify Step 3 of Algorithm 2.2 in the
following way: we determine /* as before and then refine the solution. First, assume
that j* is the index neither of the first nor of the last grid-point so that the Optimum
of (2) lies in the continuous interval 1, = K,-*+i]. Instead of storing the index /'*,
we now locate the maximum of (5) in /, with the aia of Golden Section Search and störe
the maximizer K'(i) G in the vector h in position *. 4>(K’(i)) is stored in vt. If /* = 1, we
evaluate (5) at a point close to K\. If this returns a smaller value than the one at K\, we
know that the maximizer is equal to K\. Otherwise, we locate K’(i) in [Ki, K2]. We pro-
ceed analogously, if /* = n.

Choice of the Initial Value Function. The time needed for any of our methods to con-
verge depends critically on the initial value function. In Heer and Maußner (2009) we
discuss several different choices for v°. Here we advocate for the stepwise computation of
an appropriate initial value function. On a small grid, methods 1 through 4 require only a
few seconds to converge, irrespective of the choice of the initial value function. Given the
solution on the small grid, we successively increase the size of the grid until the desired
number of grid points is reached which delivers the required accuracy of the solution. In
each step we use the previous solution and interpolate linearly between the grid points to
obtain the new starting value for the value function. In the case of methods 5 and 6, we
always use method 4 to find an initial value function iteratively, since these methods
converge very slowly.
In summary, we use the six different algorithms to compute the approximate solution of
the infinite-horizon Ramsey model with u(C) = [C1~'/ — 1]/(1 — tf) and F (N ,K) = Ka
providing us with the solutions Ct = hc (Kt) and K t+1 = hK(Kt) for consumption and
the Capital stock, respectively.

Measure of Accuracy. We evaluate their performance with respect to computation time
and accuracy as measured by the error e in the Euler equation:11

«'((1 + e)C() = ßu'(Ct+i) f (K t+i), (6)

with Ct = hc (Kt), Kt+i = hK(Kt) and Cf+i = b c (Kl+1). The Euler residual e provides a
unit-free measure of the percentage error in the first-order equation of the household and
is a Standard measure of accuracy in similar studies like Aruoba et al. (2006) or Heer and
Maußner (2008).

Calibration. The parameters of the model are set equal to a = 0.27, ß = 0.994, t] = 2.0,
and ö = 0.011. Our parameters are chosen in accordance with empirical observations
from the West German economy during 1975-1989.1 — a equals the average wage share
in gross domestic product at factor prices assuming that self-employed earn the average
wage of employees. ß is chosen so that the annual real rate of return is approximately
equal to 6 % . The quarterly depreciation rate <5 equals 1.1 % in West Germany. Finally, as
the empirical evidence from microceconometric studies for the intertemporal elasticity of
substitution 1/rj varies between values of 1/4 and 1 we follow Heer and Maußner (2009).

11 The use of this standardized Euler equation error has been suggested by Judd (1992) and Judd and
Gaspar (1997).

They choose 7 = 2.0 in order to have a favorable match between the empirical variances
of aggregate variables and those implied by their RBC model.

Computation. We used a workstation with a quad core 2.66 gigahertz processor and 12
gigabyte of RAM.12 The value and the policy functions are computed on a grid of n
points over the interval [0.75K*, 1.25K*]. We stopped iterations if the maximum absolute
difference between successive approximations of the value function became smaller than
0.01(1 — ß) or if the policy function remained unchanged in 30 consecutive iterations
(this latter criterium is only applicable for methods 1 through 4). Modified policy itera
tions use k = 35. The Euler equation residuals are computed for 20,000 equally spaced
points in the interval [0.75K*. 1 .25K'\. Linear - and in the case of method 6 - cubic Inter
polation was used to compute the policy function between the elements of the vector h.

3 Evaluating the algorithms in model 1

In Table 1 we present our results with respect to run time, and Table 2 provides Infor
mation on the accuracy of the solutions in terms of the maximum absolute value of the
20,000 Euler equation residuals. For each method the respective third line gives run time
and precision relative to method 6 for n = 10. These numbers should be independent of
the machine and the operating system.13
The first row of Table 1 demonstrates that computation time becomes prohibitive for
simple value function iteration if n is getting large. Even on a grid of 5,000 points
the algorithm requires more than two and a half hours to converge. For this size of
the grid, iterative initialization saves more than one hour of run time. For the same
«, Algorithm 2.2 needs just two and a half minutes, and modified policy iteration (meth
od 4) requires less than four seconds.
The rows labeled 3 and 4 in Table 1 convey a second finding. Policy iteration requires
more time than modified policy iteration for the number of grid points considered in our
experiments.14 The time needed to solve the large linear system (3) slows down the algo
rithm. For a sizable grid of n = 10 ,000 points, method 4 is more than twice as fast as
method 3. Intuitively, one would think that full policy iteration is slower than modified
policy iteration at larger grids since it requires more time to solve the respective sparse
linear system. However, and more importantly, there is a second reason. Without itera
tive initialization method 3 requires much more time to converge than method 4. Thus, a
second reason for the relative worse performance of method 3 as compared to method 4
is slow convergence if the initial solution is far from the final value function.
The key parameter determining the speed of method 4 is the number of iterations with a
given policy function k. Small values of k reduce the computational time spent on step
(4), but the algorithm needs more iterations to converge. If k is small relative to n and if
the initial value function is far from the final solution, the algorithm may not even con
verge in a reasonable number of steps. For instance, if «=10,000 and k < = 25 , the algo-

12 The source code is available in the Gauss program Model_l.g. All Computer codes can be found in
the electronic data archive of the Journal of Statistics and Econometrics under ’http://www. jbnst.de/’.

13 We had to recognize that the run time is not absolutely stable between different runs of the program
on the same machine. We attribute this finding to background work of the operating system.

14 The speed of method 3 also depends on the linear sparse matrix solver. The Gauss command Sparse
Solve implements the sparse LU factorization of Demmel et al. (1999).

http://www

Table 1 Run Time for Model 1

Method n = 10 n = 250 n = 1,000 n = 5,000 n = 10,000

1 00:00:22:85 00:04:27:82 02:38:26:14
00:00:22:89 00:06:41.43 03:51:28:19

4.04 47.37 1681.31
2 00:00:03:99 00:00:18:03 00:02:26:55 00:03:29:26

00:00:04:10 00:00:20:49 00:02:50:90 00:06:33:19
0.71 3.19 25.92 37.01

3 00:00:01:39 00:00:01:72 00:00:04:80 00:00:08:28
00:00:01:40 00:00:09:26 00:03:46:59 00:14:02:81

0.25 0.30 0.85 1.46
4 00:00:01:01 00:00:01:61 00:00:03:12 00:00:04:12

00:00:01:05 00:00:03:75 00:00:37:60 00:04:57:14
0.18 0.28 0.55 0.73

5 00:00:04:64 00:00:25:100 00:02:12:27 00:25:18:53 01:23:39:35
00:00:03:71 00:01:25:91 00:07:57:28 01:36:05:56 05:17:36:59

0.82 4.60 23.39 268.58 887.75
6 | 00:00:05:65 | 00:00:27:82 00:02:23:43 00:26:22:40 01:25:26:00

00:00:04:22 00:01:42:06 00:08:55:45 01:40:17:16 05:27:10:40
1.00 4.92 25.37 279.87 906.62

Notes: The method numbers are explained in the main text. Run time is given in hours:minutes:seconds:hundreth
of seconds. The empty entries refer to simulations which we did not run. For each method, the first (second) line
presents the run times with (without) iterative initialization of the value function. The third line shows the relation
between the run time in the respective first line relative to the boxed run time.

rithm had not converged after 1,000 iterations. Table 3 displays the relation between run
time and the number of steps k in modified policy iteration. In the ränge k=25 and k=3S
the differences in run time are small and the minimizer (the boxed values) is also in this
ränge. Our choice of £=35 in our simulations, thus, is well justified.

In Table 2, we present our results with respect to the precision of the algorithms. In the
case of methods 1 through 4 the Euler equation residuals are almost proportional to the
size of the grid. They are of the Order of magnitude 0.04 for «=250 and decrease to about
0.001 for «=10,000. It, thus, requires a sizable grid to obtain an accurate solution. Note
also that the precision of methods 1-4 is of the same Order of magnitude for a given size n
of the grid (see Table 2).15

Adding interpolation between grid-points to Step 3 of Algorithm 2.2 increases the ac
curacy of the solution considerably. Even for a grid of «=10 we obtain Euler equation
residuals that are almost ten times smaller than those obtained from methods 1 through 4
for «=10,000 .

As can be seen from Tables 1 and 2, high precision of 4.E-5 can be obtained from method
5 for « = 5000. The algorithm needs about 25 minutes to compute this solution, and
iterative initialization saves over one hour of run time. Method 6 obtains an even higher
precision of 4.E-7 in about two and a half minutes, and, thus, is the method of choice in

15 Methods 1 and 2 compute the same solution per construction. These solutions need not be identical
to the solutions obtained from either method 3 or method 4, since these methods have different rates
of convergence, as explained above.

Table 2 Euler Equation Residuals for Model 1

Method n = 10 n = 250 n = 1,000 n = 5,000 n = 10,000

1 4.31E-2 9.89E-3 1.95E-3
4.31E-2 9.89E-3 1.93E-3

300.28 68.81 13.40
2 4.31E-2 9.89E-3 1.93E-3 1.07E-3

4.31E-2 9.89E-3 1.93E-3 1.08E-3
300.28 68.81 13.40 7.48

3 4.31 E-2 9.88E-3 2.11E-3 1.30E-3
4.31E-2 1.09E-2 4.28E-3 3.29E-3

300.28 68.79 14.68 9.07
4 4.31E-2 1.01 E-2 2.26E-3 1.99E-3

4.31 E-2 1.14E-2 5.68E-3 3.34E-3
300.28 70.37 15.71 13.87

5 1.54E-4 6.61 E-4 2.40E-4 4.12E-5 2.56E-5
1.54E-4 6.62E-4 2.40E-4 4.13E-5 2.56E-5
1.07 4.60 1.67 0.29 0.18

6 I 1.44E-4 | 2.66E-5 4.40E-7 4.14E-7 4.30E-7
1.44E-4 2.65E-5 4.04E-7 4.44E-7 4.55E-7
1.00 0.19 0.00 0.00 0.00

Notes: The method numbers are explained in the main text. Euler equation residuals are the maximum absolute
value of 20,000 residuals computed on an equally spaced grid of 20,000 points over the interval [0.75K*, 1.25K*].
For each method, the first (second) line presente the maximum Euler equation residual with (without) iterative
initialization of the value function. The third line shows the relation between the run time in the respective first
line relative to the boxed residual.

Model 1. Note, also, that we are not able to increase the precision of this method if we
increase n beyond 5000 points.16

In the next section we extend our algorithms to a stochastic framework. We introduce
two further models: the stochastic growth model and a simple heterogenous agent model.
Though the algorithms to compute the value function in both models are essentially the
same, there is one important difference: in the stochastic growth model we can confine
the grid for the Capital stock to a small interval around the stationary solution of the
deterministic growth model considered in this section. In a heterogenous agent environ-
ment, however, the admissible assets are in a much larger interval and the value function
is more curved at the lower endpoint of this interval.

4 Stochastic-economy extensions of the basic ramsey model

4.1 Model 2: The stochastic growth model

In this section, we extend our analysis from a one-dimensional to a two-dimensional
value function problem. We, therefore, introduce a productivity shock in the determi
nistic infinite-horizon model.

16 To obtain the very small errors of Orders 1 .E-5 or even 1 .E-7 in the case of the iterative initialization
of the value function, we had to adjust the stopping criterium downwards for methods 5 and 6.
Otherwise, the algorithms stopped to early.

Table 3 Run Time and k

k n =250 n = 500 n = 1,000 n = 5,000 n = 10,000

5 01:31 02:63 06:03 10:23 11:37
10 01:29 02:07 02:81 04:17 04:100
15 01:19 01:43 01:100 04:04 04:91
20 00:95 01:18 01:69 03:48 04:33
25 | 00:82 [| 01:06 | 01:43 03:14 04:04
30 00:84 01.09 01:44 02:91 | 03:81 |
35 00:84 01:10 | 01:41 | | 02:72 | 03:88
40 00:86 01:12 01:42 02:94 03:85

Notes: Run time is given in seconds:hundreth of seconds on a quad core 2.66 gigahertz processor. The boxed values
indicate the value of k that minimizes runtime.

The Model. Production Y, in period t is now given by: Y, = Ztf(K t). The stochastic
productivity Z, is assumed to follow a stationary stochastic process. The central planner
maximizes the expected discounted life-time utility:

00

Uo = e £ / ? m (C (), ß € (0 , 1),
t=o

subject to the resource constraint

Ztf(K t) + (1 —S)Kt > Ct + Kt+\,

and non-negativity constraints on consumption Ct and the capital stock K,+j . Expecta-
tions E are taken conditional on the information available at time t = 0.
We can also reformulate the problem in a recursive representation. As the problem is
independent of time, we, again, drop the time index. The solution of the problem is
a value function v(K, Z) that solves the Bellman equation

v {K ,Z)= max u(Z ,K ,K ') + ßE[v(K',Z')\Z] (7)
K'€^k,z

where E[|Z] is the mathematical expectations operator conditional on the realization of
Z at the time the decision on K' is to be made, u(Z, K, K 1) = u(Z f(K) +. (1 — ö)K — K’),
and ® K,z := {K 1 : 0 < K' < Z f(K) + (1 - <5)K}.

Approximations of E[|Z]. As in the previous section, we replace the original problem
by a discrete valued problem and approximate the value function by an n x m matrix
V = (t/ij), whose row i and column; argument gives the value of the optimal policy, if the
current state of the system is the pair (K,,Z/), Ki € J f = [K\,K 2 ,
Z , e & = {Z u Z2, . . . ,Z m}.
The further procedure depends on the model’s assumptions with respect to Z. There are
models that assume that Z is governed by a Markov chain with realizations given by the
set and transition probabilities given by a matrix P = (pji), whose row j and column /
element is the probability of moving from Z, to state Z/. Given 2t and the matrix P, the
Bellman equation of the discrete valued problem is

m

Uii= max u (Z i,K „K r) + ß J 2 p j i v ri, / = 1, 2 , 1, 2 , . . ,w , (8)
r€ " /_ 1

where we use 3>ij as a shorthand for the set A s in the previous section, we can use
iterations over this equation to determine the matrix V.
Suppose, as it is often the case in the modelling of business cycle fluctuations, that ln Z
follows an AR(l)-process:

InZ' = e InZ + ae', q e [0,1), e' ~ N (0 ,1). (9)

As explained in Heer and Maußner (2009), the best way to tackle this case is to use
Tauchen’s algorithm that provides a Markov chain approximation of the process (9)
(see Tauchen, 1986). To use this algorithm, one must provide the size of the interval
Iz = [Z i,Z m] and the number of grid-points m. The algorithm determines the grid
2? = { Z i , Z 2, Zm} and the matrix of transition probabilities P = (p,;) so that the dis-
crete-valued Bellman equation (8) still applies. The boundaries of % must be chosen so
that Z remains in the interval Iz-

The Basic Algorithm. The problem that we, thus, have to solve, is to determine V itera-
tively from

m
t/ĵ 1 = max u{Zh Kh K r) + ß ^ p tttfrl, i = 1,2, ...,« ,/ = 1 ,2 , m. (10)

Kr&Q,,

This process will also deliver the policy function H = (hjj). In our basic algorithm, this
matrix stores the index of the optimal next-period state variable K'r £ J f in its zth row
and ;th column element. The pair of indices (*,/) denotes the current state of the system,
that is, (Kj, Zf). We assume that the value function v of our original problem is concave in
K and that the policy function h is monotone in K so that we can continue to use all of the
methods encountered in Section 2. As we have seen in Section 3, a reasonable fast algo
rithm should at least exploit the concavity of v and the monotonicity of h. Our basic
algorithm, thus, consists of steps 1, 2.1, and 2.2i of Algorithm 4.1. We first discuss
the choice of X and V° in Step 1 before we turn to methods that accelerate convergence
and increase precision in Step 2.

Algorithm 4.1 (Value Function Iteration 2)
Purpose: Find an approxim ate policy function o f th e recursive p roblem (7) given a Mar
kov chain with elem ents = {Z ; , Z2, ...,Z m} and transition matrix P.
Steps:
Step 1: C hoose a grid = { K j , K2 , ..., K„}, K, < Kj, i < j = 1 ,2 , and initialize V°.

Step 2: Com pute a new value function V1 and an associated policy function H 1: For each
j = 1,2, ...,m repeat these steps:
Step 2.1: Initialize: k*0/ = 1.
Step 2.2: i) For each 1 = 1,2 , ...,n and k ’_ t/ use Algorithm 2.1 to find the index r*
that maximizes m
wr = u(Zj, Kj, Kr) + / ?]P pjiv°i

i=i
in the set o f indices r e {r*_3y, r'_ (/ + 1, ...,»(»)}. Set r*j = r*. I f interpolation is not
desired, set h» = r* and vjj = wr , eise proceed as fo llow s: ii) (optional) I fr * = l
evaluate the function <j) ae fin ed by equation (14) at a point close to K j. I f this

returns a sm aller value than at K j, set K = K j, eise use G olden Section Search to
find the m axim izer K o f <j) in the interval [K j, Kz\- Store K in hj- and <p(K) in i/.
Proceed analogously ifr * = n. I f r* equals neither 1 nor n, find the m axim izer X o f
4> in the interval [Kr._1,K r.+j] and put hfj = K and v~ =

Step 2.3: (optional, i f Step 2.2.« was taken) S etw 1 = V1, and for l = 1 ,2 , . ..,k itera te over

w,+1 = vec U + ß Q l v/1,

and replace V1 by the respective elements of w4+1.

Step 3: Check fo r convergence: i f

m a x - v°\ < e(1 - ß) , e e R++
>=1, . m

(or if the policy function has remained unchanged for a number of consecutive
iterations) stop, eise replace V° with V1 and H° with H 1 and return to Step 2.

Choice of k and V° This choice is a bit more delicate than the respective step of Algo
rithm 2.2. In the deterministic growth model considered in the previous sections the op
timal sequence of capital stocks is either increasing or decreasing, depending on the given
initial capital stock Ko. This makes the choice of J f easy. In a stochastic model, the future
path of K depends on the expected path of Z, and we do not know in advance whether for
any given pair (/(,, Z7) the optimal policy is to either increase or decrease K. For this
reason, our policy to choose J f is „guess and verify“. We will Start with a small interval.
If the policy function hits the boundaries of this interval, that is, if hij = 1 or fc,; = n for
any pair of indices, we will enlarge . In the case of the stochastic growth model an
educated guess is the following: If the current shock is Z, and we assume that Z = Z,
forever, the sequence of capital stocks will approach Kj determined from

\ = ß {\ - S + Zif'iK*)). (11)

Approximate lower and upper bounds are, thus, given by K\ and K*m, respectively. Since,
the stationary solution of the discrete-valued problem will not be equal to the solution of
the continuous-valued problem, Kj (K„) should be chosen as a fraction (a multiple) of KJ
(R *J-
In the previous section we have shown that an iterative initialization of the value function
reduces run time considerably. Thus, we also use this strategy in the stochastic context.

Acceleration. In Section 3, we discovered that policy function iteration is a method to
accelerate convergence. This method assumes that a given policy H 1 is maintained for
ever. In the context of the Bellman equation (8) this provides a linear system of equation
in the nm unknowns v,j (for the moment, we suppress the superscript of V):

m
V i i ^ U i j + ß Y t P i i v w Utj : = u (Z i , K i , K hij), i = 1 , 2 , . . . , « , / = 1 , 2 , m. (12)

i=i

In matrix notation, this may be written as

vec V = vec U + ßQ vec V, U = (13)

vec V {vec U) is the nm column vector obtained from vertically stacking the rows of V
(U). The nm x nm matrix ß = (qrc) is obtained from H and P. It has elements q rc = pji,

r = (j — \)n + i, c = (/ — 1)« + hjj and zeros elsewhere. Even for a grid 2£ with only a few
elements m, Q is much larger than its respective counterpart in equation (3), and one
must use sparse matrix method to solve equation (13).

Interpolation. We know from the results obtained in Section 3 that interpolation be-
tween the points of JT is one way to increase the precision of the solution. Within the
current framework the objective is to obtain a continuous function <j){K) that approx-
imates the rhs of (7) given the tabulated value function in the matrix V and the grid JT.
We achieve this by defining

nt

4>(K) = u (Z „ K „ K) + ß Y , P j M K) . (14)
/=l

The function t>/(fC) is obtained from interpolation between two neighboring points K,
and K/+i from J f and the respective points v,i and vi+u from the matrix V. Thus,
each time the function <j)(K) is called by the maximization routine, m interpolation steps
must be performed. For this reason, interpolation in the context of a stochastic model is
much more time consuming than in the case of a deterministic model. Our algorithm
allows for either linear or cubic interpolation in the optional Step 2.2.ii.

Measuring Accuracy. We use the functions u(C) = [C1 n — 1]/(1 — rf) and f(K) = Ka
and measure the accuracy of the solution by the residuals of the Euler equation

((1 + e)C)-’’ = E { [y8(C)“" (l - ö + a(eelnZW)(K')a_1)] |z}.

We use Gauss-Hermite quadrature to evaluate the integral on the right-hand side of the
previous equation. Again, C, C' and K' are computed by the policy functions. For ex-
ample, the police function for consumption is given by

hc {K, Z) = ZKa + (1 - S)K - b K(K, Z).

The policy function for the next-period Capital stock hK is obtained from bilinear inter
polation between the elements of the matrix H. The residuals are computed over a grid of
2002 points over the interval [0.75JC*, 1.25K*] x [0 .95,1.05].17

Calibration. The parameters a, ß, ö, and rj are set as in the model of Section 3. For the
Parameters of the technology process, p = 0.90 and a = 0.0072, we use the estimates
obtained by Heer and Maussner (2009) who fit an AR(1) process to the time series
for German productivity. The value and the policy function are computed on a grid
of n x m points. The size of the interval Iz = [Z\, Zm\ equals 11 times the unconditional
Standard deviation of the AR(l)-process in equation (9). We stopped iterations, if the
maximum absolute difference between successive approximations of the value function
became smaller than 0.01(1 — ß) or if the policy function remained unchanged in 50 con-
secutive iterations (this latter criterium is only applicable for methods 2 and 4.) Modified

17 To save on computational time we did not use the same number of points, i. e., 20,000, that we used
in Section 3. We found that the difference between the maximum Euler residual on a grid over
[0.75K*, 1.25K*] with 200 and a grid with 20,000 points, respectively, is small.

policy iterations use k = 35. The stochastic process for the productivity shock (9) is ap-
proximated by a Markov chain with m = 9 points.18

4.2 Model 3: A simple heterogeneous agent model
As a third model we will consider a very simple model of an exchange economy that is
based upon Huggett (1993). In our model, agents are heterogeneous with regard to their
wealth a and their employment status e e {eP ,e 1}. Employment is stochastic. Households
are either employed, e = eh, or unemployed, e = el, in which cases they receive the in-
come y(eh) and y(el), respectively, with y(eh) > y(el). In addition, they face a borrowing
constraint a, > = ä in each period f.
In order to compute the solution for such a model, we need to compute the value function
over a much larger interval than, for example, in the deterministic Ramsey model. More
over, the value function is characterized by much more curvature at and in the proximity
of the borrowing constraint. In our model, unemployed agents with minimum wealth
a = ä would like to accumulate higher debt but cannot do so. As a consequence, the
computation of the policy function is prone to higher inaccuracy and/or lower speed.

The Model. The model follows Huggett (1993) with some simplifications. In our econ
omy, households hold a single asset a that cannot be stored but can be deposited at a
central credit authority at an interest rate rt. The central credit authority administers
the credit balances of all households without any transaction cost and without any
fees. Furthermore, it sets an interest rate r and imposes a credit constraint a < a. The
budget constraint of the household in period t is given by

c , + a l+1 = (1 + r t)a, + y{et), (15)

where ct, again, denotes consumption in period t.
The employment process follows a first-order Markov process with transition probabil-
ity 7i(e'\e) = P rob(et+1 = e'\et = e) > 0 for e', e £ { e h, e1}. The agent maximizes expected
discounted utility:

Eo
f=0

(16)

where ß < 1 denotes the discount factor and instantaneous utility «(•) is a CES function
of consumption:

c1-''
h(C) = ~ (17)

As in the previous two sections, 1 /// denotes the intertemporal elasticity of substitution.
We further assume that insurance markets are missing and that households cannot pool
their assets and income. As a consequence, households build up different levels of wealth
a depending on their employment histories. For such an economy, it is possible to define a
stationary equilibrium in which the distribution of assets is invariant and the interest rate

18 The source code is available in the Gauss program Model_2.g from Alfred Maußner’s homepage.
Also available is a Fortran version of Algorithm 4.1 from the home page of our book Heer and
Maußner (2009).

r is constant and set such that the credit market clears. The net credit balance of all house-
holds is equal to zero and the central credit authority has zero profits. 19

Calibration. The income of the employed and unemployed are set equal to y(eh) = 1
and y(el) = 0.1, respectively. One model period corresponds to 8.5 weeks so that 6 per-
iods are equal to one year. The transition probabilities are calibrated such that the av
erage duration of the low income shock (unemployment) is two model periods and the
Standard deviation of annual earnings is 2 0 % :

, „ , / 0.925 0.075 \
 ̂0.500 0.500 J '

The equilibrium unemployment rate is 13 % .20 Huggett (1993) sets the discount factor
equal to ß = 0.99322 implying an annual discount rate of 0.96. To allow for a compar-
ison of our results to those in previous sections, we set the risk aversion coefficient tj
equal to 2. For the credit limit ä, we consider a value a = —2. A credit limit of —5.3
corresponds to one year’s average income. Finally, we choose an interest rate
r = —2.357% which is found to be the interest rate in the stationary equilibrium of
our economy.

Computation. We compute the policy functions of the households over the interval
a G [—2,3] for the employment types e e {eh,e 1}. The upper limit of the interval is
non-binding such that in the stationary equilibrium households only hold wealth levels
below it. Besides, we employ the same computational techniques as in the previous sub-
section except that we now consider the individual employment status rather than the
aggregate productivity level as the exogenous stochastic state variable. The Euler equa-
tion residual e is computed from:

((l + e) c) - ’’= E { ß (c r n(l + r) } ,

where d denotes next-period consumption. Different from our procedure in the models
of the previous two sections, however, we do not compute the Euler equation residuals
over the complete interval [—2,3], but only for those agents that are not credit-con-
strained.21,22

19 The equilibrium concept and the uniqueness and existence of the solution is described in more detail
in Huggett (1993). The computation of the invariant distribution is explained in Chapter 7.3.1 in
Heer and Maußner (2009).

20 Heer and Maußner (2009) explain in Chapter 12.2 how to compute the ergodic distribution.
21 The source code is available in the Gauss program Model_3.g from Alfred Maußner’s homepage.
22 In the case of the credit constrained agent, the Euler equation for the savings decision is

u'(ct) = X, +/?Ejk'(c(+i)(1 + r), where X, is the Lagrange multiplier of the constraint at+1 > a.
We can determine c, as well as «'(c,+i) from the approximate policy function of the agent. However,
we have to use the optimality condition to back out so that the Euler equation residual is zero per
construction.

5 Evaluation

In this section we consider the relative perforraance of methods 2 through 6 with regard
to the solution of our three models. We do not consider method 1, since we know from
Section 3 that this is definitely the worst method to use. All solutions were computed on a
workstation with quad core, 2 .66 gigahertz CPU, and 12 gigabyte of RAM. For each
method we first determined the size of the grid that provides a given accuracy in terms
of the maximum absolute value of the Euler equation residuals. We know from Table 2
that methods 2-4 require large grids to achieve an accuracy in the order of magnitude of
l.E -3. Therefore we limit attention to two sets of solutions. Table 4 ranks the methods
according to the run time, if the desired accuracy is about l.E -3 . Table 5 rests on ma
ximum Euler equations residuals around l.E -2 .

Smart value function iteration (method 2) performs worst in all our simulations. The
trade-off, which determines the ranking of the remaining methods, is between high pre-
cision on small grids but many floating point operations (flops) per iteration on the one
hand and low precision on small grids but few flops on the other. Methods 5 and 6 must
compute the connecting line between neighboring grid points, whereby cubic spline in-
terpolation is computationally more intensive than linear interpolation. In addition,
both methods have to use an optimization routine to locate the maximizer of the right
hand side of the Bellman equation between neighboring grid points. Methods 2 through
4 lack these steps. Therefore, it is not surprising that method 6 ranks first, when a small
grid achieves the required accuracy. This happens in Models 2 and 3 for l.E -3 . For Model
1 both methods need only 3 points to achieve an accuracy that is even higher than the
required precision of E-2 and E-3, respectively. Since both methods need only fractions of
a second to compute the solution, it happened in some runs (10 out of 100) that method 5
(which needs less flops than method 6 per iteration) was slower than method 6 . We at-
tribute this imprecision in time measurement to the environment (hard- and Software) in

Table 4 Relative Performance of Models 1-3: 1.E-03

Rank
1

Model
2 3

1 Method 5 Method 6 Method 6
n = 3 n = 7 n = 1030

00:00:00:37 [1.00] 00:00:27:53 [1.00] 00:00:15:50 [1.00]
2 Method 6 Method 3 Method 4

n = 3 n = 21000 n = 13100
00:00:00:0039 [1.04] 00:02:53:72 [6.31] 00:00:24:15 [1.56]

3 Method 4 Method 5 Method 5
n = 10745 n = 125 n = 4400

00:00:12:28 [33.19] 00:05:06:92 [11.15] 00:00:29:35 [1.89]
4 Method 3 Method 4 Method 3

n = 10745 n = 21000 n = 13100
00:00:24:40 [65.95] 00:08:24:23 [18.31] 00:01:17:31 [4.99]

5 Method 2 Method 2 Method 2
n = 10745 n = 21000 n = 13100

00:03:30:21 [568.23] 01:01:11:81 [133.37] 00:05:53:69 [22.82]

Notes: The method numbers are explained in the text. n is the number of grid points that delivers a maximum Euler
equation residual of about 1.E-03. Euler equation residuals are computed as explained in text. Run time is given in
hours:minutes:seconds:hundreth of secondson aquad core 2.66 gigahertz processor. Numbers in brackets are run
time relative to the run time of the first ranked method.

Table 5 Relative Performance of Models 1-3: 1.E-02

Rank
1

Model
2 3

1 Method 5 Method 5 Method 3
n = 3 n = 4 n = 1400

00:00:37 [1.00] 00:11:63 [1.00] 00:04:48]1.00]
2 Method 6 Method 6 Method 4

n = 3 n = 3 n = 1400
00:00:39 [1.04] 00:20:91 [1.80] 00:06:81 [1.52]

3 Method 4 Method 4 Method 6
n = 988 n = 2000 n = 305

00:01:63 [4.42] 00:57:96 [4.98] 00:07:83 [1.75]
4 Method 3 Method 3 Method 5

n = 985 n = 2000 n = 945
00:01:74 [4.69] 01:14:24 [6.38] 00:10:15 [2.27]

5 Method 2 Method 2 Method 2
n = 985 n = 2000 n = 1400

00:18:44 [49.84] 10:13:75 [52.77] 00:22:65 [5.06]

Notes: The method numbers are explained in the text. n is the number of grid points that delivers a maximum Euler
equation residual of about 1 .E-02. Euler equation residuals are computed as explained in text. Run time is given in
minutes'.seconds.hundreth of seconds on a quad core 2.66 gigahertz processor. Numbers in brackets are run time
relative to the run time of the first ranked method.

which we run our models. To account for it, we report averages of runtime from 100
consecutive solutions of both models.
Table 5 shows, that, for low accuracy, linear interpolation is faster than cubic interpola
tion for Models 1 and 2. Both methods need only 3 or 4 grid points in this case. In the case
of Model 3, even method 6 requires a relatively large grid of «=305 points to yield a
precision below l.E -2 . For a smaller grid the policy function of the unemployed agent
near the borrowing constraint is not sufficiently accurate. However, with «=305 points
the method cannot compete in speed with methods 3 and 4, which rank first and second,
respectively. Since method 5 requires over three times more grid points than method 6, it
ranks fifth, though it requires less flops than method 6 per iteration. Note, that there are
only two simulations in which full policy iteration is faster than modified policy itera
tion.
In summary, cubic spline interpolation dominates the other algorithms in case of high
accuracy, while for low accuracy linear interpolation is faster. Nevertheless, methods
without interpolation are viable alternatives: They rank second in both stochastic models
with highly accurate solutions, and they rank top in the case of Model 3 when less precise
solutions are aimed at. Remember, however, that these results depend upon our strategy
to obtain a good initial guess of the value function, and that we use modified policy
iteration (method 4) to obtain this guess in the case of methods 5 and 6 .

6 Conclusion

We consider six different variants of value function iteration to solve three kinds of dy-
namic general equilibrium models. Our first method, simple value function iteration,
serves an illustrative purpose only and cannot compete in speed with any other method.
For this reason, we restrict attention to methods 2 through 6 . We rank these methods

based on the time they need to compute a solution of a given accuracy. We measure ac
curacy as the maximum absolute value of the error in the model’s respective Euler equa
tion. We are able to reduce the run time of all methods considerably via an iterative in
itialization of the value function. Based on this strategy method 6, smart value function
iteration with cubic spline interpolation, is the fastet method to solve all three models
with a relatively high accuracy of about l.E -3 . Methods 5 (smart value function iteration
with linear interpolation) computes solutions with larger error of about l.E -2 in less time
than method 6 in the case of the deterministic and the stochastic Ramsey model. Methods
3 and 4 (full policy iteration and modified policy iteration, respectively) solve our het-
erogenous agent model faster than both methods that rely upon interpolation of the value
function, if the required precision is about l.E -2 . In addition, we find that except in two
out of six simulations modified policy iteration is faster than full policy iteration.
We, therefore, carefully advocate the use of value function iteration with cubic spline
interpolation where the initial value is found in a tatönnement process over a coarser
grid with the help of modified policy function iteration. If our results generalize to
more complex models with three- or four-dimensional state space is an open question
which requires more experience in a variety of alternative models.

References
Aruoba, S. B., J. Fernändez-Villaverde, J. F. Rubrio-Ramirez (2006), Comparing Solution Meth

ods for Dynamic Equilibrium Economies. Journal of Economic Dynamics and Control 30:
2477-2508.

Christiano, L. J., J. D. M. Fisher (2000), Algorithms for Solving Dynamic Models with Occasion-
ally Binding Constraints. Journal of Economic Dynamics and Control 24: 1179-1232.

Demmel, J. W., S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu (1999), A Supernodal Approach
to Sparse Partial Pivoting. SIAM Journal on Matrix Analysis and Applications 20: 720-755.

Erosa, A., G. Ventura (2002), On inflation as a Regressive Consumption Tax. Journal of Mone
tary Economics 49: 761-95.

Heer, B. (2007), On the Modeling of the Income Distribution Business Cycle Dynamics. CESifo
Working Paper No. 1945.

Heer, B., A. Maußner (2008), Computation of Business Cycle Models: A Comparison of Nu-
merical Methods. Macroeconomic Dynamics 12: 641-663.

Heer, B., A. Maußner (2009), Dynamic General Equilibrium Modeling: Computational Meth
ods and Applications. 2nd Edition. Berlin.

Huggett, M. (1993), The Risk-Free Rate in Heterogenous-Agent Incomplete-Insurance Econo
mies. Journal of Economic Dynamics and Control 17:953-69.

Judd, K. L. (1992), Projection Methods for Aggregate Growth Models. Journal of Economic
Theory 58: 410-52.

Judd, K. L. (1998), Numerical Methods in Economics. Cambridge, MA.
Judd, K., J. Gaspar (1997), Solving Large-Scale Rational-Expectations Models. Macroeconomic

Dynamics 1:45-75.
Kremer, J. (2001), Arbeitslosigkeit, Lohndifferenzierung und wirtschaftliche Entwicklung. Köln.
McGrattan, E. R. (1999), Application of Weighted Residual Methods to Dynamic Economic

Models. Pp. 114-142 in: R. Marimon, A. Scott (eds.), Computational Methods for the Study
of Dynamic Economies. Oxford/New York.

Puterman, M. L., M. C. Shin (1978), Modified Policy Iteration Algorithms for Discounted Mar
kov Decision Problems. Management Science 24: 1127-1237.

Puterman, M. L., S. Brumelle (1979), On the Convergence of Policy Iteration in Stationary Dy
namic Programming. Mathematics of Operations Research 4: 60-69.

Tauchen, G. (1986), Finite State Markov-Chain Approximations to Univariate and Vector Auto-
regressions. Economics Letters 20: 177-181.

Taylor, J.B ., H. Uhlig (1990), Solving Nonlinear Stochastic Growth Models: A Comparison of
Alternative Solution Methods. Journal of Business and Economic Statistics 8: 1-17.

Prof. Dr. Burkhard Heer, Free University of Bolzano-Bozen, School of Economics and Manage
ment, Piazza Universitä, 39100 Bolzano-Bozen, Italy, and CESifo.
Burkhard.Heer@unibz.it

Prof. Dr. Alfred Maußner, University of Augsburg, Department of Economics, Universitäts
straße 16, 86159 Augsburg, Germany.
alfred.maussner@wiwi.uni-augsburg.de

mailto:Burkhard.Heer@unibz.it
mailto:alfred.maussner@wiwi.uni-augsburg.de

