
MINING HIGH-QUALITY BUSINESS
PROCESS MODELS FROM REAL-LIFE

EVENT LOGS

DISSERTATION

FOR THE DEGREE OF
DOCTOR OF NATURAL SCIENCES (DR. RER. NAT.)

Yaguang Sun

UNIVERSITY OF AUGSBURG

Department of Computer Science

Software Methodologies for Distributed Systems

NOVEMBER, 2017

Supervisor Prof. Dr. Bernhard Bauer, Department of Computer Science
University of Augsburg, Germany

Advisor Prof. Dr. Robert Lorenz, Department of Computer Science,
University of Augsburg, Germany

Defense 08 February 2018

Copyright © Yaguang Sun, Augsburg, November 2017

Abstract

In the last years, Business Process Mining (BPMI) has become a very important
research topic in academia. In the industry, also more and more big companies
are starting to use such a technique to help them understand how their business
processes are implemented in reality and locate the inefficient and noneffective
part in their business processes. Traditional BPMI research topic can be classified
into three sub-topics: Business Process Model Discovery (BPMD), conformance
checking and process extension. However, as one of the most significant branch
in the BPMI research area, the present BPMD techniques meet great challenges
when mining process models from real-life event logs. "Spaghetti-like" process
models are often generated. Such models are normally inaccurate and very com-
plex. The main reason is that in the real world many businesses are often executed
in highly flexible environments, e.g., healthcare, customer relationship manage-
ment (CRM) and product development. As a result, the event logs that stem
from such flexible environments often contain dense distribution of cases with
a high variety of complex behaviours. In this thesis, we explore the approaches
and techniques to help existing BPMD techniques generate accurate and simple
process models when mining real-life event logs.

The approaches and techniques presented in this thesis mainly inherit the ba-
sic ideas of three classical strategies proposed in the literature for assisting the
BPMD techniques in mining process models with high quality which are Mining
Algorithm Enhancement-Based Strategy (MEBS), Model Division-Based Strat-
egy (MDS) and Model Abstraction-Based Strategy (MAS). Moreover, the pro-
posed techniques are also carefully designed so as to overcome the weaknesses
of the current realisations of the three strategies. The main contributions of this
thesis are as follows:

1. For the MEBS, we have developed a new technique named HIF which is
able to help existing BPMD techniques overcome their limitations on their
expressive ability. The working principle is that HIF can locate the inex-
pressible process behaviours in the given event logs and then transform
them into expressible behaviours for the utilised BPMD techniques.

2. For the MDS, we have developed two trace clustering techniques named
TDTC and CTC and one multi-label case classification technique named
MLCC. The techniques TDTC and CTC are devised to optimise the accuracy
and complexity of the potential sub-process models of each trace cluster
during the runtime so as to assure the quality of the generated sub-models.
The technique MLCC is able to combine the domain knowledge from the
process experts so as to make a more meaningful division of the raw cases

iii

from a specific event log.

3. For the MAS, we have developed a mined model abstraction technique
named GTCA which utilises a new model abstraction strategy proposed
by us. Through this strategy, GTCA is capable of generating an abstraction
process model with higher fitness and lower complexity which cannot be
ensured by existing realisations of the MAS. Furthermore, trace clustering
technique is employed by GTCA for optimising the quality of the found
sub-process models.

iv

Acknowledgements

I would like to thank all the people who have ever supported me on writing my
thesis:

● First of all, I really appreciate the opportunity offered by my supervisor
Prof. Dr. Bernhard Bauer for doing the research in the area of Business Pro-
cess Mining in the University of Augsburg. His kind guidance, support and
care are the keys for the completion of this thesis.

● I am also grateful to Prof. Dr. Robert Lorenz who would like to be advisor
of my thesis.

● I wish to express my gratitude to my colleagues from the Software Method-
ologies for Distributed Systems group who have created great academic en-
vironment which I enjoyed very much. I will never forget those insightful
discussions with them which have helped me recognise the nature of the
problems I was facing.

● I want to thank all the other people who I met in the international confer-
ences and have proposed a lot of valuable suggestions for the contents of
my thesis.

● I would like to thank all my friends who kept encouraging me whenever I
met obstacles in the process of research. Your company also have given me
strength to overcome the difficulties encountered in my life.

● Especially, I want to thank my parents Yiying Liu and Yi Sun. They have
sacrificed a lot on the cultivation of my positive outlook and values from
which I will benefit in my entire life.

v

Contents

1. Introduction 1
1.1. Problems and Challenges . 4
1.2. Objectives, Approach and Contributions 7
1.3. Publications . 10

2. Basics 13
2.1. Data Mining Techniques . 13

2.1.1. Classification Technique . 14
2.1.2. Clustering Technique . 17
2.1.3. Sequential Pattern Mining Technique 24

2.2. Business Process Mining Techniques 25
2.2.1. Event Log . 26
2.2.2. Business Process Model Discovery (BPMD) 28
2.2.3. Assistant Techniques for Mining Better Process Models . . . 41

3. A Novel Heuristic Method for Improving the Fitness of Mined Business
Process Models 45
3.1. Introduction and Motivation . 45
3.2. Problem Description . 47
3.3. Build Process Behaviour Space . 48

3.3.1. Direct Activity Relations vs Casual Activity Relations 49
3.4. Activity Ranking . 50
3.5. A Heuristic Method: HIF . 51

3.5.1. Detection and Conversion of Inexpressible Process Behaviours 52
3.5.2. A Heuristic Method for Improving the Fitness of Mined

Process Models . 55
3.6. Preliminary Verification for HIF . 56

4. Trace Clustering and Classi�cation Techniques 59
4.1. Introduction and Motivation . 59
4.2. A Novel Top-Down Trace Clustering Technique 62

4.2.1. Outline for Technique TDTC . 62
4.2.2. Approach Design . 63
4.2.3. Assumptions . 71

4.3. A Compound Trace Clustering Technique 71
4.3.1. A Complexity-Related Top-Down Trace Clustering Approach 71
4.3.2. A Mined Process Model Fitness Improvement Method . . . 77
4.3.3. The Compound Trace Clustering Method 77

4.4. Multi-Label Case Classification . 78
4.4.1. Problem Description . 79
4.4.2. Basic Concepts Relevant to Multi-Label Case Classification 81

vii

4.4.3. Definitions Relevant to Functions 82
4.4.4. Transforming Label-Related Functions into Case Attributes 84

4.5. Preliminary Verification for Techniques TDTC, CTC and MLCC . . 86
4.5.1. Verification for TDTC and CTC 86
4.5.2. Verification for MLCC . 91

5. A Graph and Trace Clustering-Based Approach for Abstracting Mined
Business Process Models 97
5.1. Introduction and Motivation . 97
5.2. Basic Idea . 98
5.3. A Three-Step Algorithm . 100

5.3.1. Find Multi-Cluster Activities and Extract Sub-Logs 101
5.3.2. Generate High Level Activities and High Level Process Model102
5.3.3. Deal With Complex and Inaccurate Sub-Models 107

6. Evaluation 109
6.1. Introduction . 109
6.2. Evaluation on Technique HIF . 109

6.2.1. Comparison . 110
6.2.2. Experiment on Real-Life Event logs 111

6.3. Evaluation on Trace Clustering Technique TDTC and CTC 117
6.3.1. Assessment on the Parameter settings for TDTC and CTC . 118
6.3.2. Comparison . 124

6.4. Evaluation on Technique GTCA . 127
6.4.1. The Limitations of Trace Clustering Technique 127
6.4.2. Measurement of the Performance of GTCA on Three Event

Logs . 129

7. Conclusions 133
7.1. Summary . 133
7.2. Discussion and Outlook . 135

Bibliography 139

List of Figures 157

List of Tables 161

List of Algorithms 163

A. Acronyms 165

viii

1
Introduction

Today, companies are putting increasing emphasis on constant Business Process
Improvement (BPI) [1–3] with the purpose of enhancing self-competitive capabil-
ities under the contemporary changeable marketing environment. For instance,
to provide customers with consistently reliable and low-cost products and ser-
vices, current multinational corporations like Wal-Mart, FedEx and McDonald’s
spare no efforts to continually improve a broad range of internal operation pro-
cesses. The entry point for BPI is usually a deep analysis of enterprise busi-
ness processes together with the process execution-related data recorded by the
Process-Aware Information Systems (PAIS) [4] such as Workflow Management
(WFM), Enterprise Resource Planning (ERP), Supply Chain Management (SCM)
and Customer Relationship Management (CRM) systems in which the business
processes are implemented. The analysis results obtained cannot only trigger the
process improvement or reengineering [5, 6] by helping companies identify the
causes of malfunctions and bottlenecks of their business processes, but can fos-
ter innovations in the companies through facilitating decision-makings as well.
Furthermore, companies are able to predict future business problems and super-
vise the consistency between operational processes and business strategies by
analysing their business processes [7].

A process cannot be improved or redesigned before it is understood. Business
process models play an important role in analysing and improving enterprise
business processes because they are capable of giving the process analysts a better
understanding of how the companies’ business processes are executed. In [8, 9],
the functions of business process models for corporations are well summed up in
eight perspectives:

● Insight: process models can help business analysts understand how the
companies run their businesses.

● Discussion: process models can serve as a common unified language and
methodology for stakeholders and business analysts to exchange views and
information about business processes.

1

● Documentation: process models can help employees comprehend their jobs
easily and also support compliance initiatives such as Six Sigma and ISO
9000 quality management.

● Verification: process models can be analysed for detecting errors in systems
or procedures (e.g., underlying deadlocks).

● Performance analysis: process models can support various kinds of process
simulations which help business managers to ensure that their processes
are optimised and implementing correctly.

● Animation: process models enable end users to "play out" different scenarios
and thus provide feedback to the designers.

● Specification: process models can help define the modules of PAIS before
they are carried out and can hence be regarded as a bridge between devel-
opers and end users.

● Configuration: process models can be employed to configure PAIS.

Business process models are often designed in enterprises manually. How-
ever, artificial model building has been regarded as a complex, time consuming
and error prone task. To create an elaborate model that describes the flow of
work properly, a modeler usually needs to spend a long time discussing with
staff members and managers so as to master every single detail of the business
process at hand. Meanwhile, the modeler should also have a deep knowledge
about the utilised modeling language. Additionally, current enterprise business
processes are often implemented in flexible environments to encourage process
evolution for coping with the changes of exterior markets [10–14]. As a result,
handmade process models often cater too much to the norms to describe the ac-
tual processes [15,16]. The discrepancies between the manually modeled process
behaviours and the realistic execution behaviours of processes will reduce the
credibility of artificially designed models.

BPMD [8, 9, 17, 18] that is an important research branch of BPMI [19–22] pro-
vides companies with an automatic way to acquire the models of their business
processes. During the last years, many outstanding process model discovery
techniques have been developed in the literature, e.g., the α algorithm [23], ILP
Miner [24], Heuristics Miner (HM), Inductive Miner [25–27], Fuzzy Miner [28]
and Genetic Miner [29]. These techniques are able to extract the process models
by employing the ordering relations of activities recorded in the so-called "event
logs" without human interventions. Typically, there are several advantages for
mining the business process models automatically: (i) the process model mining
procedure is much more timesaving than the manual model building procedure,
(ii) due to the leads utilised to construct the models are from the real implemen-

2

tation of enterprise business processes, the mined process models are not biased
by the modelers’ perceptions or canonical behaviours but can express the realis-
tic process behaviours, (iii) the mined process models provide a basis for Delta
analysis, i.e., detect discrepancies between the handmade process models and the
realistic process models [9].

However, in the real world many business processes are often executed in
highly flexible environments, e.g., healthcare, CRM and product development
[30]. As a result, the current BPMD techniques might generate inaccurate and
impalpable analysis results while dealing with event logs (real-life logs) stem-
ming from such flexible environments. For instance, "spaghetti-like" business
process models might be generated by existing BPMD algorithms with an input
of real-life event log. Such models are often inaccurate and too complex to be
well interpreted. The problem is largely due to the dense distribution of complex
process behaviours in the real-life event logs. Accordingly, three main strategies
have been proposed in the academia to solve this problem: the Mining Algo-
rithm Enhancement-Based Strategy (MEBS), the Model Division-Based Strategy
(MDS) [31, 32] and the Model Abstraction-Based Strategy (MAS) [33, 34].

Real-life event logs often contain complex process behaviours which might be
far beyond the expressive ability of the utilised BPMD algorithms. If this is the
case, inaccurate process models will be generated. The MEBS aims at improving
the expressive ability of existing BPMD algorithms or developing new algorithms
that are able to model more complex workflow patterns. The MDS strategy tries
to divide the original event log into several sublogs where each sublog consists of
similar process behaviours. Afterwards, by applying BPMD algorithms on each
sublog, more accurate and comprehensible (simpler) sub-models can be obtained.
The trace clustering technique [31,35,36] is a classical application instance of such
strategy. The MAS makes the assumption that the raw models mined from event
logs may contain low level subprocesses which can be found in the event logs
and abstracted into high level activities so that the low level process behaviours
can be hidden in the high level activities. Thus, more accurate and simpler high
level process models can be obtained. In practical applications, we discovered
that each of the three strategies has its own applicable situation determined by
the structural features of the implemented processes and the process execution
information recorded in event logs. For example, the MEBS is able to provide
end users with a holistic view of their business processes but cannot deal with
the problem of high complexity of the mined models. The MDS can solve both
the problems of low accuracy and high complexity of the mined models by sac-
rificing the integrity of process models. Additionally, the limitation of MDS will
be revealed while dealing with event logs containing massive trace behaviours
(as proved in Chapter 6). The MAS is capable of dealing with extremely unstruc-
tured process behaviours [28, 33]. However, the process models mined by MAS
usually cannot be directly implemented [28]. Given a specific context, an appro-
priate strategy should be selected to solve the relevant problem.

3

Mining Algorithm Enhancement-

Based Strategy

A mined model fitness

improvement method: HIF

Model Division-Based Strategy

Trace clustering technique: TDTC

Model Abstraction-Based Strategy

A mined model abstraction

method: GTCA

Log 1

Log

Space

Final target: let end users

understand the enterprise

business processes

Trace clustering technique: CTC

A multi-label case classification

method: MLCC

Log 2

Log n

Method

Space

Figure 1.1.: Illustration of the basic idea for solving the problem of BPMD under
flexible environment.

In this thesis, we address the challenge of mining enterprise business process
models under flexible environments by providing a series of efficient techniques
for MEBS, MDS and MAS. As shown in Figure 1.1, all the created techniques for
the three strategies serve for one single ultimate target: let end users of our tech-
niques acquire a better insight of their business processes. Each of the developed
techniques has its own scope of application (will be introduced in detail in the fol-
lowing chapters) characterised by the features of the business processes recorded
in the related event logs waiting to be dealt with.

1.1. Problems and Challenges

Currently, many classical methods for realising MEBS, MDS and MAS have been
put forward in the literature. However, there still exist several problems about
these methods which need to be resolved so as to improve the practicability of
the three strategies. This section describes thorny problems and derives concrete
challenges for realising the three strategies.

Mining Algorithm Enhancement-Based Strategy

BPMD technique is the basic tool for transforming the implicit process behaviours
hidden in the event logs into abstract models. Many advanced BPMD algorithms
[24, 25, 28, 29, 37–40] utilising different approaches and modeling languages have

4

been presented in the past. Nevertheless, each of these developed algorithms has
its own feature reflected by its representational bias, i.e., the category of process
behaviours that can be expressed by the algorithm [9]. Creating an approach to
represent all kinds of workflow patterns therefore cannot be accomplished.

Problems

● Sometimes, the business processes executed under flexible environment may
exhibit very complex behaviours which might be far beyond the expressive
ability of the utilised BPMD algorithms. As a result, mining the event logs
that record the behaviours of these business processes will generate low-
fitness process models.

● Existing process model discovery algorithms don’t have effective process-
ing mechanisms to detect and deal with the process behaviours which they
cannot express in the real-life event logs.

● Most techniques attached to the MEBS are developed to help mine more
fitted models expressed by Petri net. However, few efforts have been made
to help the HM get better mining results. According to [36], the HM is one of
the most popular BPMD tools for mining real-life event logs and developing
an auxiliary method to help it mine high-fitness process models is far from
trivial.

Challenge 1. Discover and handle the inexpressible process behaviours recorded
in event logs from flexible environment for HM so as to help HM generate better
process models.

Model Division-Based Strategy

Event logs usually record all sorts of historical information about the execution of
business processes. Such kind of historical information is often organised in the
form of process instances. For each process instance, the relevant events together
with the values of data fields (e.g., timestamp, cost and resource) linked to these
events might also be recorded. The trace clustering technique that derives from
the MDS is able to employ the process execution information recorded in an event
log in dividing this log into several sub-logs where the similar process instances
will be clustered into the same sub-log automatically. Then, more accurate and
simpler sub-models can be obtained by using the BPMD algorithms to mine the
sub-logs generated.

5

Problems

● Most currently available trace clustering algorithms focus mainly on the
discovery of various kinds of process behaviours while the quality of the
underlying sub-model for each sub-log learned is not taken into account.
Hence, high quality sub-process models from these trace clustering meth-
ods cannot be assured.

● Trace clustering is an unsupervised learning technique and lack domain
knowledge. As a result, it is unable to indicate which process behaviours
found are crucial or which behaviours are wanted by customers for splitting
the original set of process instances. Additionally, treating all of the process
behaviours equally may not generate a correct or meaningful separation of
process instances.

Challenge 2. Optimise the accuracy and simplicity of the potential sub-process
model for each sub-log generated by clustering technique at runtime.

Challenge 3. Combine the domain knowledge from business experts for split-
ting the process instances in event logs.

Model Abstraction-Based Strategy

Sometimes, extremely complex and inaccurate process models might be output
by existing process model discovery algorithms due to the huge amount of low-
level activities recorded in the event logs. Furthermore, the business process
models composed by low-level activities are often too fine grained to be well
comprehended by the process analysts. There is a demand to merge these bot-
tom activities into high-level activities so that the mined process models can be
expressed at a suitable level of abstraction [41, 42]. Several methods based on
the idea of MAS have been put forward in the literature. The proposed methods
are able to discover meaningful sub-processes constructed by the bottom activ-
ities and abstract the found sub-processes into high-level activities in the event
logs. Afterwards, more meaningful, accurate and simpler abstract models can be
generated by executing the BPMD algorithms on the event logs with high-level
activities.

Problems

● Most existing model abstraction-based approaches focus mainly on the dis-
covery of sub-processes and cannot assure the quality of the abstract process

6

models generated.

● Occasionally, the sub-processes which might be interesting to the process
analysts may also suffer from inaccuracy and high complexity. Most of the
existing methods don’t provide a mechanism to deal with the underlying
low-quality sub-process models that might be generated.

Challenge 4. Develop a new mined model abstraction mechanism which consid-
ers the optimisation of the quality for both the potential abstract process models
and the sub-process models discovered at runtime.

1.2. Objectives, Approach and Contributions

In the previous section, we introduced the problems and challenges encountered
by the MEBS, the MDS and the MAS. This section identifies the objectives to
solve the problems and challenges for the three strategies. We also depict the
approaches we take to achieve these objectives and list the contributions of this
thesis.

Mining Algorithm Enhancement-Based Strategy

The HM is well designed to deal with real-life event logs and has a good perfor-
mance in most cases. Nevertheless, its weaknesses will be revealed while dealing
with complex process behaviours that it cannot express. As described in Challenge
1, this problem confronted by HM should be solved by providing an inexpress-
ible process behaviour handling mechanism.

Objective 1. Create an inexpressible process behaviour handling mechanism to
help HM mine fitting process models from real-life event logs.

Approach. We develop a heuristic method named HIF to address this objective.
The proposed method follows the divide-and-conquer approach which means
that each time our method discovers and resolves the inexpressible process be-
haviours related to a single activity from the relevant event log. The whole prob-
lem is then solved after the found inexpressible process behaviours related to
each activity is handled.

7

Contributions

● An effective method for extracting and organising the process behaviours
from real-life event logs is put forward. This method provides a basis for
the later inexpressible process behaviour detecting and handling process.

● A priori method is developed to locate the inexpressible process behaviours
from the given event logs for HM.

● An inexpressible process behaviour handling mechanism is devised which
is capable of transforming the found inexpressible process behaviours into
expressible behaviours for HM.

● A case study is carried out in which our method successfully helps the HM
mine high-fitness process models from five real-life event logs. A compar-
ison between our method HIF and other classical BPMD techniques is also
made through implementing the related methods on several example event
logs.

Model Division-Based Strategy

An effective way to deal with an inaccurate and complex process model mined
from real-life event log is to divide this model into separated sub-models where
each sub-model is more accurate and simpler. Trace clustering technique is de-
vised to implement this job. According to Challenge 2 it has to be possible for
the trace clustering technique to assure the quality of the generated sub-models.
Sometimes, the business process experts know the best way to split a complex
and inaccurate process model mined according to their domain knowledge. If
this is the case, it should be possible to combine the domain knowledge from
these experts for the division of the original models mined (see Challenge 3).

Objective 2. Develop new type of trace clustering methods that are able to op-
timise the accuracy and simplicity of the underlying sub-process models during
runtime.

Approach. A novel top-down algorithm named TDTC and a compound trace
clustering algorithm named CTC for clustering traces are designed to achieve
Objective 2. The presented approach TDTC first divides the raw model mined
into two sub-models which have the highest average quality (expressed by model
accuracy and complexity) among all the possible pair of sub-models that can be
obtained by dividing the raw model. Then, it continues to deal with the generated
sub-models recursively until a stopping criterion is satisfied. Unlike TDTC, the

8

technique CTC tries to optimise the accuracy and complexity of the potential sub-
process models separately by combining the basic idea from TDTC and the mined
model fitness improvement technique HIF mentioned above.

Contributions

● The trace clustering problem is surveyed from a new perspective and rede-
fined as an issue of searching for a global optimal solution for splitting the
original model in a solution space.

● We formalise the definitions related to trace behaviours. Then, several dif-
ferent kinds of trace behaviours are defined for helping cluster the traces
from real-life event logs.

● A top-down algorithm TDTC and a compound algorithm CTC based on
the different kinds of trace behaviours defined by us are put forward which
identify the optimal solution for a given trace clustering problem.

● A case study is carried out in which our methods are compared with six
classical trace clustering methods. The comparison results show that our
methods perform better than the other methods on the given real-life event
logs.

Objective 3. Develop a new application instance of the MDS which is able
to employ the domain knowledge from process experts to split the raw process
models.

Approach. Our method named MLCC developed for achieving Objective 3 is
based on classification technique. Not like clustering technique, classification is a
supervised technique that can make use of the domain knowledge from business
experts seamlessly for the mined model division problem.

Contributions

● We demonstrate and formalise the problem of multi-label case classification.

● A systematic method MLCC based on sequential pattern mining technique
[43] is put forward for utilising the case attribute trace for classifying cases.

● A case study executed on a hospital event log proves the effectiveness of
our technique.

9

Model Abstraction-Based Strategy

The target of MAS is to generate a high quality abstract process model by hiding
the low level sub-models in the original model mined from the relevant event
log. Sometimes, the process experts may also take interests in the behaviour of
the sub-models found. According to Challenge 4, the method that inherits the
idea of the MAS should assure the quality of the abstract model and sub-models
generated at the same time.

Objective 4. Develop a new model abstraction-based technique which optimises
the accuracy and simplicity for both the abstract model and the sub-models dur-
ing the runtime.

Approach. To realise Objective 4, an approach named GTCA is proposed by us
which merges the characters from both the graph clustering technique [44] and
the trace clustering technique. The graph clustering technique assists in generat-
ing a high quality abstract model while the trace clustering technique guarantees
the qualities of the discovered low level sub-models.

Contributions

● A new strategy based on graph clustering technique and trace clustering
technique for abstracting the raw models mined from real-life event logs is
created.

● A three-stage model abstraction approach GTCA based on the proposed
strategy is developed for mining high quality abstract models together with
their related low level sub-models.

● A case study implemented on three real-life event logs testifies the efficiency
of our method.

1.3. Publications

Parts of this thesis have been previously published in the following peer-reviewed
publications:

1. Yaguang Sun and Bernhard Bauer. "A Novel Fitness Improvement Method
for Mined Business Process Models". In Proceedings of the CAiSE’16 Forum at

10

the 28th International Conference on Advanced Information Systems Engineering,
Ljubljana, Slovenia.

2. Yaguang Sun and Bernhard Bauer. "A Novel Heuristic Method for Improv-
ing the Fitness of Mined Business Process Models". In: Sheng Q., Stroulia E.,
Tata S., Bhiri S., (eds) Service-Oriented Computing (ICSOC 2016), volume 9936
of Lecture Notes in Computer Science, pages 537-546.

The contents of Chapter 3 are based on the first two papers. In the first
paper we proposed the basic principle for locating and transforming the
inexpressible process behaviours for the utilised BPMD techniques in real-
life event logs. In the second paper we put forward the technique HIF for
helping HM mine process models with high fitness based on the principle
proposed in the first paper.

3. Yaguang Sun and Bernhard Bauer. "A Novel Top-Down Approach for Clus-
tering Traces". In: Zdravkovic J., Kirikova M., Johannesson P. (eds) Advanced
Information Systems Engineering (CAiSE 2015), volume 9097 of Lecture Notes
in Computer Science, pages 331-345.

4. Yaguang Sun, Bernhard Bauer and Matthias Weidlich. "Compound Trace
Clustering to Generate Accurate and Simple Sub-Process Models". Accepted
for publications by the 15th International Conference on Service-Oriented
Computing (ICSOC 2017)

5. Yaguang Sun and Bernhard Bauer. "Function-Based Case Classification for
Improving Business Process Mining". In Proceedings of the 17th International
Conference on Enterprise Information Systems (ICEIS 2015), pages 251-258.

The contents of Chapter 4 are based on the third, the fourth and the fifth
paper. In the third paper, the trace clustering technique TDTC is proposed
based on which we then developed another kind of trace clustering tech-
nique CTC that is published in the fourth paper. In the fifth paper, we pre-
sented the multi-label case classification technique MLCC.

6. Yaguang Sun and Bernhard Bauer. "A Graph and Trace Clustering-Based
Approach for Abstracting Mined Business Process Models". In Proceedings
of the 18th International Conference on Enterprise Information Systems (ICEIS
2016), pages 63-74.

The contents of Chapter 5 are based on the sixth paper in which the details
about the mined model abstraction technique GTCA is elaborated.

All the papers listed above are mainly written by me and commented by the co-
authors with whom the basic ideas of these papers are deeply discussed.

11

2
Basics

Business process mining research field is mainly built on two cornerstones: pro-
cess modeling (analysis) [45–48] and data mining [49–51]. Even though pure pro-
cess mining approaches are rarely directly applied to process model discovery
or conformance checking (the two main topics of process mining which will be
introduced later in this chapter), they play an important role of helpers and re-
source of ideas for various kinds of business process mining tasks. For example,
clustering technique [52–54] from data mining domain can be utilised to help ex-
isting process model discovery techniques mine more accurate and comprehen-
sible process models and classification technique [55–58] can assist in analysing
the routing rules (decision mining [59, 60]) in the mined process models. In this
chapter, the basic knowledge relevant to process mining techniques presented in
this thesis is elaborated. In the meantime, the similar methods put forward in
the literature which solve the same problems as our techniques are designed to
tackle are also retrospected detailedly. In Section 2.1, the correlative data mining
approaches (i.e., classification, clustering and sequential pattern mining [61, 62]
techniques) are briefly reviewed. In Section 2.2, the elementary concepts and ap-
proaches related to process mining are introduced.

2.1. Data Mining Techniques

To bridge the gap between data and information (knowledge), advanced data
mining methods have been widely researched in the last a few years which are
able to turn the huge amount of data collected and stored in large data reposito-
ries into valuable knowledge so as to help the decision makers make important
decisions [63]. Generally, the preparing steps such like data cleaning, data in-
tegration, data selection and data transformation should be implemented before
a particular data mining task [64]. After the data mining step, the knowledge
mined from the data set should also be evaluated on its interestingness [65] and
then visualised and exhibited to the policy makers. In this section, we mainly con-
centrate on the classification (Section 2.1.1), clustering (Section 2.1.2) and sequen-

13

tial pattern mining (Section 2.1.3) techniques from data mining domain because
these techniques are most correlative to the process mining approaches proposed
in this thesis.

2.1.1. Classification Technique

Classification is a kind of supervised technology (such kind of technology needs
domain knowledge to be given in advance) which tries to build models by em-
ploying training data set for the later predication of data categories (classes) [57,
66]. Such models are also referred to as classifiers. Table 2.1 displays the standard
format of the training data. It can be seen that a training data set contains several
data items where each item is a tuple represented by n attributes. Additionally,
every item in the training data set has a class label attribute (discrete-valued and
unordered) to which a value is manually assigned.

Table 2.1.: Standard training and testing data format for classification technique.
Item Attribute 1 Attribute 2 . . . Attribute n Label

1 XX XXX . . . XXXX YES
2 XX XXX . . . XXXX NO
3 XX XXX . . . XXXX NO
4 XX XXX . . . XXXX YES
5 XX XXX . . . XXXX YES

.

A data classification process normally consists of two steps: the classifier
learning step and the data-category predicting step. The classifier learning step
can be regarded as a step of creating a mapping or function, say y = f (X), where
y represents the category of a given data item X [50]. The created function can
be expressed by classification rules [67, 68], Decision Tree (DT) [69, 70] or other
related mathematical formulas. In the second step (i.e., the category predicat-
ing step), the accuracy of the classifiers [71–74] generated in the first step are
estimated first by making use of the testing data sets (the testing data and the
training data have the same formats). If the accuracy of the classifiers is deemed
acceptable, they can be utilised to make predication of the classes of the future
data items of which the labels are unknown. In the following part of this sub-
section, we will only introduce the DT classification approach because such an
approach is one of the most classical classification approaches and also a bench-
mark to which the newly designed classification methods are often compared.
The readers who are interested in the other classification techniques such like
AdaBoost, Naive Bayesian (NB) and SVM can refer to [75–84].

DT classification approach is well known by its high accuracy and intelligi-
bility. There exist several kinds of DT-based classification algorithms such as

14

ID3 [85], C4.5 [86, 87] and CART [85]. The primary difference between these al-
gorithms is that they use different ways to calculate the attribute selection mea-
sure (ASM) [50]. Algorithm 2.1 [50] shows the basic idea of DT classification
approach.

Algorithm 2.1 Decision Tree approach (DT)

Input: a training data item set TD, the set of attributes A for the data item in TD,
an attribute selection function S̃ for choosing the best attribute to partition the
present data items into classes.

1: create a node N
2: if all the data items in TD belong to the same class c, then
3: return N and label N with class c
4: if A is empty, then
5: return N and label N by the class with maximal number
6: run S̃(TD, A) to find the best splitting criterion scr related to attribute a ∈ A
7: label N with the name of attribute a
8: if scr is discrete-valued, then
9: remove a from A

10: for each condition scr[v] in scr
11: let TDv ∈ TD be the set of all items satisfying scr[v]
12: if TDv is empty, then
13: attach a leaf to N and label it by the class with maximal number in TD
14: else attach the node returned by DT(TDv, A, S̃) to N
Output: a decision tree N.

The steps 1−5 of Algorithm 2.1 are straightforward. Step 6 tries to find the
present best splitting criterion from the attribute set A so as to make each partition
TDv for each branch as pure as possible (the attribute selection function S̃ will
be introduced later). If scr is discrete-valued, then remove attribute a from A
which means that an attribute will only be considered once for each partition task
(step 8−9). Afterwards, the Algorithm 2.1 recursively processes each generated
partition TDv and attach the returned node to the root node N.

To explain the attribute selection function S̃, we first introduce an attribute
selection metric named Information Gain (IG). Let TD be a training data set, A
be the attribute list for TD, a ∈ A be an attribute, C be the set of labels for TD, pi
be the probability of a data item from TD that belongs to the class ci ∈ C, IG is
defined by the following formulas [50]:

15

Gain(a) = In f o(TD)− In f oa(TD) (2.1)

In f o(TD) = −
∣C∣

∑
i=1

pilog2pi (2.2)

In f oa(TD) =
n
∑
v=1

∣TDv∣
∣TD∣

× In f o(TDv) (2.3)

The In f o(TD) that appears in Equation 2.2 stands for the expected amount
of information required to categorise the data item in TD (it should be noticed
that In f o(TD) also represents the entropy [88] of TD). Equation 2.3 (assume that
attribute a has n values) calculates the expected information needed to classify the
data items in TD based on the n subsets generated by partitioning TD according to
the n values of a. For each subset TDv, the calculated In f o(TDv) is also weighted
by ∣TDv∣

∣TD∣
. The smaller the value of In f oa(TD) is, the purer the subsets generated by

splitting TD according to attribute a are. The IG of attribute a Gain(a) indicates
the reduction of the amount of information for classifying the data items in TD
gained by partitioning TD utilising attribute a. The attribute selection function
S̃ always detects and chooses an attribute a ∈ A with the largest IG and this is
the basic principle of how S̃ works. The algorithm ID3 uses IG for S̃. However,
C4.5 utilises Gain Ration (GR) [86] and CART utilises Gini Index (GI) [85] for the
attribute selection function S̃ (GR and GI can be seen as two improved versions
of IG).

Now, let’s make use of an example training data set as shown in Table 2.2
to illustrate the mechanism of DT approach. Each item in Table 2.2 represents
the record for a certain person and the attribute of an item includes the age, in-
come and the credit level of the person. If a person buys an apartment his (or
her) related data item in Table 2.2 is marked by ’yes’, or the data item is labelled
by ’no’. The IG of each attribute from Table 2.2 is first calculated by S̃, where
Gain(Age) = 0.2272, Gain(Income) = 0.31271 and Gain(CreditLevel) = 0.0132. Fig-
ure 2.1 shows the incomplete DT and sub-training data set generated by utilising
the attribute Income as the best attribute.

1According to Table 2.2, In f o(TD) = −0.5 × log20.5 − 0.5 × log20.5=1. The attribute Income is
chosen as the best attribute by ̃S because it leads to the highest IG. Furthermore, three selection
criteria are found by ̃S, the first one is Income = low, the second one is Income = high and the
third one is Income = medium. For the first criterion, In f o(TD1) = −

1
7 × log2

1
7 −

6
7 × log2

6
7 =

0.5917. Likewise, In f o(TD2) = −
4
5 × log2

4
5 −

1
5 × log2

1
5 = 0.7219 and In f o(TD3) = −

3
4 × log2

3
4 −

1
4 × log2

1
4 = 0.8113. As a result, In f oIncome =

7
16 × In f o(TD1)+

5
16 × In f o(TD2)+

4
16 × In f o(TD3) =

0.6873.

16

Table 2.2.: An example training data set.
Item ID Age Income Credit Level Class: buy apartment

1 age < 25 low fair no
2 25 ≤ age < 30 high excellent no
3 age < 25 high fair yes
4 age ≥ 30 low fair no
5 age ≥ 30 medium fair yes
6 25 ≤ age < 30 medium excellent no
7 25 ≤ age < 30 low fair no
8 age < 25 low fair no
9 age < 25 low fair no

10 age ≥ 30 medium excellent yes
11 age ≥ 30 high excellent yes
12 age < 25 low fair no
13 25 ≤ age < 30 low fair yes
14 age ≥ 30 high excellent yes
15 age ≥ 30 medium fair yes
16 25 ≤ age < 30 high fair yes

Income

low
highmedium

Item ID Age Credit Level Class: buy apartment

5 age>=30 fair yes

6 25<=age<30 excellent no

10 age>=30 excellent yes

15 age>=30 fair yes

Item ID Age Credit Level Class: buy apartment

2 25<=age<30 excellent no

3 age<25 fair yes

11 age>=30 excellent yes

14 age>=30 excellent yes

16 25<=age<30 fair yes

Item ID Age Credit Level Class: buy apartment

1 age<25 fair no

4 age>=30 fair no

7 25<=age<30 fair no

8 age<25 fair no

9 age<25 fair no

12 age<25 fair no

13 25<=age<30 fair yes

Figure 2.1.: The incomplete decision tree and sub-training data sets generated af-
ter processing the first selected attribute: Income.

2.1.2. Clustering Technique

As introduced in Section 2.1.1, classification is a supervised technique which
needs domain knowledge for building the classification rules [89]. In this sub-
section, we introduce the unsupervised classification technique, called cluster-
ing [90–92] which aims at dividing a group of objects into a number of subgroups,
where the similarity between objects within the same subgroup is kept as large as
possible and the dissimilarity between objects from different subgroups should
be kept as large as possible. In the literature, traditional clustering technique
is usually classified into four categories [50]: partitioning approach [93], hier-

17

archical approach [94–97], density-based approach [98–102] and grid-based ap-
proach [103]. Due to the topic of this thesis is mainly about BPMI, thereby only
the idea about the partitioning (Section 2.1.2.1) and hierarchical (Section 2.1.2.2)
clustering approach will be introduced here. On the one hand, the partition-
ing approach can give the reader a straightforward view about what clustering
technique is about. On the other hand, the trace clustering methods TDTC and
CTC proposed in Chapter 4 are based on the idea of hierarchical clustering ap-
proach.

In addition, a special branch in the clustering research area, the graph clus-
tering [44] technique is also reviewed in Section 2.1.2.3 because the mined model
abstraction method GTCA put forward in Chapter 5 is built on such technique.
Nevertheless, it should be noticed that the graph clustering technique relevant to
this thesis is the technique for grouping the vertices in a given graph into clusters
which should not be confused with the traditional clustering technique of classi-
fying a set of graphs based on the structural features of these graphs into different
subsets.

2.1.2.1. Partitioning Clustering Approach

Partitioning clustering approach is able to divide the original set of objects into
a fixed number of clusters in a flat manner (which means that all the generated
clusters are at the same level) [104–110]. Let X = {x1, x2, . . . , xn} be a set of objects
waiting to be clustered, where each object xi = (xi1, xi2, . . . , xim) from X is rep-
resented by a m-dimension vector of attributes. As described in [50], the (hard)
partitioning clustering approach searches for a l-partition of X, represented by
C = {c1, c2, . . . , cl}, where the following three conditions should be met: (1) ∀ck ∈ C
such that ck ≠ ∅ (2) ⋃l

i=1 ci = X (3) 1 ≤ p < q ≤ l such that cp⋂ cq = ∅. As indicated
in the third condition, most partitioning clustering approach-based algorithms
adopt an exclusive separation strategy [90] which means that each object only
pertains to a single cluster. However, there exists another object division strategy
with which one object is allowed to be assigned to more than one clusters and the
fuzzy clustering techniques [111] utilise such a strategy. One of the best-known
partitioning approach-based clustering techniques is K-means [104–107] algo-
rithm which will be described in the rest of this subsection for letting the readers
who are at a introductory level get acquainted with clustering technique.

K-means is a very simple clustering technique and can be easily implemented
to handle a number of practical issues [93]. It is based on an iterative optimisation
strategy that starts with k-initial centroid [50] (a centroid is a central point for a
cluster). Algorithm 2.2 [50] exhibits the main steps of K-means.

As depicted in Algorithm 2.2, the K-means algorithm requires a pre-specified

18

Algorithm 2.2 K-means

Input: the number k of clusters, a set X of data objects.
1: randomly choose k objects from X as initial center for the k clusters
2: repeat
3: assign each object xi ∈ X to a particular cluster cj ∈ C
4: update the center for each cluster
5: until all the clusters become stable

Output: k clusters of data objects.

number k for clusters as input. Then, k objects are randomly chosen from the
original set X and each of them is assigned to a particular cluster as center object
(step 1). Afterwards, K-means algorithm finds each object xi ∈ X a unique cluster
cj ∈ C (step 3). How is this cluster finding process implemented? The K-means
algorithm first calculate the distance dpq between the present object xp ∈ X and
each cluster cq ∈ C. Next, xp is assigned to the cluster cm which has the shortest
distance to xp .The K-means algorithm employs the Euclidean Distance (ED) [112]
between the object xp and the center object coq of cluster cq to stand for the dis-
tance between xp and cq. Let xp = (xp1, xp2, . . . , xpm), coq = (coq1, coq2, . . . , coqm)
(both xp and coq are characterised by m attributes), the ED between xp and coq is
defined as:

ED(xp, coq) =

¿
ÁÁÀ

m
∑
t=1

(xpt − coqt)2 (2.4)

After assigning all the objects from X to a cluster, K-means algorithm then
updates the attribute values of the center object for each of the k clusters, where
the values of all the attributes of the center object are replaced by the related mean
values. For instance, after the step 3 of Algorithm 2.2, the cluster cj ∈ C contains
r objects {xcj

1 , x
cj
2 , . . . , x

cj
r }, in step 4 the value of the first attribute coj1 of the center

object coj of cluster cj is replaced by 1
r ∑

r
v=1 x

cj
v1. Finally, K-means algorithm will

check if the assignment becomes stable2. If it is so, the iteration stops, otherwise
steps 3 and 4 repeat.

2This is checked by comparing the present distribution of the objects in the clusters with the
distribution of the previous round. The assignment of objects is judged stable by the algorithm
if the present distribution is consistent with the former distribution

19

2.1.2.2. Hierarchical Clustering Approach

In this subsection, we simply introduce the basic thought of hierarchical clus-
tering approach (because the trace clustering techniques proposed in Chapter
4 are built on such thought). For the specific techniques, the interested reader
could refer to [113–117]. The hierarchical clustering approach tries to build a
cluster hierarchy that is also referred to as cluster tree, where each node of the
tree stands for a cluster of data objects. Let X = {x1, x2, . . . , xn} be a set of data
objects waiting to be clustered, C = {c1, c2, . . . , cm} be the set of clusters output by
implementing a hierarchical clustering algorithm on X where m ≤ n. ∀ci, cj ∈ C,
i < j⇒ ci ⊏ cj ∥ ci ∩ cj = ∅.

a b c d e

a, b

d, e

c, d, e

a, b, c, d, eStage 4

Stage 3

Stage 2

Stage 1

Stage 0

Figure 2.2.: Illustration of the agglomerative clustering method.

There are two variants of hierarchical clustering approach: agglomerative
method (bottom-up) [113–115] and divisive method (top-down) [116, 117]. As
shown in Figure 2.2, the agglomerative method adopts a bottom-up strategy. At
stage 0, each data object forms a single cluster. Then, for each following stage two
clusters are merged into a larger cluster (according to the similarity measure [93])
until all the objects are in the same cluster or a predefined stopping condition
is met. The divisive method that is described in Figure 2.3 uses the top-down
strategy. All the data objects are first put in the same cluster (root cluster). After-
wards, the root cluster is divided into several smaller sub-clusters based on some
splitting rule [97]. The division process is recursively executed on each generated
sub-cluster until the sub-cluster contains only one object or the objects within the
cluster are sufficiently alike with each other. The two trace clustering techniques
TDTC and CTC put forward in Chapter 4 employ the divisive (top-down) method
for clustering the traces from an event log.

20

d

a, b, c

e, f

d, e, f

a, b, c, d, e, f

height 3

height 2

height 1

height 0

b

a c

a, c

Figure 2.3.: Illustration of the divisive clustering method.

2.1.2.3. Graph Clustering

Before introducing the basic idea of graph clustering, the elementary notions
about graph will be first reviewed. A graph G = (V, E) is composed by two kinds
of elements: vertice and edge [118, 119]. The set V stands for the set of vertices
and E stands for the set of edges, where each edge from E is a pair of vertices
(vi, vj) (vi, vj ∈ V are also called the endpoints of the edge). ∣V∣ represents the total
number of vertices and ∣E∣ represents the total number of edges in G. A graph
G = (V, E) can be categorised into directed graph and undirected graph [118].
If G is a directed graph then each of its edges (vi, vj) is an ordered pair which
means that the edge starts from vi and ends at vj. If G is an undirected graph
then each edge in G is an unordered pair of vertices [120]. Graph G = (V, E)
is a weighted graph if there exists a weight function Ŵ ∶ E → R that assigns a
weight to each edge of G [119]. The density of a directed graph G = (V, E) is
defined as: D(G) = ∣E∣

∣V∣×∣V−1∣ , where D(G) = 0 if ∣V∣ ∈ {0, 1}. For a node vi ∈ V, the
degree of vi is the number (i.e., ∣{e ∈ E ∣ vi ∈ e}∣) of edges incident to vi and de-
noted as deg(vi). Figure 2.4 shows an example directed graph G1 = (V1, E1) which
has 6 vertices (i.e., ∣V1∣ = 6) and 8 edges (i.e., ∣E1∣ = 8). The density of this graph is
D(G1) =

∣8∣
∣6∣×∣6−1∣ = 0.2667. Each edge in graph G1 is assigned a weight, for instance,

Ŵ(v3, v2) = 3. The degree of vertice v3 is equal to 2 (i.e., deg(v3) = 2) because there
are two edges (v4, v3) and (v3, v4) in graph G1 that have v3 as endpoint. Likewise,
the degree of vertice v6 is 3 (i.e., deg(v6) = 3).

Let V1, V2 ∈ V be two subsets of vertices from graph G = (V, E). If V1 ∩V2 = ∅
and V1 ∪V2 = V, the tuple (V1, V2) is called a cut [121] of graph G and denoted as
cut(V1, V2). The cut size is the total number of edges that connect vertices from

21

v1

v2

v3

v4

v5

v6

3

5

1 2
8

10

4

1

Figure 2.4.: An example graph G1 utilised for explaining the fundamental con-
cepts about graph.

V1 to vertices from V2. For the example graph G1 (see Figure 2.4), it has a cut
cut(V1 = {v1, v4, v5, v6}, V2 = {v2, v3}) and the size of this cut is 3 because there are
three edges which are edge (v4, v3), (v6, v2) and (v2, v6) that connect subset V1
and V2.

Given a graph G = (V, E), the task of graph clustering technique is to split the
vertices from V into different groups so that the vertices with close relations are
put in the same group. In the literature, there are mainly two approaches for cal-
culating the degree of intimacy of graph vertices [44]. The first one computes the
similarities between graph vertices and a lot of effective similarity metrics such
as the adjacency-based metrics [122] and the connectivity-based metrics [123,124]
have been proposed in the last a few years. The second approach is based on
the cluster fitness measures [125] which then can be classified into two variants:
density-based metrics [126–128] and cut-based metrics [129–132]. In this subsec-
tion, we only concentrate on introducing the cut-based metrics because the graph
clustering algorithm (i.e., the LinLog algorithm [133–135]) that is employed by
the mined model abstraction technique GTCA proposed in Chapter 5 is built on
such kind of metrics.

The graph clustering algorithms that use cut-based metrics as clustering cri-
teria tend to partition the vertices of a certain graph into clusters in the way that
the number of edges within each cluster should be kept as many as possible while
the number of edges between clusters should be kept as few as possible [44]. For

22

v1

v2

v3

v4

v5

v6

Figure 2.5.: An example graph G2 utilised for explaining the basic idea of graph
clustering methods that utilise cut-based clustering criteria.

instance, as shown in Figure 2.5, the vertices of graph G2 (presume that the value
of weight of all the edges in G2 is equal to 1) can be divided into two clusters
according to the minimum cut criterion3 [133], where the first cluster contains
vertices v1, v4 and v5 and the second cluster contains vertices v2, v3 and v6. How-
ever, the minimum cut criterion has its own weakness because it often generates
two clusters of vertices where one cluster contains many vertices and the other
one contains few vertices [134]. To overcome the limitation of the minimum cut
criterion, many advanced cut-based criteria have been proposed in the literature,
for example, the node-normalised cut [136], the edge-normalised cut [137], Shi
and Malik’s normalised cut [137], the expansion and conductance [129] and the
Newman’s modularity [138] (which is a measure of partition for k disjoint subsets
of vertices).

The LinLog Graph Clustering (LGC) algorithm put forward in [133] will be
utilised for clustering the vertices of graphs in the mined model abstraction ap-
proach GTCA (proposed in Chapter 5). This algorithm builds on two energy
models named node-repulsion LinLog and edge-repulsion LinLog which are able
to help group the vertices in a graph according to the clustering criterion: New-
man’s modularity. The reason for using LGC is that it not only offers an unbiased

3The minimum cut criterion can help find a bipartition of the vertices of a given graph with the
minimum cut size.

23

mechanism for clustering graph vertices with high degrees, but can automatically
generate a suitable number of clusters of graph vertices (deciding the number of
clusters is always a difficult but crucial issue in a normal clustering task). The
interested reader can refer to [133, 134] for learning more details about LGC.

2.1.3. Sequential Pattern Mining Technique

Sequential Pattern Mining [43, 139, 140] techniques solve the problem of finding
all frequent subsequences from a given set of sequences, where each sequence
contains a list of ordered itemsets. A minimum support threshold is manually
given for judging if the occurrence of a subsequence is frequent or not [50].

Let I = {I1, I2, . . . , In} be a set of data items, S = {s1, s2, . . . , sm} be the set of
sequences over I. Each sequence sk =< isk1, isk2, . . . , iskq > from S is comprised by
a list of ordered itemsets (every itemset happens earlier than the other itemsets
that appear on its right side in the same sequence), where each itemset iskp ∈ sk
contains a set of items from I and denoted as (Ikp1 , Ikp2 , . . . , Ikpl

). However, it
should be noticed that there exists no specific order between items in an itemset.
Table 2.3 shows an example sequence database S1 that consists of six items (i.e.,
item a, b, c, d, e and f) and five sequences. For instance, the sequence 1 contains
five itemsets which are (a), (b), (b), (a, c) and (d, f).

Table 2.3.: An example sequence database S1.
Sequence ID Sequence

1 <a, b, b, (a, c), (d, f)>

2 <(a, c, e), b, (a, f), d, f , f >

3 <(a, e), b, a, (e, f), (c, d)>

4 <(e, f), c, (a, e), d, f , (a, d, f)>

5 <a, e, f , d, (c, f)>

Let s1 =< x1, x2, . . . , xi > and s2 =< y1, y2, . . . , yj > be two sequences as defined
above. Sequence s1 is a subsequence of s2 denoted as s1 ⊑ s2 if 1 ≤ u1 < u2 <
⋯ < ui ≤ j such that x1 ⊆ yu1 , x2 ⊆ yu2 , . . . , xi ⊆ yui . For example, the sequence
< a, b, a, (d, f) > is a subsequence of sequence 1 from S1 (Table 2.3). Given a set of
sequences S and a minimum support min_sup (0 <min_sup < 1), a sequence λ is
called a sequential pattern if support(λ) ≥ min_sup ⋅ ∣S∣, where support(λ) is the
number of sequences in S which contain λ as a subsequence and ∣S∣ represents
the total number of sequences in S. The set of sequential patterns, SP, contains all
of the subsequences from S whose support values are no less than min_sup ⋅ ∣S∣.
For instance, set min_sup = 0.4, the subsequence η =< (a, e), b, f > is a sequential
pattern for the set of sequences S1 (Table 2.3) because support(η) = min_sup×5 (η
appears as a subsequence for sequence 2 and sequence 3 in S1). The set of Closed

24

Sequential Pattern (CSP) is defined as SCSP = {α∣α ∈ SP and∄β ∈ SP such that α ⊑
β and support(α) = support(β)}. For example, sequence η is a sequential pattern
but not a closed sequential pattern for S1 because there exists another sequential
pattern ω =< (a, e), b, f , d > for S1 where η ⊑ ω (ω is a CSP of S1). CSP effectively
decreases the total number of sequential patterns generated but in the meantime
preserves the complete information about all the sequential patterns. Given a set
of sequences S and a minimum threshold min_sup, the sequential pattern mining
techniques are able to locate the complete set of sequential patterns for S while
the closed sequential pattern mining techniques can discover the complete set of
CSP for S.

In the literature, sequential pattern mining techniques are typically classi-
fied into three types, the apriori-based mining approach [141–145], the pattern-
growth-based approach [146, 147] and the early-pruning approach [148]. In this
thesis the closed sequential pattern mining algorithm CM-ClaSP [148] that be-
longs to the early-pruning approach is utilised because it has a good performance
(low memory consumption) for the candidate pruning process (fewer candidates
will be generated by CM-ClaSP compared to other similar approaches).

2.2. Business Process Mining Techniques

Business process mining techniques aim at discovering, monitoring and improv-
ing real processes by extracting relevant knowledge from event logs recorded
by enterprise information systems [9]. In general, current process mining tech-
niques mainly consider three perspectives: workflow discovery [149], confor-
mance checking [150–156] and process extension [8]. The starting point of these
analyses is usually an event log. Therefore, we first give a formal definition
about event log in Section 2.2.1. Due to the techniques proposed in this thesis
are devised to help mine accurate and simple process models from real-life event
logs, several classical process model discovery algorithms (i.e., the α algorithm,
Heuristics Miner [37], Inductive Miner [25–27] and ILP Miner [24]) are then re-
viewed in Section 2.2.2. The conformance checking techniques can be utilised for
evaluating the accuracy of mined process models, so in Section 2.2.2 the basic
knowledge about conformance checking is surveyed. Accuracy only reflects one
aspect of the quality of the mined process models and the other aspect is depicted
by the process model complexity metrics which is also introduced in Section 2.2.2.
In Section 2.2.3, the ideas of existing assistant methods for helping generate high
quality process models from real-life event logs are elaborated.

25

2.2.1. Event Log

Historical process execution related data can be logged by the information sys-
tems that implement the relevant business processes. Before carrying out a pro-
cess mining task, these historical data should be extracted from the systems and
organised into suitable format so that the utilised process mining techniques can
be easily executed on these data. A file that contains appropriately structured
process execution related data is called event log [20, 23] which forms the input
of process mining techniques. Let A be a set of activities, an event log L over A is
defined by the following concepts [9]:

Definition 2.1. (Event)
An event e = (Ne, Ve,A) is an instance of a particular activity from A, where Ne =
{id, n2, . . . , ni} is the set of attribute names for event e, Ve is the set of values of
the attributes for event e, functionA ∶ Ne → Ve maps an attribute name to its value.
Each event e has at least one attribute named id which uniquely identifies e.

Definition 2.2. (Trace)
A trace t =< e1, e2, . . . , ek > is a finite sequence of ordered events. For instance,
event e1 is the starting event and ek is the ending event of trace t, event e2 happens
immediately after event e1.

Definition 2.3. (Case)
A case c = (Nc, Vc,B) is an instance of a certain business process, where Nc =
{id, tracec, n3, . . . , nj} is the set of attribute names for case c, Vc is the set of values
of the attributes for c, function B ∶ Nc → Vc correlates an attribute name to its
value. Each case c has at least two attributes named id which uniquely identifies
c and tracec which holds the trace of c.

Definition 2.4. (Event Log)
Let C be the universal set of cases, the event log L ∈ C is a set of cases.

Figure 2.6 shows an example event log with the contents from the hospital log
from Business Process Intelligence Challenge (BPIC) 2011. The example log con-
tains 6 cases where each case represents a treatment process accepted by a certain
patient. As shown in Figure 2.6, the case with id ’1’ contains a trace with four
events and nine other attributes such like the age of the patient and the starting
time of the case. The four events in the trace of case 1 are ordered according to
their timestamp. For instance, the second event happens immediately after the
first event but before the third event. Figure 2.7 shows the attribute information
of the second event in the trace of case 1.

Definition 2.5. (Simple Event Log)
Let Cs be the universal set of cases. An event log L ∈ Cs is called a simple event
log, if for each case cs ∈ Cs such that Ncs = {id, tracecs} and for each event e ∈ cs
such that Ne = {id}.

26

Cases Trace for Case 1: 4 events Attributes of Case 1

0

1

2

3

4

5

6

verlosk.-gynaec.korte kaart kosten-out

Coupe ter inzage

1e consult poliklinisch

administratief tarief -eerste pol

Age: 84

Diagnosis: maligniteit vagina

Diagnosis: Treatment Combination

Diagnosis Code: M12

End date: 2006-01-08T23:45:36

Specialism Code: 7

Start date: 2005-01-09T00:14:24

Treatment Code: 101

Conceptname: 1

Figure 2.6.: An example event log with the contents from the hospital event log
from BPIC 2011.

Cases Trace for Case 1: 4 events Attributes of the 2th Event

0

1

2

3

4

5

6

verlosk.-gynaec.korte kaart kosten-out

Coupe ter inzage

1e consult poliklinisch

administratief tarief -eerste pol

Activity Code: 355111

Number of executions: 1

Producer Code: LVPT

Section: Section 4

Specialism Code: 88

concept:name: Coupe ter inzage

lifecycl:transition: complete

org:group: Pathology

timestamp: 2005-02-09T:00:00:00

Figure 2.7.: The attribute information for the second event of Case 1.

Definition 2.5 gives a formal description about simple event log. It can be seen
that in a simple event log the cases only contain two attributes which are id and
trace and all the events in these cases only contain the attribute id. In this thesis, a
simple event log will be displayed as a multi-set of traces. For example, let’s make
the assumption that a simple event log L1 consists of four cases, where the first
two cases contain the same kind of trace <e1, e2, e3> and the last two cases contain
the same kind of trace < e1, e4, e3 >, then L1 = {< e1, e2, e3 >2, < e1, e4, e3 >2}. Most
of existing process model discovery algorithms only require an input of simple
event log [9].

27

2.2.2. Business Process Model Discovery (BPMD)

BPMD is one of the most important learning tasks in process mining research
area which is able to automatically generate the enterprise process models by
mining the event logs that record the execution information of enterprise business
processes [23]. Figure 2.8 illustrates the basic idea of BPMD.

BPMD Techniques

Alpha Algorithm

Heuristics Miner

ILP Miner

Inductive Miner

Event log

Input Output

Generated process

model

Figure 2.8.: Basic idea of business process model discovery.

A lot of excellent BPMD techniques such as Alpha algorithm [23], Heuristics
Miner (HM) [37] and Inductive Miner (IM) [25] have been put forward in the liter-
ature. These techniques are capable of extracting the casual relations [23] between
activities by analysing the direct relations of these activities that are recorded in
the event logs and then expressing the obtained casual activity relations in the
so called process models. In Section 2.2.2.1, the basic knowledge of HM is in-
troduced because it has been widely utilised for analysing real-life event logs
and the process mining techniques proposed in this thesis are based on HM. In
Section 2.2.2.2, the KPIs for evaluating the quality of a mined process model are
reviewed. In Section 2.2.2.3, we make a detailed comparison between classical
BPMD techniques (including Alpha algorithm, HM, IM, ILP Miner (ILPM) [24],
Fuzzy Miner (FM) [28] and Genetic Miner (GM) [29, 157–159]) and explains why
we utilise HM for our process mining techniques.

2.2.2.1. Heuristics Miner (HM)

Figure 2.9 shows four fundamental workflow patterns [160, 161] which are XOR-
choice pattern, OR-choice pattern, Parallel pattern and Loop pattern [160]. Most
existing advanced BPMD techniques such like HM are capable of mining the four
basic process patterns. The XOR-choice pattern as shown in Figure 2.9 means that
only one of activity B and C can be chosen immediately after the execution of ac-
tivity A. Therefore a simple event log consisting of two traces < A, B, D > and

28

< A, C, D > can be generated after carrying out the XOR-choice pattern. The OR-
choice pattern from Figure 2.9 specifies that an arbitrary number (larger than or
equal to 1) of activities among activity B and C can be chosen after executing ac-
tivity A. As a result, four kinds of traces <A, B, D>, <A, C, D>, <A, B, C, D> and
< A, C, B, D > can be generated by this OR-choice pattern. The Parallel pattern in
Figure 2.9 indicates that activity B and C concurrently happen after implement-
ing activity A and there is not a dependency relation between B and C. So two
types of traces < A, B, C, D > and < A, C, B, D > can be output by running this par-
allel pattern. At last, the Loop pattern from Figure 2.9 states that the substructure
composed by activity A, B and C can repeatedly happen. The HM is able to anal-
yse the direct relations (see Definition 2.6) between activities recorded in event
logs and then output the four basic workflow patterns mentioned above.

A

B

C

DXOR-split XOR-join OR-splitA

B

C

DOR-join

Parallel-splitA

B

C

DParallel-join A B C D

XOR-choice pattern OR-choice pattern

Parallel pattern Loop pattern

Figure 2.9.: Illustration of four kinds of basic workflow patterns.

HM is one of the most practical process model discovery techniques which
considers the frequencies of relations between activities while mining process
models from given logs [37, 162]. The infrequent activity relations will be ne-
glected by HM from the generated process model. The strong expressive ability
for process behaviours and the usage of frequency make HM a very robust BPMD
technique. The process model output by HM is a casual net (C-net) which is de-
fined by the following definitions [37]:

Definition 2.6. (Direct and Casual Activity Relations)
Let A be the set of activities of an event log L. Symbol ≻L represents the direct
relation between two activities from A and symbol ⪰L represents the causal rela-
tion between two activities from A. Let a, b ∈ A be two activities, φ ∈ [−1.0, 1.0] be
a threshold, a≻L b = true if ∣a≻L b∣ > 0, where ∣a≻L b∣ is the number of times that a is
directly followed by b in L. a⪰L b = true if ∣a⪰L b∣ ≥ φ, where ∣a⪰L b∣ ∈ [−1.0, 1.0] is
the strength of casual relation between a and b.

Definition 2.7. (Dependency Graph)
Let A be a set of activities, Υ(A) denotes the set of casual activity graphs over

29

A. A causal activity graph DG ∈ Υ(A) is a tuple (V, E) where V ∈ A is the set of
vertices and E ∈ (V ×V) is the set of edges. Each edge in DG represents a casual
relation between two activities.

Definition 2.8. (C-net)
A C-net cn = (A,I ,O) is a tuple, where A is the set of activities, I ∶ A → P(P(A))
is a function which generates the input pattern for a certain activity, O ∶ A →
P(P(A)) is a function for generating the output pattern for a given activity, P(A)
represents the powerset of A.

HM consists of two steps for generating a C-net for a given event log L. In
the first step, HM builds a Dependency Graph (DG) which describes the casual
relations of activities from L. Equation 2.5 displays how HM calculates the degree
of dependency between any two activities a and b from L. In the second step, HM
learns the splits and joins in the built DG so as to generate the target C-net for log
L.

∣a⪰L b∣ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣a≻Lb∣−∣b≻La∣
∣a≻Lb∣+∣b≻La∣+1 if a ≠ b

∣a≻La∣
∣a≻La∣+1 if a = b

(2.5)

Let’s take the simple event log L1 = {<A, B, D, E, F, G>100, <A, C, D, F, E, G>100

, <A, B, D, F, E, G>100, <A, C, D, E, F, G>100} as an example for explaining the exe-
cution process of HM. For building the DG for L1, HM first computes the degree
of casual relations for each pair of activities from L1 (the computation results are
shown in Table 2.4). Afterwards, a DG dg1 is built by HM with a dependency
threshold φ = 0.9 which is shown in Figure 2.10.

A

B

C

E

D G

F

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Figure 2.10.: Dependency graph dg1 for the activities from event log L1.

Afterwards, HM tries to learn the splits and joins for dg1 and outputs a C-net
cn1 which is shown in Figure 2.11. Let’s take activity A and D from L1 as an
example to interpret how HM decides the type of a split or a join. According to
dg1 (Figure 2.10), activity A has two output activities which are activity B and C,

30

Table 2.4.: Degree of casual relations between activities from event log L1.

⪰L1 A B C D E F G

A 0 0.995 0.995 0 0 0 0

B -0.995 0 0 0.995 0 0 0

C -0.995 0 0 0.995 0 0 0

D 0 -0.995 -0.995 0 0.995 0.995 0

E 0 0 0 -0.995 0 0 0.995

F 0 0 0 -0.995 0 0 0.995

G 0 0 0 0 -0.995 -0.995 0

A

B

C

E

D G

F

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

XOR-split XOR-join
Parallel-split

Parallel-join

Figure 2.11.: The C-net cn1 mined by HM for event log L1.

denoted as A● = {B, C}. Similarly, ●B = {A} and ●C = {A} (which means that both
activity B and C only have activity A as their input activity). By checking the
first kind of trace <A, B, D, E, F, G>100 from log L1, HM discovers that the nearest
activity that can activate B is activity A in the trace and thereby records the found
output pattern for A (i.e., O(A) = {{B}100}). By checking the second kind of
trace < A, C, D, F, E, G >100 from L1, HM finds out that the nearest activity that
can activate C is activity A in the trace and then records the discovered output
pattern for A (i.e., O(A) = {{B}100,{C}100}). After checking all the traces in L1,
the ultimate output pattern O(A) = {{B}200,{C}200} of activity A is obtained.
Then HM judges that the output pattern of A represents a XOR-split (as shown
in Figure 2.11). Activity D also has two output activities (i.e., activity E and F)
according to cn1. Through checking the first kind of trace of L1, HM discovers that
both activity E and F are activated by the same activity D and then records the
found output pattern for D (i.e.,O(D) = {{E, F}100}). After checking all the traces
in log L1, the final output pattern O(D) = {{E, F}400} for D is obtained which is
judged to stand for a Parallel-split (as shown in Figure 2.11). The same strategy
can be utilised for mining the joins in dg1 by going backwards through the traces

31

in log L1. More technical details about HM can be found in [37, 162–165].

2.2.2.2. Mined Model Accuracy and Complexity Evaluation Methods

The quality of a mined process model for a certain event log should be evaluated
before it can be utilised for a process-related analysis task. As indicated in [9],
every BPMD technique has its own expressive bias and may generate inaccu-
rate process models when mining event logs with process behaviours (expressed
by activities and their precedence relations recorded in event logs) that it cannot
express. Normally, an inaccurately mined process model will be less useful. Fit-
ness and precision [9] are two primary metrics for estimating the accuracy of a
mined process model. Fitness represents the percentage of the behaviour from an
event log that can be covered by the process model mined from this log. Precision
quantifies the ability of a BPMD technique to mine a process model which doesn’t
induce too many process behaviours that are not registered in the relevant event
log. The ICS fitness proposed in [159] is utilised in this thesis for measuring the
fitness of the process models mined by HM and the ETConformance checker put
forward in [166] is employed for measuring the precision of the mined models. In
this subsection, we mainly focus on introducing the basic knowledge about ICS
fitness because fitness is the most significant KPI for evaluating the accuracy of a
mined process model.

First, the definition about token from the Petri net [167–170] research area will
be explained. A token is like a "virtual key" with which a specific activity can be
activated. For the XOR-choice pattern from Figure 2.12, after executing activity
A one token will be generated by A (see part a of Figure 2.12). With this token,
both activity B and C are enabled. However, only one out of B and C can be
activated according to the definition of XOR-choice pattern introduced in Section
2.2.2.1. In this example we presume that activity B acquires this token and is
executed. Then, a new token is generated by B so that activity D is enabled (the
XOR-join indicates that activity D only needs one token for execution). For the
OR-choice pattern in Figure 2.13, by executing activity A one or two tokens can be
generated. If one token is output by A then either B or C can be executed and both
B and C can be activated if two tokens are output by A. Presume that two tokens
are output by A (see part a of Figure 2.13), then each of B and C will consume a
token, be executed and generate a new token which will be later consumed by D4.
For the Parallel pattern shown in Figure 2.14, through activating activity A two
tokens will be output by A where one token is for B and the other is for C. Next,
each of B and C will generate a new token after being executed. Activity D needs
the two tokens from both B and C to be implemented. The further knowledge

4If activity A outputs one token then activity D will only require one token for being imple-
mented, or two tokens (one is from B and the other is from C) will be needed for implementing
D

32

about token can be found in [9].

A

B

C

DXOR-split XOR-join

One token

A

B

C

DXOR-split XOR-join

One token

XOR-choice pattern(a) (b)

Figure 2.12.: The process of token generation and consumption for XOR-choice
pattern.

OR-splitA

B

C

DOR-join

OR-choice pattern
One or two

tokens

OR-splitA

B

C

DOR-join

One token

One token
(a) (b)

Figure 2.13.: The process of token generation and consumption for OR-choice pat-
tern.

Parallel-splitA

B

C

DParallel-join

Parallel pattern

Two tokens

Parallel-splitA

B

C

DParallel-join

One token

One token
(a) (b)

Figure 2.14.: The process of token generation and consumption for Parallel pat-
tern.

The token replay technique [151–153, 171–173] is the essential technique for
calculating the fitness of mined process models. For a given event log and a
process model, the token replay technique tries to replay each trace from this
event log by using the given model so as to find out which part of the trace can be
represented by the model correctly. Here, an example trace t =< A, B, C, D, E, G >
and the process model shown in Figure 2.15 are employed to exhibit how the
token replay technique works. Let m = 0 be the counter for missing tokens and
r = 0 be the counter for remaining tokens (which are produced but not consumed
by other activity), Figure 2.15 shows the token replay procedure for trace t. The
activity A of trace t is first executed (an artificial token is given to A because it is
the starting activity) and produces one token (because A leads to a XOR-split in

33

A

B

C

E

D G

F

XOR-split XOR-join Parallel-split

Parallel-join

A

B

C

E

D G

F

XOR-split XOR-join Parallel-split

Parallel-join

One token

One token

A

B

C

E

D G

F

XOR-split XOR-join Parallel-split

Parallel-join

Two tokens

One remaining

token

One missing

token

A

B

C

E

D G

F

XOR-split XOR-join Parallel-split

Parallel-join

One remaining

token

One remaining

token

One missing

token

One token

A

B

C

E

D G

F

XOR-split XOR-join Parallel-split

Parallel-join

One remaining

token

One remaining

token

One missing

token

One missing

token

m=0, r=0

m=0, r=0

m=1, r=1

m=1, r=2

m=2, r=2

A

B

C

E

D G

F

XOR-split XOR-join Parallel-split

Parallel-join

One token

One tokenOne missing

token

m=1, r=0

Figure 2.15.: Token replay for trace t over the example process model.

34

the given process model). At this stage A can be perfectly replayed (i.e., m = 0
and r = 0). At stage two, activity B from t is executed by consuming the token
produced by A and then generates a new token. At the third stage, activity C from
t cannot be activated because A only generates one token which is consumed by
B. After marking the missing token for C, an artificial token is given to C with
which C is implemented and produces a new token. At this stage the value of
m is updated to one. At stage four, the fourth activity D of t is activated by
consuming the token produced by B (D only needs one token because of the XOR-
join structure in the model) and produces two tokens (according to the Parallel-
split structure). As a result, the token produced by C is remained (i.e., the value
of r is updated to one). At stage five, activity E from t is executed by consuming
one token produced by D and then generates a new token. This gives rise to a
remaining token at activity D because activity F doesn’t appear in t. Therefore,
the value of r is updated to two at this stage. Finally, due to the Parallel-join
structure in the example model, the last activity G of t needs two tokens to be
executed. However, there is only one token (produced by E) for G at this stage,
as a result an artificial token (marked as a missing token) is given to G so that it
can be implemented. At this stage, the value of m is updated to two.

Let L be a simple event log and ∣L∣ be the total number of traces in L, A be
the set of activities for L and ∣A∣ be the number of activities in A, M be a process
model mined from L by HM, m records the total number of missing tokens and r
records the total number of remaining tokens obtained by replaying all the traces
from L over model M, CA be the set of activities from A which can be replayed
without any problem, MT be the set of traces from L in which tokens are missing
during the replaying process and RT be the set of traces in which tokens are left
behind during the replaying procedure. The ICS fitness within a range (−∞, 1] of
M is defined as [159]:

ICS− f itness = ∣CA∣− Punishment
∣A∣

(2.6)

Punishment = m
∣L∣− ∣MT∣+ 1

+ r
∣L∣− ∣RT∣+ 1

(2.7)

Another important perspective for evaluating the quality of a mined process
model is complexity [174–180]. A process model with very high complexity is
usually hard to be interpreted. Two kinds of process model complexity metrics
are used in this thesis which are Place/Transition Connection Degree (PT-CD)
[36] and Extended Cardoso Metric (E-Cardoso) [177], the greater the PT-CD and
E-Cardoso are, the more complicated the models will be. However, both metrics
are appropriate for the model expressed by Petri net but not by C-net generated

35

by HM. For this reason, the Heuristics net to Petri net plugin in ProM 65 is utilised
for transforming the C-net mined by HM into a Petri net so that the PT-CD and
E-Cardoso can be calculated. Let ∣a∣ be the total number of arcs, ∣P∣ be the num-
ber of places and ∣T∣ be the number of transitions of a Petri net, the PT-CD of the
Petri net can be calculated according to Equation 2.8 [36]. It can be seen that the
metric PT-CD has the similar meaning as the density of a graph. It defines the
complexity of a Petri net according to the density of relations between the ele-
ments (i.e., place and transition) in the Petri net. Dissimilarly, E-Cardoso tries to
define the complexity of a Petri net according to its control flow behaviour [178].
It locates various splits (XOR-split, OR-split and Parallel-split) and gives each
found split a certain penalty based on how many different substates the split
induces after being implemented. Equation 2.9 shows the details of the compu-
tation for E-Cardoso of a specific Petri net PN = (P, T, F), where P stands for the
set of places, T stands for the set of transitions and F stands for the set of arcs
for PN, for each t ∈ T such that t● = {p ∣ (t, p) ∈ F}, for each p ∈ P such that
p● = {t ∣ (p, t) ∈ F}.

PT−CD = 1
2
∣a∣
∣P∣

+ 1
2
∣a∣
∣T∣

(2.8)

E-Cardoso(PN) = ∑
p∈P

∣{t ● ∣ t ∈ p●}∣ (2.9)

2.2.2.3. Comparison between Classical BPMD Techniques

The Alpha algorithm [23, 181] can be regarded as the foundation stone in the
BPMD research area based on which many more advanced algorithms such as
HM, IM, ILPM, FM and GM are developed. However, the limitations on the
expressive ability of Alpha algorithm make it hard to be the right choice when
trying to handle the task of mining process models from real-life event logs. The
expressive weakness of Alpha algorithm is normally reflected in modeling Non-
free choice [23, 182, 183] (Figure 2.16) and short loops of length one and length
two [37, 184] (as shown in Figure 2.17).

The IM has been designed to mine a sound and highly fitting block-structured
process model expressed by Petri net from a certain real-life event log. As de-
scribed in [27], IM adopts a divide-and-conquer strategy which partitions the

5ProM 6 is a very famous open-source tool published and maintained by the laboratory of Pro-
fessor van der Aalst which integrates a lot of process mining techniques. More information
about ProM 6 can be found in http://www.promtools.org.

36

B

C

D

(a) (b)

Figure 2.16.: Illustration of Non-free choice in process models.

A

C

B D

A

C

B D

A

B

C

A

B

C

Original model for log L1

Model mined from log L1

by Alpha algorithm

Original model for log L2

Model mined from log L2

by Alpha algorithm

L1={<A,B,D>100, <A,B,C,B,D>100, <A,B,C,B,C,B,D>100}

L2={<A,C>100, <A,B,B,B,C>100, <A,B,C>100}

Figure 2.17.: Illustration of the problems met by Alpha algorithm for expressing
loop of length one and length two.

original event log into sublogs according to four predefined cuts (in directly-
follows graph) as shown in Figure 2.18, where these generated sublogs are or-
ganised by a process tree. Afterwards, the process model can be built according
to the structure of the process tree. Figure 2.19 exhibits the running process of

37

Symbol for sequence cut

B

CA

D

Sequence cut

A

B

Exclusive

choice cut

A

C

B

X

Parallel cut

A B

C

Loop cut

Symbol for exclusive choice cut Symbol for parallel cut Symbol for loop cut

Figure 2.18.: Four kinds of cuts defined by Inductive Miner.

IM by using an example simple event log L3. IM first builds the directly-follows
graph for the activities from L3. Then, the sequence cut is found in the directly-
follows graph by IM. As a result, L3 is divided into three sublogs which are SL1
(contains activity X), SL2 (contains activity A, B, C, D and E) and SL3 (contains
activity F). The three sublogs are connected by the symbol for sequence cut in
the process tree built. Furthermore, the directly-follows graph for each generated
sublog is also built by IM. Nevertheless, no more cuts can be further discovered
in the three directly-follows sub-graphs, so the log division process stops and a
process model (see Figure 2.20) is finally generated by IM based on the process
tree obtained. Due to no cut is found in the directly-follows graph for SL2, the
relations between activity A, B, C, D and E from SL2 are hidden in a flower-
style model (Figure 2.20) and this case reflects one of the weaknesses of IM. The
process model mined by HM for L3 is shown in Figure 2.21 which can perfectly
express all the activity relations recorded in L3.

X

A

E

B

C

D

F

Sequence cut

Directly-follows graph of log L3

Sequence cut

<X, A, B, F>100 <X, A, C, F>100 <X, E, C, F>100 <X, E, D, F>100

Original event log L3

X

A

E

B

C

D

F

<X>400 <A, B>100 <A, C>100 <E, C>100 <E, D>100 <F>400

Sublog SL1 Sublog SL2 Sublog SL3

Directly-follows graph

 of log SL1

Directly-follows graph of log SL2

Directly-follows

graph of log SL3

Split L3 according

to the cut found

Figure 2.19.: Running process of IM over the simple event log L3.

Another example simple event log L4 is shown in Figure 2.22. By detecting
the directly-follows graph for L4, two types of cuts (i.e., the sequence cut and the
loop cut) are found by IM. At last, a process model as shown in Figure 2.23 for L4
is output by IM. According to L4, activity E has a parallel relation with activity

38

Figure 2.20.: The process model mined by IM for the simple event log L3.

Figure 2.21.: The process model mined by HM for the simple event log L3.

C and D which is not expressed in the model in Figure 2.23 because activity B,
C, D and E are judged to belong to a loop structure by IM as shown in Figure
2.22. This case reveals another weakness of IM which is that IM has a relatively
weak definition about loop cut. Figure 2.24 shows the process model mined by
HM from L4 which can express the concurrency relation between activity E and
activity C and D well.

The ILPM is a BPMD technique which guarantees high fitness of the mined
process model and is based on the idea that places can restrict the possible firing
sequences of a Petri net. The developers of ILPM define an optimality criterion

39

<A, C, D, E, F>100 <A, C, E, D, F>100 <A, E, C, D, F>100 <A, C, B, D, F>100

A

E

C D

B

F

Sequence cut Sequence cut

Simple event log L4

Directly-follows graph for log L4

Loop cut

Figure 2.22.: Cuts discovered by IM from the directly-follows graph for event log
L4.

Figure 2.23.: The process model mined by IM for the simple event log L4.

utilised to transform the inequation system into an ILP (integer linear program-
ming) [185] which then is resolved under different conditions so as to build the
places of a Petri net capable of replaying the log. Though ILPM can generate
highly fitting process models when mining real-life event logs, the built models
might contain too many arcs which greatly influences the comprehensibility of
the models (not to speak that the activity relations in real-life logs are originally
very complex) and this exerts bad effects on the practicality of ILPM in real-life

Figure 2.24.: The process model mined by HM for the simple event log L4.

40

cases. Figure 2.25 shows the process model mined from the example log L4 (Fig-
ure 2.22) by ILPM.

Figure 2.25.: The process model mined by ILPM for the simple event log L4.

The FM [28] has been developed to deal with the problem of less-structured
process models mined from real-life event logs. It utilises the same heuristics for
generating the casual relations between activities as HM. However, the found
casual relations of activities are not preserved in the model output by FM (i.e.,
the basic workflow patterns like XOR-split and Parallel-split cannot be distin-
guished). The concepts such as aggregation, abstraction, emphasis and customi-
sation from the road map have been employed for simplifying and visualising
complex and less-structured process models [186–188]. The GM uses the basic
idea of genetic algorithm [189–192] from the evolutionary algorithm research area
for mining highly accurate process models from event logs. The conformance
checking technique is used for calculating the fitness of individuals in the pop-
ulations and three genetic operators: selection, crossover and mutation [192] are
utilised to explore the correct casual relations between the activities from the rel-
evant event logs. Though GM can output an accurate process model with ap-
propriate iteration times, the mining process usually takes a very long time to be
finished especially when encountering event logs containing a large number of
complex activity relations.

The IM and HM are both practical for mining real-life event logs. Each of
them has its own advantages and disadvantages. However, the model mining
mechanism of HM makes its expressive power easier to be extended. This is
the main reason for us to choose HM for testing and working with our process
mining techniques.

2.2.3. Assistant Techniques for Mining Better Process Models

Except for the pure BPMD techniques, several other kinds of assistant technolo-
gies have been developed in the process mining research area for helping mine
better process models from real-life event logs, in which the trace clustering [31]
technique and mined model abstraction technique [33] are most utility.

41

2.2.3.1. Trace Clustering

Some pioneering approaches have been developed to solve the problem of inac-
curate and complex process models mined from real-life event logs. One efficient
technique is trace clustering [31, 35, 36, 193–196] which mines the structural be-
haviours1 of traces (trace behaviours) in an event log and then groups the traces
with similar behaviours into the same sublog. Afterwards, by applying workflow
discovery algorithms on each simpler sublog, more accurate and comprehensible
process models can be obtained. Figure 2.26 shows the basic procedure for trace
clustering.

Workflow

Discovery

Trace Clustering

Original

event log

“Spaghetti-like”

business process model

Sub-model 1 Sub-model 2 Sub-model n

Sub

Log1

Sub

Log2

Sub

Logn

Figure 2.26.: Illustration of the basic trace clustering procedure in process mining.

In the literature, different trace clustering approaches have been put forward
to overcome the negative impacts from high variety of behaviours stored in event
logs. In [31] the authors propose an approach for expressing the traces by profiles
so that a suitable environment can be built for clustering the traces. Each profile is
a set of items that describe the trace from a specific perspective. Five profiles are
recommended in [31] which are activity profile, transition profile, case attributes
profile, event attributes profile and performance profile. By converting the pro-
files defined into an aggregate vector the distance between any two traces can

1Most trace clustering techniques only consider the structural behaviours of traces, while some
consider the behaviours from both traces and other case attributes.

42

be measured. One advantage of this technique is that it provides a full range of
metrics for clustering traces. In [193] the authors point out that a fully complete
model (with high fitness) discovered may support a high variety of behaviours
that are not registered in event log, as a result some significant structural features
may be concealed in the mined model. Such a problem can be dealt with by con-
sidering the metric soundness [9] which measures the percentage of behaviours
of the mined model that are recorded in the log among all of the behaviours sup-
ported by the model. An efficient technique is proposed in [193] which divides
the whole process into a set of distinct sub-processes based on a greedy strategy
which makes sure the further division of a process will lead to another increas-
ingly sound sub-process. This method can also help solve the problem of high
complexity of the initial model. Context-aware trace clustering techniques are
proposed in [195] and [35]. In [195] the authors indicate that the feature sets
based on subsequences of different lengths are context-aware for the vector space
model and can reveal some set of common functions. Two traces that have a lot of
conserved features in common should be gathered in the same cluster. In [35] the
authors present an edit distance-based approach for distributing traces into clus-
ters such that each cluster consists of traces with similar structural behaviours.
The cost of edit operations is associated with the contexts of activities so that the
calculated edit distance between traces is more accurate. The sequence clustering
technique based on first-order Markov chains is presented in [196]. This tech-
nique learns a potential first-order Markov model for each cluster through an
expectation-maximization algorithm. A sequence is assigned to a cluster which
is able to generate it with higher probability. The technique proposed in this
paper also inherits the idea from sequence clustering, the difference is our tech-
nique represents each cluster with a set of separate sequences (significant trace
behaviours). In [36] a novel technique named Active Trace Clustering (ATC) is
presented which directly optimises the fitness of each cluster’s underlying pro-
cess model during the run time. This method doesn’t consider the vector space
model for trace clustering, it simply discovers the suitable traces for each cluster
so that the combined accuracy of the related models for these clusters is max-
imised. This method sufficiently resolves the gap between the clustering bias
and the evaluation bias.

However, most currently available trace clustering techniques treat all of the
trace behaviours captured in the event log equally. As a result, the impacts of
some important trace behaviours are reduced. Moreover, these techniques focus
mainly on the discovery of various kinds of trace behaviours while the quality of
the underlying process model for each cluster learnt is not taken into account [36].
Hence, high-quality sub-process models from these trace clustering techniques
cannot be guaranteed. The ATC that is put forward in [36] directly optimises
the accuracy of each cluster’s underlying process model. However, ATC only
considers model accuracy metrics while the complexity of process models is ne-
glected during trace clustering. The complexity of process models is also a very
important metric and should not be ignored for trace clustering. Because a highly

43

accurate process model can still be very complicated.

2.2.3.2. Mined Model Abstraction

The limitation of current trace clustering techniques will be revealed while deal-
ing with event logs containing massive trace behaviours. For instance, the event
log from BPIC 2011 contains 624 activities among which a large number of rela-
tions are exhibited (the average out-degree for each activity is 6.2564) and most
of the classical trace clustering methods cannot bring a significant improvement
on the mining result for this hospital log (as shown in Section 6.4 of Chapter 6).
Process model abstraction-based approaches make the assumption that the raw
models mined from real-life logs contain low level sub-processes which should
be discovered in the form of sub-traces in the original event logs and abstracted
into high level activities so that the insignificant low level process behaviours can
be hidden by being replaced via high level activities. Thus, more accurate and
simpler high level process models can be obtained.

Process model abstraction [41, 42, 197–201] approach is also very effective for
dealing with "spaghetti-like" business process models mined. In [33] the authors
develop a two-step approach for mining hierarchical business process models.
This approach searches for the sub-traces that repeatedly happen in event logs.
Two kinds of such sub-traces are defined which are tandem arrays and maximal
repeats. This approach first searches for all the tandem arrays and the maximal
repeats in the event logs and then replaces them in the original event logs by
using high level activities (each high level activity is an abstraction of a tandem
array or a maximal repeat found) so that the high level event logs can be gener-
ated. Finally, the high level models (more accurate and simpler) could be mined
by using existing workflow discovery algorithms executed on the high level logs.
The authors in [41, 42, 199] indicate that the low level events recorded in event
logs may be too granular and should be mapped to high level activities prede-
fined in the enterprise process specifications. Hence, they put forward a mapping
method that combines the domain knowledge captured from these specifications.
With the high level activities generated better models on the higher abstraction
level can be built. The authors in [38] present an automated technique for mining
the BPMN models with sub-processes. This technique analyses the dependencies
among the data attributes attached to events. The events that are judged to have
high dependencies will be put in the same sub-processes.

Nevertheless, most of the classical process model abstraction approaches pre-
sented focus mainly on searching for the sub-processes and cannot assure the
quality of the built high level models. It is possible that the high level activities
in the underlying abstracted models may still have a large amount of relations
among each other.

44

3
A Novel Heuristic Method for

Improving the Fitness of Mined

Business Process Models

3.1. Introduction and Motivation

As one of the most important learning tasks in the business process mining area,
the present BPMD techniques encounter great challenges when trying to mine
models from real-life event logs. Such logs that usually stem from the business
processes executed in highly flexible environments often contain complex trace
behaviours (expressed by the activities and their precedence relations in the trace)
which might be far beyond the expression ability of existing BPMD approaches.
As a result, low-fitness process models might be generated. For instance, Figure
3.1 shows an example event log L1 together with the process model generated by
carrying out HM [37] on this log. It can be seen that the mined model for L1 has a
relatively low fitness value which is 0.7752 and this is largely due to the existence
of inexpressible process behaviours for HM in L1.

One effective auxiliary strategy for solving this problem has been proposed in
the literature: the mining algorithm enhancement-based strategy (MEBS) which
aims at improving the expressive ability of existing BPMD algorithms or develop-
ing new algorithms that are able to model more complex workflow patterns. This
chapter will focus on this strategy. Several state-of-the-art application instances
of MEBS such as the Language-Based Region Miner [39], the State-Based Region
Miner [202], the ILP Miner [24], the Inductive Miner [25] and the model repair
technique [203] have been put forward in academia. These proposed application
instances are able to help mine high-fitness models expressed by Petri net [170].
However, few efforts have been made to help HM generate better mining results.
According to [8], HM is one of the most popular BPMD tools in the ProM frame-
work [9] for dealing with real-life event logs and developing an auxiliary method
to help it mine high-fitness process models is far from trivial.

45

Example log : L1

<A, B, C, D, F, E, G>2 <A, B, C, D, E, H, F, I, G>64 <A, B, C, D, E, F, H, I, G>2 <A, B, C, D, E, H, I, F, G>127

<A, B, C, D, E, F, G>1 <A, B, C, F, D, E, H, I, G>78 <A, B, C, D, F, E, H, I, G>247 <A, B, C, D, E, H, I, G>3

Model M1 mined by Heuristics Miner

ICS fitness : 0.7752

Figure 3.1.: An example event log L1 and the process model mined by executing
Heuristics Miner on L1.

In this chapter, we put forward a novel heuristic method for helping HM mine
high-fitness process models. In addition, the principle of our method has a uni-
versal significance and can also be utilised for assisting other kinds of BPMD
algorithms in mining better process models. But in this chapter, we only focus on
HM and adapting our technique to other BPMD algorithms will be a future job.
The structure of the main contents of this chapter is organised as:

- The problem addressed by this chapter is discussed in detail in Section 3.2.

- In Section 3.3, a method for extracting and organising the process behaviours
from real-life event logs is proposed.

- In Section 3.4, an activity ranking algorithm is developed which is able to
sort the activities from a particular event log according to the potential im-
pact of each activity on the fitness of the process model mined from this
log.

- In Section 3.5, a heuristic algorithm named HIF that inherits the idea of
MEBS for improving the fitness of models mined by HM is presented. This
proposed technique is able to detect and convert the inexpressible process
behaviours related to a particular activity.

- In Section 3.6, we carry out HIF on an example event log for explicitly ex-
hibiting the operating principle of HIF so that the readers can better un-
derstand it. In the meantime, the correctness of HIF can also be testified
through this preliminary test.

46

3.2. Problem Description

Every BPMD algorithm has its own feature reflected by its representational bias,
i.e., the category of process behaviours that can be expressed by the algorithm [9].
Creating an approach to represent all kinds of workflow patterns therefore cannot
be accomplished. Occasionally, the business processes executed under flexible
environments, e.g., healthcare, customer relationship management (CRM) and
product development [36], may exhibit a lot of complex behaviours which are far
beyond the expressive ability of the utilised BPMD techniques. As a result, min-
ing the event logs that record the behaviours of these business processes might
generate non-fitting process models.

B1

B2

B3

B4

B5

B8

B6 Bn

Judge if Bk can be precisely

expressed

Model Accuracy

Evaluation Method

B7

Event Log

L

Transform Bk into

expressible behaviours in L

Process behaviour space

of event log L

Input

Bk

YES

NO

Process Model

Discovery Algorithm

Continue to deal with the next

kind of process behaviours

Figure 3.2.: The process for dealing with inexpressible process behaviours
recorded in real-life event logs.

In this chapter, we transform the fitness improvement problem for the non-
fitting models mined by HM into the problem of locating the inexpressible pro-
cess behaviours for HM in event logs and converting these found behaviours
into expressible behaviours. As shown in Figure 3.2, an element Bk in the process
behaviour space (PBS) represents a kind of process behaviour extracted from a
specific event log L. Afterwards, it is assessed whether Bk can be expressed by
HM. If Bk cannot be expressed then all the process behaviours that pertain to Bk
in L will be converted into expressible behaviours. Given an event log, how to
build the PBS relevant to this log and how to locate the inexpressible behaviours
in the PBS and then transform them into expressible behaviours for HM are the
main problems that this chapter is going to solve.

In this chapter, we propose a novel heuristic method which is able to solve
the problems mentioned above efficiently. The proposed method utilises a novel
way for building the PBS of a specific event log based on which the procedure
for detecting and converting the inexpressible process behaviours for HM can be
implemented smoothly.

47

3.3. Build Process Behaviour Space

The business process behaviours recorded in real-life event logs are displayed by
the activities and their precedence relations from traces. How to effectively ex-
tract and organise these behaviours is the first challenge encountered by our ap-
proach. In this section, we present a new perspective to view the business process
behaviours recorded in real-life event logs based on two concepts: Behaviour-
Related Activity and Behaviour-Related Sub-Trace.

Definition 3.1. (Behaviour-Related Activity)
Let SAL be the set of activities for event log L. Symbol⇒L represents a behaviour-
based relation between any two activities from SAL. For two activities a, b ∈ SAL,
a ⇒L b = true if a ≻L b = true or b ≻L a = true and b is called a Behaviour-Related
Activity (BRA) of a.

According to Definition 3.1, activity b ∈ SAL is a BRA of activity a ∈ SAL if
there is a direct relation (defined in Chapter 2) between a and b in event log L (no
matter how the direct precedence order between a and b is).

Definition 3.2. (Behaviour-Related Sub-Trace)
Let SAL be the set of activities for event log L. Let t be a trace from L, st ⊑ t be a
sub-trace of t and SAst be the set of activities for st. Given an activity a ∈ SAL, st
is a Behaviour-Related Sub-Trace (BRST) of a if ∀b ∈ SAst ∧ b ≠ a such that a ⇒L b
and a ∈ SAst. And st is a Maximal Behaviour-Related Sub-Trace (MRST) of a if ∄st′
such that st′ is a BRST of a and st ⊏ st′.

Let’s take the simple event log L1 depicted in Figure 3.1 as an example. Ac-
cording to Definition 3.1, activity F has six BRAs which are activity D, E, H, I, G
and C. Seven kinds of MRSTs for activity F can be discovered from L1 (as shown
in Figure 3.3) according to Definition 3.2. It can be seen that every MRST of F
contains activity F and all the other activities in the MRST are BRAs of F.

Definition 3.3. (Set of MRSTs and PBS)
Let L be an event log, SM is called a set of MRSTs of an activity a ∈ L if SM
contains all the MRSTs that can be discovered in L for activity a. The PBS for log
L comprises the sets of MRSTs of all activities in L.

Let Ω be a process model discovery algorithm, Σ f be a fitness calculation
mechanism and α be a threshold of fitness of mined process models. The in-
expressible process behaviours are defined as follows:

Definition 3.4. (Inexpressible Process Behaviours)
Let L be an event log, PBSL be the PBS related to L, SMa ∈ PBSL be the set of MRSTs
of activity a from L. The activity relations stored in SMa are called inexpressible
process behaviours if Σ f (Ω(SMa), SMa) < α.

48

{<C,D,F,E,G>2,<C,D,E,H,F,I,G>64,<C,D,E,F,H,I,G>2,<C,D,E,H,I,F,G>127,

<C,D,E,F,G>1,<C,F,D,E,H,I,G>78,<C,D,F,E,H,I,G>247}

Set of MRSTs of activity F

PBS of event log L1

Set of MRSTs of activity A Set of MRSTs of activity E

Set of MRSTs of activity G Set of MRSTs of activity I

Figure 3.3.: The PBS built for the example event log L1.

In our technique, the process behaviours recorded in an event log are divided
into several groups where each group is relevant to a single activity from this
log and the process behaviours for a group are stored in the MRSTs of its related
activity. For instance, the PBS for log L1 consists of nine sets of MRSTs where
each set of MRSTs is relevant to a specific activity from L1 (as shown in Figure
3.3). Our technique is devised to detect each set of MRSTs stored in PBS itera-
tively for finding and converting inexpressible process behaviours for the utilised
BPMD technique. Algorithm 3.1 gives a brief description of the PBS building ap-
proach.

Algorithm 3.1 Construct the PBS for a specific event log L (CPBS)

Input: an event log L, the set of activities SAL for L
1: Let PBSL be a set of sets of MRSTs for log L.
2: PBSL ← null
3: for each activity a ∈ SAL do
4: generate the set of MRSTs BSTa for a
5: PBSL ← PBSL ∪ BSTa
6: end for

Output: a set of sets of MRSTs PBSL for the input log L

3.3.1. Direct Activity Relations vs Casual Activity Relations

The goal of our approach is to locate the complex process behaviours (i.e., those
that cannot be expressed by HM) recorded in event logs and convert them into
simple behaviours so that the mined models possess high fitness. The concept
casual activity relation mentioned in Chapter 2 has been widely utilised in exist-
ing BPMD techniques. Nevertheless, the casual activity relation is not applicable
in all situations because it itself has a limited expressive ability. While dealing

49

with relatively complex relations among activities this concept might not be suf-
ficient enough. However, the concept direct activity relation is able to help extract
all possible process behaviours recorded in event logs and this is also the main
reason for our approach to employ this concept.

3.4. Activity Ranking

In this section, an activity ranking method is put forward in which the process be-
haviours related to the higher-ranked activities will be handled before the process
behaviours relevant to the lower-ranked activities. The proposed activity ranking
method is based on two concepts: Behaviour-Related Activity Weight (BAW) and
Activity Ranking Weight (ARW). Given an activity a from event log L, the BAW
of a is defined as:

BAWa = ∣● ≻L a∣+ ∣a ≻L ●∣. (3.1)

In Equation 3.1, ∣● ≻L a∣ represents the total number of activities from L that
are directly followed by a at least once and ∣a ≻L ●∣ represents the total number of
activities which directly follow a in L at least once. The value of BAW for each
activity in log L1 (see Figure 3.1) is shown in Table 3.1. For instance, ∣● ≻L1 F∣ = 5
because activity F directly follows five kinds of activities in L1 which are activity
D, H, E, I and C. ∣F ≻L1 ●∣ = 5 because activity F is directly followed by five kinds
of activities which are activity E, I, H, G and D. As a result, the value of BAW for
activity F is 10 (i.e., BAWF = 10).

Table 3.1.: The activity ranking result for the example event log L1.
Ranking Activity BAW Frequency of Occurrence ARW

1 F 10 521 0.9943
2 E 5 524 0.5
3 D 4 524 0.4
4 H 4 521 0.3977
5 I 4 521 0.3977
6 G 3 524 0.3
7 C 3 524 0.3
8 B 2 524 0.2
9 A 1 524 0.1

Axiom 3.1.
The larger the BAW of an activity from an event log L is, the more possible this

50

activity will be the main factor that leads to the inexpressible process behaviours
in log L.

According to Axiom 3.1, the BAW is employed by our technique to quantify
the complexity induced by an activity on its related process behaviours (i.e., the
MRSTs of this activity) recorded in the relevant event log. However, Axiom 3.1
might not be applicable in all situations, e.g., an activity that only joins a concur-
rent behaviour may also have a large BAW but it will not cause any inexpressible
process behaviour as long as the utilised BPMD algorithm can model concur-
rency. These additional situations are also considered in our approach proposed
in the next section.

Let a be an activity from event log L, the ARW of a is defined as:

ARWa =
BAWa

BAWmax
× ∣a∣

OFmax
. (3.2)

where BAWmax stands for the BAW of a particular activity from L which has
the largest BAW, ∣a∣ stands for the occurrence frequency of activity a in log L
and OFmax represents the occurrence frequency of an activity from L which has
the largest frequency of occurrence. According to Equation 3.2, the ARW of an
activity consists of two parts. The fist part is based on the BAW of this activity
while the second part considers the influence level of activity on the fitness of the
final mined model1. Table 3.1 shows the ranking of activities from L1. It can be
seen that activity F which has the largest ARW ranks first among all the activities
in L1 which means that our technique will first check the MRSTs of F recorded in
the PBS built for L1 (see Figure 3.3). The details of the activity ranking method
are depicted in Algorithm 3.2.

3.5. A Heuristic Method: HIF

The core algorithm of our technique is introduced in this section. In Section 3.5.1,
we present a method (named DCIB) which is able to detect and convert the in-
expressible process behaviours related to one specific activity. Afterwards, we
propose a heuristic method (named HIF) based on the discussions in the former
sections for improving the fitness of the mined process models in Section 3.5.2.

1An infrequent activity may not exert great influence on the fitness of the final generated process
model, even though it leads to complex process behaviours.

51

Algorithm 3.2 Activity ranking (AR)

Input: the set of activities SAL for an event log L.
1: Let i, j be two variables of type Integer.
2: Let a be an activity.
3: i ← 0, j ← 0, a ← null
4: for (i; i < ∣SAL∣; i++) do
5: for (j ← i + 1; j < ∣SAL∣; j++) do
6: if ARWSAL[i] < ARWSAL[j] then
7: a ← SAL[i]
8: SAL[i]← SAL[j]
9: SAL[j]← a

10: end if
11: end for
12: end for
Output: a set of activities SAL, the larger the ARW of an activity is, the lower the

index of this activity in SAL is.

3.5.1. Detection and Conversion of Inexpressible Process
Behaviours

Before presenting the method DCIB, we first introduce a new concept called En-
vironment Item.

Definition 3.5. (Environment Item)
Let SAL be the set of activities from event log L, activity a, b and c are three activ-
ities from SAL, the tuple (b, c) is an Environment Item (EI) of activity a if ∃t ∈ L
such that < b,< a . . . >, c >⊑ t, where t stands for a trace from L and < a . . . > repre-
sents a sub-trace that only consists of activity a (one or more).

According to Definition 3.5, the activity F in the example log L1 has six EIs
which are EI (D,E), (H,I), (E,H), (I,G), (E,G) and (C,D). Activity A has one EI which
is (null,B) where the value null indicates that activity A appears as a starting
activity.

Axiom 3.2.
Converting an activity into a new activity under appropriate environment item
will help reduce the complex process behaviours induced by this activity.

Figure 3.4 shows an event log L2 generated by converting activity F under
environment (D,E) into a new activity F1 and converting F under environment
(H,I) into a new activity F0 in log L1. As illustrated in Figure 3.4, the process
model mined from the newly created log L2 has a much higher fitness than the
model mined from L1. The main reason for such an improvement on fitness is that

52

the conversion of activity F under environment (D,E) and (H,I) transforms the
inexpressible (complex) process behaviours (related to F) for HM into expressible
(simple) process behaviours.

Example log : L2

<A, B, C, D, F1, E, G>2 <A, B, C, D, E, H, F0, I, G>64 <A, B, C, D, E, F, H, I, G>2 <A, B, C, D, E, H, I, F, G>127

<A, B, C, D, E, F, G>1 <A, B, C, F, D, E, H, I, G>78 <A, B, C, D, F1, E, H, I, G>247 <A, B, C, D, E, H, I, G>3

Model M2 mined by Heuristics Miner

ICS fitness : 0.9989

Figure 3.4.: The process model mined from newly generated log L2.

SF (H, I), (D, E), (E, H), (I, G), (E, G), (C, D)

Lead to a model with

fitness value v1
Convert F under the found environment

item in the set of BRSTs for F

Input
Input

(D, E)
Output

NSF
Lead to a model with

largest fitness value v2

If (v2 < α && v2 – v1 >= β)
Change SF into NSF, put (D, E)

in SEI, run module 1

YES

Put (D, E) in SEI, return

SEI, stop running module 1

NO

Module-1

Let SEI be a set of

environment items

Set of environment items for F

Discover the best

environment item

Input

Output
Input

Stage 2

Stage 3

Module-2

If (v1 < α)
Run

Stage 1

{<C,D,F,E,G>2,<C,D,E,H,F0,I,G>64,<C,D,E,F,H,I,G>2,<C,D,E,H,I,F,G>127,

<C,D,E,F,G>1,<C,F,D,E,H,I,G>78,<C,D,F,E,H,I,G>247}
Fitness: f1

{<C,D,F,E,G>2,<C,D,E,H,F,I,G>64,<C,D,E,F,H,I,G>2,<C,D,E,H,I,F,G>127,

<C,D,E,F,G>1,<C,F0,D,E,H,I,G>78,<C,D,F,E,H,I,G>247}

Output

(D, E)
Choose the environment

item related to the largest

fitness vlaue

Set of sub-traces generated by transforming

activity F under environment (H, I) into F0 in SF

Calculate the fitness of

model mined from the

input set of sub-traces

Input

Set of sub-traces generated by transforming

activity F under environment (C, D) into F0 in SF

Fitness: f6

OutputCalculate the fitness of

model mined from the

input set of sub-traces

Input

InputOutput
Technical details of

Stage 2

Basic procedure

of DCIB

Part A:

Part B:

Figure 3.5.: The basic procedure for technique DCIB.

The algorithm DCIB (that will be) proposed in this subsection is able to assist
in detecting the suitable EIs for a specific activity under which transforming the

53

Algorithm 3.3 Detection and conversion of inexpressible behaviours (DCIB)

Input: an activity a from event log L, the process behaviour space PBSL for log L,
a target fitness α, a model fitness improvement threshold β

1: Let BSTa be a set of maximal behaviour-related sub-traces for activity a.
2: Let SEI be a set of environment items.
3: Let vb be a variable of type Boolean.
4: BSTa ← null, SEI ← null, vb ← null
5: discover the set of environment items SEIa for activity a
6: BSTa ← PBSL[a] # extract the set of behaviour-related sub-traces for a
7: repeat
8: Module−1(BSTa, SEIa) # See Figure 3.5 for Module−1 and Module−2
9: until ((vb ←Module−2(SEI, α, β)) == f alse)

Output: a set of discovered environment items SEI for activity a.

activity into new activities can help simplify the complex process behaviours led
by this activity. The storage structure of process behaviours in PBS provides a
basis for DCIB to fulfil such a function. Specifically speaking, for each time DCIB
discovers the qualified EIs for a certain activity by detecting its MRSTs stored in
the relevant PBS2. Let’s take the activity F from log L1 as an example to explain
the primary procedure for DCIB. Let SF stand for the set of MRSTs for activity
F (the details of SF are exhibited in Figure 3.3), v1 represents the fitness value of
the process model mined from SF, SEI be a set of EIs, α be a target fitness and β
be a minimum fitness improvement threshold. As illustrated in part A of Figure
3.5, DCIB contains three stages and two modules. In stage 1, it judges whether
v1 is less than the target fitness α. If it is not, DCIB stops because the negative
influences aroused by the inexpressible process behaviours related to activity F
is acceptable. In stage 2 and stage 3 (that belong to Module−1), DCIB searches
for the best EI ((D,E) in our example) of activity F among all its EIs (mentioned
above) under which converting F into a new activity will generate a new set of
MRSTs NSF for F where the fitness of the model mined from NSF has the largest
value (i.e., v2) compared with the models mined from other set of MRSTs gener-
ated by transforming F under other EIs of F. Then the found EI (D,E) is removed
from the original set of EIs for activity F. The part B of Figure 3.5 shows the de-
tails for realising the stage 2 of DCIB. In Module−2, DCIB judges if v2 < α and
v2 − v1 ≥ β. If it is, put the found EI (D,E) in SEI, replace SF by using NSF and
continue running Module−1. If v2 ≥ α, DCIB stops because the EIs found so far
are enough to help reduce the negative influence led by the complex process be-
haviours aroused by F to a certain extent (indicated by α). DCIB will also stop
running if v2 − v1 < β. Because adding new activities will help improve the ac-
curacy of the potential model but may also increase the complexity of the model
at the same time. It is not worth to add new activities if the model fitness cannot

2Detecting the qualified EIs in the MRSTs of an activity instead of in the whole process be-
haviours recorded in the event log will greatly reduce the detection time (i.e., the algorithm
efficiency is improved).

54

be improved to a certain extent. The main procedure of technique DCIB is briefly
depicted in Algorithm 3.3.

3.5.2. A Heuristic Method for Improving the Fitness of Mined
Process Models

In this subsection, we propose a heuristic method (named HIF) based on the dis-
cussions in the former sections for improving the fitness of mined models. The
details about HIF are shown in Algorithm 3.4.

Algorithm 3.4 HIF

Input: an event log L, the set of activities SAL of log L, a target fitness α, a model
fitness improvement threshold β, a threshold µ for the number of newly
added activities.

1: Let x be a variable of type Integer.
2: Let PBSL be a set of sets of maximal behaviour-related sub-traces.
3: Let SEI be a set of environment items.
4: Let LRA be a list of ranked activities.
5: Let AR be the activity ranking method introduced in Section 3.4.
6: SEI ← null, x ← ∣SAL∣ # x records the total number of activities in log L
7: PBSL ← CPBS(L, SAL) # create the process behaviour space for event log L
8: LRA ← AR(SAL) # rank activities from SAL
9: repeat

10: get the activity a that has the highest ranking out of LRA
11: SEI ← DCIB(a, PBSL, α, β)
12: repeat
13: get an environment item ei out of SEI
14: convert activity a under ei into a new activity in log L
15: put the newly generated activity for a in SAL
16: until ((∣SAL∣− x) == (µ × x) ∣∣ Σ f (Ω(L), L) ≥ α ∣∣ ∣SEI∣ == 0)
17: until ((∣SAL∣− x) == (µ × x) ∣∣ Σ f (Ω(L), L) ≥ α)
Output: a business process model with higher accuracy M = Ω(L).

Firstly, the number of activities in the given log L is stored in variable x (step
6). Then, algorithm HIF creates the PBS for log L (step 7) and also a ranking list
LRA for the activities in L (step 8) according to the method proposed in Section
3.4. Next, HIF chooses an activity a which has the highest ranking in LRA and
removes a from LRA (step 10). The inexpressible process behaviours aroused by
a will be first handled which means that HIF always give priority to the main
contradiction. Then, HIF searches for the qualified EIs for activity a through tech-
nique DCIB (introduced in Section 3.5.1) and the found EIs are put in set SEI (step
11). Afterwards, for each environment item ei ∈ SEI, HIF changes the activity a

55

into a new activity under environment ei in log L (this action will help improve
the fitness of the model mined from L as demonstrated in Section 3.5.1), removes
ei from SEI and put the newly generated activity in the set of activities SAL for
log L (steps 12−16). In HIF, a threshold µ is used to limit the number of the
newly added activities because adding too many new activities might increase
the complexity of the final model. If the number of the newly added activities is
larger than µ × x then HIF stops (step 16 and 17). The activity ranking procedure
described in step 8 makes sure that the accuracy of the mined model could be
improved as much as possible under the limitation given by µ. Furthermore, if
the fitness of the model mined from L is larger than or equal to the given target
fitness α then HIF also stops (step 16 and 17). Finally, a process model M with
higher fitness value is output by HIF. For the example event log L1 shown in Fig-
ure 3.1, our technique HIF discovers that the activity F under environment (D,E)
and (H,I) is a factor for HM to generate low-fitness model. Then, through replac-
ing activity F under environment (H,I) by a new activity F0 and replacing F under
(D,E) by F1 in L1 a more fitting process model is generated (as shown in Figure
3.4).

3.6. Preliminary Verification for HIF

In the verification process, we utilise the HM from ProM 6 for mining process
models from event logs. Furthermore, we use the ICS fitness [29] for assessing
the accuracy of the mined models because it has a computationally efficient cal-
culative process. We tested the correctness and effectiveness of our technique by
utilising an example event log L3 as shown in Figure 3.6. It can be seen that this
example log has 400 traces. The model M3 mined from L3 has a fitness value
0.6.

Example log : L3

<A, B, C, D, E>100 <A, B, D, C, E>100 <A, D, B, C, E>100

ICS fitness : 0.6

Model M3 mined by Heuristics Miner

<A, D, C, B, E>100

Figure 3.6.: The example event log L3 and its relevant process model minded by
HM.

56

Table 3.2.: The activity ranking result for the example event log L3.
Ranking Activity BAW Frequency of Occurrence ARW

1 B 6 400 1.0
2 D 6 400 1.0
3 C 5 400 0.8333
4 E 3 400 0.5
5 A 2 400 0.3333

In this preliminary test for HIF on the example log, the target fitness α is set to
1, the model fitness improvement threshold β is set to 03 and the threshold for the
number of newly added activities µ is set to 1.0 (we utilise such a combination of
parameters because the example event log is very simple). Table 3.2 shows the
activity ranking result from HIF for log L3. Figure 3.7 exhibits the event log and
process model output by HIF executed on L3. For event log L3 HIF generates
a new log L4 by converting activity D under EI (A,C) into D0 and converting
activity B under EI (C,E) into B0 in L3. The process model M4 mined from L4 has
a fitness value 1.0.

Example log : L4

<A, B, C, D, E>100 <A, B, D, C, E>100 <A, D, B, C, E>100

Model M4 mined by Heuristics Miner

<A, D0, C, B0, E>100

ICS fitness : 1.0

Figure 3.7.: The process model output by HIF for the example log L3.

In our experiment, we found that HIF is usually able to discover the most ef-
ficient way for acquiring high fitness for the mined process models. Normally,
there exist multiple options for improving the fitness of the underlying process
model for a certain event log. Semantically speaking, the most efficient way
might not always be the best way sometimes. In Chapter 6, we will display more

3The sign "≤" in the rhombus of Module-2 for technique DCIB (shown in Figure 3.5) should be
transformed into "<" if the model fitness improvement threshold β is set to 0.

57

detailed experiment results and analyses about HIF in which the problem men-
tioned above is also discussed in details. In the meantime, a comparison between
our method and some classical BPMD techniques proposed in the literature is
carried out in Chapter 6 as well.

58

4
Trace Clustering and Classi�cation

Techniques

4.1. Introduction and Motivation

As introduced in Chapter 3, the current BPMD techniques may generate inaccu-
rate process models while mining real-life event logs. The technique HIF pro-
posed in Chapter 3 is able to help solve this problem efficiently. However, com-
plex rate is also a significant metric for evaluating the quality of a process model
which should not be neglected [179]. While dealing with event logs that record
the execution information of complex business processes, the relevant models
mined through HIF may not be helpful, even though these generated models are
highly fitting. Because a mined process model that is too complex to be com-
prehended is almost useless in reality (no matter how accurate this model is).
All too often, though, "spaghetti-like" business process models might be gener-
ated by existing BPMD techniques with an input of real-life event log [187]. Such
models are often both inaccurate and too complex to be well interpreted. For
instance, Figure 4.1 shows a "spaghetti-like" process model with a fitness (ICS
fitness) value 0.7878 obtained by mining the event log of the loan and overdraft
approvals process (LOA) from BPIC 2012 with HM.

Figure 4.1.: Business process model of the loan and overdraft approvals process.

59

Accordingly, some pioneering approaches have been developed to solve the
problem of inaccurate and complex process models mined from real-life event
logs. One efficient technique is trace clustering [31] which is an application in-
stance of MDS. Trace clustering approach tries to mine and analyse the structural
behaviours of traces (trace behaviours) in an event log and then group the traces
with similar behaviours into the same sublog. Afterwards, by applying BPMD
algorithms on each simpler sublog, more accurate and comprehensible process
models can be obtained. Figure 2.26 (Chapter 2) shows the basic procedure for
trace clustering.

Nevertheless, most currently available trace clustering techniques treat all of
the trace behaviours captured in the event log equally. As a result, the impacts of
some important trace behaviours are reduced. Moreover, these techniques focus
mainly on the discovery of various kinds of trace behaviours while the quality
of the underlying process model for each sublog is not taken into account [36].
Hence, high-quality sub-process models from these trace clustering techniques
cannot be guaranteed. A promising method called ATC is put forward in [36]
which directly optimises the accuracy of each sublog’s underlying process model.
However, ATC only considers model accuracy metric while the complexity of
process models is neglected during trace clustering. The complexity of process
models is also a very important metric and should not be ignored for trace clus-
tering. Because a highly accurate process model can still be very complicated.

Furthermore, most existing trace clustering techniques cannot deal with com-
plex trace behaviours that are beyond the expressive ability of the utilised BPMD
techniques from the similar traces (i.e., the traces that have similar sequence of
activities) because these similar traces are more possible to be grouped into the
same sublog. As a result, some sub-models output by these trace clustering tech-
niques may still suffer from low fitness. Table 4.1 (T-number is a short name
for trace number) exhibits the evaluation results for six classical trace clustering
techniques which are 3-gram [31], MR and MRA [195], ATC [36], GED [35] and
sequence clustering (SCT) [196] executed on event log LOA. For each technique
the number of generated sublogs is set to five. It can be seen that all the six trace
clustering techniques will generate one or more sub-process models with low fit-
ness. For instance, for technique SCT, the fitness of the model mined from sublog
5 is only 0.7828, even though the Weighted Average Fitness1 (WAF) of the models
mined from the five sublogs generated by SCT is 0.8671.

In this chapter, we introduce two trace clustering techniques which are Top-
Down Trace Clustering Technique (TDTC) and Compound Trace Clustering Tech-
nique (CTC). The two developed techniques are able to optimise the accuracy and

1Let j be the number of trace clusters, ni denotes the number of traces in cluster i , where 1 ≤ i ≤ j.
Let Fi represents the fitness of the process model mined for cluster i, the weighted average

fitness is defined as: WAF =
∑

j
i=1 ni×Fi

∑
j
i=1 ni

.

60

Table 4.1.: The information about the sub-process models mined from the sublogs
of LOA generated by six classical trace clustering techniques.

Method Metrics Model of Model of Model of Model of Model of
sublog 1 sublog 2 sublog 3 sublog 4 sublog 5

3-gram Fitness 0.9918 0.9681 0.879 -0.4672 0.2284
T-number 118 763 10322 594 1290

MR Fitness 0.9909 0.9669 0.8681 0.0803 -0.3583
T-number 112 938 10768 454 815

MRA Fitness 0.8663 0.204 0.979 -0.3643 0.9677
T-number 10727 1083 67 372 838

ATC Fitness 1 -0.1515 -0.1034 -0.04 0.4566
T-number 7512 27 25 19 5504

GED Fitness 0.9718 0.9959 0.8049 0.5193 0.6197
T-number 1509 1607 8073 784 1114

SCT Fitness 0.9095 0.8436 0.9636 0.932 0.7828
T-number 2091 1839 1740 2765 4652

complexity of the potential sub-process models for the generated sublogs. More-
over, the technique CTC is able to assure the fitness of the sub-model mined from
each sublog output by it.

Trace clustering can help find a lot of hidden behaviours among the traces.
However, it is an unsupervised learning technique and lack domain knowledge.
As a result, it is unable to indicate which behaviours are wanted by customers or
process analysts for dividing the traces. Sometimes, the trace behaviours found
by trace clustering techniques may not assist in generating a meaningful division
of traces (by considering the demand of end users).

Classification (supervised learning technique) which is able to combine the
domain knowledge from enterprise business experts can be a useful tool for di-
viding the traces in a meaningful way. In this chapter, we also put forward a
classification technique-based method for classifying cases2. The structure of the
main contents in this chapter is organised as:

- The trace clustering technique TDTC is proposed in Section 4.2.

- In Section 4.3, we put forward the technique CTC which inherits the basic
ideas of TDTC and the mined model fitness improvement technique HIF
(introduced in Chapter 3).

2Trace is a special attribute of case. In this chapter, we utilise the term "case classification" instead
of "trace classification" because the other case attributes may also be important factors for
classifying the traces. The proposed classification technique in this chapter also considers
these extra case attributes except for trace.

61

- In Section 4.4, we first demonstrate and formalise the problem of multi-label
case classification. Then, we develop a systematic method Multi-Label Case
Classification (MLCC) based on sequential pattern mining technique which
is able to utilise the case attribute trace for classifying cases.

- In Section 4.5, we carry out preliminary evaluations for TDTC, CTC and the
proposed multi-label case classification technique MLCC.

4.2. A Novel Top-Down Trace Clustering Technique

In this section, the trace clustering problem is surveyed from a new perspective
and redefined as an issue of searching for a global optimal solution in a solution
space. The proposed technique employs a greedy strategy for searching for the
optimal way to cluster the traces in an event log based on a specific model evalua-
tion mechanism that considers both the accuracy and complexity of the potential
sub-process models during the run time. In Section 4.2.1, the basic idea of TDTC
is depicted. In Section 4.2.2, the details about TDTC are elaborated. In Section
4.2.3, the assumptions for TDTC are presented.

4.2.1. Outline for Technique TDTC

Under certain conditions, an inaccurate and complex business process can be
divided into several simpler and more accurate sub-processes where each sub-
process performs some unique functions reflected by certain specific sub-process
constructional behaviours. These behaviours can be recorded in event log after
the execution of the sub-process and expressed through the structural behaviours
of traces (trace behaviours). In this subsection, the trace behaviours that ad-
here to a more accurate and simpler sub-process model compared with the orig-
inal model (generated by using the original event log) are called significant be-
haviours (defined in Section 4.2.2). Discovering these significant trace behaviours
from event log will assist in mining better sub-process models by clustering the
traces based on these behaviours. However, due to the lack of domain knowl-
edge about the significant trace behaviours, capturing them directly from event
log seems to be a difficult task.

In this subsection, we transform the traditional trace clustering problem into
the problem of finding the optimal way for clustering the traces among all possi-
ble solutions. As shown in Figure 4.2, each element in the solution space repre-
sents one strategy for clustering the traces from an event log into several subsets
of traces. A best solution is defined as a solution which is able to divide the

62

S1

S2

S3

S4

S5

S8

S6 Sn

Optimal Solution

Searching Algorithm

Model Evaluation

Mechanism

S7

Original

Event Log

Sub

Log 1

Sub

Log 2

Sub

Log 3

Sub

Log n

Best

Solution

Solution Space

Input

Input

Input

InputOutput

Output

Figure 4.2.: Illustration of the basic idea of the proposed technique TDTC.

traces in the original event log into several sublogs where the overall quality of
the underlying sub-models for these sublogs is optimal. Given a process model
evaluation mechanism, how to find the optimal solution for clustering the traces
from an event log is the main problem we are going to solve.

In this subsection, we propose the technique TDTC which inherits the basic
ideas of traditional trace clustering techniques and ATC for discovering the op-
timal way of clustering traces. This technique considers both the behaviours of
traces and the accuracy and complexity of each potential sub-process model dur-
ing the mining procedure for the optimal solution.

4.2.2. Approach Design

In this subsection, we introduce the details of TDTC which differs from existing
correlative techniques because it searches for an optimal way for clustering the
traces among all of the possible solutions. Four kinds of trace behaviours defined
in this subsection provide a basis for this technique to carry out the searching
process.

4.2.2.1. Concepts Related to Trace Behaviours

Traces are generated performing a specific category of functions determined by
business process-based domain criterion. Such criteria can be very diverse, e.g.,
presence or absence of activities, presence or absence of combinations of activi-
ties [36]. These underlying criteria are recorded in event log and reflected by cer-

63

tain compositional behaviours of traces. In the first step, our technique searches
for the structural behaviours of traces in an event log. Then, according to the iden-
tified trace behaviours the optimal solution searching process is carried out.

Given an event log L, the set of trace behaviours TB mined from L is defined
as:

Definition 4.1. (Set of Trace Behaviours)
Let Γ̂ be a closed sequential pattern mining algorithm and min_sup be a minimum
support, the set of trace behaviours TB for L is TB = {tb∣tb ∈ Γ̂(L, min_sup)}.

According to Definition 4.1, a trace behaviour tb is equivalent to a frequent
pattern mined from event log L. In our opinion, certain frequently appeared sub-
sequences among traces in an event log are able to reveal some particularly im-
portant criteria of business processes and can help distinguish sub-process mod-
els with different functions hidden in the event log. Another benefit of utilising
sequential patterns is that they cannot only represent consecutive structural be-
haviours of traces, but inconsecutive trace behaviours as well. For instance, given
a simple event log Ls = {<a1, b1, c1, d1>1,<a1, b1>1,<a1, d1>1} and a minimum sup-
port min_sup = 0.4, the set of trace behaviours TBLs = {< a1 >,< a1, d1 >,< a1, b1 >}
can be acquired, where the sequential pattern < a1, b1 > is a consecutive trace
behaviour because activity b1 always occur right next to a1 and < a1, d1 > is an
inconsecutive trace behaviour because activity a1 and d1 might occur in a trace
discretely. However, most existing pattern-based trace clustering techniques are
only able to capture consecutive trace behaviours in an event log. Moreover,
employing frequent patterns is also in accordance with the main idea of most
advanced process discovery techniques: only the frequent structures should be
considered in the process mining procedure [37].

Additionally, we classify the behaviours of traces from a real-life event log
into significant behaviours and insignificant behaviours. Let Ω be a BPMD al-
gorithm and Σ be a process model evaluation mechanism. Let L be an event
log, tb be a trace behaviour discovered from L, L1 ⊆ L be a sublog of L which
consists of all the traces with a subsequence tb, L2 ⊆ L be a sublog of L which con-
tains all the traces without a subsequence tb, VL = Σ(Ω(L)), VL1 = Σ(Ω(L1)) and
VL2 = Σ(Ω(L2)) be the assessed values obtained by performing the process model
evaluation mechanism Σ on the process models for L, L1 and L2. The significant
behaviour is conveyed by the following definition:

Definition 4.2. (Significant Trace Behaviour)
For a given minimum threshold µ, the trace behaviour tb ∈ TB is called Significant
Trace Behaviour (STB) if ((VL1 + VL2)/2 − VL)/VL ⩾ µ, otherwise tb is called an
insignificant behaviour.

As stated in Definition 4.2, a STB is able to divide the original set of traces into
two subsets that lead to two process models of which the average quality should

64

be increased by at least µ (a minimum threshold) compared with the quality of
the model generated by utilising the original set of traces.

According to Definition 4.2, the starting point for identifying a STB is a process
model evaluation mechanism Σ. As mentioned in Section 4.1, while evaluating
a process model both the accuracy and complexity should be taken into account.
Accordingly, the model evaluation mechanism Σ should contain two parts: the
fitness computing mechanism Σ f and the complexity evaluation mechanism Σc.
Let L be an event log, a trace behaviour tb discovered from L separates L into two
sublogs L1 and L2, the sub-model improvement SMI is defined as:

SMI(L1, L2, L) = α × SMIF(L1, L2, L)+ β × SMIC(L1, L2, L) (4.1)

SMIF(L1, L2, L) =
1
2(Σ f (Ω(L1))+Σ f (Ω(L2)))−Σ f (Ω(L))

Σ f (Ω(L))
(4.2)

SMIC(L1, L2, L) =
Σc(Ω(L))− 1

2(Σc(Ω(L1))+Σc(Ω(L2)))
Σc(Ω(L))

(4.3)

According to Equation 4.1, the SMI is composed by two parts. The first part
is related to the model accuracy and the second part is related to the model com-
plexity. Our technique utilises the ICS fitness [29] and PT-CD [36] for the eval-
uation of process models. The main reason for using ICS fitness is that it has a
computationally efficient calculative process. In Equation 4.1, α and β represent
the weights for the two parts and meet the condition of α+β = 1. The values of
α and β should be set upon the conditions of accuracy and complexity of the
original model. For instance, if the original model has a good accuracy but suf-
fers from a bad complexity then the value of β should be set higher than α and
vice versa. According to Definition 4.2, given a minimum threshold µ, the trace
behaviour tb is a STB if SMI(L1, L2, L)≥µ.

The sub-model improvement criterion SMI considers both the fitness and com-
plexity of the process models at the same time. However, in reality the fitness and
complexity of a model are not associated with each other. The increment of fit-
ness is not always accompanied by a decrement of model complexity and vice
versa. For example, let tb be a trace behaviour from event log L which divides
L into L1 and L2, pretend that µ = 0.15, α = 0.5, β = 0.5, SMIF(L1, L2, L) = −0.1,
SMIC(L1, L2, L) = 0.4, according to Equation 4.1 and Definition 4.2, SMI(L1, L2, L) =
0.15 is equal to the value of µ so tb is judged to be a STB. Even though the average
fitness of the sub-models for L1 and L2 is decreased, the value of SMI(L1, L2, L)
augments because the average complexity of the sub-models is greatly reduced.

65

To avoid this situation, a stricter definition for STB needs to be developed.
Let stb be a STB mined from a log L which divides L into L1 and L2, the strict
significant trace behaviour is defined as follows:

Definition 4.3. (Strict Significant Trace Behaviour)
The stb is called a Strict Significant Trace Behaviour (SSTB) if SMIF(L1, L2, L)≥µ f
and SMIC(L1, L2, L)≥µc, where µ f is a minimum threshold for the average fitness
increment of the models for L1 and L2 compared with the original model and µc
is a minimum threshold for the average complexity decrement of the models for
L1 and L2.

Based on Definition 4.3, a SSTB satisfies all the conditions for STB, in the mean-
time some additional conditions should be fulfilled: both the average fitness and
average complexity of the related sub-models need to be improved to a certain
extent.

Given a minimum threshold ϕ f and a maximum threshold ϕc:

Definition 4.4. (Fitness-Based Conditional Strict STB)
The trace behaviour tb is called a Fitness-Based Conditional Strict Significant
Trace Behaviour (FCSTB) if (Σ f (Ω(L1)) + Σ f (Ω(L2)))/2 ≥ ϕ f , (SMIC(L1, L2, L) ≥
µc ∨ (Σc(Ω(L1))+Σc(Ω(L2)))/2≤ϕc) and SMI(L1, L2, L)≥µ.

Definition 4.5. (Complexity-Based Conditional Strict STB)
The trace behaviour tb is called a Complexity-Based Conditional Strict Significant
Trace Behaviour (CCSTB) if (Σc(Ω(L1)) + Σc(Ω(L2)))/2 ≤ ϕc, (SMIF(L1, L2, L) ≥
µ f ∨ (Σ f (Ω(L1))+Σ f (Ω(L2)))/2≥ϕ f) and SMI(L1, L2, L)≥µ.

The FCSTB is defined to deal with an event log of which the potential model
has a high fitness but an inferior complexity. For instance, let tb be a trace be-
haviour from the event log L which divides L into L1 and L2, pretend that µ =
0.15, α = 0.5, β = 0.5, SMIF(L1, L2, L) = −0.1, SMIC(L1, L2, L) = 0.4, ϕ f = 0.9,
(Σ f (Ω(L1))+Σ f (Ω(L2)))/2 = 0.93, according to Definition 4.2 and Definition 4.3,
tb is a STB but not a SSTB. However, even though the average fitness of the sub-
models decreases compared to the original model, it still remains a large value
and greater than ϕ f . In such a situation, the effect of tb should not be neglected.
A corresponding definition to FCSTB is CCSTB which is defined in Definition 4.5.
It should also be noticed that a trace behaviour can be both the FCSTB and the
CCSTB at the same time.

4.2.2.2. A Top-Down Algorithm for Clustering Traces (TDTC)

In this subsection, an algorithm named TDTC is put forward for finding the opti-
mal way to cluster the traces in an event log based on the definitions elaborated

66

in Section 4.2.2.1. This algorithm applies a greedy strategy which discovers the
best trace behaviour (that is either a SSTB or a FCSTB or a CCSTB) for splitting
the original event log for each stage according to the value of SMI. Before intro-
ducing TDTC, we first introduce a trace behaviour type judging algorithm Φ̂, an
unqualified trace behaviour removing algorithm Π and a best trace behaviour
discovering algorithm Φ.

Let Φ̂ be an algorithm (depicted in Algorithm 4.1) that helps judge whether
a given trace behaviour tb mined from log L is either a SSTB or a FCSTB or a
CCSTB. Let L1 and L2 be two sublogs generated by splitting L with tb. According
to Algorithm 4.1, Φ̂ first calculates the elements for judging SSTB, FCSTB and
CCSTB according to Definition 4.3, 4.4 and 4.5 (steps 5−9). Then, if tb is judged to
be a SSTB or a FCSTB or a CCSTB, the variable j with a value true will be returned
by Φ̂ (steps 10−19). Or the variable j with a value f alse is returned by Φ̂.

Algorithm 4.1 Judge the type of a specific trace behaviour (Φ̂)

Input: an event log L, sublogs L1 and L2 of L, the fitness weight α and complexity
weight β for SMI, the minimum threshold µ for STB, the minimum thresholds
µ f and µc for SSTB, the minimum threshold ϕ f for FCSTB, the maximum
threshold ϕc for CCSTB.

1: Let smi, smi f , smic, i1 and i2 be five variables of type Double.
2: Let j be a variable of type Boolean.
3: smi ← 0, smi f ← 0, smic ← 0, i1 ← 0, i2 ← 0
4: j ← f alse
5: smi f ← ((Σ f (Ω(L1))+Σ f (Ω(L2)))/2−Σ f (Ω(L)))/Σ f (Ω(L)))
6: smic ← (Σc(Ω(L))− (Σc(Ω(L1))+Σc(Ω(L2)))/2)/Σc(Ω(L))
7: smi ← α × smi f + β × smic
8: i1 ← (Σ f (Ω(L1))+Σ f (Ω(L2)))/2
9: i2 ← (Σc(Ω(L1))+Σc(Ω(L2)))/2

10: if smi ≥ µ && smi f ≥ µ f && smic ≥ µc then
11: j ← true
12: return j
13: else if i1 ≥ ϕ f && (smic ≥ µc ∣∣ i2 ≤ ϕc) && smi ≥ µ then
14: j ← true
15: return j
16: else if i2 ≤ ϕc && (smi f ≥ µ f ∣∣ i1 ≥ ϕ f) && smi ≥ µ then
17: j ← true
18: return j
19: end if
20: return j
Output: a variable j of type Boolean

Let Π be an unqualified trace behaviour removing algorithm that is described
in Algorithm 4.2. Let TB represent a set of trace behaviours mined from event log

67

L, a trace behaviour tb ∈ TB is able to divide L into two sublogs: L1 (contains the
traces with a subsequence tb) and L2 (contains the traces without a subsequence
tb) (steps 5−9). If ∣L1∣ < θ or ∣L2∣ < θ then tb is judged to be an unqualified trace
behaviour and removed from TB by algorithm Π (steps 11−14). In our technique,
θ stands for a minimum number of traces for each sublog. A trace behaviour that
leads to a sublog with a number of traces less than θ will not be considered.

Algorithm 4.2 Unqualified trace behaviours removing method (Π)

Input: an event log L, the set of trace behaviour TB mined from L, the minimum
size θ for each sublog.

1: Let L1 and L2 be two sublogs.
2: L1 ← null, L2 ← null
3: for each trace behaviour tb ∈ TB do
4: for each trace t ∈ L do
5: if tb ⊑ t then
6: L1 = L1 ∪ {t}
7: else
8: L2 = L2 ∪ {t}
9: end if

10: end for
11: if ∣L1∣ < θ ∣∣ ∣L2∣ < θ then
12: remove tb f rom TB
13: L1 ← null
14: L2 ← null
15: end if
16: end for
Output: a set of trace behaviour TB which does not contain unqualified be-

haviours

Let Φ be an algorithm which searches for the best trace behaviour for dividing
a given event log into two sublogs, where the SMI stemming from such a division
is maximal (Algorithm 4.3). According to Algorithm 4.3, for a trace behaviour
tb ∈ TB, Φ first generates two sublogs L1 and L2 (steps 6−12) where L1 contains all
the traces with tb as a subsequence from L and L2 consists of all the traces without
tb as a subsequence. Then, Φ checks if tb is a type of the three trace behaviours:
SSTB, FCSTB and CCSTB (step 13). If it is not, tb is not further considered and the
algorithm Φ continues to deal with the next trace behaviour. The main reason to
employ the SSTB, FCSTB and CCSTB is: if the average quality of the sub-process
models mined from the generated sublogs (L1 and L2) cannot be increased to a
certain extent based on the division process compared with the quality of the
model mined from the original event log (L), then it is not worth making the
division (this requirement derives from the consideration for the balance between
the integrity and the quality of the process model). If tb is judged to belong to one
of the three types of trace behaviours (i.e., SSTB, FCSTB and CCSTB), the value
of SMI relevant to tb is then compared with the maximal SMI found by Φ by

68

checking the former trace behaviours (step 14). If the value of SMI related to tb
is larger than the present maximal SMI (stored in p[smi]), the value of p[smi] is
updated to the value of SMI for tb, the sublogs L1 and L2 are stored in p[log1] and
p[log2] respectively, the trace behaviour tb is stored in p[trace_behavior] (steps
15−18). Finally, Φ outputs an array p which contains the information related to
the best trace behaviour found (if no trace behaviour is discovered for splitting
log L, then Φ outputs the value null).

Algorithm 4.3 Search for the best trace behaviour (Φ)

Input: a set of trace behaviours TB, an event log L, the fitness weight α and com-
plexity weight β for SMI, the minimum threshold µ for STB, the minimum
thresholds µ f and µc for SSTB, the minimum threshold ϕ f for FCSTB, the
maximum threshold ϕc for CCSTB.

1: Let L1, L2 be two sublogs.
2: Let p be an array and length(p) = 4.
3: L1, L2 ← null
4: p[trace_behaviour]← null; p[smi]← −∞; p[sublog1], p[sublog2]← null
5: for each trace behaviour tb ∈ TB do
6: for each trace t ∈ L do
7: if tb ⊑ t then
8: L1 = L1 ∪ {t} # tb is a subsequence of t
9: else

10: L2 = L2 ∪ {t} # tb is not a subsequence of t
11: end if
12: end for
13: if Φ̂(L1, L2, L, α, β, µ, µ f , µc, ϕ f , ϕc) then
14: if p[smi] < SMI(L1, L2, L, α, β) then
15: p[smi]← SMI(L1, L2, L, α, β)
16: p[sublog1]← L1
17: p[sublog2]← L2
18: p[trace_behaviour]← tb
19: end if
20: end if
21: end for
Output: an array p which contains the information related to the found trace

behaviour tb

Given a workflow discovery algorithm Ω, a closed sequential pattern min-
ing algorithm Γ̂, a process model fitness evaluation mechanism Σ f and a process
model complexity evaluation mechanism Σc, the details of our method TDTC is
described in Algorithm 4.4.

To prevent the tendency of our technique to generate the sublogs containing
too few traces (too few traces means a very simple model), a minimum size θ of
each potential sublog is requested to be set before starting the algorithm. Steps

69

Algorithm 4.4 A top-down trace clustering technique (TDTC)

Input: an event log L, the set of closed sequential patterns CSP← Γ̂(L, min_sup)
mined from L with a minimum threshold min_sup, the fitness weight α and
complexity weight β for SMI, the minimum threshold µ for STB, the mini-
mum thresholds µ f and µc for SSTB, the minimum threshold ϕ f for FCSTB,
the maximum threshold ϕc for CCSTB, the minimum size θ for each cluster.

1: Let N, Nle f t and Nright be the nodes for a binary tree.
2: Let TB be a set of trace behaviours.
3: Let l be an array and length(l) = 4.
4: N ← null # create a node N
5: Nle f t ← null # Nle f t is the left child node of N
6: Nright ← null # Nright is the right child node of N
7: l ← null
8: if ∣L∣ ≥ 2θ then
9: TB = TB ∪Π(CSP, L, θ)

10: else
11: return N ← (L, Ω(L), Σ f (Ω(L)), Σc(Ω(L))
12: end if
13: l ← Φ(TB, L, α, β, µ, µ f , µc, ϕ f , ϕc)
14: if l[trace_behaviour] == Null then
15: return N ← (L, Ω(L), Σ f (Ω(L)), Σc(Ω(L)))
16: else
17: Nle f t ← TDTC(l[sublog1], CSP, α, β, µ, µ f , µc, ϕ f , ϕc, θ)
18: Nright ← TDTC(l[sublog2], CSP, α, β, µ, µ f , µc, ϕ f , ϕc, θ)
19: end if
20: return N ← (L, Ω(L), Σ f (Ω(L)), Σc(Ω(L)))
Output: a binary tree bt with a root node N

8−12 in Algorithm 4.4 check the number of traces in the original event log and
if there is no way to divide the log so that the sizes of both the sublogs gener-
ated are larger than or equal to θ then the algorithm stops. Afterwards, the trace
behaviours discovered are filtered and all the trace behaviours that cannot lead
to a valid division of the original event log according to the minimum size rule
are removed (step 9). Step 13 searches for the best trace behaviour for dividing
log L among all of the behaviours found in step 9 through the algorithm Φ de-
picted in Algorithm 4.3. A best trace behaviour is defined as a behaviour (either
a SSTB or a FCSTB or a CCSTB) which can help generate a maximum sub-model
improvement SMI as shown in the steps 13−20 in Algorithm 4.3. As described
in Algorithm 4.4, TDTC takes a greedy strategy for clustering the traces step by
step, the same procedure continues on the sublogs generated by the present stage
(steps 14−19). Finally, a binary tree bt is output by TDTC where each leaf node in
bt represents a found sublog.

70

4.2.3. Assumptions

In this section, we assume that the inaccurate and complex business process sub-
jected to our method is able to be divided into several simpler and more accu-
rate sub-processes where each sub-process carries out some specific functions.
These functions are identified by certain behaviours of traces recorded in the
event log.

4.3. A Compound Trace Clustering Technique

In our opinion, traditional trace clustering techniques suffer from a common
downside: most of them cannot deal with complex trace behaviours that are be-
yond the expressive ability of the utilised BPMD techniques deriving from similar
traces (i.e., the traces that have similar sequence of events). Because the similar
traces are more possible to be grouped into the same sublog by traditional trace
clustering techniques. In this section, we put forward a new type of trace cluster-
ing technique named CTC which considers the accuracy and complexity of the
underlying sub-process models separately during the clustering procedure. This
means that CTC assures optimised accuracy and complexity for the sub-process
model for each sublog generated by it. In addition, CTC overcomes the restric-
tions led by the complex trace behaviours from similar traces while optimising
the accuracy of the underlying sub-process models.

Basically, the proposed technique CTC consists of two stages (as shown in
Figure 4.3). Stage 1 which builds on the basic idea of TDTC (presented in Sec-
tion 4.2) focuses on mining sub-process models with optimised average complex
rate. Stage 2 then improves the accuracy of inaccurate sub-models stemming
from stage 1 by employing the technique HIF developed in Chapter 3. In Section
4.3.1, a Complexity-Related Top-Down Trace Clustering Technique (C-TDTC) for
realising stage 1 in Figure 4.3 is put forward. In Section 4.3.2, the mined model
fitness improvement technique HIF that is developed in Chapter 3 is reviewed.
In Section 4.3.3, the details about CTC are depicted.

4.3.1. A Complexity-Related Top-Down Trace Clustering
Approach

To realise the first stage depicted in Figure 4.3, we have developed a new top-
down trace clustering method (C-TDTC) in this subsection which is able to solve
the problem of generating sub-process models with optimised average complex

71

BPMD

Technique

Original

event log

Clustering traces for

generating sub-process

models with optimal

average complexity
Stage : 1

Sub

Log 1

Sub

Log 2

Sub

Log n

Sub-model

space

Sub

Log m

Sub-model 1 Sub-model 2 Sub-model n

BPMD Technique

Sub-log

space

Judge if sub-model m is

accurate or not Input

sub-model m ,

YES

NO
Stage : 2

Output

Sub

Log m*

Sub

Log m

Input Output

Input

Output Output Output

Input Input Input

Output Output Output

Input

BPMD Technique

Input

Output

Continue to judge next sub-model

from sub-model space

Sub-model m*
Sub-model m* is

more accurate than

sub-model m

Inaccurate and

complex modelNote 1

Note 2

Figure 4.3.: Illustration of the basic idea for the proposed compound trace clus-
tering technique.

rate. The proposed technique C-TDTC adopts a novel strategy which converts
the trace clustering problem mentioned above into the problem of discovering
the optimal way for clustering the traces among all possible solutions.

Let Ŝ = {ŝ1, ŝ2, . . . , ŝn} be a solution space and each solution ŝm ∈ Ŝ stands
for a unique way to divide the original event log into a fixed number of sublogs.
C-TDTC employs a greedy strategy for searching for the optimal solution ŝop from
Ŝ for splitting the given event log, where the weighted average complexity of the
potential sub-process models for the generated sublogs should be optimal. As
shown in Figure 4.4, for a log L and a target number (three in this example) of
sublogs, C-TDTC first searches for the best way to divide L into two sublogs L1
and L2. Then, C-TDTC continues to detect the best way to split L2 (which is
assumed to lead to a sub-model with highest complexity) into L3 and L4. The op-
timal solution searching procedure of C-TDTC is based on the following concepts
that are relevant to trace behaviours.

72

Log L Log L1 Log L2

Best way

to divide Log L1Log L2 Log L3 Log L4

Set of sublogs

Find the log that leads to

a process model with

highest complexity

Input Output Best way

to divide

Set of sublogs

Figure 4.4.: Illustration of the basic idea for technique C-TDTC.

Complexity-Related Significant Trace Behaviours

As demonstrated in Section 4.2, a complex business process can often be divided
into several simpler sub-processes where each sub-process performs unique func-
tions reflected by certain specific constructional behaviours of the sub-process.
These behaviours will be recorded in the relevant event log in the form of trace be-
haviours after the implementation of the sub-process. In this subsection, the trace
behaviours that adhere to a simpler sub-process model compared with the origi-
nal model (obtained by mining the raw event log) are called Complexity-Related
Significant Behaviours (CRSB). Detecting such significant behaviours from real-
life event logs for clustering traces can help mine sub-process models with low
complexity.

In this subsection, we still utilise the same definition about trace behaviour
as defined in Definition 4.1. Furthermore, we classify the trace behaviours from
a real-life event log into CRSB and Complexity-Related Insignificant Behaviours
(CRIB). Let L be a simple event log, tb be a trace behaviour from the set of trace
behaviours TB derived from L, L1 ⊆ L be a sublog of L which contains all the
traces with a subsequence tb from L, L2 ⊆ L be a sublog of L which consists of all
the traces from L without tb as a subsequence, m1 = ∣L1∣ and m2 = ∣L2∣ be the total
number of traces in L1 and L2 respectively. Let vL = Σc(Ω(L)), vL1 = Σc(Ω(L1))
and vL2 = Σc(Ω(L2)) be three assessed values generated by implementing the
process model complexity evaluation mechanism Σc on the process models for L,
L1 and L2. The Average Sub-Model Complexity Reduction Value (ASCRV), the
CRSB and CRIB are conveyed by the following definitions:

ASCRV =
vL −

m1⋅vL1+m2⋅vL2
m1+m2

vL
. (4.4)

Definition 4.6. (CRSB and CRIB)
A trace behaviour tb ∈ TB is called a complexity-related significant behaviour
(CRSB) if ASCRV > 0, otherwise tb is called a complexity-related insignificant be-
haviour (CRIB).

According to Definition 4.6, a trace behaviour tb is judged to be a CRSB if it
is able to divide the original event log L into two sublogs where the weighted

73

average complexity of the sub-models mined from the generated sublogs can be
decreased (compared with the complexity of the original process model).

tb1, tb2, tb3, ……, tbn

Split input log into two

sublogs

Input

Input

tbk

Sub

Log1

Sub

Log2

Output Input

The traces in sublog1 contain TBK as

subsequence while the traces in sublog2

do not contain TBK as subsequence

BPMD

Technique

Output Sub-model1

Sub-model2

Calculate the weighted average

complexity of the two sub-models

Input
v2

Output

If ((ASCRV=(v1-v2)/v1)> 0)

BPMD

Technique

Model1

Input

Output

Calculate complexity of a model

Input

Output
v1

Input

Input

NO

Let Vmax store the present maximal ASCRV,

Let ζ be an array of event log and length(ζ)=2

Continue to deal with the

next trace behaviour

If (Vmax < ASCRV) then

(Vmax=ASCRV, ζ(1)=Sublog1, ζ(2)=Sublog2)

YES

Continue to deal with the

next trace behaviour

Original

event log L

Set of trace behaviours TB Search for the best division for a given event log

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

If (|Sublog1|<κ or |Sublog2|<κ)
YES

NO
Continue to deal with the

next trace behaviour

Stage 6

Figure 4.5.: Illustration of the basic idea for searching for the best CRSB.

The Technique C-TDTC

Before introducing C-TDTC, we first introduce an algorithm Υ̂ (described in Fig-
ure 4.5 and Algorithm 4.5) which is able to search for the best CRSB from a
set of trace behaviours for splitting a given event log into two sublogs where
the weighted average complexity reduction of the sub-models mined from the
sublogs is maximal. According to Algorithm 4.5 and Figure 4.5, given an event
log L and a set of trace behaviours TB mined from L, for each trace behaviour
tbk ∈ TB, Υ̂ first creates two sublogs sublog1 and sublog2 (steps 7−13 of Algorithm
4.5 and stage 1 of Figure 4.5) where sublog1 contains all the traces with tbk as a
subsequence from L and sublog2 consists of all the traces without tbk as a sub-
sequence. Then, the number of traces in sublog1 and sublog2 is examined (steps
14−17 of Algorithm 4.5 and stage 2 of Figure 4.5). The trace behaviour tbk will not
be considered and Υ̂ continues to check the next trace behaviour from TB if the
number of traces for either of the two sublogs is less than a minimum threshold κ.
The input parameter κ is mainly utilised to prevent algorithm Υ̂ from generating
sublogs with too few traces (resulting in an overly simplified model). If tbk passes
the examination, Υ̂ continues to check if tbk is a CRSB according to Definition 4.6
(steps 18−20 of Algorithm 4.5 and stage 3, 4 and 5 of Figure 4.5). If it is not, then

74

Algorithm 4.5 Search for the best division for a given log (Υ̂)

Input: an event log L, a set of trace behaviours TB, the minimum size κ for each
generated sublog.

1: Let sublog1, sublog2 be two event logs.
2: Let ASCRV, vL, v1, v2 and Vmax be five variables of type Double.
3: Let ξ be an array of event log and length(ξ) = 2.
4: sublog1 ← null, sublog2 ← null, ξ ← null
5: ASCRV ← 0, vL ← 0, v1 ← 0, v2 ← 0, Vmax ← −∞
6: for each trace behaviour tbk ∈ TB do
7: for each trace t ∈ L do
8: if tbk ⊑ t then
9: sublog1 ← sublog1 ∪ {t}

10: else
11: sublog2 ← sublog2 ∪ {t}
12: end if
13: end for
14: if ∣sublog1∣<κ ∥ ∣sublog2∣<κ then
15: sublog1 ← null, sublog2 ← null
16: continue
17: end if
18: v1 ← Σc(Ω(sublog1)), v2 ← Σc(Ω(sublog2)), vL ← Σc(Ω(L))
19: ASCRV ← (vL − (∣sublog1∣ ⋅ v1 + ∣sublog2∣ ⋅ v2)/(∣sublog1∣+ ∣sublog2∣))/vL
20: if ASCRV > 0 then
21: if ASCRV > Vmax then
22: Vmax ← ASCRV, ξ[0]← sublog1, ξ[1]← sublog2
23: end if
24: end if
25: sublog1 ← null, sublog2 ← null
26: end for
Output: an array of event log ξ.

tbk is not further considered by Υ̂. The main reason to employ CRSB can be stated
as follows: if the weighted average complexity of the sub-models mined from the
generated sublogs (i.e., sublog1 and sublog2) cannot be decreased based on the
division procedure compared to complexity of the original model (mined from
log L), then it should not make the division. If tbk is a CRSB, the ASCRV for tbk
is then compared with the present maximal ASCRV (stored in Vmax) found by Υ̂
through checking the former trace behaviours (steps 21−24 of Algorithm 4.5 and
stage 6 of Figure 4.5). If ASCRV > Vmax, the value of Vmax is updated to the value
of ASCRV and sublog1 and sublog2 are stored in array ξ which forms the output
of Υ̂.

Let Ψ be a log ranking function which gets an array of event logs as input and

75

creates an array of ranked logs as output. For an input array of log ξ
′ = {L

′

1, L
′

2, L
′

3}
(i.e., ξ

′[0] = L
′

1, ξ
′[1] = L

′

2 and ξ
′[2] = L

′

3), Ψ first calculates the complexity of
the model mined from each log in ξ

′

. Afterwards, the logs are ranked in ξ
′

by Ψ, where the log that leads to a model with higher complexity will be as-
signed a lower index in ξ

′

. For instance, presume that the model for L
′

3 has
the highest complexity while the model for L

′

1 has the lowest complexity, then
Ψ(ξ

′) = {L
′

3, L
′

2, L
′

1} (i.e., ξ
′[0] = L

′

3, ξ
′[1] = L

′

2 and ξ
′[2] = L

′

1).

Algorithm 4.6 C-TDTC

Input: an event log L, a minimum support min_sup for mining closed sequential
patterns, the minimum size κ for each generated sublog, the target number of
generated sublogs µ.

1: Let TB be a set of trace behaviours.
2: Let SL be an array of event logs.
3: Let m, i be two variables of type Integer.
4: Let ξ be an array of event logs and length(ξ) = 2.
5: SL ← null, ξ ← null, TB ← null
6: m ← 0, i ← 0
7: TB ← Γ̂(L, min_sup) # generate trace behaviours for log L
8: SL[0]← L
9: while (∣SL∣ ≤ µ) do

10: m ← ∣SL∣
11: Ψ(SL)
12: for (i ← 0; i < ∣SL∣; i++) do
13: ξ ← Υ̂(SL[i], TB, κ)
14: if ξ ≠ null then
15: remove SL[i] from SL
16: SL[∣SL∣]← ξ[0], SL[∣SL∣+1]← ξ[1]
17: break
18: end if
19: end for
20: if m == ∣SL∣ then
21: break
22: end if
23: end while
Output: an array of event log SL.

The details about C-TDTC is described in Algorithm 4.6. Basically, C-TDTC
applies a greedy strategy which detects the best CRSB for splitting the raw event
log for each stage by considering the ASCRV. Let Γ̂ be a closed sequential pattern
mining algorithm. According to Algorithm 4.6, for an input event log L, C-TDTC
first acquires the set of trace behaviours TB for L (step 7). Then, L is put in an array
of logs SL (step 8). Afterwards, C-TDTC tries to iteratively divide the raw event
log L into several sublogs until the total number of generated sublogs reaches µ

76

(steps 9−23). For each iteration of the while-loop, the original number of logs in
array SL is first assigned to variable m (step 10). Then, the logs in SL are ranked by
utilising function Ψ (mentioned above) so that the logs leading to higher complex
models will be handled earlier (step 11). The for-loop (steps 12−19) tries to split one
log in array SL into two sublogs. The log SL[0] (which leads to a process model
with maximal complex rate) is first processed by algorithm Υ̂ (see Algorithm 4.5).
If Υ̂ cannot find a qualified CRSB from TB to split SL[0] (i.e., the value null is
returned by Υ̂ and assigned to array ξ), our algorithm continues to deal with the
next log in SL (i.e., log SL[1]), or log SL[0] is removed from SL (step 15), the two
sublogs (i.e., ξ[0] and ξ[1]) generated through dividing SL[0] by Υ̂ are stored in
SL (step 16) and C-TDTC continues the next iteration of the while-loop (step 17).
Furthermore, the while-loop will also stop when no log in array SL can be further
divided (steps 20−22). Finally, an array of sublogs SL is returned by C-TDTC,
where the weighted average complexity of the sub-process models mined from
the sublogs in SL is optimised.

4.3.2. A Mined Process Model Fitness Improvement Method

Fitness is an important metric for calculating the accuracy of a mined process
model which represents the ratio of traces in the event log that can be expressed
by the generated model [9]. In this section, the proposed technique CTC is de-
vised to optimise the fitness of the non-fitting sub-process models stemming from
the stage 1 in Figure 4.3 (through stage 2). The fitness improvement technique
HIF (proposed in Chapter 3) for the inaccurately mined process models is utilised
to help CTC achieve this purpose.

Basically, the technique HIF is able to locate the process behaviours recorded
in the event log which cannot be expressed by the utilised BPMD algorithm
and then convert them into expressible behaviours so that a more fitting process
model can be mined. The advantage to employ HIF for optimising the accuracy
of the inaccurate sub-process models derived from technique C-TDTC (Section
4.3.1) is that the problem of complex process behaviours appearing in the similar
traces can be effectively dealt with.

4.3.3. The Compound Trace Clustering Method

Let Σ f ∶ (M+, L+)→ FV+ be a process model fitness evaluation mechanism, where
M+ is the set of process models, L+ is the set of event logs and FV+ is the set of all
possible fitness values that can be output by Σ f . The details of CTC is described
in Algorithm 4.7.

77

Algorithm 4.7 The compound trace clustering technique: CTC

Input: an event log L, a minimum support min_sup for mining closed sequential
patterns, the minimum size κ for each generated sublog, the target number of
generated sublogs µ, a target fitness ε for HIF, a model fitness improvement
threshold ρ for HIF, a threshold ν for the number of newly added activities
for HIF.

1: Let SL be an array of event log.
2: Let MO be a set of sub-process models.
3: SL ← null, MO ← null
4: Stage 1: cluster traces for generating sub-process models with optimised complexity
5: SL ← C−TDTC(L, min_sup, κ, µ)
6: Stage 2: generate high-fitness sub-process models
7: for each sublog sl ∈ SL do
8: if Σ f (Ω(sl), sl) < ε then
9: sl ← HIF(sl, ε, ρ, ν)

10: MO ← MO ∪Ω(sl)
11: else
12: MO ← MO ∪Ω(sl)
13: end if
14: end for
Output: a set of sub-process models MO, an array of event log SL.

As described above, CTC contains two stages (as shown in Figure 4.3). In
the stage 1, the technique C-TDTC (introduced in Algorithm 4.6) is employed
to divide the original event log L into a fixed number (indicated by parameter
µ) of sublogs that are then stored in array SL (step 5 of Algorithm 4.7), where
the average complex rate of the sub-models mined from the generated sublogs is
optimised. In the stage 2, if a sublog sl from SL leads to a sub-model which has
a fitness value less than a given target value ε (step 8), then HIF is used to detect
the inexpressible process behaviours and transform these found behaviours into
expressible behaviours for the utilised BPMD technique Ω in log sl until the sub-
process model mined from sl gets a fitness no less than ε (step 9). Finally, the
sub-process models with optimised fitness values and average complex rate are
stored in MO (step 10 and 12) which forms the output of CTC (the generated
sublogs are also output by CTC).

4.4. Multi-Label Case Classification

In this section, we first elaborate the research topic of multi-label case classifica-
tion and the challenge encountered for classifying the cases from real-life event
logs (Section 4.4.1). Afterwards, we propose a systematic method named MLCC

78

based on sequential pattern mining technique to deal with the challenge so that
the case classification process can be executed smoothly (Section 4.4.2, 4.4.3 and
4.4.4).

4.4.1. Problem Description

Figure 4.6 depicts a detailed model for case classification in the scenario of busi-
ness process mining. Basically, after being classified by case-classifier, the primi-
tive cases are linked to labels. Each label represents one category and cases con-
nected to the same label share some common behaviours. Finally by working
with the already classified cases, the process mining techniques are able to anal-
yse the enterprise business process in different points of view and generate more
readable and meaningful analysis results.

Case-Classifier : Bassed on Case

Attributes

Label:2Label:1 Label:3 Label:n

C
a
ses n

eed
ed

 to
 b

e

cla
ssified

C
la

ssifica
tio

n
C

a
ses lin

k
ed

 to
 la

b
els

C
a

se F
ilter

Filter cases

based on labels

Performance

Analysis Other Process

Mining

Techniques
Workflow

Discovery

Choose process

analysis techniques

Figure 4.6.: Model of case classification in the scenario of process mining.

Traditional data classification approaches proceed in two steps [56]:

– In the first step, training data is analysed by a classification algorithm so
that a function y = f (X) can be learned. The generated function (clas-
sifier) is able to predict the associated category label y of a given tuple
X = (x1, x2, . . . , xn), where X represents the set of attributes of a specific
item.

– In the second step, predictive accuracy of the classifier built is first esti-
mated by utilising a test set made up of tuples and their relevant category
labels. Then the classifier can be used to predict the class labels of future
data tuples if its accuracy is considered acceptable.

A training event log should be generated first for a case classification prob-

79

lem. Labels are added manually to part of the cases in an event log by domain
experts according to their domain knowledge and the behaviours of cases. Then
these labeled cases are extracted to generate the training event log and test event
log. A training event log is used for building the classifier and a test event log
for estimating the performance of the classifier. By looking into some real-life
event logs we discovered that a case may have more than one label which makes
this case classification problem a multi-label classification problem (as shown in
Figure 4.6).

Table 4.2.: An example event log.

Case id Event id Properties

Activity Resource Cost

1 421 A Pete 40
422 B Sun 200
423 C Simon 300
424 D Chris 100
425 E Pete 200

2 452 A Mike 30
453 C Simon 300
454 F Chris 200
455 D Sun 100
456 G Mike 500

.

The behaviours of cases are reflected by the values of case attributes recorded
in the event log. Most case attributes that have discrete values or numeric values
can be easily utilised for building the classifier or judging which labels a case
belongs to. But the trace of a case cannot be directly used. A trace is an important
attribute of a case which is a finite sequence of ordered events. For instance, in
Table 4.2, the trace of case 1 is <A, B, C, D, E>. The trace may be a major element
for deciding which labels a case pertains to (while the labels are related to the
structural feature of trace).

For the cases generated by structured business processes, it is easy to trans-
form the traces into a suitable form that can be utilised as an attribute for case
classification because the compositions of traces are limited by a structured pro-
cess model3. However, for the cases from a real-life event log, such a transforma-
tion should not be directly carried out because it is possible that cases with similar
features may seem very different from each other. Additionally, there might be
multiple structural features (presence or absence of an activity, presence or ab-
sence of combinations of activities and so on) of traces related to one label. So

3If a structured business process has a loop structure it can also generate a large amount of
isomerous traces.

80

how to capture the possible structural behaviours of traces relevant to labels is
the key factor for solving the multi-label case classification problem.

In this section, we put forward a sequential pattern mining technique-based
method for mining all of the possible label-related structural features of traces
and then transforming these found features into suitable forms of case attributes
to help the later case classification.

4.4.2. Basic Concepts Relevant to Multi-Label Case Classification

A multi-label classification technique solves the problem of predicting to which
set of classes (also represented by labels) a new instance belongs by exploiting
a training set of data. The training data is a set T = {t1, t2, . . . , tn} of already
classified samples where each sample ti is constructed by a k-dimensional vector
Xti = (xi1 , xi2 , . . . , xik). The dimensions in Xti represent attributes of the sample,
as well as the categories to which ti pertains.

The existing multi-label classification methods are mainly divided into two
types, one is algorithm independent and the other one is algorithm dependent
[58]. In this section, we will utilise the algorithm independent approach for
solving the problem of multi-label case classification. In the algorithm indepen-
dent approach, a multi-label classification problem can be converted into several
single-label problems. For each label (or category) a classifier is built so that the
classification problem related to this label can be dealt with. For the multi-label
case classification problem in this subsection, the training data is conveyed by the
following definitions:

Definition 4.7. (Set of Training Cases)
Let Ct be a set of training cases. A case c ∈ Ct is defined as a tuple c = (Nc, LAc, Θc),
where Nc = {n1, n2, . . . , nk} is the set of names of case attributes, LAc is a set of
labels, Θc ∶ Nc → Ac is an attribute-transition function which maps the name of an
attribute into the value of this attribute, where Ac is the set of attribute values for
case c. A label la ∈ LAc represents a manually given class to which case c belongs.

As already mentioned, a case in an event log may be assigned multiple labels
in the real world, thus for all c ∈ Ct, we have ∣LAc∣ ≥ 1, where ∣LAc∣ stands for the
number of labels.

Definition 4.8. (Training Event Log)
A training event log is defined as Lt ⊆ Ct, for any c1, c2 ∈ Lt such that c1 /= c2.

Let’s presume that the example event log in Table 4.2 is a training event log, all
cases in this log have an attribute originator and an attribute labels, case 1 has an

81

originator ”Mike” and a set of assigned labels {”very good”, ”good”}. According
to the concepts defined above, Θ1(originator) = ”Mike” is the originator for case
1, Θ1(trace) =<A, B, C, D, E> is the trace for case 1, LA1 = {”very good”, ”good”} is
the set of labels for case 1.

Definition 4.9. (Multi-Label Case Classification)
The multi-label case classification problem is defined as Prob = (Lt, L, Φ̃), where
Lt is a training event log, L is an event log consisting of cases waiting to be classi-
fied, Φ̃ is a multi-label classification algorithm. Φ̃ ∶ (L+t , L+) → CL+ represents the
process for generating an event log consisting of classified cases with an input of
training event log and an input of event log containing unclassified cases, where
L+t stands for the set of all possible training event logs, L+ represents the set of
event logs with cases waiting to be classified and CL+ is the set of event logs with
classified cases.

4.4.3. Definitions Relevant to Functions

The sequential pattern mining techniques solve the problem of finding all fre-
quent subsequences from a given set of sequences, where each sequence contains
a list of ordered events and each event consists of a set of items [62]. A minimum
support threshold is manually given for judging if the occurrence of a subse-
quence is frequent or not.

As introduced in Chapter 2, the trace of a case is a sequence of ordered events.
Thus, the set of traces collected from an event log can be deemed as a sequence
database on which the sequential pattern mining algorithms can be directly im-
plemented. We define a sequential pattern mined from a set of traces extracted
from an event log as a function:

Definition 4.10. (Function)
Let L be an event log, ST ⊆ L be a set of traces collected from L, Γ̂ be a sequential
pattern mining algorithm. Let F = Γ̂(ST, min_sup) be the mined set of sequential
patterns with a minimum support threshold min_sup. A sequential pattern fi ∈ F
is defined as a function relevant to ST and F is called a set of functions.

Definition 4.11. (Label-Related Function)
Let Lt be a training event log, STlabel ⊆ Lt be a set of traces from Lt, where each
trace in STlabel is related to one common label. A label-related function set Flabel
is a set of functions mined from STlabel, and a function fk ∈ Flabel is called a label-
related function.

In our opinion, the label-related functions in Flabel reveal the commonly and
frequently appeared structures of the traces in STlabel. As mentioned in Section

82

Set of traces Set of traces Set of traces - - - - - -

Training event

log

Label-related

functions

Sequential

pattern mining

Label nLabel 1
Label m

1 m n

Set of functions

Figure 4.7.: The procedure of mining label-related functions from a training event
log.

4.4.1, a label may be associated with the structural characteristics of traces. While
this is true, the label-related functions can be exploited to judge weather a trace
belongs to a specific label.

Figure 4.7 illustrates the process of mining all the possible label-related func-
tions from a training event log. In the first step, all the traces included by a train-
ing event log are separated into different sets where each set is associated with
one label. For example, in Figure 4.7 the traces of cases with label 1 are collected
and sent to set 1. In the second step, a sequential pattern mining procedure is
executed on each set of traces for discovering label-related functions. Finally, all
of the found functions are grouped together in one set (i.e., label-related function
set).

Let’s presume that the event log shown in Table 4.2 is a training event log
and each case in this log has a set of labels from {la1, la2, la3, la4}. For this train-
ing event log, a set of traces STla2 is obtained through extracting all traces with
label la2. Then by mining STla2 using a sequential pattern mining method a label-
related function set Fla2 can be extracted. This label-related function mining pro-
cedure mentioned above is described in Algorithm 4.8.

83

Algorithm 4.8 Mine label-related functions from a given training event log

Input: a training event log Lt, the minimum support threshold min_sup
1: Let G(label) be a set of traces related to a specific label in Lt.
2: Let Flabel be a set of all possible label-related functions for Lt.
3: Let LA be the set of labels in Lt.
4: Let Θ be a case attribute-transition function as described in Definition 4.7.
5: Let Γ̂ be a sequential pattern mining algorithm.
6: Flabel ← null
7: for each G(labeli) such that labeli ∈ LA do
8: G(labeli)← null
9: end for

10: for each case cj ∈ Lt do
11: for each label lak ∈ LAcj do
12: G(lak)← G(lak)∪Θcj(trace)
13: end for
14: end for
15: for each label la ∈ LA do
16: Flabel ← Flabel ∪ Γ̂(G(la), min_sup)
17: end for
Output: the set of all label-related functions Flabel mined from Lt

4.4.4. Transforming Label-Related Functions into Case
Attributes

The raw label-related functions found cannot be exploited directly, they should
be transformed into a suitable form of case attributes so that they can be checked
by a classification algorithm directly. In the following parts we will propose a
method for this purpose.

Through algorithm 4.8, the traces in a training event log are grouped into
different sets where each set is related to one label and the functions for each
set are discovered. Before building a classifier for each label, the found func-
tions need to be converted into usable case attributes. To explain our method
clearly, we will first set up a few variants: Lt is a training event log, a set G =
{G(label1), G(label2), . . . , G(labeln)} where each G(labeli) is a set of all the traces
relevant to labeli in Lt, a set F = {F(label1), F(label2), . . . , F(labeln)} where each
F(labelj) is a function set for G(labelj), F∗ = { f unction1, f unction2, . . . , f unctionm}
is a set which contains all of the functions in F. An association table AT is then
established which connects each function in F∗ with a global unique identifier. In
the association table shown in Table 4.3, for instance, f unction1 has an id A1.

Let cp ∈ Lt be a case from training event log Lt, add all of the function ids
in the association table as attribute names to the attribute list of cp, and their

84

Table 4.3.: An example association table for the functions in F∗.
Function ID Function

A1 f unction1

A2 f unction2

⋮ ⋮
Am f unctionm

initial values are set to 0. The next step is to calculate the value of each newly
added attribute. Take function A1 from Table 4.3 as an example, a subsequence-
detection process is carried out with Θcp(trace) (the trace of cp) and f unction1
(matched with A1 in Table 4.3) as inputs. If f unction1 is judged to be a sub-
sequence of Θcp(trace), then Θcp(A1) is reset to be 1. The procedure mentioned
above should also be applied to both the test event logs and the normal event logs
which contain cases needed to be classified. Let Π̂(F∗, ST) → {True, False} be a
subsequence detection function, where F∗ is the set of functions and ST stands
for the set of traces. Π̂(f1, t1) = True if function f1 is a subsequence of trace t1
and Π̂(f1, t1) = False if function f1 is not a subsequence of trace t1. Algorithm
4.9 describes the details of the function-to-case-attribute transformation method
introduced above.

Algorithm 4.9 Transform label-related functions into case attributes

Input: an event log L, a set of label-related functions Flabel
1: Let AT be an association table with two fields: Function_ID and Function.
2: Let Θ be a case attribute-transition function as described in Definition 4.7.
3: AT ← null
4: for each function fi ∈ Flabel do
5: AT ← AT ∪ (ID fi

, fi)
6: end for
7: for each case cj ∈ L do
8: for each item (ID fm , fm) ∈ AT do
9: if Π̂(fm, Θcj(trace)) == True then

10: Θcj(ID fm) = 1
11: else
12: Θcj(ID fm) = 0
13: end if
14: end for
15: end for
Output: an event log L with newly added attributes

85

4.5. Preliminary Verification for Techniques TDTC,
CTC and MLCC

In this section, the proposed techniques TDTC, CTC and MLCC are preliminarily
verified. The verification process for TDTC and CTC described in Section 4.5.1 is
based on the repair log from [9]. The technique MLCC is validated by employing
the hospital event log from BPIC 2011 in Section 4.5.2.

4.5.1. Verification for TDTC and CTC

In the verification process, the HM from ProM 6 is used for mining process mod-
els, the ICS fitness is used for evaluating the accuracy of mined models (because
it has a computationally efficient calculative process) and the PT-CD (introduced
in Chapter 2) is utilised for evaluating the complexity of mined process models.
The CSP mining algorithm CMClaSP [148] is employed to mine CSPs for both
TDTC and CTC. The Heuristics net to Petri net plugin in ProM 6 is used for trans-
forming the Heuristics net mined by HM into Petri net so that the PT-CD can be
calculated. The repair log utilised consists of 1000 traces, 10827 events and twelve
activities. Each of the twelve activities is assigned a unique ID as shown in Table
4.4 (in this subsection the activity ID is used to represent its associated activity).
The process model mined from the repair log by HM has an ICS fitness value
0.6768 and a PT-CD value 2.3656 (see Figure 4.8).

Table 4.4.: The association table for the activities from the repair log.
Activity ID Activity Name

A1 Register complete

A2 Analyze De f ect start

A3 Analyze De f ect complete

A4 Repair (Complex) start

A5 Repair (Complex) complete

A6 Archive Repair complete

A7 In f orm User complete

A8 Test Repair start

A9 Test Repair complete

A10 Repair (Simple) start

A11 Repair (Simple) complete

A12 Restart Repair complete

86

ICS fitness : 0.6768

PT-CD : 2.3656

Figure 4.8.: The process model mined from the repair log.

For mining CSPs from the repair log for technique TDTC and CTC, the mini-
mum support min_sup for CMClaSP is set to 0.25. As a result, 26 CSPs are discov-
ered of which the details are shown in Table 4.5. Due to the model mined from
the repair log has a low complexity and a relatively low fitness, the fitness weight
α is set to 0.8 and the complexity weight β is set to 0.2 for calculating the SMI
for TDTC. Furthermore, the minimum threshold µ for SMI is set to 0.02, both the
minimum thresholds µ f and µc for SSTB are set to 0 (which means the minimum
average improvement on both fitness and complexity should be larger than 0),
the minimum threshold ϕ f for FCSTB is set to 0.8, the maximum threshold ϕc for
CCSTB is set to 2.5 and the minimum size θ for each underlying sublog is set to
50 for technique TDTC. Finally, a binary tree as shown in Figure 4.9 is output
by TDTC (with the parameters mentioned above) for the repair log. According
to Figure 4.9, four sublogs are output by TDTC which are sublog 1.1 (contains
102 traces), sublog 1.2 (contains 388 traces), sublog 2.1 (contains 263 traces) and
sublog 2.2 (contains 247 traces). The CSPs discovered for splitting the original
repair log are also displayed in the built binary tree. For example, the CSP with
an ID 19 in Table 4.5 is utilised by TDTC to divide the raw repair log into sublog 1
and sublog 2, where sublog 1 contains all the traces with CSP 19 as sub-trace from
the repair log and sublog 2 consists of all the traces without CSP 19 as sub-trace
from the repair log. Afterwards, the generated sublog 1 is separated into sublog
1.1 and sublog 1.2 by TDTC utilising CSP 9. The sublog 2 is divided into sublog
2.1 and sublog 2.2 by TDTC using CSP 26. At last, TDTC stops because it cannot
find any qualified CSPs from Table 4.5 to further split the sublog 1.1, sublog 1.2,
sublog 2.1 and sublog 2.2. Figure 4.11 shows the detailed information about the
process models mined from the four sublogs output by TDTC.

For the technique CTC, the minimum size κ for each potential sublog is also
set to 50, the target number µ of generated sublogs is set to 5. For the technique
HIF employed in CTC, the target fitness ε is set to 1, the model fitness improve-
ment threshold ρ is set to 0 and the threshold ν for the number of newly added
activities is set to +∞ (we utilise such a combination of parameters for HIF be-
cause the generated sublogs by C-TDTC are very simple). Figure 4.10 shows the
division details for the repair log processed by technique C-TDTC (Algorithm

87

Table 4.5.: The CSPs mined from the repair log by using CMClaSP for technique
TDTC and CTC.

Pattern ID Frequency Closed Sequential Pattern (CSP)
1 427 <A1, A2, A3, A10, A11, A6>

2 786 <A1, A2, A3, A7, A9, A6>

3 276 <A1, A2, A3, A7, A11, A8, A9, A6>

4 666 <A1, A2, A3, A7, A8, A9, A6>

5 353 <A1, A2, A3, A8, A9, A7, A6>

6 402 <A1, A2, A3, A7, A5, A6>

7 996 <A1, A2, A3, A8, A9, A6>

8 426 <A1, A2, A3, A10, A11, A8, A9, A6>

9 605 <A1, A2, A3, A4, A5, A8, A9, A6>

10 1000 <A1, A2, A3, A6>

11 608 <A1, A2, A3, A4, A5, A6>

12 298 <A1, A2, A3, A4, A7, A8, A9, A6>

13 294 <A1, A2, A3, A10, A7, A9, A6>

14 401 <A1, A2, A3, A7, A5, A8, A9, A6>

15 371 <A1, A2, A3, A10, A7, A6>

16 265 <A1, A2, A3, A8, A9, A12>

17 490 <A1, A2, A3, A8, A7, A6>

18 296 <A1, A2, A3, A4, A7, A5, A6>

19 497 <A1, A2, A3, A4, A7, A6>

20 275 <A1, A2, A3, A10, A11, A7, A6>

21 272 <A1, A2, A3, A10, A11, A8, A7, A6>

22 287 <A1, A2, A3, A8, A7, A9, A6>

23 277 <A1, A2, A3, A7, A11, A6>

24 992 <A1, A2, A3, A7, A6>

25 368 <A1, A2, A3, A4, A7, A9, A6>

26 295 <A1, A2, A3, A4, A7, A5, A8, A9, A6>

4.6). According to Figure 4.10, the traces that have the CSP 1, CSP 20 and CSP 2
as sub-traces from the repair log form the first sublog 1.1.1. The traces with the
CSP 1 as a sub-trace and without the CSP 20 and CSP 2 as sub-traces construct
the second sublog 1.1.2. The traces with the CSP 1 as a sub-trace and without the
CSP 20 as a sub-trace compose the third sublog 1.2. The traces without the CSP 1
as a sub-trace and with the CSP 2 as a sub-trace constitute the fourth sublog 2.1.
Finally, the traces without the CSP 1 and CSP 2 as sub-traces make up the fifth

88

The repair log....

Stop the

division

Sublog 2....Sublog 1....

Best found CSP: 19

Sublog 1.1.... Sublog 1.2.... Sublog 2.1.... Sublog 2.2....

Stop the

division

Stop the

division

Stop the

division

Best found CSP: 9

with CSP 19 without CSP 19

Best found CSP: 26

with CSP 9 without CSP 9 with CSP 26 without CSP 26

Node 0

Node 1 Node 2

Node 3

Node 4

Node 5

Node 6

Figure 4.9.: The binary tree output by TDTC executed on the repair log.

The repair log....

Stop the

division

Sublog 2....Sublog 1....

Best found CSP: 1

Sublog 1.1.... Sublog 1.2.... Sublog 2.1.... Sublog 2.2....

Stop the

division

Stop the

division

Stop the

division

Best found CSP: 20

with CSP 1 without CSP 1

Best found CSP: 2

with CSP 20 without CSP 20 with CSP 2 without CSP 2

Node 0

Node 1 Node 2

Node 3

Node 4

Node 5

Node 6

Sublog 1.1.1.... Sublog 1.1.2....

Stop the

division

Best found CSP: 2

Node 7 Node 8

with CSP 2 without CSP 2

Figure 4.10.: The information of the division process for the repair log executed
by technique C-TDTC.

sublog 2.2. Then, the technique HIF is utilised by CTC to help improve the fitness
of the sub-models (have fitness values less than ε) mined from the correspond-
ing sublogs. Figure 4.12 shows the details of the finally generated sub-process
models output by CTC.

89

Sub-model for sublog 1.1

Sub-model for sublog 1.2

Sub-model for sublog 2.1

Sub-model for sublog 2.2

ICS fitness : 0.9632

PT-CD : 2.2083

ICS fitness : 0.9763

PT-CD : 2.1

ICS fitness : 1.0

PT-CD : 2.05

ICS fitness : 0.9676

PT-CD : 2.125

Figure 4.11.: The four sub-process models generated by technique TDTC for the
repair log.

90

Sub-model for sublog 1.1.1

Sub-model for sublog 1.1.2

Sub-model for sublog 1.2

Sub-model for sublog 2.1

ICS fitness : 0.9982

PT-CD : 2.1875

ICS fitness : 1.0

PT-CD : 2.0

ICS fitness : 0.9994

PT-CD : 2.1538

ICS fitness : 1.0

PT-CD : 2.1785

Sub-model for sublog 2.2ICS fitness : 0.9985

PT-CD : 2.0417

Figure 4.12.: The five sub-process models generated by technique CTC for the re-
pair log.

4.5.2. Verification for MLCC

We tested the effectiveness of our technique MLCC on the hospital event log from
BPIC 2011. This log contains 624 activities and 1143 cases where each case stands

91

for a treatment process for a patient from the gynaecology department. A lot of
attributes relevant to the cases have been recorded in this log, such as the ages of
patients and the final diagnosis for the patients.

In the experiment, the treatments performed on a patient are regarded as la-
bels (categories). One reason is that in the healthcare industry treatment is often
used as a label for classifying cases, for instance, the SAP Business Suite for Pa-
tient Management exploits the treatment as one category for case classification4.
There are overall 48 kinds of treatment (coded by number) in this log from which
we have chosen seven frequently happened treatments (namely 13, 23, 61, 101,
113, 603 and 3101) for analysis. Each case may belong to more than one treatments
and each treatment may be characterized by multiple behaviours of traces.

For generating the training event log, a simple strategy mentioned in [57] is
employed which discards every multi-label case in the hospital event log. For
instance, all the cases that have only a single treatment belonging to the treatment
set TS = {13, 23, 61, 101, 113, 603, 3101} are extracted and form the training event
log. All of the multi-label cases are organized as the test event log. As a result, we
obtain a training event log with 279 cases and a test event log with 621 cases.

For mining the label-related functions in Algorithm 4.8, the closed sequential
pattern mining algorithm CMClaSP [148] is used. By implementing Algorithm
4.8 with the generated training event log and a minimum support min_sup =
0.3 as input parameters, a label-related function set Flabel which contains 3159
functions can be discovered. Then all of the found functions are transformed
into case attributes for both the training event log and the test event log through
Algorithm 4.9. In the association table AT generated in Algorithm 4.9, the id
of a function is in the form of FPatternk where k represents the position of this
function in AT. For example, A1 = FPattern_1 in Table 4.3 because f unction1
is the first item and Am = FPattern_m because f unctionm is the mth item in this
association table.

In this chapter, we utilise an algorithm independent approach for solving the
problem of multi-label case classification which converts the learning problem
into traditional single-label classification. For each element in the treatment set
TS (mentioned above) a classifier is learned by using a training event log. For
example, for treatment 13, a classifier is built which is able to judge if a case falls
in treatment 13 or not. In our experiment, seven binary classifiers (because seven
kinds of treatment are analysed) are established.

To testify the standpoint that the labels pertained by a case may be related to
the structural feature of its trace, only the case attributes generated by the trans-
formation of discovered label-related functions are considered in our experiment.

4http://help.sap.com

92

FPattern1086

113

1

FPattern1047

FPattern1

not_113

1

113

0

1

not_113

0

0

(a) Decision Tree for treatment 113

FPattern3127

3101

1

FPattern3128

3101

1

not_3101

0

0

(b) Decision Tree for treatment 3101

Figure 4.13.: Decision Trees built for treatment 113 and treatment 3101.

For instance, in this hospital event log, the other case attributes such like Age and
Diagnisis are not put to use.

Firstly, we utilise the Decision Tree-based algorithm C4.5 [86] in our experi-
ment. For each treatment in TS a decision tree is built by exploiting the attributes
of cases. For example, we get a decision tree for treatment 113 as shown in Figure
4.13(a), and Figure 4.13(b) shows the decision tree for treatment 3101. According
to the decision tree for treatment 113, a case will be inferred to belong to treat-
ment 113 if it has an attribute FPattern_1086 = 1, and not if it has the attributes
FPattern_1086 = 0 and FPattern_1047 = 0 at the same time.

Table 4.6 shows the performances for the seven classifiers evaluated by using
the test event log generated. Several metrics are calculated in the evaluation step.
The Area Under the ROC Curve (AUC) which has a value between 0 and 1 re-
flects the performance of the classification model. An ideal classifier has an AUC
value close to 1. Correctly Classified Instances Ratio reflects the total classification
accuracy of a specific classifier. The Kappa Statistic (KS) measures the diversity

93

factor between the classification results from a classifier built and a classification
by chance. According to [204], KS ∈ (0.75, 1) implies that the effect of the classifier
is very good, KS ∈ (0.4, 0.75) is characterized as fair to good and KS ∈ (0, 0.4) as
poor. The metric Recall measures the proportion of correctly classified instances
among all the instances with the same label or without a specific label. According
to Table 4.6, the performances of the classifiers for treatment 113 and 101 are not
good. The main reason is that the emerging frequencies of some trace structural
behaviours relevant to these two treatments are very low in the training event
log, as a result they cannot be captured in the sequential pattern mining proce-
dure. One feasible way to solve this problem is to increase the training cases for
treatment 101 and 113 in the training event log.

Table 4.6.: Performances of the classifiers built for each treatment in TS.

Treatment Correctly classified AUC Kappa statistic Recall
instances ratio

13 0.896940 0.935 0.6662 0.988/0.882

23 0.900161 0.850 0.6060 0.782/0.917

61 0.901771 0.968 0.7241 0.729/0.959

101 0.597424 0.679 0.2935 0.481/1.000

113 0.887279 0.740 0.0590 0.068/0.973

603 0.855072 0.758 0.3304 0.638/0.873

3101 0.853462 0.873 0.5335 0.900/0.847

We also compared different classification techniques on the case classifica-
tion problem. These techniques are AdaBoost [79] that uses Decision Stump
[205] as weak learners, Naive Bayesian [78] and SVM (Support Vector Machine)
[81]. From the comparison results shown in Figure 4.14 we can see that C4.5,
AdaBoost and SVM perform better with function-based case attributes than the
Naive Bayesian classification method on this data set.

Additionally, to testify the practicability of our technique in business process
mining area, we then evaluate the effectiveness of the classification results (ob-
tained by using Decision Tree algorithm) on the process model discovery task
(the most crucial learning task in process mining domain). Let Ltest be the test
event log generated in our experiment, SL = {L13, L23, L61, L101, L113, L603, L3101}
be the set of sublogs where each sublog contains the cases correlating to one
treatment from the treatment set TS = {13, 23, 61, 101, 113, 603, 3101}. For
instance, L13 contains all of the cases with treatment 13 from Ltest. Let PL =
{PL13, PL23, PL61, PL101, PL113, PL603, PL3101} be the set of sublogs where each
sublog consists of the cases predicted to have one same treatment from TS. For
example, sublog PL13 contains all of the cases which are predicted to have treat-
ment 13 by the classifier built for treatment 13. Then process models for the entire

94

13 23 61 101 113 603 3101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classifier

C
or

re
ct

ly
 C

la
ss

ifi
ed

 In
st

an
ce

s
R

at
io

C4.5 AdaBoost Naive Bayesian SVM

(a) Correctly Classified Ratio

13 23 61 101 113 603 3101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classifier

A
U

C

(b) AUC

13 23 61 101 113 603 3101
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Classifier

K
ap

pa
 S

ta
tis

tic

(c) Kappa Statistic

13 23 61 101 113 603 3101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classifier

W
ei

gh
te

d
A

ve
ra

ge
 R

ec
al

l

(d) Weighted Average Recall

Figure 4.14.: Comparison among different classification techniques on case clas-
sification

test log Ltest and for each sublog in SL and PL are learned by using process dis-
covery techniques. In our experiment, the BPMD technique HM as described
in [37] is utilised. Afterwards, the ICS fitness [29] (fitness measures the propor-
tion of behaviour in the event log possible according to the model) for each model
is calculated and the results are shown in Figure 4.15. The ICS fitness related to
each sublog in SL is called Test-Fitness and the ICS fitness for the sublogs in PL is
called Predicted-Fitness. The Original-Fitness (as a base line in Figure 4.15) is cal-
culated by using the entire test event log Ltest and the model for it. In Figure 4.15,
we can see that the Predicted-Fitnesses and Test-Fitnesses for most of the sublogs
in SL and PL are much higher than the Original-Fitness due to the sublogs in SL
and PL are simpler and contain less complex process behaviours than the original
event log Ltest. As a result, the models generated for these sublogs become more
accurate. By comparing the Predicted-Fitness with the Test-Fitness in Figure 4.15,
we discovered that most of the Predicted-Fitnesses are very close to their relevant
Test-Fitnesses, for instance, the value of Predicted-Fitness for PL3101 is 0.9267 and
the value of Test-Fitness for L3101 is 0.9382 which is very close to the Predicted-
Fitness for PL3101. However, the difference between the Predicted-Fitness and the
Test-Fitness related to treatment 101 is a little large. The main reason is that the
classifier for treatment 101 doesn’t have a good performance. From the analy-

95

13 23 61 101 113 603 3101
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Labels

V
al

ue
 o

f I
C

S
−

F
itn

es
s

Test−Fitness
Predicted−Fitness
Original−Fitness

Figure 4.15.: ICS fitness for the models generated by utilising the sublogs from SL
and PL.

ses mentioned above it can be deduced that the results from the multi-label case
classification technique have some practical values in the business process min-
ing area. Process discovery is only one perspective of business process mining
techniques and the multi-label case classification method can also benefit other
techniques in this area (e.g., business process performance analysis) to help gen-
erate more meaningful and accurate analysis results.

96

5
A Graph and Trace

Clustering-Based Approach for

Abstracting Mined Business

Process Models

5.1. Introduction and Motivation

As introduced in Chapter 4, trace clustering techniques try to divide the raw
event log into sublogs where each sublog contains traces with similar behaviours
and helps generate a more accurate and comprehensible sub-model. Generally,
these techniques perform well for handling the logs with a moderate amount of
trace behaviours. Nevertheless, the limitation of current trace clustering tech-
niques will be revealed while dealing with event logs containing massive trace
behaviours. For instance, the event log of a Dutch academic hospital from BPIC
2011 consists of 624 activities among which a large number of relations are exhib-
ited (the average out-degree for each activity is 6.2564) and most of the classical
trace clustering methods cannot bring a significant improvement on the mining
result for this hospital log (as shown in Section 6.4 of Chapter 6).

Process model abstraction-based approaches make the assumption that raw
models mined from real-life logs contain low level sub-processes which should
be discovered in the form of sub-traces in the original event logs and abstracted
into high level activities so that the insignificant low level process behaviours can
be hidden in the high level activities. Thus, more accurate and simpler high level
process models can be obtained. However, most of the present process model
abstraction-based techniques focus mainly on the discovery of sub-processes and
cannot ensure the accuracy of the high level process models generated.

In this chapter, we put forward a new method named GTCA (graph and trace
clustering-based approach) which inherits the characteristics of trace clustering

97

techniques and the process model abstraction-based approaches for solving the
problem of "spaghetti-like" process models. The proposed technique is able to
optimise the quality of the potential high level process model through a new
abstraction strategy based on graph clustering technique [134]. As a result, a
high-quality abstraction model can be built. Furthermore, the quality of the sub-
models discovered for showing the details of their related high level activities
(used for building the final high level model) is also considered by our approach.
The structure of the main contents in this chapter is organised as:

- A new strategy for abstracting the raw models mined from real-life event
logs is discussed in Section 5.2.

- In Section 5.3, a three-stage model abstraction method based on the strategy
proposed in Section 5.2 is elaborated.

5.2. Basic Idea

In the real world, seemingly "spaghetti-like" business process models mined from
event logs might still have some rules to follow. Sometimes, the main reason for
the structurelessness of these mined models is that they contain several extremely
complex sub-structures. However, the relations among these sub-structures may
be straightforward. While turning to a specific event log, such kind of phe-
nomenon mentioned above can be reflected by the existence of several clusters
of activities from an event log where the activities in the same cluster are densely
connected and the activities in different clusters are sparsely connected (this is
also the assumption for our method). For instance, in Figure 5.1 an event log
L contains 22 activities and a causal activity graph G can be established by em-
ploying the activities from L as vertices and the casual relations [37] among these
activities as edges. According to Figure 5.1, the vertices in G can be grouped into
three clusters by considering the edge structure in such a way that there should
be many edges within each cluster and relatively few edges among the clusters.

With the assumption mentioned above, we put forward a new strategy for
solving the problem of complex and inaccurate process models mined from real-
life event logs. The basic idea is to generate the clusters of activities first by fol-
lowing the same rule utilised in the example shown in Figure 5.1. Afterwards,
for each cluster one or several sub-models are generated where each sub-model
only contains the activities from its relevant activity cluster. In the example from
Figure 5.1, the sub-models for cluster A are built by using the activities from clus-
ter A. Then, for a complex and inaccurate sub-model, trace clustering technique
is employed to split it into several simple and accurate sub-sub-models so that
the sub-model can be well comprehended. Finally, these sub-models (not includ-

98

Cluster

A

Cluster

B

Cluster

C

Sub-model A1 Sub-model A2 Sub-model Ak

Sub-model B1 Sub-model B2 Sub-model Bm

Sub-model C1 Sub-model C2 Sub-model Cn

Cluster

A

Cluster

B

Cluster

C

High level model

Raw event log L

Workflow

Discovery

“Spaghetti-like”

business process model

Generate clusters

of activity

Generate sub-models

Abstract activity
A1

Abstract activity
A2

Abstract activity
Ak

Abstract activity
B1

Abstract activity
B2

Abstract activity
Bm

Abstract activity
C1

Abstract activity
C2

Abstract activity
Cn

Generate

Abstract Log

Event log with

abstract activities

Generate high

level model

Trace Clustering

Deal with complex and

inaccurate sub-models

Sub-model Ak

Sub-model A2

Sub-sub-mode

1

Sub-sub-mode

2

Sub-sub-mode

p

Sub-sub-mode

1

Sub-sub-mode

2

Sub-sub-mode

q

Casual Activity

Graph G

a

Figure 5.1.: Illustration of the basic ideas of the proposed approach GTCA.

ing the sub-sub-models) generated are abstracted into high level activities with
which a simple and accurate ultima high level process model is formed. In this
chapter, the high level process model together with the sub-models (each sub-
model is related to one high level activity in the high level model built) are used
to show the details of the whole business process recorded in event log.

Basically, two major benefits could be acquired from the strategy proposed
above. On one hand, the original tough problem (deal with the entire model) met
by current trace clustering techniques is transformed into small sub-problems
(deal with the sub-models). Specifically, the raw mined model from event log
may contain too many behaviours which might be far beyond the abilities of ex-
isting trace clustering techniques. However, by distributing the huge amount
of behaviours from the original mined model to several small sub-models (each
sub-model contains less behaviours but still might be complex and inaccurate)
the trace clustering techniques can provide better results while being applied on
these sub-models. On the other hand, the number of activity relations among the
clusters is kept as small as possible (which means the relations among the high
level activities created are kept as few as possible). As a result, the quality of
the potential high level process model is optimised to a large extent because it

99

contains a limited number of behaviours among its activities.

5.3. A Three-Step Algorithm

In this section, we propose a new process model abstraction algorithm that utilises
the strategy introduced in Section 5.2 for solving the problem of "spaghetti-like"
process models mined from real-life event logs. The proposed algorithm consists
of three main stages. Let Λ̈ ∶ (L+, V+

r) Ð→ G+ be the casual activity graph build-
ing method introduced in Chapter 2, where L+ is the set of event logs, V+

r is the
set of values of thresholds for judging casual relations among activities and G+ is
the set of casual activity graphs, Γ̈ ∶ G+ Ð→ C+ac be the graph clustering algorithm
from [134, 135]1, where C+ac is the set of all possible sets of activity clusters. The
details of our method is described in Algorithm 5.1.

Algorithm 5.1 Abstract the raw mined model

Input: an event log L, the threshold φ for judging the causal relations among
activities, a threshold α for judging if a high level activity generated should
be removed or not, a threshold β for searching for merging modes, a sub-
model complexity threshold τ and a sub-model accuracy threshold χ, a trace
number threshold κ, the number of clusters n.

1: Let G be a casual activity graph.
2: Let Cac be a set of activity clusters.
3: G ← null
4: Cac ← null
5: G ← Λ̈(L, φ) # build the casual activity graph
6: Cac ← Γ̈(G) # mine the activity clusters
7: Stage 1: Find multi-cluster activities and extract sublogs.
8: Input: L, Cac.
9: Output: a new set of activity clusters CM

ac , a set of sublogs SSL.
10: Stage 2: Generate high level activities and high level model.
11: Input: SSL, L, α, β.
12: Output: a high level model Mh, a set of high level activities SAH, a set of

sublogs SSLH.
13: Stage 3: Deal with complex and inaccurate sub-models derived from SSLH.
14: Input: SSLH, τ, χ, κ, n.
15: Output: a set of sub-models SUM.
Output: a high level model Mh, a set of sub-models SUM.

1The main reason to select this graph clustering technique is that it is able to automatically
generate a suitable number of clusters of vertices according to the edge structure of a graph
and also has a good performance

100

5.3.1. Find Multi-Cluster Activities and Extract Sub-Logs

In this subsection, we make the assumption that a set of activity clusters Cac =
{c1, c2, . . . , cm} for event log L has been acquired by Algorithm 5.1. Sometimes,
an activity a ∈ ck ∈ Cac may also have a lot of casual relations with the activities
from other clusters. For instance, in the casual activity graph G from Figure 5.1,
the activity a that pertains to cluster C is also connected to many activities in clus-
ter A. In the graph clustering research area most of the classical methods devel-
oped presume that a vertice of a graph only belongs to one specific cluster. The
graph clustering algorithm utilised in our approach also has the same assump-
tion. However, it is a normal situation that some activities in a casual activity
graph should pertain to more than one clusters according to the edge structure
of the graph. Based on this fact, we develop a new concept named Multi-Cluster
Activity (MCA) which is defined as:

Definition 5.1. (Multi-Cluster Activity)
Let Φ̈ ∶ G+ Ð→ V+

d be a graph density calculation mechanism, where G+ is the set
of casual activity graphs and V+

d is the set of values of graph density. Given a set
of activity clusters Cac = {c1, c2, . . . , cn}, an activity a ∈ ck ∈ Cac is a MCA if ∃cm ∈
Cac such that Φ̈(G

′

m) ≥ Φ̈(Gm), where Gm = (Vm, Em) represents the casual activity
graph built by using the activities from activity cluster cm and G

′

m = (Vm ∪ a, E
′

m)
is a new graph generated by adding activity a in Gm.

Given a graph G = (V, E), Φ̈(G) = ∣E∣/(∣V∣ × (∣V∣ − 1)), where ∣E∣ and ∣V∣ stand
for the total number of edges and the total number of vertices in graph G respec-
tively. The main reason to use graph density for judging a MCA is that densely
connected activities are more likely to cause complex process behaviours that
cannot be expressed by the utilised BPMD algorithms (GTCA leaves these poten-
tial complex behaviours to trace clustering technique). GTCA detects all of the
MCAs in Cac and then distributes each of them to the eligible activity clusters in
Cac so that a new set of activity clusters CM

ac with MCAs can be generated. For
example, let C

′

ac = {c1, c2, c3} be a set of activity clusters mined from event log L
′

,
c1 = {a, b, c}, c2 = {d, e} and c3 = { f , g, h}, pretend that Φ̈(Gc2) = 0.5, Φ̈(Gc3) = 0.8,
Φ̈(G−

c2) = 0.63 and Φ̈(G−

c3) = 0.7, where Gc2 is the casual graph for cluster c2, Gc3

for cluster c3, G−

c2 is the casual graph generated by adding activity a ∈ c1 in Gc2

and G−

c3 generated by adding activity a in Gc3 . According to Definition 5.1, a is a
MCA because Φ̈(G−

c2) > Φ̈(Gc2). Afterwards, a new activity cluster c
′

2 = {a, d, e}
is generated by adding a in c2. Activity a should not be added in c3 because
Φ̈(G−

c3) < Φ̈(Gc3). Let’s presume that a is the only MCA found, then the new set
of activity clusters CM′

ac = {c1, c
′

2, c3} can be generated.

An intuitive proof about the benefit for locating MCAs is shown in the ex-
ample in Figure 5.1. We assume that the activity a in cluster C is a MCA corre-
sponding to cluster A. By adding a to cluster A the original casual graph G can

101

be transformed into G
′

as shown in Figure 5.2. In G
′

, the interrelations between
cluster A and C are further decomposed which helps improve the quality of the
potential high level model.

Cluster

A

Cluster

B

Cluster

C

Casual Activity

Graph G

a

Cluster

A’

Cluster

B

Cluster

C

Casual Activity

Graph G’

a

a

Figure 5.2.: Further decompose the interrelations between cluster A and C.

Definition 5.2. (Activity Cluster-Related Sub-Trace)
Let L be an event log, CM

ac = {c1, c2, . . . , cn} be the set of activity clusters with
MCA mined from L, a sub-trace st ⊑ t ∈ L is called cm-related sub-trace if ∀a ∈ Ast
such that a ∈ cm, where Ast is the set of activities for st. Furthermore, st is called a
maximal cm-related sub-trace of t if ∄a ∈ cm such that <a, st>⊑ t or <st, a>⊑ t.

Definition 5.3. (Activity Cluster-Related Sublog)
Let L be an event log, CM

ac = {c1, c2, . . . , cn} be the set of activity clusters with
MCA mined from L, a sublog SL is called cm-related sublog if SL contains all the
maximal cm-related sub-traces that can be discovered in L.

Whereafter, the stage 1 of Algorithm 5.1 creates a cluster-related sublog (Def-
inition 5.3) for each activity cluster in CM

ac = {c1, c2, . . . , cn}. For example, for
the activity cluster ck ∈ CM

ac a new sublog SLck is built which contains all of the
maximal ck-related sub-traces extracted from the original event log L. For in-
stance, let CM′

ac = {{a, b, v, c, d},{u, v, x, z}} be a set of activity clusters generated
by stage 1 of Algorithm 5.1 executed on an event log L

′ = {< a, b, c, d, v, x, z >80,<
a, c, d, u, v, x, z>150,< a, b, v, c, d, u, v, z>200} (pretend that v is a MCA). For the first
activity cluster {a, b, v, c, d} ∈ CM′

ac a new sublog SL
′

1 = {< a, b, c, d, v>80,< a, c, d>150

,< a, b, v, c, d >200} can be created. Similarly, the sublog SL
′

2 = {< v, x, z >80,<
u, v, x, z>150,<u, v, z>200} can be generated for the second activity cluster {u, v, x, z}.

5.3.2. Generate High Level Activities and High Level Process
Model

We presume that the set of activity cluster-related sublogs SSL = {SL1, SL2, . . . , SLn}
has been output by the stage 1 of Algorithm 5.1 for log L. Let Ψ̈ ∶ L+ Ð→ SL+ be

102

a function which splits an event log into several sublogs where each sublog con-
tains traces with the same start activity and end activity, where L+ represents the
set of event logs and SL+ represents the set of all possible sets of sublogs. Take
the simple event log L

′ = {<a, b, c>15,<a, d, c>15,<a, f >3,<a, e, d>5} as an example,
Ψ̈(L

′) = {SL
′

1, SL
′

2, SL
′

3}, where SL
′

1 = {< a, b, c >15,< a, d, c >15}, SL
′

2 = {< a, f >3} and
SL

′

3 = {<a, e, d>5}.

Definition 5.4. (High Level Activity)
Let SSL = {SL1, SL2, . . . , SLn} be the set of activity cluster-related sublogs gener-
ated for log L. For each sublog SLm ∈ SSL, Ψ̈(SLm) = {SLH

1 , SLH
2 , . . . , SLH

p }. A high
level activity aH

q is an artificially created activity which is utilised to represent all
the sub-traces from sublog SLH

q .

Definition 5.5. (High Level Process Model)
Let L be an event log, SAH

L be the set of high level activities discovered from L,
LH be the event log generated by using the high level activities from SAH

L to re-
place all their related sub-traces in L. A high level process model Mh is defined
as a model mined from LH by employing a certain process model discovery algo-
rithm.

The high level activity generation method for the stage 2 of Algorithm 5.1
is depicted in Algorithm 5.2. To explain Algorithm 5.2 explicitly, an example is
employed here (which is also utilised for the rest part of this subsection). Let
CM′

ac = {{a, b, c, d},{u, v, x, z}} be a set of activity clusters generated by stage 1 of
Algorithm 5.1 executed on an event log L

′ = {<a, b, d, u, x, z>100,<a, b, c, d, v, x, z>80

,< a, c, d, u, v, x, z >150,< a, b, v, c, d, u, x, z >8}, SSL
′ = {SL

′

1, SL
′

2} be a set of sublogs
generated by stage 1 of Algorithm 5.1 with inputs CM′

ac and L
′

, where sublog
SL

′

1 = {< a, b, d >100,< a, b, c, d >80,< a, c, d >150,< a, b >8,< c, d >8}, sublog SL
′

2 = {<
u, x, z>108,<v, x, z>80,<u, v, x, z>150,<v>8}. A set of sublogs SSLH′ = {{< a, b, d>100

,< a, b, c, d >80,< a, c, d >150}0,{< a, b >8}1,{< c, d >8}2,{< u, x, z >108,< u, v, x, z >150

}3,{<v, x, z>80}4,{<v>8}5} can be generated if SSL
′

is directly dealt with by steps
11−13 of Algorithm 5.2 (replace the set SSLM in step 11 by using SSL

′

). After-
wards, according to steps 14−16 of Algorithm 5.2 a set of high level activities
SAH′ = {H−Activity(0)330, H−Activity(1)8, H−Activity(2)8, H−Activity(3)258, H−
Activity(4)80, H−Activity(5)8} is generated where each high level activity is re-
lated to a specific sublog in SSLH′

. In our method, a high level activity will
replace all the sub-traces that exist in its relevant sublog in SSLH′

in the orig-
inal event log L

′

. For instance, the high level activity H−Activity(0) will re-
place all the sub-traces from sublog {< a, b, d >100,< a, b, c, d >80,< a, c, d >150}0 in
L
′

. Ultimately, a high level event log L
′

h = {< H−Activity(0), H−Activity(3) >100

,< H−Activity(0), H−Activity(4) >80,< H−Activity(0), H−Activity(3) >150,< H−
Activity(1), H−Activity(5), H−Activity(2), H−Activity(3)>8} is acquired. The steps
17−22 of Algorithm 5.2 remove all the infrequent high level activities generated

103

Algorithm 5.2 Generate high level activities

Input: the set of sub-logs SSL, the original log L, a threshold α, a threshold β.
1: Let Ϋ be a trace merging technique which is described in Algorithm 5.3.
2: Let SSLH be a set of sub-logs where each sub-log SLq ∈ SSLH is relevant to one

potential high level activity.
3: Let SAH be a set of high level activities.
4: Let SSLM be a set of event logs with merged traces.
5: SSLH ← null
6: SAH ← null
7: SSLM ← null
8: for each log SLk ∈ SSL do
9: SSLM ← SSLM ∪ Ϋ(SLk, SSL, L, β)

10: end for
11: for each log SLM

p ∈ SSLM do
12: SSLH ← SSLH ∪ Ψ̈(SLM

p)
13: end for
14: for each log SLH

q ∈ SSLH do
15: SAH ← SAH ∪ H−Activity(q)
16: end for
17: for each H−Activity(l) ∈ SAH do
18: if ∣H−Activity(l)∣ < α then
19: remove H−Activity(l) from SAH

20: remove SLH
l from SSLH

21: end if
22: end for
Output: the set of high level activities SAH, the set of sub-logs SSLH.

together with their relevant sublogs in SSLH′

. Removing infrequent activities
which is in accordance with the main idea of most advanced process model min-
ing techniques can make the potential model mined concentrate on exhibiting the
most frequent process behaviours. In our example, given a threshold α = 20, the
high level activity H−Activity(1), H−Activity(2) and H−Activity(5) are removed
from SAH′

and L
′

h because the value of their frequency is eight which is smaller
than α. At the same time, the sub-logs {< a, b >8}, {< c, d >8} and {< v >8} are re-
moved from SSLH′

. Afterwards, a high level model can be built by mining the
generated high level event log L

′

h with an existing process model discovery algo-
rithm (this is the way for GTCA to generate a high level model). Each sublog in
SSLH′

will be used to build a sub-model for indicating the details of its relevant
high level activity.

Such a design for generating high level activities will help maintain the pre-
cision [9] (precision quantifies the ratio of behaviours that can be generated by
the mined models which are also recorded in the event logs) of the potential high

104

level model together with the sub-models generated compared to the precision
of the model mined by using the original log L

′

. Furthermore, GTCA might gen-
erate a huge amount of high level activities while encountering event logs that
have casual graphs with uniform structures. So we make the assumption that
the casual graphs of event logs processed by our method have structures with
natural clusters.

Three infrequent high level activities (H−Activity(1), H−Activity(2) and H−
Activity(5)) are generated in the example introduced above. This is because ac-
tivity v happens between activity b and c in some traces in L

′

infrequently and
v belongs to a different activity cluster from b and c. As a result, three kinds of
infrequent sub-trace <a, b> , <v> and <c, d> in SSLH′

are generated by GTCA. The
Algorithm 5.2 will remove all infrequent high level activities and also the sublogs
related to these activities. A lot more activities like activity v might lead to the
situation that a huge amount of process behaviours in the original event logs will
get lost because of being distributed into many infrequent sublogs in SSLH which
then will be removed. In this subsection, we propose a sub-trace merging ap-
proach Ϋ (which appears in the step 9 of Algorithm 5.2 and helps preserve the
process behaviours recorded in the original logs as many as possible) for fixing
this problem by employing the following definitions:

Definition 5.6. (Merging Mode)
Let SSL = {SL1, SL2, . . . , SLn} be a set of sublogs output by stage 1 of Algorithm
5.1 executed on an event log L. Let st1 and st2 be two sub-traces from SLk ∈ SSL,
sa1 and ea1 be the starting and ending activity of st1 respectively, sa2 and ea2 be
the starting and ending activity of st2 respectively. The pair (st1, st2) is called a
merging mode for SLk if (1) the number of traces in SLk which have sa1 as starting
activity and ea1 as ending activity at the same time is smaller than β × ∣SLk∣, (2)
the number of traces in SLk which have sa2 as starting activity and ea2 as ending
activity at the same time is smaller than β× ∣SLk∣, (3) st1 and st2 appear in the same
trace from L in the way <st1, . . . , st2>, (4) the number of traces in SLk which have
sa1 as starting activity and ea2 as ending activity at the same time is larger than
or equal to β × ∣SLk∣.

Definition 5.7. (Minimum Merging Mode)
Let (st1, st2) be a merging mode for a sublog SLk ∈ SSL, sa1 be the starting activity
of st1 and ea2 be the ending activity of st2, < st1, . . . , st2 > be a sub-trace from the
original log L. The merging mode (st1, st2) is called a minimum merging mode
if there exists no other merging modes in the sub-trace < st1, . . . ∣st2 > or in the
sub-trace < st1 ∣ . . . , st2 >, where < st1, . . . ∣st2 > represents a sub-trace generated
by removing st2 from < st1, . . . , st2 > and < st1 ∣ . . . , st2 > by removing st1 from
<st1, . . . , st2>.

For the example mentioned above, given a threshold β = 0.05, the pair (<a, b>
,< c, d >) from SL

′

1 is a merging mode (there are eight of such merging modes)

105

because there are 330 traces in SL
′

1 that have activity a as starting activity and
activity d as ending activity which is larger than β × ∣SL

′

1∣ = 17.3. In the meantime,
∣ < a, b > ∣ = 8 < 17.3 and ∣ < c, d > ∣ = 8 < 17.3. Furthermore, the way for the
sub-traces < a, b > and < c, d > to appear in the trace < a, b, v, c, d, u, x, z > from L

′

also satisfies the condition proposed in Definition 5.6. Furthermore, the merging
mode (< a, b >,< c, d >) is also a minimum merging mode according to Definition
5.7.

Algorithm 5.3 Merging sub-traces (Ϋ)

Input: the set of sublogs SSL, a sub-log SLk ∈ SSL, a threshold β.
1: Let SMD be a set of merging modes.
2: SMD ← null
3: for each sub-trace stp ∈ SLk do
4: if stp doesn’t pertain to any merging mode in SMD then
5: if there is a sub-trace stq ∈ SLk and (stp, stq) is a merging mode then
6: put (stp, stq) in SMD
7: put the related sub-trace <stp, . . . , stq> from L in SLk
8: remove stp and stq from SLk
9: remove the sub-traces that appear between stp and stq in

10: <stp, . . . , stq> from their original places in SSL
11: end if
12: else
13: continue
14: end if
15: end for
Output: the sublog SLk with merged traces.

With the two definitions created above, the details of the sub-trace merging
technique Ϋ is described in Algorithm 5.3. Here we still use the last example
to explain how Ϋ works. As is shown that three infrequent high level activities
are generated by running the Algorithm 5.2 directly from step 11 in our exam-
ple. One intuitive method to solve this problem is to find all minimum merging
modes in SSL

′

and then merge the sub-traces in the same merging mode (reflected
by the steps 3−15 of Algorithm 5.3 and the steps 8−13 of Algorithm 5.2). For ex-
ample, eight merging modes (< a, b >,< c, d >)8 for SL

′

1 can be constituted (given
a threshold β = 0.05) and each pair of the sub-traces should be merged into a
single sub-trace < a, b, v, c, d> (eight of such merged sub-traces can be generated).
Then, a new set of sub-logs SSLM′ = {SLM′

1 , SLM′

2 } can be formed, where SLM′

1 =
{< a, b, d >100,< a, b, c, d >80,< a, c, d >150,< a, b, v, c, d >8} and SLM′

2 = {< u, x, z >108

,< v, x, z >80,< u, v, x, z >150} (SLM′

2 doesn’t contain the kind of sub-trace < v > any
more because all of them are merged into the kind of sub-trace < a, b, v, c, d > in
SLM′

1). Afterwards, by using the steps 11−22 of Algorithm 5.2 to deal with the
SSLM′

a new set of sub-logs SSLH′ = {{< a, b, d >100,< a, b, c, d >80,< a, c, d >150,<
a, b, v, c, d>8}0,{<u, x, z>108,<u, v, x, z>150}1,{< v, x, z>80}2} and a new set of high

106

level activities SAH′ = {H−Activity(0)338, H−Activity(1)258, H−Activity(2)80} can
be generated. Now no infrequent high level activities exist in SAH′

any longer.

5.3.3. Deal With Complex and Inaccurate Sub-Models

In this subsection, we presume that a set of sub-logs SSLH has been output by
the stage 2 of Algorithm 5.1. For each sub-log in SSLH a sub-model is mined
with existing BPMD technique to depict the details of the sub-log’s relevant high
level activity. In our approach, the business process recorded in an event log is
expressed by the generated high level model and the sub-models together. How-
ever, the strategy (mentioned in Section 5.2) used by GTCA tries to decrease the
number of behaviours in the potential high level model by hiding most of the
original process behaviours inside the high level activities generated. As a result,
the sub-models for the high level activities might still be complex and inaccurate.
Trace clustering technique is utilised for solving this problem.

Let Ω ∶ L+ → M+ be a BPMD algorithm, where M+ is the set of process models
and L+ is the set of event logs, Σ f ∶ (L+, M+) → V+

f be a process model accuracy
evaluation method, where V+

f is the set of accuracy values for the mined pro-
cess models, Σc ∶ M+ → V+

c be a process model complexity evaluation method,
where V+

c is the set of complexity values for the mined process models. Let
T̂ ∶ (L+, V+

n) → SSL+ be a trace clustering algorithm, where SSL+ is the set of all
sets of sublogs and V+

n is the set of numbers for the generated clusters.

Definition 5.8. (Low-Quality Process Model)
Let L be an event log, τ be a model complexity threshold, χ be a model accuracy
threshold, ML = Ω(L) be the process model mined from L. ML is called a low-
quality process model if Σc(ML) > τ or Σ f (ML, L) < χ.

The main procedure for dealing with low-quality sub-models mined is de-
picted in Algorithm 5.4 according to which, a sublog SL from SSLH that leads to a
low-quality sub-model M (the quality is judged by using the sub-model accuracy
and complexity thresholds χ and τ in the step 8 of Algorithm 5.4) will be divided
into n sub-sub-logs by using the trace clustering technique if the number of the
traces inside SL is larger than or equal to a threshold κ. Afterwards, for each sub-
sub-log, a sub-sub-model is built (in the step 11 of Algorithm 5.4). If the weighted
average accuracy of the sub-sub-models generated is larger than or equal to the
accuracy of the original sub-model then these sub-sub-models are added to the
set of sub-models SSM which will be finally output by Algorithm 5.4 (Algorithm
5.4 will not use the sub-sub-models if their weighed average accuracy is lower
than the accuracy of their related original sub-model). If a sublog SL

′

from SSLH

leads to a good-quality sub-model M
′

then add M
′

in SSM (step 25 of Algorithm
5.4).

107

Algorithm 5.4 Deal with low-quality sub-models

Input: a set of sub-logs SSLH, a sub-model complexity threshold τ and a sub-
model accuracy threshold χ, a trace number threshold κ, cluster number n.

1: Let SSM, SSMc be two sets of sub-models.
2: Let SSL be a set of sublogs.
3: Let m1, m2 be two variants of float type.
4: Let m3 be a variant of int type.
5: SSM ← null, SSMc ← null, SSL ← null
6: m1 ← 0, m2 ← 0, m3 ← 0
7: for each sublog SL ∈ SSLH do
8: if Σ f (Ω(SL), SL) < χ ∣∣ Σc(Ω(SL)) > τ && ∣SL∣ ≥ κ then
9: SSL = T̂(SL, n)

10: for each sub-log SL1 ∈ SSL do
11: SSMc ← SSMc ∪Ω(SL1)
12: m1 ← m1 +Σ f (Ω(SL1), SL1)× ∣SL1∣
13: m3 ← m3 + ∣SL1∣
14: end for
15: m2 ← m1/m3
16: if m2 ≥ Σ f (Ω(SL), SL) then
17: for each sub-model SMc ∈ SSMc do
18: SSM ← SSM ∪ SMc
19: end for
20: else
21: SSM ← SSM ∪Ω(SL)
22: end if
23: m1 ← 0, m3 ← 0, SSMc ← null
24: else
25: SSM ← SSM ∪Ω(SL)
26: end if
27: end for
Output: the set of sub-models SSM.

In Chapter 6, a detailed evaluation on the proposed technique GTCA will be
executed by employing three event logs: the repair log from [9], the log of the loan
and overdraft approvals process (LOA) from BPIC 2012 and the hospital log from
BPIC 2011. Especially, through the evaluation result on the hospital event log, the
effectiveness of GTCA for dealing with totally unstructured business processes
will be fully exhibited.

108

6
Evaluation

6.1. Introduction

In the last three chapters we have introduced five techniques (i.e., HIF, TDTC,
CTC, MLCC and GTCA) which are devised to help mine more accurate and sim-
pler process models from real-life event logs. We have made short verifications
for technique HIF (see Chapter 3), TDTC and CTC (see Chapter 4) by using some
simple event logs. For technique MLCC, we have given a relatively detailed ex-
periment to test its effectiveness by employing the hospital log from BPIC 2011
in Chapter 4. In this chapter, more elaborate experiments are designed so as to
reveal various aspects about these techniques (including technique HIF, TDTC,
CTC and GTCA). These experiments mainly focus on three emphases: the im-
pact on the results brought by parameter settings of these techniques, the perfor-
mance of these techniques in real-life cases and the comparison with other simi-
lar techniques. In Section 6.2, the details of the experiment for technique HIF is
introduced. The experiments for technique TDTC and CTC are presented in Sec-
tion 6.3. Section 6.4 elaborates the experiment process and results for technique
GTCA.

6.2. Evaluation on Technique HIF

In Chapter 3, we have put forward a heuristics method named HIF for improving
the fitness of process models mined from real-life event logs by HM. The tech-
nique HIF inherits the basic idea of MEBS. To testify the correctness of the prin-
ciple of HIF, we have also performed a short verification experiment in Chapter
3 in which the technique HIF is executed on one example event log. In this sec-
tion, more elaborate experiment results about HIF are given which reflect various
aspects of the characteristics of HIF. In Section 6.2.1, we compare HIF with four
classical BPMD techniques by running them on three example event logs. In Sec-
tion 6.2.2, the technique HIF is executed on four real-life event logs for proving

109

its practicability in handling real-world problems. In the meantime, we have also
tested the impact from the three parameters (the target fitness α, the model fit-
ness improvement threshold β and the threshold for newly added activities µ)
for HIF on the quality of the process models output by HIF and the running time
of HIF.

6.2.1. Comparison

In this subsection, we compare HIF to four classical BPMD techniques which are
HM, IM [25–27], ILPM [24] and Alpha Algorithm (AA) [23] by making use of
three example event logs (i.e., L1, L2 and L3) as shown in Figure 6.1. Particularly,
the traces in L3 are extracted from the real-life event log of the loan and overdraft
approvals process (LOA) from BPIC 2012. Due to the three example logs are very
simple, the target fitness α for HIF is set to 1, the model fitness improvement
threshold β for HIF is set to 01 and the threshold for the number of newly added
activities µ for HIF is set to +∞.

Example log : L1

<A, B, C, E>100 <A, C, B, E>100 <A, B, D, D, C, E>100

Example log : L2

<A, C, D, E, F>100 <A, C, B, D, F>100 <A, C, E, D, F>100 <A, E, C, D, F>100

Example log : L3

<A0, A6, A9, A2, A7, A3>100

<A0, A6, A9, A7, A6, A7, A6, A7, A3>100 <A0, A6, A7, A6, A7, A6, A7, A7, A8, A3>100

<A0, A6, A7, A6, A7, A6, A8, A7, A3>100 <A0, A6, A7, A6, A7, A6, A7, A8, A7, A3>100

<A0, A6, A7, A6, A7, A6, A9, A8, A7, A3>100

<A0, A6, A7, A6, A7, A6, A2, A7, A3>100

<A0, A6, A7, A6, A9, A7, A6, A7, A6, A8, A7, A3>100<A0, A6, A9, A7, A6, A7, A6, A7, A6, A2, A7, A3>100

<A0, A6, A9, A7, A6, A7, A6, A7, A6, A8, A7, A3>100<A0, A6, A7, A6, A7, A6, A9, A7, A7, A8, A3>100

<A0, A6, A7, A6, A9, A7, A6, A7, A7, A8, A3>100

<A0, A7, A8, A3>100

Figure 6.1.: The three example event logs utilised for the comparison between
HIF and other BPMD techniques.

The process models built for log L1 are shown in Figure 6.2. It can be seen that
only the models mined by HIF and ILPM are able to replay all the traces recorded
in L1. Furthermore, the model mined by ILPM is better than the model output
by HIF because the model built by HIF contains more workflow patterns which
are not recorded in L1. The process models built for log L2 are exhibited in Figure

1The sign "≤" in the rhombus of Module-2 for technique DCIB (shown in Figure 3.5 of Chapter
3) should be transformed into "<" if the model fitness improvement threshold β is set to 0.

110

6.3 according to which the models constructed by HIF, HM, IM and ILPM are
capable of replaying all the traces in L2. However, the models built by HIF, HM
and ILPM are better than the model mined by IM which is able to generate many
traces that don’t exist in log L2. Meanwhile, the models from HIF, HM and ILPM
can exhibit the parallel relation between activity E and activity C and D. The
traces in log L3 are extracted from the real-life event log LOA (mentioned above).
The models (Figure 6.4) mined by HIF, IM and ILPM can express all the traces
from L3 correctly. However, in the process model generated by IM, the relations
between activity A9, A8, A6, A2 and A7 are only implicitly described through a
flower model. Additionally, the model mined by ILPM shows a high complexity
(compared with the model output by HIF and IM).

As indicated in Chapter 3, we discovered in the experiment that HIF is often
able to find the most efficient way to help improve the fitness of the mined models
and this is mainly due to the internal operation mechanism of HIF. Nevertheless,
there often exist multiple options for improving the fitness of the underlying pro-
cess model for a certain event log. Semantically speaking, the most efficient way
may not be the best way. For example, to help HM mine a high fitness model
from log L1, another way maybe to change activity B under EI (A, D) into B0 and
activity C under EI (D, E) into C0 in log L1. But HIF chooses to change activity
C under EI (B, E) into C0 as shown in Figure 6.2. Both options can help mine a
highly fitting model. Though the way selected by HIF is the most efficient (only
add one new activity) one, it is not the best one because it destroys the paral-
lel relation between activity B and activity C (see Figure 6.2) for acquiring high
model fitness and also decreases the precision of the generated model (the mined
model generates some traces which are not logged in L1). The other option de-
scried above is better because it can assist in generating a precise model which
preserves the parallel relations between activity B and C. Helping HIF to solve
this problem will be one of our primary future jobs.

6.2.2. Experiment on Real-Life Event logs

We tested the effectiveness of HIF on five real-life event logs: the repair log (Re-
pair) from [9], the log of the loan and overdraft approvals process (LOA) from
BPIC 2012, the log of Volvo IT incident and problem management (VIPM) from
BPIC 2013, the log of CRM process (MCRM) from [36] and the log (LOA1) that is
generated by randomly choosing approximate 10% of the traces from log LOA.
The basic information about the five logs is shown in Table 6.1.

In our experiment, we employ the HM [37] from ProM 6 for generating the
process models and the ICS fitness [29] is used for evaluating the accuracy of the
mined models. The ETConformance Checker from ProM 6 is utilised for evalu-
ating the influence of our method on the precision [9] of the mined models. Two

111

Model mined by HIF for L1

Model mined by HM for L1

Model mined by Inductive Miner for L1

Model mined by ILP Miner for L1

Model mined by Alpha Algorithm for L1

Figure 6.2.: Process models mined from example log L1.

112

Model mined by ILP Miner for L2

Model mined by HIF for L2

Model mined by HM for L2

Model mined by Inductive Miner for L2

Model mined by Alpha Algorithm for L2

Figure 6.3.: Process models mined from example log L2.

113

Model mined by HIF for L3

Model mined by Inductive Miner for L3

Model mined by ILP Miner for L3

Model mined by Alpha Algorithm for L3

Model mined by HM for L3

Figure 6.4.: Process models mined from example log L3.

114

Table 6.1.: Basic information of the evaluated logs.
Log Traces Events Event types

Repair 1000 10827 12
LOA 13087 262200 36

LOA1 1303 35978 35
MCRM 956 11218 22
VIPM 7554 65533 13

process model complexity evaluation metrics E-Cardoso [177] and PT-CD [36]
are employed for evaluating the impact of our method on the complexity of the
mined models (the greater the E-Cardoso and PT-CD are, the more complicated
the models will be). The Heuristics Net to Petri Net plugin in ProM 6 is used for
transforming the heuristics net obtained into a Petri net so that the E-Cardoso,
the PT-CD and the precision for the generated model can be calculated.

In the preliminary test for HIF on the five logs, the target model fitness α is set
to 1, the model fitness improvement threshold β is set to 0.03 and the threshold
for the newly added activities µ is set to 0.3. Table 6.2 shows the evaluation re-
sults. In Table 6.2, M−Repair represents the model generated by directly mining
the original event log Repair and M−RepairN stands for the model output by HIF
(the same applies to the other models). It can be seen that the technique HIF can
improve the fitness of the mined models to a large extent, while for most of the
models output by HIF their precision and complexity are kept within an accept-
able range compared with their original models. The model M−RepairN only has
four more activities than the model M−Repair but the fitness for M−RepairN has
been greatly improved (the same to the model M−VIPMN). This benefits from the
activity ranking method presented in Section 3.4 of Chapter 3.

Table 6.2.: Evaluation results in the preliminary test on HIF.
Model ICS-fitness Precision E-Cardoso PT-CD Event types Time(s)

M−Repair 0.6768 0.426 31 2.3656 12
M−RepairN 0.9989 0.7252 49 2.3611 16 6.39
M−LOA 0.7878 0.6717 148 3.1478 36
M−LOAN 0.9826 0.6511 178 2.9149 47 399.71
M−LOA1 0.628 0.6605 101 2.4404 35
M−LOA1N 0.9859 0.652 128 2.41 45 30.878
M−MCRM -0.1379 0.7454 64 2.4545 22
M−MCRMN 0.8802 0.7641 79 2.3621 29 25.953
M−VIPM 0.3594 0.86 54 2.8848 13
M−VIPMN 0.8539 0.6 68 2.979 17 274.51

Furthermore, we also tested the impact from the target model fitness α, the
model fitness improvement threshold β and the threshold for the newly added
activities µ on the quality of the models output by HIF and the running time

115

0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

Model Accuracy Threshold

IC
S

 F
itn

es
s

Repair
LOA
LOA1
MCRM
VIPM

(a) ICS Fitness

0.8 0.85 0.9 0.95 1
30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

Model Accuracy Threshold

E
−

C
ar

do
so

Repair
LOA
LOA1
MCRM
VIPM

(b) E-Cardoso

0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Model Accuracy Threshold

P
re

ci
si

on

Repair
LOA
LOA1
MCRM
VIPM

(c) Precision

0.8 0.85 0.9 0.95 1
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

Model Accuracy Threshold

R
un

ni
ng

 T
im

e
(s

)

Repair
LOA
LOA1
MCRM
VIPM

(d) Running Time

Figure 6.5.: Comparison among different values for parameter α for HIF

of HIF. For evaluating the effect from the target model fitness α, five groups of
parameters are assigned to HIF for each log which are (α = 0.8, β = 0.03, µ = 0.3),
(α = 0.85, β = 0.03, µ = 0.3), (α = 0.9, β = 0.03, µ = 0.3), (α = 0.95, β = 0.03, µ = 0.3)
and (α = 1, β = 0.03, µ = 0.3). The evaluation results are shown in Figure 6.5. In
most cases, as α increases the complexity of the models (evaluated by E-Cardoso)
output by HIF also increases because more new activities are added in the output
models. The precision curves remain flat relatively as the value of α increases.
Additionally, the running time for HIF grows as the value of α increases and the
amplification becomes maximal between the values 0.95 and 1 for most of the
cases. According to the analysis results we recommend that the value of α should
be set to less than 1 so that a model with a lower complex rate and a next best
fitness can be generated by HIF within a shorter time.

Figure 6.6 shows the effects on the mining results of HIF from the model fit-
ness improvement threshold β while Figure 6.7 exhibits the impacts from the
threshold µ of newly added activities. By considering the accuracy and com-
plexity of the process models mined by HIF together with the running time of

116

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

Model Fitness Improvement Threshold

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

Repair
MCRM
LOA1
VIPM
LOA

(a) ICS Fitness

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

Model Fitness Improvement Threshold

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

Repair
MCRM
LOA1
VIPM
LOA

(b) E-Cardoso

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Model Fitness Improvement Threshold

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

Repair
MCRM
LOA1
VIPM
LOA

(c) PT-CD

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440

Model Fitness Improvement Threshold

R
un

ni
ng

 T
im

e
(s

)

Repair
MCRM
LOA1
VIPM
LOA

(d) Running Time

Figure 6.6.: Comparison among different values for parameter β for HIF

HIF under different parameter settings, the default value 0.03 is suggested for β
and the default value for µ is suggested to be 0.3 for HIF.

6.3. Evaluation on Trace Clustering Technique TDTC
and CTC

In Chapter 4, two trace clustering techniques TDTC and CTC that inherit the idea
from MDS are proposed and then a short verification for these two techniques
is given with the help of a repair log. In this section, the performance of TDTC
and CTC is further evaluated by employing four real-life event logs. In Section
6.3.1, different parameter settings are tested for both TDTC and CTC on the given
event logs so as to help understand the influence of different parameter settings
(for TDTC and CTC) on the mining results. Furthermore, a comparison between
our techniques and other six classical trace clustering techniques is carried out in

117

0.1 0.2 0.3 0.4 0.5
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ratio of Activities

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

Repair
MCRM
LOA1
VIPM
LOA

(a) ICS Fitness

0.1 0.2 0.3 0.4 0.5
33

43

53

63

73

83

93

103

113

123

133

143

153

163

173

183

Ratio of Activities

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

Repair
MCRM
LOA1
VIPM
LOA

(b) E-Cardoso

0.1 0.2 0.3 0.4 0.5
2.25

2.35

2.45

2.55

2.65

2.75

2.85

2.95

3.05

3.15

3.25

3.35

3.45

3.55

3.65

Ratio of Activities

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

Repair
MCRM
LOA1
VIPM
LOA

(c) PT-CD

0.1 0.2 0.3 0.4 0.5
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440

Ratio of Activities

R
un

ni
ng

 T
im

e
(s

)

Repair
MCRM
LOA1
VIPM
LOA

(d) Running Time

Figure 6.7.: Comparison among different values for parameter µ for HIF

Section 6.3.2.

6.3.1. Assessment on the Parameter settings for TDTC and CTC

We tested the performance of our technique TDTC and CTC in a full-scale manner
on four real-life event logs: the log of Volvo IT incident and problem management
(VIPM) from BPIC 2013, the log of loan and overdraft approvals process (LOA)
from BPIC 2012, the log of ICT service process (KIM) and the log of CRM process
(MCRM) from [36]. The basic information about the four logs is shown in Table
6.3. Moreover, Table 6.4 displays the information about the accuracy and com-
plexity of the process models mined directly from VIPM, LOA, KIM and MCRM
by HM.

Firstly, the effectiveness of TDTC and CTC on assisting in mining simple and
accurate sub-process models from the four given real-life event logs is certified.
The minimum support min_sup for the CSPs discovered from log VIPM, KIM

118

Table 6.3.: Basic information of the evaluated real-life event logs.
Log Traces Events Event types

VIPM 7554 65533 13
LOA 13087 262200 36
KIM 24770 124217 18

MCRM 956 11218 22

Table 6.4.: Evaluation results for the process models mined from the given logs.

Event Log ICS Fitness E-Cardoso PT-CD

VIPM 0.3594 54 2.8848
LOA 0.7878 148 3.1478
KIM 0.7904 79 3.4797

MCRM -0.1379 64 2.4545

and MCRM is set to 0.1 and the minimum support for the CSPs mined from log
LOA is set to 0.25 because the first three logs contain much fewer process variants
than LOA.

For TDTC, the fitness weight α = 0.6 and the complexity weight β = 0.4 are set
for calculating the SMI for log LOA and VIPM, α = 0.4 and β = 0.6 for log KIM,
α = 0.8 and β = 0.2 for log MCRM (according to the accuracy and complexity
of the original models mined from the given logs). Furthermore, the minimum
threshold µ for SMI is set to 0.03, both the minimum thresholds µ f and µc for SSTB
are set to 0 (which means the minimum average improvement on both fitness and
complexity should be larger than 0), the minimum threshold ϕ f for FCSTB is set
to 0.8, the maximum threshold ϕc for CCSTB is set to 2.5 and the minimum size θ
for each underlying sublog is set to 50 for TDTC for dealing with the four event
logs. Table 6.5 exhibits the evaluation results for TDTC.

For technqiue CTC, the minimum size κ for each potential sublog is also set
to 50, the target number µ of generated sublogs (clusters) is set to 5. For the
technique HIF employed in CTC, the target fitness α is set to 1, the model fitness
improvement threshold β is set to 0.03 and the threshold µHIF for the number of
newly added activities is set to 0.3 (as recommended in Section 6.2). The results
of assessment for CTC are displayed in Table 6.6.

It can be seen that the weighted average ICS fitness2 for the sub-models gen-
erated by TDTC and CTC for the four event logs are much higher than the ICS

2Let j be the number of sublogs, ni denotes the number of traces in sublog i where 1 ≤ i ≤ j. Let
Fi represent the ICS fitness of the process model for sublog i, the weighted average ICS fitness

is defined as: WICS_ f = ∑
j
i=1 ni×Fi

∑
j
i=1 ni

.

119

fitness of the original process models (see Table 6.4) directly mined from the four
logs. Meanwhile, the average complexity (measured by E-Cardoso and PT-CD) of
the sub-models generated by both TDTC and CTC is lower than the original mod-
els for the four event logs. Additionally, the average fitness of the sub-models out-
put by CTC is higher than the average fitness of the sub-models output by TDTC
because CTC utilises the technique HIF for optimising the accuracy of the gener-
ated sub-models. However, average complexity of the sub-models generated by
TDTC is lower than the complexity of the sub-models generated by CTC because
the technique HIF used by CTC will bring new activities to the sub-models (as
introduced in Chapter 3).

Table 6.5.: Evaluation results for the sub-models generated by TDTC.

Event Log Weighted Average Weighted Average Weighted Average
ICS Fitness PT-CD E-Cardoso

VIPM 0.6791 2.4881 40.5081
LOA 0.9318 2.3803 53.0131
KIM 0.9127 2.5967 41.7958

MCRM 0.8745 2.3677 54.8159

Table 6.6.: Evaluation results for the sub-models generated by CTC.

Event Log Weighted Average Weighted Average Weighted Average
ICS Fitness PT-CD E-Cardoso

VIPM 0.9159 2.3577 47.3313
LOA 0.9909 2.4845 110.7463
KIM 0.9461 2.8626 63.2614

MCRM 0.9512 2.2818 51.7364

Next, the impact of parameter settings for TDTC and CTC on their mining
results is assessed. For technique TDTC, we mainly focus on there parameters:
the minimum threshold µ for SMI (Figure 6.8), the minimum support min_sup
(Figure 6.9) for CSPs and the minimum size θ (Figure 6.10) for each underlying
sublog. When checking one specific parameter, the values of the other parameters
are kept the same as have been set in the last paragraph (the same strategy applies
to CTC). For technique CTC, we concentrate on two parameters which are the
target number µCTC of generated sublogs (clusters) and the minimum support
min_sup for CSPs.

According to Figure 6.8, as the value of parameter µ for TDTC increases, the
average fitness of the obtained sub-models tends to decrease, the average com-
plexity of the sub-models tends to increase and the running time of TDTC tends
to decrease. TDTC seems to have a relatively good overall performance when
the value of its parameter µ is equal to 0.03. According to Figure 6.9, it takes
two long to mine the CSPs from the log LOA when the parameter min_sup for

120

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Sub−model Improvement

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

MCRM
VIPM
LOA
KIM

(a) ICS Fitness

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
35

45

55

65

75

85

95

105

115

125

135

145

Sub−model Improvement

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

MCRM
VIPM
LOA
KIM

(b) E-Cardoso

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2.3

2.35
2.4

2.45
2.5

2.55
2.6

2.65
2.7

2.75
2.8

2.85
2.9

2.95
3

3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

3.45
3.5

Sub−model Improvement

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

MCRM
VIPM
LOA
KIM

(c) PT-CD

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
50
90

130
170
210
250
290
330
370
410
450
490
530
570
610
650
690
730
770
810
850
890
930
970

1010
1050
1090
1130
1170
1210
1250

Sub−model Improvement

R
un

ni
ng

 T
im

e
(s

)

MCRM
VIPM
LOA
KIM

(d) Running Time

Figure 6.8.: Comparison among different values for parameter µ for TDTC

TDTC is set to 0.1 and 0.15. As a result TDTC just returns the original model
mined from LOA as the output model. By not considering this exceptional case,
the overall trend is that as the value of min _sup increases the average fitness of
the generated sub-models decreases, the average complexity of the sub-models
increases and the running time of TDTC decreases. Range [0.1, 0.3] seems to be
an ideal range of values for parameter min_sup of TDTC. Through Figure 6.10,
the average fitness of the generated sub-models tends to decrease, the average
complexity of the sub-models increases and the running time of TDTC decreases
as the value of θ increases. A good choice for the value of parameter θ seems to
be 50.

Regarding technique CTC, according to Figure 6.11, as the number of clus-
ter increases, the average fitness of the generated sub-models tends to increase,
the average model complexity tends to decrease and the running time for CTC
tends to increase. Finally, through Figure 6.12, it can be seen that as the value
of min_sup for CTC increases, the average fitness of the sub-models generated
tends to decrease (by not considering the exceptional case that happens to log
LOA as mentioned above), the average model complexity tends to increase and
the running time of CTC tends to decrease.

121

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.4

0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

Minimum Support for Closed Sequential Pattern

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

MCRM
VIPM
LOA
KIM

(a) ICS Fitness

0.1 0.15 0.2 0.25 0.3 0.35 0.4
40

42.5

45

47.5

50

52.5

55

57.5

60

62.5

65

67.5

70

72.5

75

77.5

80

Minimum Support for Closed Sequential Pattern

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

MCRM
VIPM
LOA
KIM

(b) E-Cardoso

0.1 0.15 0.2 0.25 0.3 0.35 0.4
2.3

2.35
2.4

2.45
2.5

2.55
2.6

2.65
2.7

2.75
2.8

2.85
2.9

2.95
3

3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

3.45
3.5

Minimum Support for Closed Sequential Pattern

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

MCRM
VIPM
LOA
KIM

(c) PT-CD

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

Minimum Support for Closed Sequential Pattern

R
un

ni
ng

 T
im

e
(s

)

MCRM
VIPM
LOA
KIM

(d) Running Time

Figure 6.9.: Comparison among different values for parameter min_sup for TDTC

50 100 150 200 250 300
0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

Minimum Size for Each Cluster

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

MCRM
VIPM
LOA
KIM

(a) ICS Fitness

50 100 150 200 250 300
38

40

42

44

46

48

50

52

54

56

58

60

62

Minimum Size for Each Cluster

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

MCRM
VIPM
LOA
KIM

(b) E-Cardoso

50 100 150 200 250 300
2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6

2.62

Minimum Size for Each Cluster

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

MCRM
VIPM
LOA
KIM

(c) PT-CD

50 100 150 200 250 300
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150

Minimum Size for Each Cluster

R
un

ni
ng

 T
im

e
(s

)

MCRM
VIPM
LOA
KIM

(d) Running Time

Figure 6.10.: Comparison among different values for parameter θ for TDTC

122

3 4 5 6
0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

MCRM
VIPM
LOA
KIM

(a) ICS Fitness

3 4 5 6
46

51

56

61

66

71

76

81

86

91

96

101

106

111

116

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

MCRM
VIPM
LOA
KIM

(b) E-Cardoso

3 4 5 6
2.26

2.3

2.34

2.38

2.42

2.46

2.5

2.54

2.58

2.62

2.66

2.7

2.74

2.78

2.82

2.86

2.9

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

MCRM
VIPM
LOA
KIM

(c) PT-CD

3 4 5 6
65

115
165
215
265
315
365
415
465
515
565
615
665
715
765
815
865
915
965

1015
1065
1115
1165
1215
1265
1315

Number of Clusters

R
un

ni
ng

 T
im

e
(s

)

MCRM
VIPM
LOA
KIM

(d) Running Time

Figure 6.11.: Comparison among different values for parameter µ for CTC

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Minimum Support for Closed Sequential Pattern

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

MCRM
VIPM
LOA
KIM

(a) ICS Fitness

0.1 0.15 0.2 0.25 0.3 0.35 0.4
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145

Minimum Support for Closed Sequential Pattern

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

MCRM
VIPM
LOA
KIM

(b) E-Cardoso

0.1 0.15 0.2 0.25 0.3 0.35 0.4
2.2

2.4

2.6

2.8

3

3.2

Minimum Support for Closed Sequential Pattern

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

MCRM
VIPM
LOA
KIM

(c) PT-CD

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

150
300
450
600
750
900

1050
1200
1350
1500
1650
1800
1950
2100
2250
2400
2550
2700
2850
3000
3150
3300

Minimum Support for Closed Sequential Pattern

R
un

ni
ng

 T
im

e
(s

)

MCRM
VIPM
LOA
KIM

(d) Running Time

Figure 6.12.: Comparison among different values for parameter min_sup for CTC

123

6.3.2. Comparison

We also compared our technique TDTC and CTC to other six classical trace clus-
tering techniques which are 3-gram [31], ATC [36], GED [35], MR and MRA [195]
and sequence clustering (SCT) [196] by employing the real-life event log VIPM,
LOA, KIM and MCRM. The minimum support min_sup for mining CSPs for both
TDTC and CTC is set to 0.25 for log LOA and is set to 0.1 for log VIPM, KIM and
MCRM. For TDTC, The fitness weight α = 0.6 and the complexity weight β = 0.4
are set for calculating the SMI for log LOA and VIPM, α = 0.4 and β = 0.6 for log
KIM, α = 0.8 and β = 0.2 for log MCRM. Furthermore, the minimum threshold µ
for SMI is set to 0.03, both the minimum thresholds µ f and µc for SSTB are set to
0, the minimum threshold ϕ f for FCSTB is set to 0.8, the maximum threshold ϕc
for CCSTB is set to 2.5 and the minimum size θ for each underlying sublog (clus-
ter) is set to 50. For technqiue CTC, the minimum size κ for each potential sublog
(cluster) is set to 50. For the technique HIF utilised by CTC, its target fitness αHIF
is set to 1, the model fitness improvement threshold βHIF is set to 0.03 and the
threshold µHIF for the number of newly added activities is set to 0.3.

Additionally, the accuracy of the generated sub-process models is also mea-
sured in terms of F-score which stands for the harmonic mean of recall (fitness)
and precision (appropriateness) [200] (the ETConformance Checker from ProM 6
is utilised for evaluating the precision of the mined sub-models). For each log, we
evaluate the trace clustering technique with different numbers of clusters (from
3, 4, 5 and 6). Figure 6.13 shows the comparison results from the perspective of
fitness. The results illustrate that CTC and TDTC perform better on event logs
LOA, VIPM and MCRM than the other six trace clustering methods. For the log
KIM, ATC has better overall performance than CTC and TDTC because ATC also
has a fitness improvement mechanism that is applied to the sub-process models.
However, the mechanism provided by CTC and TDTC seems more stable on the
four real-world event logs. Figure 6.14 shows the comparison results on F-score.
It can be seen that CTC and TDTC also perform better than the traditional trace
clustering techniques on most of the tested logs. Figure 6.15 highlights the com-
parison results from the angle of PT-CD. Here, CTC, TDTC and SCT outperform
the other techniques. Figure 6.16 depicts the comparison results on E-Cardoso,
based on which the performance of CTC mediates. The main reason is that the
fitness improvement method HIF utilised by CTC may decrease the performance
of CTC on optimising the complexity (evaluated by E-Cardoso) of the potential
sub-models. The performance of TDTC on E-Cardoso remains a very high level.
At last, we conclude that under a comprehensive assessment, CTC and TDTC
improve beyond the state-of-the-art in trace clustering in the context of process
model discovery.

124

CTC TDTC ATC SCT 3−gram MR MRA GED
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(a) LOA

CTC TDTC ATC SCT 3−gram MR MRA GED
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(b) VIPM

CTC TDTC ATC SCT 3−gram MR MRA GED
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(c) KIM

CTC TDTC ATC SCT 3−gram MR MRA GED
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(d) MCRM

Figure 6.13.: Comparison on weighed average fitness.

CTC TDTC ATC SCT 3−gram MR MRA GED
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 F

−
S

co
re

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(a) LOA

CTC TDTC ATC SCT 3−gram MR MRA GED
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 F

−
S

co
re

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(b) VIPM

CTC TDTC ATC SCT 3−gram MR MRA GED
0.58

0.63

0.68

0.73

0.78

0.83

0.88

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 F

−
S

co
re

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(c) KIM

CTC TDTC ATC SCT 3−gram MR MRA GED
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 F

−
S

co
re

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(d) MCRM

Figure 6.14.: Comparison on weighted average F-score.

125

CTC TDTC ATC SCT 3−gram MR MRA GED
2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(a) LOA

CTC TDTC ATC SCT 3−gram MR MRA GED
2.35
2.4

2.45
2.5

2.55
2.6

2.65
2.7

2.75
2.8

2.85
2.9

2.95
3

3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(b) VIPM

CTC TDTC ATC SCT 3−gram MR MRA GED
2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(c) KIM

CTC TDTC ATC SCT 3−gram MR MRA GED
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 P

T
−

C
D

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(d) MCRM

Figure 6.15.: Comparison on weighted average PT-CD.

CTC TDTC ATC SCT 3−gram MR MRA GED
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(a) LOA

CTC TDTC ATC SCT 3−gram MR MRA GED
37.5

40

42.5

45

47.5

50

52.5

55

57.5

60

62.5

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(b) VIPM

CTC TDTC ATC SCT 3−gram MR MRA GED
34.5

37
39.5

42
44.5

47
49.5

52
54.5

57
59.5

62
64.5

67
69.5

72
74.5

77
79.5

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(c) KIM

CTC TDTC ATC SCT 3−gram MR MRA GED
45

47

49

51

53

55

57

59

61

63

65

Trace Clustering Techniques

W
ei

gh
te

d
A

ve
ra

ge
 E

−
C

ar
do

so

3−Cluster
4−Cluster
5−Cluster
6−Cluster

(d) MCRM

Figure 6.16.: Comparison on weighted average E-Cardoso.

126

6.4. Evaluation on Technique GTCA

In Chapter 5, it is indicated that trace clustering technique might meet its limi-
tation while dealing with totally unstructured business processes. Afterwards,
a method named GTCA (graph and trace clustering-based approach) is put for-
ward in Chapter 5 which inherits the basic idea of MAS for handling extremely
complex process models. The technique GTCA that combines the characteristics
from the trace clustering technique and the process model abstraction-based ap-
proach is able to optimise the quality of the potential high level process model
using a new abstraction strategy based on graph clustering technique. As a re-
sult, a high-quality abstraction model can be assured. Moreover, the quality of
the sub-models built for displaying the details of their related high level activi-
ties is also optimised through trace clustering technique. In Section 6.4.1, we first
execute six classical trace clustering techniques (i.e., 3-gram, ATC, GED, SCT, MR
and MRA) on two event logs which are the log of loan and overdraft approvals
process (LOA) from BPIC 2012 and the hospital event log (Hospital) from BPIC
2011 to reveal the limitations of trace clustering technique. Afterwards, the ef-
fectiveness of technique GTCA is measured by using the three logs mentioned
above in Section 6.4.2.

6.4.1. The Limitations of Trace Clustering Technique

The repair log (Repair) [9], the hospital log (Hospital) and the log of the loan and
overdraft approvals process (LOA) are employed in our experiment. The basic
information about the three logs is shown in Table 6.7. The quality information
of the models mined from the three logs by using HM is listed in Table 6.8. The
ICS fitness is used to measure the accuracy of the mined process models. The
process model complexity metrics PT-CD and E-Cardoso are used for evaluating
the complexity of the mined models.

Table 6.7.: Basic information of the evaluated logs.
Log Traces Events Event types

Repair 1000 10827 12
LOA 13087 262200 36

Hospital 1143 150291 624

Firstly, six classical trace clustering techniques are executed on the event logs
Hospital and LOA3 which are 3-gram [31], MR and MRA [195], ATC [36], GED

3The log Repair is a very simple event log which contains simple process behaviours and most
of the six trace clustering techniques utilised can perform well for dealing with this log.

127

Table 6.8.: Evaluation results for the models mined by using the log Repair, Loan
and Hospital.

Log ICS Fitness E −Cardoso PT −CD

Repair 0.6768 31 2.3656
LOA 0.7878 148 3.1478

Hospital 0.6058 2108 2.703

[35] and SCT [196]. For each trace clustering approach five sublogs are gener-
ated for every of the two logs utilised. The assessment results on these tech-
niques are shown in Table 6.9. The metric Wt − ICS stands for the weighted
average ICS fitness based on the number of traces and We − ICS represents the
weighted average ICS fitness based on the number of events. For example, let
SL = {sl1, sl2, sl3, sl4, sl5} be a set of sublogs output by a trace clustering technique
carried out on event log L. For a sublog slk ∈ SL, ∣slk∣t represents the total number
of traces in slk, ∣slk∣e represents the total number of events in slk and ICSslk rep-
resents the value of ICS fitness for the sub-model mined from sublog slk. Then,
the Wt − ICS for the sublogs in SL is equal to (∑5

k=1 ∣slk∣t × ICSslk)/∑
5
k=1 ∣slk∣t and

the We − ICS is equal to (∑5
k=1 ∣slk∣e × ICSslk)/∑

5
k=1 ∣slk∣e. According to the evalu-

ation results shown in Table 6.9, for the logs Loan and Hospital which consist
of many complex trace behaviours, most trace clustering techniques employed
could not bring a significant improvement on the accuracy of the mined models
(especially for the log Hospital which records the trace behaviours from a totally
unstructured business process).

Table 6.9.: Evaluation results for the six classical trace clustering techniques exe-
cuted on the log LOA and Hospital.

Log Method Wt − ICS We − ICS

LOA 3-gram 0.76 0.4661
MR 0.7725 0.6923

MRA 0.7836 0.7005
ATC 0.7655 0.5665
GED 0.8147 0.8384
SCT 0.8671 0.8883

Hospital 3-gram 0.5406 0.5916
MR 0.6139 0.6846

MRA 0.5593 0.6784
ATC 0.5844 0.5949
GED 0.5867 0.6848
SCT 0.5977 0.6111

128

6.4.2. Measurement of the Performance of GTCA on Three Event
Logs

Whereafter, the approach GTCA proposed in this thesis is evaluated by using the
three logs mentioned above. The threshold φ for judging the casual relations is set
to 0 (such a setting will help find more complete activity clusters), the threshold
α for judging whether a high level activity generated should be removed or not
is set to 20, the threshold β for searching for the merging modes is set to 0.05,
the sub-model complexity threshold τ (for PT-CD) is set to 2.5, the sub-model
accuracy threshold χ (for ICS fitness) is set to 0.8, the trace number threshold κ is
set to 100 and the number of clusters for the trace clustering technique GED [35]
(GED is utilised because it has a better overall performance when dealing with
unstructured business processes) is set to 6. The quality information of the sub-
models generated is shown in Table 6.10, the quality information of the three high
level models (for the log Repair, LOA and Hospital) output by GTCA is shown in
Table 6.12 and the basic information of the three high level logs created by GTCA
is shown in Table 6.11.

Table 6.10.: The weighted average quality of the sub-models generated by GTCA.
Log Wt − ICS We − ICS Wt − E−Cardoso We − E−Cardoso Wt − PT−CD We − PT−CD

Repair 0.9738 0.9687 11.57 12.46 2.0688 2.0929
LOA 0.9514 0.9297 21.934 26.4995 2.1729 2.2238

Hospital 0.8891 0.902 467.84 465.2 3.1257 3.0956

Table 6.11.: Basic information of the generated high level logs.
H-Log Traces Events Event types

H-Repair 1000 2700 10
H-LOA 13087 40783 44

H-Hospital 1143 37740 65

According to Table 6.11, the generated high level event logs H-Repair and
H-Hospital contain fewer activities than their related raw event logs Repair and
Hospital. The main reason is that the activities in the original repair log and
hospital log can form high quality activity clusters (more activity relations inside
the cluster and fewer among the clusters). In the experiment about 1% events
from log Hospital and 0.5% events from log Loan are removed together with
the infrequent high level activities generated and for the log Repair no events are
removed (very few events are removed because of the effects of the trace merging
technique proposed in Section 5.3 of Chapter 5). However, the high level log H-
LOA contains eight more activities than log LOA. This is because the casual graph
formed by the activities from LOA does not have a structure with clear clusters.
According to Table 6.12, all of the three high level models generated have high
accuracy which benefits from the abstraction strategy proposed for GTCA.

129

Table 6.12.: The quality information of the high level models generated for each
log by GTCA.

Log ICS Fitness E −Cardoso PT−CD

Repair 0.978 33 2.483
LOA 0.9671 137 3.378

Hospital 0.95 192 2.4328

Figure 6.17, 6.18 and 6.19 show the raw models mined from log Repair, LOA
and Hospital respectively. Figure 6.20, 6.21 and 6.22 exhibit the high level pro-
cess models output by technique GTCA for log Repair, LOA and Hospital. For
the high level activities in the three built high level models, the average accuracy
of their relevant sub-models is also generally good. The complexity (expressed
by E-Cardoso and PT-CD) of the high level models for log Repair and LOA is a
little higher than the complexity of the original process models mined directly
from Repair and LOA but the complexity of the high level model for log Hospital
is much lower than the original model for Hospital. This is because the activities
in the log Hospital can form better activity clusters than the activities in the log
LOA and Repair. However, due to the fact that the process behaviours between
activities in the high level models for log LOA and Repair have been greatly sim-
plified by GTCA, as a result the high level models for log LOA and Repair are
still easier to be comprehended than their related original models (as proved by
Figure 6.17, 6.18, 6.20 and 6.21). The raw model for log Hospital is extremely
complex and is hard to be interpreted according to Figure 6.19. Nevertheless, the
high level model for log Hospital (see Figure 6.22) is much simpler than its related
raw model which proves the effectiveness of GTCA.

Figure 6.17.: Process model mined from log Repair.

Figure 6.18.: Process model mined from log LOA.

130

Figure 6.19.: Process model mined from log Hospital.

Figure 6.20.: High level model generated for log Repair.

Figure 6.21.: High level model generated for log LOA.

Figure 6.22.: High level model generated for log Hospital.

131

7
Conclusions

7.1. Summary

The present BPMD techniques often output inaccurate and complex process mod-
els when mining real-life event logs. In this thesis we investigated approaches
and techniques to assist existing BPMD techniques in mining accurate and com-
prehensible process models from real-life event logs. The techniques proposed
in this thesis are mainly based on three classical strategies for dealing with the
problem of inaccurate and complex process models mined from real-life event
logs: the MEBS, the MDS and the MAS. Each strategy has its own advantage and
limitation. Given a specific context, an appropriate strategy should be selected
to solve the relevant problem. To address the inefficiency of existing approaches
that have realised the three strategies, we have developed several solutions.

Mined Model Fitness Improvement Technique: HIF

Real-life event logs that usually stem from the business processes executed in
highly flexible environments often consist of extremely complex trace behaviours
which might be far beyond the expressive ability of existing BPMD techniques.
As a result, inaccurate process models are often obtained by the current BPMD
techniques implemented on real-life logs. Thereby, we presented a new mined
model fitness improvement technique named HIF. The basic idea of HIF is to
transform the fitness improvement problem for the non-fitting models mined into
the problem of locating the inexpressible process behaviours in the given event
log and then converting them into expressible behaviours for the utilised BPMD
techniques.

We have tested the effectiveness of the proposed technique HIF on several
real-life event logs for the BPMD technique HM. The experiment results indicate
that HIF greatly helps improve the accuracy of the process models mined by HM.

133

In addition, the principle of our method has a universal significance and can also
be employed for helping other kinds of BPMD algorithms mine more accurate
process models.

Trace Clustering Techniques: TDTC and CTC

The technique HIF cannot help decrease the complexity of the mined process
models. Except for accuracy, complexity is also a significant KPI for evaluating
the quality of a mined process model. A model that is too complex to be inter-
preted is almost useless. The MDS can be used to deal with the mined model
which is both inaccurate and complex. The classical technique that inherits the
idea of MDS is trace clustering. Nevertheless, most currently available trace clus-
tering approaches cannot assure the accuracy and simplicity of the potential sub-
models for each generated cluster. Therefore, we proposed two trace clustering
techniques: TDTC and CTC. Both techniques are able to optimise the accuracy
and complexity of the underlying sub-models for each trace cluster. Usually, CTC
has a better performance than TDTC. However, TDTC is recommended when the
number of activities in the given event logs is very large.

Through an elaborately designed experiment, we testified that TDTC and
CTC generally have a higher performance than existing trace clustering tech-
niques on the given real-life event logs.

Multi-label Case Classification Approach: MLCC

Trace Clustering can help find a lot of hidden trace behaviours among the cases.
However, it is an unsupervised learning approach and cannot make use of do-
main knowledge during the clustering process. As a result, it is unable to in-
dicate which behaviours located are significant for splitting the cases or which
behaviours are desired by the users for dividing the cases. Classification that is
a supervised learning technique is able to combine the domain knowledge from
business experts and make a meaningful division of the cases in the given logs.

By realising this problem mentioned above, we put forward the multi-label
case classification technique MLCC which is capable of employing the structural
behaviours of traces and the case-based attributes for classifying cases. After-
wards, through executing MLCC on a hospital event log from BPIC 2011 the ef-
fectiveness of MLCC is proved.

134

Mined Model Abstraction Technique: GTCA

The trace clustering technique and case classification technique will meet their
limitations when dealing with event logs consisting of massive trace behaviours.
In such a situation, the MAS which tries to discover the sub-process models in the
raw model and then abstract the found sub-models into high level activities in
the raw model should be considered. However, most present model abstraction-
based techniques focus mainly on the discovery of sub-process models and can-
not ensure the accuracy of the high level process models generated. Hence, we
proposed a new method named GTCA which inherits the characteristics of both
trace clustering and the MAS for dealing with the problem of extremely com-
plex process models. GTCA is able to optimise the quality of the potential high
level process models through a new abstraction strategy based on graph clus-
tering technique so that a high-quality abstraction process model can be built.
Additionally, the quality of the potential sub-process models discovered is also
improved by employing the trace clustering technique.

We tested GTCA using the hospital log from BPIC 2011 which contains the
traces from a very complex treatment process that is very hard to be interpreted.
The results output from the test shows that GTCA indeed provides a chance to
help understand the treatment process recorded in this hospital log.

7.2. Discussion and Outlook

Though the proposed techniques HIF, TDTC, CTC, MLCC and GTCA have shown
their promising potentials for helping generate high quality process models from
real-life event logs, they still have limitations to overcome. In this section we will
concentrate on the discussion of the shortages of these techniques and the future
work that will be carried out to improve the performance of these techniques.

Mined Model Fitness Improvement Technique: HIF

As shown in Section 6.1, the technique HIF is usually capable of discovering the
most efficient way for optimising the fitness of mined process models. This is
because HIF is devised to optimise the model fitness to the largest extent with
the least operations. Nevertheless, there are often different ways to improve the
fitness of a mined process model and the most efficient way might not always
be the best way (this is also proved in the experiment introduced in Section 6.1).
How to increase the possibility for HIF to find the best way to improve the fit-
ness of mined process models will be the most important topic in our future job.

135

However, another problem that can be foreseen is that the operation of finding
the best way for fitness improvement will bring greater cost on the performance
of HIF. Therefore, how to balance the degree for finding the best way for model
fitness improvement and the performance of HIF will also be an important future
job.

Mined Model Division-Based Techniques TDTC, CTC and
MLCC

The common feature of the trace clustering technique TDTC and CTC and the
multi-label case classification technique MLCC is that they employ the CSP for
representing the process behaviours recorded in the event logs. However, for
the event logs (such like the hospital event log from BPIC 2011) stemming from
totally unstructured business processes, it often takes quite a long time for the
existing CSP mining techniques to finish their mining job on these logs. In addi-
tion, a huge amount of CSPs might be generated. All these greatly influence the
performance of TDTC, CTC and MLCC.

Thereby, our future job on TDTC, CTC and MLCC will be mainly focused on
two directions for improving the performance of these techniques. The first direc-
tion is developing a new method to discover and eliminate the insignificant CSPs
from the total set of CSPs that has been discovered by the utilised CSP mining
techniques. The second direction will be finding a more efficient way to repre-
sent the process behaviours than using the CSPs.

A Recommendation Algorithm for HIF, TDTC, CTC, MLCC and
GTCA

As introduced in Chapter 1, techniques HIF, TDTC, CTC, MLCC and GTCA are
based on different strategies for helping generate high quality process models.
Each of these techniques has its own application context decided by the feature of
data that needs to be handled. Given a certain real-life event log, how to decide
which technique should be selected for dealing with this log is an interesting
problem. Furthermore, the technique GTCA has many parameters and deciding
the ideal parameter setting for GTCA for a certain event log is also a difficult
task.

Hence, another future job for us will be to develop a recommendation algo-
rithm which is able to recommend a suitable technique to the users by analysing
the characteristics of the data recorded in the event logs from the users. Addi-

136

tionally, if the technique GTCA is suggested, the recommendation algorithm can
also help select a suitable parameter setting for GTCA.

137

Bibliography

[1] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M. Shan,
“Business process intelligence,” Computers in Industry, vol. 53, no. 3,
pp. 321–343, 2004.

[2] D. R. Cooper, P. S. Schindler, and J. Sun, “Business research methods,” 2003.

[3] C. Vercellis, Business Intelligence: Data Mining and Optimization for Decision
Making. John Wiley Sons, 2011.

[4] M. Castellanos, A. A. De Medeiros, J. Mendling, B. Weber, and A. Wei-
jters, “Business process intelligence,” Handbook of Research on Business Pro-
cess Modeling, pp. 456–480, 2009.

[5] M. Attaran, “Exploring the relationship between information technology
and business process reengineering,” Information Management, vol. 41, no. 5,
pp. 585–596, 2004.

[6] J. F. Chang, Business Process Management Systems: Strategy and Implementa-
tion. CRC Press, 2016.

[7] K. Vergidis, A. Tiwari, and B. Majeed, “Business process analysis and op-
timization: Beyond reengineering,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 38, no. 1, pp. 69–82, 2008.

[8] W. M. van der Aalst, Process Mining: Data Science in Action. Springer, 2016.

[9] W. M. van der Aalst, Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

[10] J. Jeston and J. Nelis, Business Process Management. Routledge, 2014.

[11] W. M. van der Aalst, A. H. Ter Hofstede, and M. Weske, “Business process
management: A survey,” International Conference on Business Process Man-
agement, pp. 1–12, 2003.

[12] M. Dumas, W. M. van der Aalst, and A. H. Ter Hofstede, Process-Aware
Information Systems: Bridging People and Software Through Process Technology.
John Wiley Sons, 2005.

[13] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware Information

139

Systems: Challenges, Methods, Technologies. Springer Science Business Media,
2012.

[14] W. M. van der Aalst, A. H. Ter Hofstede, and M. Weske, “Business process
management: A survey,” International Conference on Business Process Man-
agement, pp. 1–12, 2003.

[15] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. van der Aalst,
“Process flexibility: A survey of contemporary approaches,” Advances in
Enterprise Engineering I, pp. 16–30, 2008.

[16] H. Schonenberg, B. Weber, B. Van Dongen, and W. M. van der Aalst, “Sup-
porting flexible processes through recommendations based on history,” In-
ternational Conference on Business Process Management, pp. 51–66, 2008.

[17] R. S. Mans, W. M. van der Aalst, and R. J. Vanwersch, “Process mining,”
Process Mining in Healthcare, pp. 17–26, 2015.

[18] W. M. van der Aalst, “Process discovery: An introduction,” Process Mining,
pp. 163–194, 2016.

[19] W. M. van der Aalst and A. Weijters, “Process mining: A research agenda,”
Computers in Industry, vol. 53, no. 3, pp. 231–244, 2004.

[20] W. M. van der Aalst, “Process mining: Overview and opportunities,” ACM
Transactions on Management Information Systems (TMIS), vol. 3, no. 2, p. 7,
2012.

[21] W. M. van der Aalst, “Process mining: Making knowledge discovery pro-
cess centric,” ACM SIGKDD Explorations Newsletter, vol. 13, no. 2, pp. 45–49,
2012.

[22] W. M. van der Aalst, “Process mining in the large: A tutorial,” Business
Intelligence, pp. 33–76, 2014.

[23] W. M. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Dis-
covering process models from event logs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[24] J. M. E. van der Werf, B. F. van Dongen, C. A. Hurkens, and A. Serebrenik,
“Process discovery using integer linear programming,” International Con-
ference on Applications and Theory of Petri Nets, pp. 368–387, 2008.

[25] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering block-
structured process models from event logs containing infrequent be-

140

haviour,” International Conference on Business Process Management, pp. 66–78,
2013.

[26] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering block-
structured process models from event logs-a constructive approach,” Inter-
national Conference on Applications and Theory of Petri Nets and Concurrency,
pp. 311–329, 2013.

[27] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering block-
structured process models from incomplete event logs,” International Con-
ference on Applications and Theory of Petri Nets and Concurrency, pp. 91–110,
2014.

[28] C. W. Günther and W. M. van Der Aalst, “Fuzzy mining–adaptive process
simplification based on multi-perspective metrics,” International Conference
on Business Process Management, pp. 328–343, 2007.

[29] A. K. de Medeiros, A. J. Weijters, and W. M. van der Aalst, “Genetic process
mining: An experimental evaluation,” Data Mining and Knowledge Discov-
ery, vol. 14, no. 2, pp. 245–304, 2007.

[30] W. M. van der Aalst, H. A. Reijers, A. J. Weijters, B. F. van Dongen, A. A.
De Medeiros, M. Song, and H. Verbeek, “Business process mining: An in-
dustrial application,” Information Systems, vol. 32, no. 5, pp. 713–732, 2007.

[31] M. Song, C. W. Günther, and W. M. van der Aalst, “Trace clustering in pro-
cess mining,” Business Process Management Workshops, pp. 109–120, 2009.

[32] A. A. Kalenkova, I. A. Lomazova, and W. M. van der Aalst, “Process model
discovery: A method based on transition system decomposition,” Inter-
national Conference on Applications and Theory of Petri Nets and Concurrency,
pp. 71–90, 2014.

[33] R. J. C. Bose and W. M. van der Aalst, “Abstractions in process mining: A
taxonomy of patterns,” International Conference on Business Process Manage-
ment, pp. 159–175, 2009.

[34] S. Smirnov, M. Weidlich, and J. Mendling, “Business process model ab-
straction based on behavioural profiles,” International Conference on Service-
Oriented Computing, pp. 1–16, 2010.

[35] R. J. C. Bose and W. M. van der Aalst, “Context aware trace clustering:
Towards improving process mining results,” Proceedings of the 2009 SIAM
International Conference on Data Mining, pp. 401–412, 2009.

141

[36] J. De Weerdt, S. vanden Broucke, J. Vanthienen, and B. Baesens, “Ac-
tive trace clustering for improved process discovery,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 12, pp. 2708–2720, 2013.

[37] A. Weijters and J. Ribeiro, “Flexible heuristics miner (fhm),” Computational
Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on, pp. 310–317,
2011.

[38] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “Bpmn miner:
Automated discovery of bpmn process models with hierarchical structure,”
Information Systems, vol. 56, pp. 284–303, 2016.

[39] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser, “Process mining based
on regions of languages,” International Conference on Business Process Man-
agement, pp. 375–383, 2007.

[40] W. M. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Dis-
covering process models from event logs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[41] T. Baier and J. Mendling, “Bridging abstraction layers in process mining by
automated matching of events and activities,” Business Process Management,
pp. 17–32, 2013.

[42] T. Baier and J. Mendling, “Bridging abstraction layers in process mining:
Event to activity mapping,” Enterprise, Business-Process and Information Sys-
tems Modeling, pp. 109–123, 2013.

[43] F. Masseglia, M. Teisseire, and P. Poncelet, “Sequential pattern mining,”
in Encyclopedia of Data Warehousing and Mining, pp. 1028–1032, IGI Global,
2005.

[44] S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1, no. 1,
pp. 27–64, 2007.

[45] J. Becker, M. Rosemann, and C. Von Uthmann, “Guidelines of business pro-
cess modeling,” Business Process Management, pp. 30–49, 2000.

[46] M. Weske, Business Process Management. Springer, 2012.

[47] W. M. van der Aalst, “Business process management: A comprehensive
survey,” ISRN Software Engineering, vol. 2013, 2013.

[48] M. A. Ould and M. Ould, Business Processes: Modelling and Analysis for Re-
Engineering and Improvement, vol. 598. Wiley Chichester, 1995.

142

[49] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Ad-
vances in Knowledge Discovery and Data Mining, vol. 21. AAAI press Menlo
Park, 1996.

[50] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques. Else-
vier, 2011.

[51] D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. MIT press,
2001.

[52] P. Berkhin et al., “A survey of clustering data mining techniques.,” Grouping
multidimensional data, vol. 25, p. 71, 2006.

[53] J. Grabmeier and A. Rudolph, “Techniques of cluster algorithms in data
mining,” Data Mining and knowledge discovery, vol. 6, no. 4, pp. 303–360,
2002.

[54] K. Hammouda and F. Karray, “A comparative study of data clustering tech-
niques,” University of Waterloo, Ontario, Canada, 2000.

[55] K. D. Bailey, Typologies and Taxonomies: An Introduction to Classification Tech-
niques, vol. 102. Sage, 1994.

[56] T. N. Phyu, “Survey of classification techniques in data mining,” Proceed-
ings of the International MultiConference of Engineers and Computer Scientists,
vol. 1, pp. 18–20, 2009.

[57] S. Kotsiantis, “Supervised machine learning: A review of classification
techniques,” Informatica, vol. 31, pp. 249–268, 2007.

[58] A. de Carvalho and A. Freitas, “A tutorial on multi-label classification tech-
niques,” Foundations of Computational Intelligence Volume 5, pp. 177–195,
2009.

[59] A. Rozinat and W. M. van der Aalst, Decision Mining in Business Processes.
Beta, Research School for Operations Management and Logistics, 2006.

[60] A. Rozinat and W. M. van der Aalst, “Decision mining in prom,” Business
process management, vol. 4102, pp. 420–425, 2006.

[61] N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential pattern min-
ing algorithms,” ACM Computing Surveys (CSUR), vol. 43, no. 1, p. 3, 2010.

[62] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: Current

143

status and future directions,” Data Mining and Knowledge Discovery, vol. 15,
no. 1, pp. 55–86, 2007.

[63] O. Maimon and L. Rokach, Data Mining and Knowledge Discovery Handbook,
vol. 2. Springer, 2005.

[64] E. Rahm and H. H. Do, “Data cleaning: Problems and current approaches,”
IEEE Data Eng. Bull., vol. 23, no. 4, pp. 3–13, 2000.

[65] L. Geng and H. J. Hamilton, “Interestingness measures for data mining: A
survey,” ACM Computing Surveys (CSUR), vol. 38, no. 3, p. 9, 2006.

[66] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kaufmann, 2016.

[67] B. L. W. H. Y. Ma and W. Liu, “Integrating classification and association
rule mining,” Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, 1998.

[68] W. Li, J. Han, and J. Pei, “Cmar: Accurate and efficient classification based
on multiple class-association rules,” Data Mining, 2001. ICDM 2001, Pro-
ceedings IEEE International Conference on, pp. 369–376, 2001.

[69] L. Rokach and O. Maimon, Data Mining with Decision Trees: Theory and Ap-
plications. World scientific, 2014.

[70] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE transactions on systems, man, and cybernetics, vol. 21,
no. 3, pp. 660–674, 1991.

[71] D. J. Hand, “Measuring classifier performance: A coherent alternative to
the area under the roc curve,” Machine learning, vol. 77, no. 1, pp. 103–123,
2009.

[72] T. Kautz, B. M. Eskofier, and C. F. Pasluosta, “Generic performance measure
for multiclass-classifiers,” Pattern Recognition, vol. 68, pp. 111–125, 2017.

[73] M. Carbonero-Ruz, F. J. Martínez-Estudillo, F. Fernández-Navarro,
D. Becerra-Alonso, and A. C. Martínez-Estudillo, “A two dimensional
accuracy-based measure for classification performance,” Information Sci-
ences, vol. 382, pp. 60–80, 2017.

[74] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters,
vol. 27, no. 8, pp. 861–874, 2006.

144

[75] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting,” European Conference on Computa-
tional Learning Theory, pp. 23–37, 1995.

[76] P. Viola and M. Jones, “Fast and robust classification using asymmetric ad-
aboost and a detector cascade,” Advances In Neural Information Processing
Systems, pp. 1311–1318, 2002.

[77] J. Zhu, H. Zou, S. Rosset, T. Hastie, et al., “Multi-class adaboost,” Statistics
and its Interface, vol. 2, no. 3, pp. 349–360, 2009.

[78] I. Rish, “An empirical study of the naive bayes classifier,” IJCAI 2001 Work-
shop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22, pp. 41–46,
2001.

[79] C. Elkan, “Boosting and naive bayesian learning,” Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining, 1997.

[80] R. R. Yager, “An extension of the naive bayesian classifier,” Information Sci-
ences, vol. 176, no. 5, pp. 577–588, 2006.

[81] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT press, 2002.

[82] I. Steinwart and A. Christmann, Support Vector Machines. Springer Science
& Business Media, 2008.

[83] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intelligent Systems and their Applications, vol. 13,
no. 4, pp. 18–28, 1998.

[84] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[85] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,
pp. 81–106, 1986.

[86] J. R. Quinlan, C4. 5: Programs for Machine Learning. Elsevier, 2014.

[87] J. R. Quinlan, “Improved use of continuous attributes in c4. 5,” Journal of
Artificial Intelligence Research, vol. 4, pp. 77–90, 1996.

[88] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication.
University of Illinois Press, 1998.

145

[89] R. J. Roiger, Data Mining: A Tutorial-Based Primer. CRC Press, 2017.

[90] M. R. Anderberg, Cluster Analysis for Applications: Probability and Mathemat-
ical Statistics: A Series of Monographs and Textbooks, vol. 19. Academic Press,
2014.

[91] P. Berkhin et al., “A survey of clustering data mining techniques.,” Grouping
Multidimensional Data, vol. 25, p. 71, 2006.

[92] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM
Computing Surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[93] J. A. Hartigan and J. Hartigan, Clustering Algorithms, vol. 209. Wiley New
York, 1975.

[94] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: An
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, vol. 2, no. 1, pp. 86–97, 2012.

[95] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clustering
using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68–75, 1999.

[96] Y. Zhao, G. Karypis, and U. Fayyad, “Hierarchical clustering algorithms for
document datasets,” Data Mining and Knowledge Discovery, vol. 10, no. 2,
pp. 141–168, 2005.

[97] F. Murtagh, “A survey of recent advances in hierarchical clustering algo-
rithms,” The Computer Journal, vol. 26, no. 4, pp. 354–359, 1983.

[98] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based cluster-
ing,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 1, no. 3, pp. 231–240, 2011.

[99] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering in
spatial databases: The algorithm gdbscan and its applications,” Data Min-
ing and Knowledge Discovery, vol. 2, no. 2, pp. 169–194, 1998.

[100] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” Kdd, vol. 96,
no. 34, pp. 226–231, 1996.

[101] Y. Lv, T. Ma, M. Tang, J. Cao, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan,
“An efficient and scalable density-based clustering algorithm for datasets
with complex structures,” Neurocomputing, vol. 171, pp. 9–22, 2016.

146

[102] A. Lulli, M. Dell’Amico, P. Michiardi, and L. Ricci, “Ng-dbscan: Scalable
density-based clustering for arbitrary data,” Proceedings of the VLDB En-
dowment, vol. 10, no. 3, pp. 157–168, 2016.

[103] N. H. Park and W. S. Lee, “Statistical grid-based clustering over data
streams,” Acm Sigmod Record, vol. 33, no. 1, pp. 32–37, 2004.

[104] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[105] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al., “Constrained k-means
clustering with background knowledge,” ICML, vol. 1, pp. 577–584, 2001.

[106] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and
A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and imple-
mentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 7, pp. 881–892, 2002.

[107] D. Kavya and C. D. Desai, “Comparative analysis of k-means clustering
sequentially and parallely,” nature, vol. 3, no. 04, 2016.

[108] X. Jin and J. Han, “K-medoids clustering,” Encyclopedia of Machine Learning,
pp. 564–565, 2011.

[109] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clus-
tering,” Expert Systems with Applications, vol. 36, no. 2, pp. 3336–3341, 2009.

[110] Q. Zhang and I. Couloigner, “A new and efficient k-medoid algorithm for
spatial clustering,” Computational Science and Its Applications–ICCSA 2005,
pp. 207–224, 2005.

[111] J. V. De Oliveira and W. Pedrycz, Advances in Fuzzy Clustering and its appli-
cations. John Wiley & Sons, 2007.

[112] M. M. Deza and E. Deza, Encyclopedia of Distances, vol. 94. Springer, 2009.

[113] K. A. Heller and Z. Ghahramani, “Bayesian hierarchical clustering,” Pro-
ceedings of the 22nd International Conference on Machine Learning, pp. 297–304,
2005.

[114] I. Davidson and S. Ravi, “Agglomerative hierarchical clustering with con-
straints: Theoretical and empirical results,” pp. 59–70, 2005.

[115] P. Franti, O. Virmajoki, and V. Hautamaki, “Fast agglomerative clustering

147

using a k-nearest neighbour graph,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, no. 11, pp. 1875–1881, 2006.

[116] A. Guénoche, P. Hansen, and B. Jaumard, “Efficient algorithms for divisive
hierarchical clustering with the diameter criterion,” Journal of Classification,
vol. 8, no. 1, pp. 5–30, 1991.

[117] D. Hofmeyr, N. Pavlidis, and I. Eckley, “Divisive clustering of high dimen-
sional data streams,” Statistics and Computing, vol. 26, no. 5, pp. 1101–1120,
2016.

[118] D. B. West et al., Introduction to Graph Theory, vol. 2. Prentice hall Upper
Saddle River, 2001.

[119] B. Bollobás, Modern Graph Theory, vol. 184. Springer Science & Business
Media, 2013.

[120] J. L. Gross and J. Yellen, Handbook of Graph Theory. CRC press, 2004.

[121] B. Bollobás, B. Bollobás, B. Bollobás, and B. Bollobás, Graph Theory: An In-
troductory Course, vol. 63. Springer New York, 1979.

[122] A. Capocci, V. D. Servedio, G. Caldarelli, and F. Colaiori, “Detecting com-
munities in large networks,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 352, no. 2, pp. 669–676, 2005.

[123] J. Edachery, A. Sen, and F. Brandenburg, “Graph clustering using distance-
k cliques,” in Graph Drawing, pp. 98–106, Springer, 1999.

[124] E. Hartuv and R. Shamir, “A clustering algorithm based on graph connec-
tivity,” Information Processing Letters, vol. 76, no. 4-6, pp. 175–181, 2000.

[125] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou, “Mining coherent dense
subgraphs across massive biological networks for functional discovery,”
Bioinformatics, vol. 21, no. suppl_1, pp. i213–i221, 2005.

[126] S. Kim, “Graph theoretic sequence clustering algorithms and their applica-
tions to genome comparison.,” 2003.

[127] H. Matsuda, T. Ishihara, and A. Hashimoto, “Classifying molecular se-
quences using a linkage graph with their pairwise similarities,” Theoretical
Computer Science, vol. 210, no. 2, pp. 305–325, 1999.

[128] J. Šıma and S. E. Schaeffer, “On the np-completeness of some graph cluster
measures,” in Proceedings of the Thirty-second International Conference on Cur-

148

rent Trends in Theory and Practice of Computer Science (Sofsem 06), vol. 3831,
pp. 530–537, Springer, 2006.

[129] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad and spec-
tral,” Journal of the ACM (JACM), vol. 51, no. 3, pp. 497–515, 2004.

[130] X. He, H. Zha, C. H. Ding, and H. D. Simon, “Web document clustering us-
ing hyperlink structures,” Computational Statistics & Data Analysis, vol. 41,
no. 1, pp. 19–45, 2002.

[131] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis, “Graph clustering and
minimum cut trees,” Internet Mathematics, vol. 1, no. 4, pp. 385–408, 2004.

[132] D. W. Matula and F. Shahrokhi, “Sparsest cuts and bottlenecks in graphs,”
Discrete Applied Mathematics, vol. 27, no. 1-2, pp. 113–123, 1990.

[133] A. Noack, “An energy model for visual graph clustering,” in Graph Draw-
ing, vol. 2912, pp. 425–436, Springer, 2003.

[134] A. Noack, “Energy models for graph clustering.,” J. Graph Algorithms Appl.,
vol. 11, no. 2, pp. 453–480, 2007.

[135] A. Noack, “Energy-based clustering of graphs with nonuniform degrees,”
Lecture Notes in Computer Science, vol. 3843, pp. 309–320, 2006.

[136] C. J. Alpert and A. B. Kahng, “Recent directions in netlist artitioning: A
survey,” Integration, the VLSI Journal, vol. 19, no. 1-2, pp. 1–81, 1995.

[137] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–
905, 2000.

[138] M. E. Newman, “Analysis of weighted networks,” Physical review E, vol. 70,
no. 5, p. 056131, 2004.

[139] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal, “Multi-
dimensional sequential pattern mining,” in Proceedings of the Tenth Interna-
tional Conference on Information and Knowledge Management, pp. 81–88, ACM,
2001.

[140] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings
of the Eleventh International Conference on Data Engineering, pp. 3–14, IEEE,
1995.

149

[141] M. N. Garofalakis, R. Rastogi, and K. Shim, “Spirit: Sequential pattern min-
ing with regular expression constraints,” in VLDB, vol. 99, pp. 7–10, 1999.

[142] J. Pei, J. Han, and W. Wang, “Constraint-based sequential pattern min-
ing: The pattern-growth methods,” Journal of Intelligent Information Systems,
vol. 28, no. 2, pp. 133–160, 2007.

[143] D.-Y. Chiu, Y.-H. Wu, and A. L. Chen, “An efficient algorithm for mining
frequent sequences by a new strategy without support counting,” in Data
Engineering, 2004. Proceedings. 20th International Conference on, pp. 375–386,
IEEE, 2004.

[144] X. Yan, J. Han, and R. Afshar, “Clospan: Mining: Closed sequential patterns
in large datasets,” in Proceedings of the 2003 SIAM International Conference on
Data Mining, pp. 166–177, SIAM, 2003.

[145] C.-C. Yu and Y.-L. Chen, “Mining sequential patterns from multidimen-
sional sequence data,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 1, pp. 136–140, 2005.

[146] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu,
“Freespan: Frequent pattern-projected sequential pattern mining,” in Pro-
ceedings of the Sixth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 355–359, ACM, 2000.

[147] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu,
“Prefixspan: Mining sequential patterns efficiently by prefix-projected pat-
tern growth,” in Proceedings of the 17th International Conference on Data Engi-
neering, pp. 215–224, 2001.

[148] P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas, “Fast vertical
mining of sequential patterns using co-occurrence information,” in Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pp. 40–52, Springer,
Cham, 2014.

[149] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models from
workflow logs,” Advances in Database Technology—EDBT’98, pp. 467–483,
1998.

[150] A. Rozinat and W. M. van der Aalst, “Conformance checking of processes
based on monitoring real behaviour,” Information Systems, vol. 33, no. 1,
pp. 64–95, 2008.

[151] W. Van der Aalst, A. Adriansyah, and B. van Dongen, “Replaying history
on process models for conformance checking and performance analysis,”

150

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2,
no. 2, pp. 182–192, 2012.

[152] A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Conformance
checking using cost-based fitness analysis,” in Enterprise Distributed Object
Computing Conference (EDOC), 2011 15th IEEE International, pp. 55–64, IEEE,
2011.

[153] M. De Leoni, F. M. Maggi, and W. M. van der Aalst, “Aligning event
logs and declarative process models for conformance checking.,” in BPM,
vol. 12, pp. 82–97, Springer, 2012.

[154] X. Lu, D. Fahland, and W. M. van der Aalst, “Conformance checking based
on partially ordered event data.,” in Business process management workshops,
pp. 75–88, 2014.

[155] L. Garcia-Banuelos, N. van Beest, M. Dumas, M. La Rosa, and W. Mertens,
“Complete and interpretable conformance checking of business processes,”
IEEE Transactions on Software Engineering, 2017.

[156] A. Rogge-Solti, A. Senderovich, M. Weidlich, J. Mendling, and A. Gal,
“In log and model we trust? a generalized conformance checking frame-
work,” in International Conference on Business Process Management, pp. 179–
196, Springer, 2016.

[157] A. A. De Medeiros and A. Weijters, “Genetic process mining,” in Applica-
tions and Theory of Petri Nets 2005, Volume 3536 of Lecture Notes in Computer
Science, Citeseer, 2005.

[158] W. M. van der Aalst, A. De Medeiros, and A. Weijters, “Genetic process
mining,” Applications and Theory of Petri Nets, pp. 985–985, 2005.

[159] A. K. Alves de Medeiros, “Genetic process mining,” CIP-Data Library Tech-
nische Universiteit Eindhoven, 2006.

[160] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros,
“Workflow patterns,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–
51, 2003.

[161] W. M. van der Aalst, A. P. Barros, A. H. ter Hofstede, and B. Kiepuszewski,
“Advanced workflow patterns,” in CoopIS, vol. 1901, pp. 18–29, Springer,
2000.

[162] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, “Process min-

151

ing with the heuristics miner-algorithm,” Technische Universiteit Eindhoven,
Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

[163] A. Burattin and A. Sperduti, “Heuristics miner for time intervals.,” in
ESANN, 2010.

[164] S. De Cnudde, J. Claes, and G. Poels, “Improving the quality of the heuris-
tics miner in prom 6.2,” Expert Systems with Applications, vol. 41, no. 17,
pp. 7678–7690, 2014.

[165] S. K. vanden Broucke and J. De Weerdt, “Fodina: A robust and flexible
heuristic process discovery technique,” Decision Support Systems, 2017.

[166] J. Munoz-Gama and J. Carmona, “Enhancing precision in process confor-
mance: Stability, confidence and severity,” in Computational Intelligence and
Data Mining (CIDM), 2011 IEEE Symposium on, pp. 184–191, IEEE, 2011.

[167] M. Zhou and K. Venkatesh, Modeling, Simulation, and Control of Flexible Man-
ufacturing Systems: A Petri Net Approach, vol. 6. World Scientific, 1999.

[168] K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Application.
Springer Science & Business Media, 2012.

[169] W. M. van der Aalst and K. Van Hee, “Business process redesign: A petri-
net-based approach,” Computers in Industry, vol. 29, no. 1, pp. 15–26, 1996.

[170] E. Best, R. Devillers, and M. Koutny, Petri Net Algebra. Springer Science and
Business Media, 2013.

[171] W. M. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek,
“Conformance checking of service behaviour,” ACM Transactions on Internet
Technology (TOIT), vol. 8, no. 3, p. 13, 2008.

[172] W. M. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H. Verbeek,
“Choreography conformance checking: An approach based on bpel and
petri nets,” 2005.

[173] R. Accorsi and T. Stocker, “On the exploitation of process mining for se-
curity audits: The conformance checking case,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pp. 1709–1716, ACM, 2012.

[174] J. Cardoso, J. Mendling, G. Neumann, and H. Reijers, “A discourse on
complexity of process models,” in Business Process Management Workshops,
pp. 117–128, Springer, 2006.

152

[175] V. Gruhn and R. Laue, “Complexity metrics for business process models,”
in 9th International Conference on Business Information Systems (BIS 2006),
vol. 85, pp. 1–12, 2006.

[176] G. Muketha, “A survey of business processes complexity metrics,” 2010.

[177] K. B. Lassen and W. M. van der Aalst, “Complexity metrics for workflow
nets,” Information and Software Technology, vol. 51, no. 3, pp. 610–626, 2009.

[178] J. Cardoso, “Control-flow complexity measurement of processes and
weyuker’s properties,” in 6th International Enformatika Conference, vol. 8,
pp. 213–218, 2005.

[179] J. Mendling, H. Reijers, and J. Cardoso, “What makes process models un-
derstandable?,” Business Process Management, pp. 48–63, 2007.

[180] I. Vanderfeesten, J. Cardoso, J. Mendling, H. A. Reijers, and W. M. van der
Aalst, “Quality metrics for business process models,” BPM and Workflow
Handbook, vol. 144, pp. 179–190, 2007.

[181] A. Alves de Medeiros, B. Van Dongen, W. van Der Aalst, and A. Weijters,
“Process mining: Extending the α-algorithm to mine short loops,” tech.
rep., BETA Working Paper Series, 2004.

[182] L. Wen, W. M. van der Aalst, J. Wang, and J. Sun, “Mining process mod-
els with non-free-choice constructs,” Data Mining and Knowledge Discovery,
vol. 15, no. 2, pp. 145–180, 2007.

[183] J. Desel and J. Esparza, Free Choice Petri Nets, vol. 40. Cambridge University
Press, 2005.

[184] B. Van Dongen, A. Alves de Medeiros, and L. Wen, “Process mining:
Overview and outlook of petri net discovery algorithms,” Transactions on
Petri Nets and Other Models of Concurrency II, pp. 225–242, 2009.

[185] R. S. Garfinkel and G. L. Nemhauser, Integer Programming, vol. 4. Wiley
New York, 1972.

[186] R. S. Mans, M. Schonenberg, M. Song, W. M. van der Aalst, and P. J. Bakker,
“Application of process mining in healthcare–a case study in a dutch hos-
pital,” in International Joint Conference on Biomedical Engineering Systems and
Technologies, pp. 425–438, Springer, 2008.

[187] W. M. van der Aalst and C. W. Gunther, “Finding structure in unstructured
processes: The case for process mining,” in Application of Concurrency to

153

System Design, 2007. ACSD 2007. Seventh International Conference on, pp. 3–
12, IEEE, 2007.

[188] R. J. C. Bose and W. M. van der Aalst, “Trace alignment in process min-
ing: Opportunities for process diagnostics.,” in BPM, vol. 6336, pp. 227–
242, Springer, 2010.

[189] L. Davis, “Handbook of genetic algorithms,” 1991.

[190] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learn-
ing,” Machine Learning, vol. 3, no. 2, pp. 95–99, 1988.

[191] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Computer,
vol. 27, no. 6, pp. 17–26, 1994.

[192] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4,
no. 2, pp. 65–85, 1994.

[193] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, “Discovering expressive pro-
cess models by clustering log traces,” IEEE Transactions on Knowledge and
Data Engineering, vol. 18, no. 8, pp. 1010–1027, 2006.

[194] L. García-Bañuelos, M. Dumas, M. La Rosa, J. De Weerdt, and C. C.
Ekanayake, “Controlled automated discovery of collections of business
process models,” Information Systems, vol. 46, pp. 85–101, 2014.

[195] R. Bose and W. M. van der Aalst, “Trace clustering based on conserved pat-
terns: Towards achieving better process models,” in Business Process Man-
agement Workshops, pp. 170–181, Springer, 2010.

[196] D. Ferreira, M. Zacarias, M. Malheiros, and P. Ferreira, “Approaching pro-
cess mining with sequence clustering: Experiments and findings,” in Inter-
national Conference on Business Process Management, pp. 360–1374, Springer,
2007.

[197] S. Smirnov, H. A. Reijers, M. Weske, and T. Nugteren, “Business process
model abstraction: A definition, catalog, and survey,” Distributed and Paral-
lel Databases, vol. 30, no. 1, pp. 63–99, 2012.

[198] S. Smirnov, H. Reijers, and M. Weske, “A semantic approach for business
process model abstraction,” in Advanced Information Systems Engineering,
pp. 497–511, Springer, 2011.

[199] S. Smirnov, M. Weidlich, and J. Mendling, “Business process model abstrac-
tion based on synthesis from well-structured behavioural profiles,” Inter-

154

national Journal of Cooperative Information Systems, vol. 21, no. 01, pp. 55–83,
2012.

[200] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “Beyond tasks
and gateways: Discovering bpmn models with subprocesses, boundary
events and activity markers,” in International Conference on Business Process
Management, pp. 101–117, Springer, 2014.

[201] T. Baier, J. Mendling, and M. Weske, “Bridging abstraction layers in process
mining,” Information Systems, vol. 46, pp. 123–139, 2014.

[202] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Deriving petri
nets from finite transition systems,” IEEE Transactions on Computers, vol. 47,
no. 8, pp. 859–882, 1998.

[203] D. Fahland and W. M. van der Aalst, “Repairing process models to reflect
reality,” in International Conference on Business Process Management, pp. 360–
1374, Springer, 2007.

[204] J. Fleiss, Statistical Methods for Rates and Proportions. New York: John Wiley,
2003.

[205] W. Iba and P. Langley, “Introduction of one-level decision trees,” in Inter-
national Conference on Machine Learning, pp. 233–240, Morgan Kaufmann,
1992.

155

List of Figures

1.1. Illustration of the basic idea for solving the problem of BPMD un-
der flexible environment. 4

2.1. The incomplete decision tree and sub-training data sets generated
after processing the first selected attribute: Income. 17

2.2. Illustration of the agglomerative clustering method. 20
2.3. Illustration of the divisive clustering method. 21
2.4. An example graph G1 utilised for explaining the fundamental con-

cepts about graph. 22
2.5. An example graph G2 utilised for explaining the basic idea of graph

clustering methods that utilise cut-based clustering criteria. 23
2.6. An example event log with the contents from the hospital event

log from BPIC 2011. 27
2.7. The attribute information for the second event of Case 1. 27
2.8. Basic idea of business process model discovery. 28
2.9. Illustration of four kinds of basic workflow patterns. 29
2.10. Dependency graph dg1 for the activities from event log L1. 30
2.11. The C-net cn1 mined by HM for event log L1. 31
2.12. The process of token generation and consumption for XOR-choice

pattern. 33
2.13. The process of token generation and consumption for OR-choice

pattern. 33
2.14. The process of token generation and consumption for Parallel pat-

tern. 33
2.15. Token replay for trace t over the example process model. 34
2.16. Illustration of Non-free choice in process models. 37
2.17. Illustration of the problems met by Alpha algorithm for expressing

loop of length one and length two. 37
2.18. Four kinds of cuts defined by Inductive Miner. 38
2.19. Running process of IM over the simple event log L3. 38
2.20. The process model mined by IM for the simple event log L3. 39
2.21. The process model mined by HM for the simple event log L3. 39
2.22. Cuts discovered by IM from the directly-follows graph for event

log L4. 40
2.23. The process model mined by IM for the simple event log L4. 40
2.24. The process model mined by HM for the simple event log L4. 40
2.25. The process model mined by ILPM for the simple event log L4. . . 41
2.26. Illustration of the basic trace clustering procedure in process mining. 42

3.1. An example event log L1 and the process model mined by execut-
ing Heuristics Miner on L1. 46

157

3.2. The process for dealing with inexpressible process behaviours recorded
in real-life event logs. 47

3.3. The PBS built for the example event log L1. 49
3.4. The process model mined from newly generated log L2. 53
3.5. The basic procedure for technique DCIB. 53
3.6. The example event log L3 and its relevant process model minded

by HM. 56
3.7. The process model output by HIF for the example log L3. 57

4.1. Business process model of the loan and overdraft approvals process. 59
4.2. Illustration of the basic idea of the proposed technique TDTC. . . . 63
4.3. Illustration of the basic idea for the proposed compound trace clus-

tering technique. 72
4.4. Illustration of the basic idea for technique C-TDTC. 73
4.5. Illustration of the basic idea for searching for the best CRSB. 74
4.6. Model of case classification in the scenario of process mining. . . . 79
4.7. The procedure of mining label-related functions from a training

event log. 83
4.8. The process model mined from the repair log. 87
4.9. The binary tree output by TDTC executed on the repair log. 89
4.10. The information of the division process for the repair log executed

by technique C-TDTC. 89
4.11. The four sub-process models generated by technique TDTC for the

repair log. 90
4.12. The five sub-process models generated by technique CTC for the

repair log. 91
4.13. Decision Trees built for treatment 113 and treatment 3101. 93
4.14. Comparison among different classification techniques on case clas-

sification . 95
4.15. ICS fitness for the models generated by utilising the sublogs from

SL and PL. 96

5.1. Illustration of the basic ideas of the proposed approach GTCA. . . . 99
5.2. Further decompose the interrelations between cluster A and C. . . 102

6.1. The three example event logs utilised for the comparison between
HIF and other BPMD techniques. 110

6.2. Process models mined from example log L1. 112
6.3. Process models mined from example log L2. 113
6.4. Process models mined from example log L3. 114
6.5. Comparison among different values for parameter α for HIF 116
6.6. Comparison among different values for parameter β for HIF 117
6.7. Comparison among different values for parameter µ for HIF 118
6.8. Comparison among different values for parameter µ for TDTC . . . 121
6.9. Comparison among different values for parameter min_sup for TDTC122
6.10. Comparison among different values for parameter θ for TDTC . . . 122

158

6.11. Comparison among different values for parameter µ for CTC 123
6.12. Comparison among different values for parameter min_sup for CTC 123
6.13. Comparison on weighed average fitness. 125
6.14. Comparison on weighted average F-score. 125
6.15. Comparison on weighted average PT-CD. 126
6.16. Comparison on weighted average E-Cardoso. 126
6.17. Process model mined from log Repair. 130
6.18. Process model mined from log LOA. 130
6.19. Process model mined from log Hospital. 131
6.20. High level model generated for log Repair. 131
6.21. High level model generated for log LOA. 131
6.22. High level model generated for log Hospital. 131

159

List of Tables

2.1. Standard training and testing data format for classification technique. 14
2.2. An example training data set. 17
2.3. An example sequence database S1. 24
2.4. Degree of casual relations between activities from event log L1. . . 31

3.1. The activity ranking result for the example event log L1. 50
3.2. The activity ranking result for the example event log L3. 57

4.1. The information about the sub-process models mined from the sublogs
of LOA generated by six classical trace clustering techniques. 61

4.2. An example event log. 80
4.3. An example association table for the functions in F∗. 85
4.4. The association table for the activities from the repair log. 86
4.5. The CSPs mined from the repair log by using CMClaSP for tech-

nique TDTC and CTC. 88
4.6. Performances of the classifiers built for each treatment in TS. 94

6.1. Basic information of the evaluated logs. 115
6.2. Evaluation results in the preliminary test on HIF. 115
6.3. Basic information of the evaluated real-life event logs. 119
6.4. Evaluation results for the process models mined from the given logs.119
6.5. Evaluation results for the sub-models generated by TDTC. 120
6.6. Evaluation results for the sub-models generated by CTC. 120
6.7. Basic information of the evaluated logs. 127
6.8. Evaluation results for the models mined by using the log Repair,

Loan and Hospital. 128
6.9. Evaluation results for the six classical trace clustering techniques

executed on the log LOA and Hospital. 128
6.10. The weighted average quality of the sub-models generated by GTCA.129
6.11. Basic information of the generated high level logs. 129
6.12. The quality information of the high level models generated for

each log by GTCA. 130

161

List of Algorithms

2.1. Decision Tree approach (DT) . 15
2.2. K-means . 19

3.1. Construct the PBS for a specific event log L (CPBS) 49
3.2. Activity ranking (AR) . 52
3.3. Detection and conversion of inexpressible behaviours (DCIB) . . . 54
3.4. HIF . 55

4.1. Judge the type of a specific trace behaviour (Φ̂) 67
4.2. Unqualified trace behaviours removing method (Π) 68
4.3. Search for the best trace behaviour (Φ) 69
4.4. A top-down trace clustering technique (TDTC) 70
4.5. Search for the best division for a given log (Υ̂) 75
4.6. C-TDTC . 76
4.7. The compound trace clustering technique: CTC 78
4.8. Mine label-related functions from a given training event log 84
4.9. Transform label-related functions into case attributes 85

5.1. Abstract the raw mined model . 100
5.2. Generate high level activities . 104
5.3. Merging sub-traces (Ϋ) . 106
5.4. Deal with low-quality sub-models . 108

163

A
Acronyms

AA Alpha Algorithm

ARW Activity Ranking Weight

ASCRV Average Sub-Model Complexity Reduction Value

ATC Active Trace Clustering

AUC Area Under the ROC Curve

BAW Behaviour-Related Activity Weight

BPI Business Process Improvement

BPIC Business Process Intelligence Challenge

BPM Business Process Management

BPMD Business Process Model Discovery

BPMI Business Process Mining

BRA Behaviour-Related Activity

BRST Behaviour-Related Sub-Trace

C-TDTC Complexity-Related Top-Down Trace Clustering Technique

CCSTB Complexity-Based Conditional Strict Significant Trace Behaviour

CRIB Complexity-Related Insignificant Behaviours

CRM Customer Relationship Management

165

CRSB Complexity-Related Significant Behaviours

CSP Closed Sequential Pattern

CTC Compound Trace Clustering Technique

DG Dependency Graph

DM Decision Mining

DT Decision Tree

E-Cardoso Extended Cardoso Metric

ED Euclidean Distance

EI Environment Item

ERP Enterprise Resource Planning

FCSTB Fitness-Based Conditional Strict Significant Trace Behaviour

FM Fuzzy Miner

GI Gini Index

GM Genetic Miner

GR Gain Ration

HM Heuristics Miner

IDC Inexpressible Behaviours Detection and Conversion

IG Information Gain

ILPM ILP Miner

IM Inductive Miner

LGC LinLog Graph Clustering

LRF Label-Related Function

MAE Mean Absolute Error

166

MAS Model Abstraction-Based Strategy

MCA Multi-Cluster Activity

MDS Model Division-Based Strategy

MEBS Mining Algorithm Enhancement-Based Strategy

MLCC Multi-Label Case Classification

MRST Maximal Behaviour-Related Sub-Trace

NB Naive Bayesian

PAIS Process-Aware Information Systems

PT-CD Place/Transition Connection Degree

SCM Supply Chain Management

SMI Sub-Model Improvement

SSTB Strict Significant Trace Behaviour

STB Significant Trace Behaviour

TDTC Top-Down Trace Clustering Technique

WAF Weighted Average Fitness

WFM Workflow Management

167

	1 Introduction
	1.1 Problems and Challenges
	1.2 Objectives, Approach and Contributions
	1.3 Publications

	2 Basics
	2.1 Data Mining Techniques
	2.1.1 Classification Technique
	2.1.2 Clustering Technique
	2.1.3 Sequential Pattern Mining Technique

	2.2 Business Process Mining Techniques
	2.2.1 Event Log
	2.2.2 Business Process Model Discovery (BPMD)
	2.2.3 Assistant Techniques for Mining Better Process Models

	3 A Novel Heuristic Method for Improving the Fitness of Mined Business Process Models
	3.1 Introduction and Motivation
	3.2 Problem Description
	3.3 Build Process Behaviour Space
	3.3.1 Direct Activity Relations vs Casual Activity Relations

	3.4 Activity Ranking
	3.5 A Heuristic Method: HIF
	3.5.1 Detection and Conversion of Inexpressible Process Behaviours
	3.5.2 A Heuristic Method for Improving the Fitness of Mined Process Models

	3.6 Preliminary Verification for HIF

	4 Trace Clustering and Classification Techniques
	4.1 Introduction and Motivation
	4.2 A Novel Top-Down Trace Clustering Technique
	4.2.1 Outline for Technique TDTC
	4.2.2 Approach Design
	4.2.3 Assumptions

	4.3 A Compound Trace Clustering Technique
	4.3.1 A Complexity-Related Top-Down Trace Clustering Approach
	4.3.2 A Mined Process Model Fitness Improvement Method
	4.3.3 The Compound Trace Clustering Method

	4.4 Multi-Label Case Classification
	4.4.1 Problem Description
	4.4.2 Basic Concepts Relevant to Multi-Label Case Classification
	4.4.3 Definitions Relevant to Functions
	4.4.4 Transforming Label-Related Functions into Case Attributes

	4.5 Preliminary Verification for Techniques TDTC, CTC and MLCC
	4.5.1 Verification for TDTC and CTC
	4.5.2 Verification for MLCC

	5 A Graph and Trace Clustering-Based Approach for Abstracting Mined Business Process Models
	5.1 Introduction and Motivation
	5.2 Basic Idea
	5.3 A Three-Step Algorithm
	5.3.1 Find Multi-Cluster Activities and Extract Sub-Logs
	5.3.2 Generate High Level Activities and High Level Process Model
	5.3.3 Deal With Complex and Inaccurate Sub-Models

	6 Evaluation
	6.1 Introduction
	6.2 Evaluation on Technique HIF
	6.2.1 Comparison
	6.2.2 Experiment on Real-Life Event logs

	6.3 Evaluation on Trace Clustering Technique TDTC and CTC
	6.3.1 Assessment on the Parameter settings for TDTC and CTC
	6.3.2 Comparison

	6.4 Evaluation on Technique GTCA
	6.4.1 The Limitations of Trace Clustering Technique
	6.4.2 Measurement of the Performance of GTCA on Three Event Logs

	7 Conclusions
	7.1 Summary
	7.2 Discussion and Outlook

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	A Acronyms

