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In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional
fluid at the molecular level are performed, both with respect to length and time scales. Using high-
resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed
the transverse and longitudinal components of the velocity field by the Helmholtz decomposition
and compared them with those obtained from the linearized Navier–Stokes (LNS) equations with
time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave
propagation in terms of these field components, we confirm the validity of the LNS description for
times comparable to or larger than several mean collision times. The LNS description still reproduces
the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of
molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the
main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation
function can be expressed in terms of the fluid velocity field and the tagged particle distribution is
found to be remarkably accurate even for times comparable to or smaller than the mean collision
time. This suggests that the hydrodynamic-mode description remains valid down to the molecular
scale. Published by AIP Publishing. https://doi.org/10.1063/1.5011992

I. INTRODUCTION

In principle, the hydrodynamics behavior of a fluid is
determined by the dynamics of the molecules constituting
the considered fluid. In practice, however, direct molecular
dynamics (MD) simulations of hydrodynamic phenomena are
severely limited in time and become prohibitive as the system
size goes beyond the micrometer scale. The difficulty origi-
nates from the large scale difference between MD and hydro-
dynamics. To resolve the collisions between fluid molecules,
the time step and the shortest length scales of MD simula-
tions must resolve the mean collision time and the size of a
fluid molecule, respectively. On the other hand, hydrodynam-
ics describes the collective motion of fluid molecules, which
corresponds to the zero-wavenumber limit. In this limit, den-
sity fields of the globally conserved quantities such as mass,
energy, and momentum are only considered.1–4 Nevertheless,
the MD simulation technique5–7 represents an indispensable
tool to investigate the molecular origins of the hydrodynamics
theory from first principles. Powerful computing capacities
available now are decisive in bridging the gap between the
continuum-based analysis of transport phenomena and their
modeling on the microscopic level.8–10

There have been various attempts to understand the hydro-
dynamic description from the molecular viewpoint by means
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of the MD simulation technique. The first approach was to
compute transport coefficients appearing in the phenomeno-
logical hydrodynamic description. It is based on the Green–
Kubo relations, where each transport coefficient is expressed
as the time integral of the autocorrelation function of a corre-
sponding dynamical variable. While this approach provides a
practical methodology for estimating transport coefficients,5–7

it assumes the validity of the phenomenological hydrodynamic
description and the complete scale separation between MD and
hydrodynamics.

One question raised in various MD studies is whether
the hydrodynamic description still holds down to the molec-
ular scale, where the validity of the continuum description
becomes questionable. To this end, some well-known results
from hydrodynamics have been tested in a molecular setting.
For example, the applicability of the Stokes–Einstein relation
for a molecular-sized tracer particle was extensively investi-
gated. While overall good agreement of MD simulation results
with the Stokes–Einstein relation was reported,11–13 this does
not give a definite answer to the original question due to the
subtlety existing in determining the particle-solvent boundary
condition and the hydrodynamic radius.

Moreover, specifically nonlinear aspects of fluid dynam-
ics have been studied by means of MD simulations such as the
formation of eddies behind an obstacle,14–16 structure forma-
tion and flow instabilities,17–21 flow of immiscible fluids,22,23

and turbulent mixing,24 to name but a few. The emerging flow
patterns suggest that even at the considered molecular length
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scales, the respective systems can be treated as continuum flu-
ids. Points of instability, such as bifurcation points, however,
are prone to large fluctuations seen in the MD results rendering
a quantitative comparison with the hydrodynamic description
difficult.8,25

Another direction of investigation is to understand the
time correlation functions of a molecular fluid at equilib-
rium by using the hydrodynamic theory. Since these quan-
tities are directly related to the transport properties, one can
investigate the continuous transition from the molecular time
scale to the hydrodynamic time scale. The best-known and
most extensively studied quantity is the velocity autocorrela-
tion function (VACF) of a tagged particle in a d-dimensional
simple fluid (d = 2, 3). Alder and Wainwright observed an
algebraic decay proportional to t�d /2 and showed that this
slow decay is caused by a vortex flow forming around the
particle.26 Several types of theoretical approaches, having a
variety of theoretical perspectives and mathematical sophis-
tications, have been applied and refined to account for this
unexpected behavior. For example, the mode-coupling the-
ory27 relates the algebraic decay of the VACF to the vorticity
diffusion based on the hydrodynamic description, whereas the
kinetic theory28 sees its origin as correlated binary collisions
(i.e., ring collisions) in the microscopic dynamics. Never-
theless, all approaches give the identical expression for the
long-time decay. Recent extensive MD studies have confirmed
that the emergence of the long-time tail is universal for fluid
systems.29–32

The validity of the assumptions inherent in the derivation
of governing equations of hydrodynamics and their limitations
has not been systematically scrutinized yet by MD simulations.
In particular, no general rules are known indicating the actual
ranges of validity of the common restriction to large temporal
and spatial scales for specific characteristics, say, of a flow
pattern. Also, in general, one does not know precisely when
deviations from the hydrodynamic picture must be expected
and of which nature and magnitude they would be. A further
fundamental postulate of hydrodynamics is that of local equi-
librium. It presupposes the separation of temporal and spatial
scales.

The flux correlation functions determining the transport
coefficients via the Green–Kubo relations, such as viscosity,
heat conduction, and diffusion coefficients, typically display a
rapid decay at short time scales characteristic of the molecular
motion and a slowly decaying long-time tail resulting from rel-
atively large scale spatial structures of hydrodynamic nature.
While in three dimensions the total decay rate, including the
hydrodynamically caused slow contribution, is sufficiently fast
to yield finite, time-independent transport coefficients, the rel-
evant hydrodynamic patterns in a two-dimensional fluid are
more persistent. Their decay is so slow that, for example, the
diffusion coefficient characterizing the spreading of a tagged
particle diverges.

In this paper, we study the hydrodynamic description of
collective modes in a molecular fluid system by examining
the mode-coupling approach.33 To this end, we performed
an MD simulation study of a two-dimensional simple fluid
by computing relevant hydrodynamic modes directly from
MD simulations. In order to determine the flow pattern that

is generated by the motion of a tagged particle, we select
those initial configurations from the equilibrium distribution
for which the tagged particle sits in the origin and moves
in the positive x-direction. Letting all particles interact via
short-range pairwise potentials, a flow pattern emerges that is
constructed from the positions and velocities of all particles
resulting from the MD simulation. The resulting flow pattern
can be decomposed into a potential and a solenoidal flow by
means of the Helmholtz decomposition. The latter flow cor-
responds to a vortex pattern as it was predicted by Alder and
Wainwright26 and confirmed in Refs. 34 and 35. The two flow
fields are compared to the solutions of the linearized Navier–
Stokes (LNS) equations containing time-dependent transport
coefficients resulting from Green–Kubo-like formulas with the
actual time as the upper integration limit. The spatial reso-
lution of the MD-based flow patterns is at 10% of the fluid
particle diameter, considerably finer than the 70% resolution
used in the recent work.34 Such high resolution is needed in
order to obtain a reliable separation into the potential and the
solenoidal flow patterns. This though requires a large ensemble
of MD data in order to keep the statistical errors sufficiently
small. For efficient computation, we employed not only the
ensemble average (over independent samples) but also an
average over all particles and a large number of instants of
time.

The rest of this paper is organized as follows. In Sec. II,
the necessary theory is reviewed. In Sec. III, our MD model
and the numerical procedures are introduced. In Sec. IV, the
MD simulation results are presented and analyzed. Section V
concludes the paper with a summary and an outlook.

II. BACKGROUND

From the viewpoint of the mode-coupling approach, to
obtain the VACF of a tagged particle, two field variables, the
fluid velocity and the distribution of the tagged particle, are
essential. While a similar argument can be found elsewhere
(e.g., Refs. 30 and 36), we derive a refined expression (17) for
the long-time VACF by assuming time-dependent transport
coefficients. This leads to a substantially improved agreement
with MD simulation results for two-dimensional fluids. On
the other hand, with this refined approach, one recovers the
well-known expression33 for the case of constant coefficients.
In Sec. II A, we derive relations between the VACF and the
average velocity of the tagged particle conditioned on its initial
velocity. In Sec. II B, we obtain an approximated form of the
latter in terms of a particular fluid velocity field and the tagged
particle distribution. In Sec. II C, we obtain the VACF with the
help of the hydrodynamic forms of these fields.

A. VACF and conditional average velocity

We consider a tagged particle suspended in an isotropic
fluid in d dimensions; for a detailed description on the molec-
ular setting, see Sec. III A. By denoting the velocity of the
tagged particle at the time t by v(t), we can express the VACF,
C(t) = 〈v(0)·v(t)〉, in terms of the average velocity at time t,
〈v(t)|v0〉, conditioned on the initial velocity v(0) ≡ v0, as

C(t) = 〈v0 · 〈v(t) | v0〉〉 , (1)
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whereby the outer average is determined by the Maxwell–
Boltzmann velocity distribution Φ(v0).

Because of the isotropy of the velocity in equilibrium,
the conditional average points into the direction of the ini-
tial velocity, i.e., 〈v(t)|v0〉 =

v0
|v0 |

f (t, |v0 |), where f (t, |v0|) is
a scalar function of time and of the absolute value of the ini-
tial velocity. For sufficiently small initial velocities, this scalar
function becomes linearly proportional to |v0|, and hence one
finds

〈v(t)|v0〉 ≈
C(t)
C(0)

v0. (2)

B. Two field variables

In order to relate the velocity v(t) of a tagged particle
to the velocity field of the fluid, we assume that the veloc-
ity of the tagged particle agrees with the velocity of the fluid
at its actual position x(t). In other words, we assume that

v(t; v0)
d
= u(x(t), t), where u(x, t) is the fluctuating velocity

field of the fluid. Here, v(t; v0) denotes a realization of the
velocity of a tagged particle with initial value v(0; v0) = v0 and
d
= indicates equality in distribution. The conditional velocity
average 〈v(t)|v0〉 can be expressed in terms of the fluctuating
velocity field as

〈v(t)|v0〉 = 〈u(x(t), t)|v0〉 (3)

and further transformed as

〈v(t)|v0〉 =

∫
dx 〈u(x, t)δ(x − x(t))|v0〉

≈

∫
dx u(x, t; v0)ntag(x, t; v0).

(4)

On going to the second line, we assumed that the velocity
field and the tagged particle density are uncorrelated with each
other. Their respective averages are denoted as

u(x, t; v0) = 〈u(x, t)|v0〉, (5)

ntag(x, t; v0) = 〈δ(x − x(t))|v0〉. (6)

In order to avoid a very clumsy notation, we suppressed the
dependence of the average fields u(x, t; v0) and ntag(x, t; v0)
on the initial position x(0) ≡ x0 of the tagged particle. Without
restriction, we may choose x0 = 0 by using a proper coordi-
nate system. Further we note that as a scalar density of a tagged
particle in an otherwise isotropic fluid in equilibrium, ntag(x,
t; v0) can only depend on the scalar quantities |x|2, |v0|2, and
(x · v0)2. For sufficiently small velocities v0, a possible depen-
dence on the last two invariants can be neglected because both
are quadratic in the velocity and hence

ntag(x, t; v0) ≈ ntag(x, t). (7)

Combining (1), (4), and (7), one obtains, for the VACF,

C(t) ≈
∫

dv0 Φ(v0)v0 ·

∫
dx u(x, t; v0)ntag(x, t). (8)

For sufficiently small velocities v0, the absolute value of
the velocity field u(x, t; v0) is proportional to the absolute
value v0 ≡ |v0|. This allows one to express the velocity field by
its average over all absolute values of the initial velocity as

u(x, t; v0) =
v0

v0
u(x, t; v0), (9)

where the bar, • ≡ ∫ dv0 ϕ(v0)•, indicates a thermal average
over the absolute values v0 with respect to the Maxwell–
Boltzmann distributionϕ(v0) = mv0/(kBT ) exp(−mv2

0/(2kBT ))
for d = 2 with m as the mass of the tagged particle, kB as
the Boltzmann constant, and T as the temperature. Note that
u(x, t; v0) = u(x, t; v0ev0 ) only depends on the direction of v0

denoted by ev0 ≡ v0/v0 but not on v0. Therefore, upon replac-
ing the velocity u(x, t; v0) in (8) by the right-hand side of (9),
one can perform the integral over the absolute value of the
initial velocity and find

C(t) ≈
C(0)
v0

∫
dx ev0 · u(x, t; v0ev0 ) ntag(x, t). (10)

Here, due to the isotropy of the fluid, ev0 · u(x, t; v0ev0 ) is
independent of the orientation ev0 . In Sec. IV, we set ev0 to the
standard unit vector ex along the x-axis and compute u(x, t)
≡ u(x, t; v0ex) as well as ntag(x, t) ≡ ntag(x, t; v0ex) from MD
simulations.

C. Hydrodynamic description

Within the hydrodynamic description, the spreading of the
tagged particle density is described by a diffusion equation of
the form

∂ntag(x, t)
∂t

= D(t)∇2ntag(x, t), (11a)

ntag(x, 0) = δ(x), (11b)

where, without loss of generality, we choose the origin for the
starting point of the tagged particle, i.e., x0 = 0. As already
mentioned above, in order to properly account for the effects
of the long-time tails, we allow for a time-dependent dif-
fusion coefficient, which is directly related to the VACF by
D(t) = 1

d ∫
t

0 C(t ′)dt ′. This approach will also allow us to con-
sider the dynamics at short molecular time scales. Molecular
expressions for D(t) and other transport coefficients are pre-
sented in Appendix B. The solution of the diffusion equation
on a square with side length L and periodic boundary condi-
tions can be conveniently given for the Fourier transform of
the tagged particle density, ñtag(k, t) = ∫ dx ntag(x, t)e�ik ·x,
where k = 2πn/L with n = (n1, n2, . . ., nd) for n1, . . ., nd = 0,
±1, ±2, . . .. It becomes

ñtag(k, t) = e−k2
∫

t
0 D(t′)dt′ . (12)

According to the hydrodynamic description, the velocity
field u(x, t; v0) is given by the solution of the LNS equations
(see Appendix A) subject to the initial condition

u(x, 0; v0) =
1
n̄
δ(x)v0, (13)

where n̄ is the mean number density of the molecular fluid.
As for the MD simulations, we assumed that the tagged par-
ticle exciting the velocity field is initially located at x0 = 0
and moves with velocity v0 relative to the resting fluid at
this moment. The resulting solution can be split into the
divergence-free component u⊥ and the rotation-free compo-
nent u‖ according to the Helmholtz decomposition,
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u = u⊥ + u‖ , ∇ · u⊥ = 0, ∇ × u‖ = 0. (14)

The rotation-free contribution u‖ can be represented as a super-
position of the sound- and density-modes of the LNS (see
Appendix A) and hence propagates as an attenuated wave
with sound velocity. The heat-mode, which is also a longi-
tudinal mode of the LNS, does not contribute because of the
uniformity of the temperature field. On the other hand, the
divergence-free field u⊥ coincides with the transverse mode
of the LNS. It spreads only diffusively,

∂

∂t
u⊥(x, t; v0) = ν(t)∇2u⊥(x, t; v0). (15)

The solution evolving from the initial condition (13) is readily
obtained in the k-space as

ũ⊥(k, t; v0) =
1
n̄

(
v0 −

v0 · k
k2

k
)

e−k2
∫

t
0 ν(t′)dt′ . (16)

Because the divergence-free part spreads diffusively, it decays
much slower than the rotation-free part, which, as just men-
tioned, propagates with the sound velocity. Hence, the latter
can be neglected as a contribution to expression (8) for the
VACF at large times.1,27 Finally, using Parseval’s theorem, one
may express the spatial integral on the right-hand side of (8) by
means of a sum over all k values, which can be approximated
by an integral in the limit of large systems. One then obtains
the expression

C(t) ≈
(d − 1)kBT

n̄m
1[

4π ∫
t

0 (ν(t ′) + D(t ′)) dt ′
]d/2

. (17)

To summarize, this result is based on the following assump-
tions: validity of the LNS equations with time-dependent trans-
port coefficients and also large times and large system size.
Note that for time-independent transport coefficients D and ν,
the well-known algebraic decay expression for the VACF33 is
recovered.

III. MODEL AND NUMERICAL PROCEDURE
A. System and MD simulation

We consider a standard model of a two-dimensional
molecular fluid. It consists of N identical fluid particles with
mass m in a square of side length L with periodic boundary
conditions. The fluid particles interact pairwise via a poten-
tial function V (r) of the inter-particle distance r. Hence, the
Hamiltonian of the system is given as

H =
∑

i

p2
i

2m
+

∑
i>j

V
(���xi − xj

���
)

, (18)

where xi and pi = mvi are the position and momentum of the
ith fluid particle, respectively. For the pair potential V (r), we
employ the Weeks–Chandler–Andersen potential, which is a
purely repulsive potential of Lennard-Jones type,

V (r) =



4ε
[(
σ
r

)12
−

(
σ
r

)6
]

+ ε for r ≤ 21/6σ,

0 for r ≥ 21/6σ.
(19)

Here, σ is the diameter of a fluid particle and ε is the inter-
action strength parameter. Based on the molecular parameters

in (18) and (19), we use reduced (dimensionless) MD units.
That is, the units of mass, length, and energy are set to m,
σ, and ε, respectively, and the units of any other quantities
are determined from them (e.g., σ

√
m/ε for time and ε/kB for

temperature).
We simulate a fluid having number density n̄ = 0.6 and

temperature T̄ = 1. This state is chosen so that the algebraic
decay of the VACF can be readily observed. While this long-
time behavior is universal, the time scale on which it is clearly
seen depends largely on the density of the fluid.29,30 At lower
densities, the algebraic decay emerges at later times. At higher
densities, on the other hand, the VACF displays negative val-
ues at short times (due to backscattering effects) before the
algebraic decay pattern develops. Moreover, since it takes less
time for sound waves to travel across the domain, the distur-
bance of the long-time tail occurs at earlier times. To iden-
tify finite-size effects, we simulate three system sizes having
N = 512, 1024, and 2048 fluid particles, which correspond to
domain sizes L =

√
N/n̄ = 29.2, 41.3, and 58.4, respectively.

The mean free path and the mean collision time are roughly
estimated to be 0.2 and 0.2, respectively, from a correspond-
ing hard-disk system having the same number density and
temperature.37

We perform NV E simulations7 using the standard velocity
Verlet algorithm with time step size ∆tMD = 10�3. Equilibrium
samples are prepared as follows. For each initial configuration
where the positions and momenta of the fluid particles are
randomly chosen with zero total momentum, velocity scaling
with the target temperature T̄ = 1 is performed 10 times every
103 steps and then equilibration is performed for additional
105 steps. While performing a single run for these simulations
is not computationally expensive at all, we generate a large NV
E-ensemble of N = 1024 MD trajectories in order to obtain
smooth flow patterns.

B. Averaging procedure for field quantities

The number density n(x, t) and the velocity u(x, t)
of a fluid, generated by the motion of a tagged particle,
together with the resulting tagged particle density ntag(x, t) are
expressed as averages over MD trajectories of the individual
fluid particles in terms of the formal expressions

n(x, t) =
〈〈∑

i

δ (xi(t) − x)
〉〉

, (20a)

u(x, t)n(x, t) =
〈〈∑

i

vi(t)δ (xi(t) − x)
〉〉

, (20b)

ntag(x, t) =
〈〈
δ (x1(t) − x)

〉〉
. (20c)

Here, particle 1 is considered as the tagged particle. The
double brackets 〈〈 〉〉 denote the thermal equilibrium average
conditioned on the specific initial position and initial velocity-
direction of the tagged particle at x1(0) = 0 and v1(0)/|v1(0)|
= ex, respectively.

In order to comply with this initial condition in those
cases when the actual initial data of particle 1 deviate from
the required values, we used the homogeneity of the configu-
ration space and also assumed its homogeneity by applying to
each particle the translation T that shifts particle 1 to the origin
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(Tx1(0) = 0) and a rotation R that brings its velocity into the
positive x-direction (Rv1(0) = |v1(0)|ex), yielding transformed
positions (x̂i(t) = RTxi(t)) and velocities (v̂i(t) = Rvi(t)) of
all particles. Strictly speaking, the configuration space under-
lying the MD simulations, which is a two-dimensional torus
due to the periodic boundary conditions, does not have rota-
tions as symmetry operations because they fail to be bijective.
However, as long as the flow pattern has not covered the full
torus but is rather concentrated in a region around the origin,
one may rotate this pattern as if it were defined on the entire
Euclidean plane.

Due to the permutation symmetry with respect to the num-
bering of particles, any other particle j can also be assigned
as the tagged particle and the resulting set of trajectories can
be used to perform the averages in (20). Moreover, the time-
translational invariance of the trajectories in thermal equilib-
rium allows one to take any time point l∆t as initial time,
yielding new trajectories

x̂(j,l)
i (k∆t) = R(j,l)T(j,l)xi((k + l)∆t),

v̂(j,l)
i (k∆t) = R(j,l)vi((k + l)∆t),

(21)

where k = 0, . . ., N2 labels the lth trajectory with l = 0, . . .,
N1 � N2, and N2 � N1. Here, ∆t is an integer multiple of the
time step ∆tMD and the translation T(j ,l) and rotation R(j ,l) are
such that the initial tagged particle position xj(l∆t) is shifted
to the origin and its velocity vj(l∆t) is rotated into the positive
x-direction. Hence, the brackets in (20) denote an average over
a large ensemble generated by N MD runs with all particles at
any time generating an initial value of trajectories as specified
in (21).

In order to estimate the averaged fields (20), we discretized
the state space by introducing square cells of side length ∆x.
The Dirac delta functions were approximated by means of the
indicator function I(C), which is 1 if the condition C is true
and 0 otherwise. The three fields in (20) were estimated in the
following way:

n(x, k∆t)

≈
1

N(N1−N2 +1)

〈∑
(j,l)

∑
i

1

∆x2
I

[
x̂(j,l)

i (k∆t) ∈ cell x
] 〉

N
,

(22a)

u(x, k∆t)n(x, k∆t) ≈
1

N(N1−N2 +1)

〈∑
(j,l)

∑
i

v̂(j,l)
i (k∆t)

×
1

∆x2
I

[
x̂(j,l)

i (k∆t) ∈ cell x
] 〉

N
, (22b)

ntag(x, k∆t)

≈
1

N(N1−N2 +1)

〈∑
(j,l)

1

∆x2
I

[
x̂(j,l)

j (k∆t) ∈ cell x
] 〉

N
,

(22c)

where 〈•〉N denotes the arithmetic average over the results of
N independent MD runs. The average fields were determined
using ∆x = 0.1, ∆t = 500∆tMD = 0.5, N1 = 4020 (for N = 512
and 1024) and 2020 (for N = 2048), and N2 = 20. Thus, the
field quantities were computed up to the time N2∆t = 10 from
MD trajectories of length N1∆t ≈ 2 × 106∆tMD (for N = 512

and 1024) and 106∆tMD (for N = 2048). A total of N = 1024
MD samples were generated.

C. Helmholtz decomposition

We determined the longitudinal and transversal compo-
nents of the velocity field u(x, t) obtained from the MD
simulations using the Helmholtz decomposition. In the two-
dimensional case, this decomposition is obtained from two
scalar fields Φ(x, t) and A(x, t) as38

u(x, t) = −∇Φ(x, t) + J∇A(x, t), (23)

where �∇Φ(x, t) is the rotation-free component correspond-
ing to the longitudinal velocity u‖(x, t) and J∇A(x, t) is
the divergence-free component corresponding to the trans-
verse velocity u⊥(x, t). Here, J denotes the counterclockwise
rotation by π/2.

Both scalar fields are solutions of the Poisson equation.
The source terms of Φ(x, t) and A(x, t) are determined by the
divergence and the rotation of the velocity field, respectively,
i.e.,

∇2
Φ(x, t) = −∇ · u(x, t) for x ∈ Ω, (24a)

n · ∇Φ(x, t) = −n · u(x, t) for x ∈ ∂Ω (24b)

and

∇2A(x, t) = −∇ · Ju(x, t) for x ∈ Ω, (25a)

n · ∇A(x, t) = −n · Ju(x, t) for x ∈ ∂Ω, (25b)

where n is the outward normal to the boundary. Because the
velocity field does not strictly obey periodic boundary condi-
tions due to the construction of the ensemble on which (22) is
based, we used Neumann boundary conditions.

D. Comparison with LNS

Below we compare the velocity fields and their longi-
tudinal as well as transversal components obtained from the
MD simulations with solutions of the LNS equations, which
are presented in Appendix A. The initial condition for the
velocity field complies with (13), whereas the fluid density
and temperature fields initially are assumed as uniform,

n(x, 0) = n̄, T (x, 0) = T̄ , (26)

where n̄ and T̄ are the mean number density and temperature
of the system, respectively.

All parameters needed to solve the LNS equations are
determined by the MD simulations. As already mentioned, the
time-dependent transport coefficients entering the LNS equa-
tions are obtained from Green–Kubo-like expressions that are
presented in Appendix B. Thermodynamic variables, such as
the adiabatic speed of sound cs, the ratio of specific heats γ,
and the thermal expansion coefficient α, are computed by the
method of pressure derivatives;39 see also Appendix C. As
numerical values for the present two-dimensional system, we
obtained cs = 4.43, γ = 1.83, and α = 0.31.

IV. RESULTS AND DISCUSSION

In Sec. IV A, we give a brief description of the field
variables that were computed from the MD simulations. In
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Sec. IV B, we compare these results with the hydrodynamic
description. In Sec. IV C, we examine the validity of the
assumptions implied by the hydrodynamic description of the
long-time VACF and discuss the applicability and limitations
of the description.

A. Field variables

The velocity fields u(x, t), at time t = 4, obtained from
the MD simulations for three system sizes (N = 512, 1024,
2048), are displayed in Fig. 1. In all cases, the velocity field
is caused by a tagged particle initially moving in the positive
x-direction. The magnitude of the field is obtained from an
average over all absolute values of the initial velocity of the
tagged particle according to the Maxwell–Boltzmann distri-
bution as introduced in (9). For the small and middle sized
systems, the resulting flow patterns cover the entire square,
while the flow field of the largest system is still localized
around the initial position of the tagged particle. The distri-
bution of the tagged particle ntag(x, t) is indicated by three
contours within which the particle is found with probabili-
ties 0.5, 0.9, and 0.99 when going from the inner most to the
outer circle. This distribution is well described by a Gaussian,
which is slightly shifted to the right due to the directional bias
of the initial velocity of the tagged particle; see also Fig. 8. As
expected from the fact that the mass diffusion is much slower
than the momentum transport in a dense fluid, ntag(x, t) spreads
slower than u(x, t). The fluid density n(x, t) (not shown) has
a background value n̄ with an atomistic structure which has
the same origin as the peaks found in the pair correlation
function.

Whereas the velocity field u(x, t) contains both vorticity
and sound-wave contributions, a clear separation into u⊥(x, t)
and u‖(x, t) is achieved by the Helmholtz decomposition as
presented in the upper rows of Fig. 2 (at t = 0.5) and Fig. 3
(at t = 3). The sizes of the patterns represented by the per-
pendicular and the longitudinal fields clearly reflect the fast
wave-like expansion of the latter and the slow diffusional
motion of the former. Figure 2 exemplifies the flow patterns
at time t = 0.5 corresponding to the two- to threefold of the
mean collision time. At this very short time, the velocity field
has still very large values close to the center. Yet panel (b)

displays a vortex pair that has already developed above
and below the center. The largest velocity contributions to
u(x, 0.5) though come from the parallel component pre-
sented in panel (c). At the somewhat later time t = 3, these
large velocity contributions have been already dissipated leav-
ing a vortex and a wave-like contribution as exemplified by
Figs. 3(a)–3(c).

When the sound wave has propagated by the distance L/2,
the flow pattern obtained from rotated MD configurations starts
failing to obey the periodic boundary conditions. The upper
limit of time before this happens is given by tmax = L/(2cs),
which corresponds to 3.23, 4.66, and 6.60 for N = 512, 1024,
and 2048, respectively. The finite-size effect becomes visi-
ble at larger times. Due to the diffusive character, the shear
mode propagation and the mass diffusion are slower than the
sound wave propagation and finite-size effects on u⊥(x, t) and
ntag(x, t) only appear at later times.

Even though the identification of the vortex pairs in pan-
els (b) of Figs. 1–3 appears straightforward from an intuitive
point of view, we corroborated their existence by two objective
criteria; see Appendix D.

B. MD versus LNS

In the second rows of Figs. 2 and 3, the solutions of the
LNS equations (A1), together with the corresponding trans-
verse and longitudinal components, are displayed for t = 0.5
and t = 3. While at very short time t = 0.5 large deviations
between the MD (depicted in the upper row) and the LNS
velocity fields exist, the transverse components (displayed in
the middle column) already agree surprisingly well. After the
still rather short time t = 3, the agreement between the MD and
the LNS velocity fields is very good. The largest deviations
can be seen in the parallel field components. The deviations
between MD and LNS have two distinct origins. One reason is
the continuum nature of the Navier–Stokes equations, which is
in manifest contrast to the atomistic structure underlying the
MD simulations. An additional reason for the observed dif-
ferences is the approximation of the nonlinear Navier–Stokes
equations by the linearized equations (A1), which is not jus-
tified for the considered singular initial condition at least at
short times.

FIG. 1. Velocity field u(x, t) at t = 4. The flow patterns obtained from MD simulations are presented in panels (a)–(c) in an increasing order of system size,
N = 512, 1024, and 2048 (L = 29.2, 41.3, and 58.4). The entire domain is divided into cells of side length ∆xvel = 2 and the average velocity of each cell is
depicted by an arrow, which is colored depending on the log scale of its magnitude. The red dot at the center denotes the initial position of the tagged particle. The
three contours with red solid lines depict regions within which the tagged particle is found at probabilities 0.5 (inner), 0.9 (middle), and 0.99 (outer). The vector
fields for the two small system sizes clearly exhibit visible deviations from periodicity at the boundaries. Only for the largest system, the flow field generated by
the tagged particle does not yet cover the full square and hence is not influenced by the finite system size at time t = 4.
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FIG. 2. Velocity field u(x, t) at t = 0.5 and its Helmholtz decomposition. The velocity fields resulting from the MD simulations for a system of N = 2048
particles (upper row) and from the solution of the LNS equations (bottom row) are displayed in the left column. The middle and the right columns present
the perpendicular and the parallel components, respectively. Each panel displays the central square (�5, 5) × (�5, 5) of the configuration space. The average
velocity of each square cell of side length ∆xvel = 0.3 is depicted by an arrow. The magnitude of the velocities is indicated by the log-scale length of the
corresponding arrow and a color-code. At this relatively short time, the velocity field based on the MD simulations is still rather strong near the center as
seen in panel (a), whereby the large contributions result from the parallel field presented in panel (c). The perpendicular field component exhibits a counter-
rotating vortex pair in panel (b). This flow pattern is quite well reproduced by the transverse part of the solution of the LNS equations as evidenced by
panel (e). A large discrepancy is found for the parallel velocity fields, see panels (c) and (f), which is also reflected in the total velocity fields in panels (a)
and (d). The three contours in panels (a) and (d) border the regions within which one finds the tagged particle with probabilities 0.5 (inner), 0.9 (middle),
and 0.99 (outer) according to MD and LNS, respectively. The magenta circles in panels (b) and (e) indicate how far the centers of the vortices have moved
according to (A4). Finally, in panels (c) and (f), the magenta circles characterize the propagation of a signal with sound velocity cs initially emitted from the
center.

FIG. 3. Velocity field u(x, t) at t = 3 and its Helmholtz decomposition. The velocity fields resulting from the MD simulations for a system of N = 2048
particles (upper row) and from the solution of the LNS equations (bottom row) are displayed in the left columns. The middle and the right columns present
the perpendicular and the parallel components, respectively. Each panel displays the domain (�L/2, L/2) × (�L/2, L/2) with ∆xvel = 2. At this still relatively
short time t = 3, which roughly corresponds to 15 mean collision times between fluid particles, the agreement between MD and LNS is surprisingly good.
The strongest deviations exist for the parallel fields; see panels (c) and (f). In particular, the front on the right-hand side of the center is more pronounced
for the MD results than for the LNS. The magenta circles in panels (b) and (e) indicate how far the centers of the two vortices have diffusively propa-
gated up to time t = 3 according to (A4). The much larger circles in panels (c) and (f) specify the distance covered by a sound wave propagating at speed
cs = 4.43. Note that the velocity fields obtained from the MD simulations still satisfy quite well periodic boundary conditions while the LNS fields are exactly
periodic.
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FIG. 4. Comparison in the k-space at t = 0.5. For the longitudinal (u‖ ) and transverse (u⊥) velocity components, the MD results are compared with the LNS
solutions (A2) by the absolute values of Fourier modes |ũ•(k, t) | for • = ⊥, ‖ and k ∈ (�12, 12) × (�12, 12). In panel (c), a circle of radius 2π/r1 is drawn by
the magenta dashed line for comparison, where r1 is the mean nearest-neighbor distance. MD results from the largest system N = 2048 are used.

In order to get a better understanding to which extent the
atomistic structure of the fluid plays a role, we pass from the
x-space to the k-space and compare magnitudes of the Fourier
transformed fields ũ•(k, t) = ∫ dx u•(x, t)e−ik ·x for • = ⊥, ‖
resulting from the MD simulations with the corresponding
LNS fields, which are explicitly given by (A2). In Fig. 4, the

absolute values |ũ•(k, t)| =
(
|ũ•x |

2 + |ũ•y |
2
)1/2

, • =⊥, ‖, at time
t = 0.5 are compared. While, as in direct space, the agree-
ment between the MD and LNS results for the perpendicular
contribution is almost perfect, the MD result for the parallel
component displays distinct structures at large k values, while
the differences at small k values are minor. The most pro-
nounced difference is a ridge along a circle with the radius
k = 2π/r1 corresponding to the nearest-neighbor distance
r1 = 1.096 in the fluid. The appearance of a maximum at this
particular k value clearly reflects the influence of the atom-
istic structure of the fluid on the MD velocity field. Beyond
this radius, the absolute velocity |ũ‖(k, 0.5)| first decreases and
then develops a broad and shallow maximum at even larger k
values. The amount of quasi-momentum transferred to small k
values is restricted to two regions around 2πn/Lex with n = ±1
according to both MD and LNS methods. Deviations between
the MD and LNS results already at slightly larger k values are
clearly visible. Whether they are caused by the atomistic struc-
ture of the fluid or by the linearization of the Navier–Stokes
equations is not clear.

Accordingly atomistic structures are also visible in direct
space at sufficiently small scales. Figure 5 presents the x-
component of u‖(x, t) in the approximately threefold mag-
nified central region at two times t = 0.5 and t = 1. At the
smaller time, the MD result displays a shell-like structure,
which is determined by concentric circles with radii ri

coinciding with the locations of the first three maxima of the

radial distribution function at r1 = 1.096, r2 = 2.226, and r3

= 3.390. In the central circle with radius r1 and also in the
two rings bordered by neighboring radii ri, there are roughly
croissant-shaped regions of forward motion surrounded by
regions with backward motion. In total, the amount of back-
ward motion is less pronounced in accordance with the fact
that it is generated by backscattering events. These alternating
structures of forward and backward motion are much less pro-
nounced at the later time t = 1, when the initial excitation of
the fluid by the tagged particle has already propagated away
from the center. Of course, none of the atomistic structures
are present in the LNS results. Also, the LNS velocity patterns
displayed in Fig. 5 appear to be more symmetric with respect
to the y-axis than the corresponding MD result.

According to the LNS equations, the centers of the two
vortices, defined as the locations where u(x, t) vanishes, move
in the directions perpendicular to the initial tagged particle
velocity in proportion to [∫ ν(t ′)dt ′]1/2; see (A4). In Fig. 6,
this prediction is compared with the movement of the respec-
tive locations of the perpendicular velocity component deter-
mined by MD simulations. The agreement is good as long
as finite-size effects can be neglected. The LNS motion of
the vortices is strictly confined to the y direction in contrast
to the results obtained from the MD simulation according to
which the vortices also move to the x-direction approaching
the maximal distance x0 ≈ 0.6. Apart from this minor differ-
ence, the agreement of the vortex pattern found in the MD
simulations and obtained from LNS is excellent. Likewise, we
compared the speed of the wave-like propagation in Fig. 7 and
found that both front positions x±max, where |u‖(x, t)| attains
maxima on the x-axis, move according to the MD simula-
tions with the sound speed in complete agreement with the
LNS.

FIG. 5. Atomistic structures observed only in the MD results. For the x-component of the longitudinal velocity u‖x (x, t), the MD results at t = 0.5 and 1 are
compared with the inverse Fourier transformed results of LNS solution (A2) for x ∈ (�8, 8) × (�8, 8). In panels (a) and (c), concentric circles of radii ri (i = 1,
2, 3) centered at the origin are drawn by the magenta dashed lines for comparison, where ri is the position of the ith peak of the radial distribution function. The
white dot at the center denotes the initial position of the tagged particle. MD results from the largest system N = 2048 are used. The LNS results are obtained
from the k-sum over 2π/L ≤ |kx |, |ky | ≤ π/∆xc with ∆xc = 0.1.
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FIG. 6. Shear mode propagation. For the vortex centers (x0,±y0) of the trans-
verse velocity field, the growth of y2

0 is shown versus time t. The circle, square,
and diamond symbols denote MD results from the three system sizes N = 512,
1024, and 2048, respectively. The dashed line depicts theoretical prediction
(A4) from the LNS solution.

We finally compare the distribution of the tagged particle,
ntag(x, t), obtained from the MD simulations with the Gaussian
distribution, nGauss(x, t), which is the solution of the diffusion
equation (11). For a better testing, we correct for the small bias
of ntag(x, t) that emerges from the initial condition of the tagged
particle having only velocities in the positive x-direction, by
shifting the Gaussian density to the x-direction by the mean
value 〈x(t)〉 of the tagged particle at the considered time t. The
latter is well described by40,41

〈x(t)〉 ≈
dD(t)
C(0)

v0. (27)

This expression is obtained by integrating both sides of (2)
up to time t and taking the average over the absolute values
of the thermally distributed initial velocities. As can be seen
from Fig. 8, the marginal densities ntag(x, t) ≡ ∫ ntag(x, y,
t)dy according to the MD simulations and the shifted Gaussian
density resulting from the diffusion equation (11) agree almost
perfectly with each other. In conclusion, the tagged particle
density is faithfully described by a Gaussian distribution with

FIG. 7. Sound wave propagation. For the points (x+
max, 0) and (x−max, 0) attain-

ing the maximum magnitude of the longitudinal velocity in the forward and
backward wavefronts, respectively, the growth of x±max is shown versus time t.
The MD results from the largest system size N = 2048 are depicted by circles
(x+

max) and squares (x−max), whereas the LNS predictions x+
max = −x−max are

plotted by the dashed lines.

variance 2∫ D(t ′)dt ′ and mean values 〈y(t)〉 = 0 and 〈x(t)〉
given by (27).

C. Velocity autocorrelation function

Based on the previous results, we also examine the validity
of the analytic expression (17) for the VACF C(t). Its derivation
is mainly based on the following three assumptions:

• Assumption 1. According to (8) and (10), C(t) can be
expressed in terms of the velocity field u(x, t), which is
generated by the motion of the tagged particle relative
to the fluid at the initial time, and the probability density
ntag(x, t) to find the tagged particle at a later time t at
the position x.

• Assumption 2. The velocity field u(x, t) can be obtained
as a solution of the LNS.

• Assumption 3. The velocity field u(x, t) can be substi-
tuted by its transverse component u⊥(x, t).

FIG. 8. Distribution of the tagged particle. The marginal densities ntag(x, t) ≡ ∫ ntag(x, y, t)dy and ntag(y, t) ≡ ∫ ntag(x, y, t)dx of the tagged particle resulting
from MD simulations (solid lines) are compared with the Gaussian densities according to (11) (dashed lines), nGauss(x � 〈x(t)〉, t) (shifted) and nGauss(y, t),
respectively, in panels (a) and (b). Results from a system of size N = 2048 are shown for different values of time t = 0.5 (red), 2 (blue), and 8 (green). The
agreement is excellent for the two larger times t = 2 and t = 8. For the short time t = 0.5, the MD result is narrower than the Gaussian distribution due to a
dependence of ntag(x, y, t) on the initial velocity, which is neglected in the Gaussian distribution. This dependence is slightly anisotropic being more pronounced
in the direction perpendicular to the initial velocity than parallel to it.
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FIG. 9. Comparison of VACFs C(t) evaluated by various methods. In panel (a), the VACFs obtained directly from the MD simulations of three system sizes
are depicted by solid lines. The VACFs computed using the LNS solutions uinf(x, t) and u⊥inf (x, t) for the infinite system limit are also plotted by dashed lines.
Hence, the green dashed line corresponds to (17). In panel (b), VACFs obtained from different methods for N = 512 are compared. The VACF obtained directly
from MD is again displayed by the red solid line. The VACFs computed from (10) using the MD results u and u⊥ are depicted by blue (empty) and green
(filled) circles, respectively. Corresponding results obtained from (28) with the LNS solutions u(k, t) and u⊥(k, t) are drawn by the blue and green dashed lines,
respectively. An extension to shorter times is depicted in the inset displaying a very good agreement of the directly calculated MD VACF and the result of (10)
with the full velocity field obtained from MD. The analogous results presented in panel (b) for N = 1024 and 2048 do not provide further insights and therefore
are not shown.

We note here that Assumption 1 indicates that the tagged par-
ticle behaves as any other fluid particle. It still leaves open
whether the velocity field u(x, t) is estimated from the positions
and velocities of all fluid particles or whether it is obtained
from a hydrodynamic consideration as postulated in Assump-
tion 2. Assumption 3 introduces a further simplification which
is expected to lead to errors at short times and for finite systems
also at large times.

In Fig. 9(a), we compare the VACFs obtained by the MD
simulations of systems with three different sizes. The expected
t�1 long-time tails emerge first around t = 1 and well describe
the VACFs up to the appearance of a series of humps with

maxima at times
√

n2
x + n2

yL/cs with nx, ny = 0, 1, 2, . . .. At
these times, a signal propagating with the sound velocity cs

reappears when moving on a square with side length L and
periodic boundary conditions. Hence, the humps can be inter-
preted as the “echoes” of the initial state. Actually, relatively
insignificant deviations from the long-time tail behavior appear
already before the first hump as was found from MD simula-
tions, which are not presented here, of a much larger system
with N = 6.5 × 105 particles.

In the intermediate time interval 5 < t < L/cs, the analytic
expression (17) being indicated by the green line in Fig. 9(a)
very well agrees with the MD result for the large system with
N = 2048. Yet small but noticeable deviations are present in
the time span 1 < t < 5. A much better conformity is achieved
with the result calculated with the full solution u(x, t) of the
LNS, see Appendix A, and the Gaussian distribution of the
tagged particle (blue line in Fig. 9). Hence, the deviations in
the region 1 < t < 5 can be fully attributed to a violation of
Assumption 3.

In order to assess the finite-size effects in particular in
combination with further approximations, we also considered
the finite-size version of (10), which is of the form

C(t) ≈
C(0)

〈v0〉Ld

∑
k,0

ux(−k, t)nGauss(k, t). (28)

Here, a cutoff kc = π/∆xc at large k values must be introduced in
order to avoid the divergence of C(t) at t = 0.42,43 We choose as
cutoff length∆xc = 0.1, in agreement with the spatial resolution
used for estimation (22) of the MD fields.

In Fig. 9(b), the VACF directly obtained from the MD
simulations is compared with the result from (10) with the
full velocity field obtained from MD simulations (blue cir-
cles) as well as the result from (28) with the LNS u(x, t)
of the corresponding finite system with periodic boundary
conditions (blue dashed line). The LNS equations are solved
with time-dependent transport coefficients based on molecular
expressions; see Appendix B. Whether these transport coeffi-
cients and the thermodynamic parameters listed in Appendix C
are determined in finite-size systems or in the limit of an
infinite-size system turns out to be insignificant.

While the result from the full MD velocity field perfectly
agrees with the direct MD VACF from the shortest to the
largest times, the LNS result coincides at short and intermedi-
ate times with the infinite system results hence revealing the
aforementioned deviations at short times. At large times, the
humps caused by echoes on the finite torus are perfectly repro-
duced by (28), provided that the full velocity u(x, t) is used,
whereas with a transversal velocity field u⊥(x, t), these humps
in C(t) disappear, independent of whether the respective MD
(green dots) or the LNS velocity field (green dashed line) is
used.

In view of the above-formulated assumptions, we may
conclude that Assumption 1 is surprisingly well satisfied even
in the kinematic region with t < 1, where the LNS predictions
fail mainly for the longitudinal components as evident from
Figs. 2(c), 2(f), 4(c), 4(d), and 5. Therefore, Assumption 2
cannot be used for times t < 1, which corresponds to less
than 5 mean collision times between fluid particles. For t & 1
though, the full LNS velocity field yields a valid description of
C(t) for all times, including the echo humps of finite systems;
hence, Assumption 2 is justified from the time t = 1 onwards.
Assumption 3 sets in to hold for times t & 5. This time scale
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is with approximately 25 mean collision times still extremely
short if considered at the hydrodynamic time scale. Finite-
size effects are mainly suppressed with this assumption, which
therefore well describes the thermodynamic limit.

V. SUMMARY AND CONCLUSION

In the present study, we investigated self-diffusion in a
system of N pairwise interacting soft disks moving in a two-
dimensional square with periodic boundary conditions and
compared with the results predicted by the linearized Navier–
Stokes equations. By computing hydrodynamic field variables
directly from extensive MD simulations with high spatial and
temporal resolution and by comparing with the solutions of
the LNS, we performed a quantitative analysis indicating the
regime of validity of the LNS approach both with respect to
the length and time scales. In particular, in view of the fact that
certain transport coefficients, such as the diffusion coefficient,
do not exist for two-dimensional fluids, it was of significant
importance to use time-dependent transport coefficients in the
LNS. These time-dependent transport coefficients are deter-
mined by finite-time Green–Kubo relations. We expect that
their use may also improve the agreement of the solutions of the
LNS and results from MD simulations for three-dimensional
systems at small spatial and short time scales and in this way
may narrow the gap between the kinetic and the field theoretic
descriptions of a fluid.

In the presently investigated two-dimensional case, we
were able to completely close this gap and demonstrate that
the hydrodynamic description is valid already after a few mean
collision times. The predictions of the LNS set in to hold
already at very short times for the perpendicular part of the
velocity field, u⊥(x, t), that contains the vortex pair, eventu-
ally being responsible for the long-time tail of the VACF. On
the other hand, the longitudinal wave-like part of the velocity
field, u‖(x, t), resulting from the MD simulations contains at
short times features at molecular scales that are absent in the
respective LNS field. The layered spatial structure of the MD
longitudinal velocity field u‖(x, t) at short times is caused by
the typical shell-like structure of the radial distribution func-
tion. The asymmetry of the forward and backward wavefronts
can be explained by the backscattering events of the tagged
particle necessary to build up the backward oriented wave
front. However, by comparing the growth of flow patterns, we
confirmed that outside the kinetic region the LNS solutions
provide accurate quantitative description for both u⊥(x, t) and
u‖(x, t).

Based on these observations, we revisited the long-time
decay of the VACF, which was first observed and explained
by Alder and Wainwright and subsequently analyzed by the
mode-coupling theory. We investigated the implicit assump-
tions of the mode-coupling theory and specified the underly-
ing assumptions as well as their applicability. As the central
results, we found that the description of the VACF in terms of
(i) a fluid velocity field u(x, t) that is conditioned on the initial
position and velocity of the tagged particle and (ii) the prob-
ability density ntag(x, t) of the tagged particle quantitatively
agrees with the standard definition as the velocity-velocity
correlation function of a selected fluid particle from very short

times onwards, which are less than the mean collision time.
The replacement of the named velocity field by the solution of
the LNS equations with properly determined time-dependent
transport coefficients is restricted to times that must be of the
order of five mean collision times or larger and is hence already
valid on quite short time scales compared to standard hydrody-
namic times. The use of time-dependent transport coefficients
is mandatory because of the divergence of transport coeffi-
cients in two-dimensional fluids but may also improve the
solutions of three-dimensional fluids at short times.

The deviations of the actual flow patterns from those
resulting from LNS at very short times can be traced back
to the atomistic structure of the fluid but also might be influ-
enced by the nonlinearity of the full Navier–Stokes equations,
which at short times must not be neglected in view of the sin-
gular initial condition (13). Finally, the velocity field may be
replaced by its transversal part after the relatively short time
that it takes until the wave-like propagating part of the veloc-
ity does no longer overlap with the tagged particle probability
density. The transversal velocity part contains in two dimen-
sions a vortex pair and in three dimensions a vortex ring. These
structures are responsible for the algebraically slow decay of
the VACF as it already was predicted by Alder and Wainwright.

Expression (17) relating the VACF and the diffusion coef-
ficient to each other in a nonlinear way was recently used by
some of the present authors to find the large time behavior of
these quantities resulting in proper corrections to the t�1 decay
law of C(t) and the conforming diffusion coefficient D(t) for
a two-dimensional fluid.44

A phenomenon closely related to self-diffusion to which
the present approach might be applied is Brownian motion.45,46

In the case of a Brownian particle, the considered particle has
different, mostly much larger mass and also a larger volume
than a fluid particle. While in the Brownian limit of heavy
particles normal diffusion governed by a Markovian Langevin
equation characterizes the dynamics well, the crossover behav-
ior in a two-dimensional fluid from anomalous self-diffusion
to normal diffusion presents an open problem.
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APPENDIX A: LINEARIZED NAVIER–STOKES
EQUATIONS

We present the form of the LNS equations considered in
the paper and obtain analytic results (A4) for the transverse
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velocity in the two-dimensional case. For the number density
n(x, t), the velocity u(x, t), and the temperature T (x, t), the lin-
earized governing equations of a compressible fluid are written
as1,2,33

∂n(x, t)
∂t

= −n̄∇ · u(x, t), (A1a)

∂u(x, t)
∂t

= −
c2

s

γn̄
∇n(x, t) + ν∇2u(x, t) + (Dl − ν)∇(∇ · u(x, t))

−
c2

sα

γ
∇T (x, t), (A1b)

∂T (x, t)
∂t

= −
γ − 1
α
∇ · u(x, t) + γDT∇

2T (x, t), (A1c)

where n̄ is the mean number density, cs is the adiabatic speed of
sound, γ is the ratio of specific heats, ν is the kinematic viscos-
ity, Dl is the kinematic longitudinal viscosity, α is the thermal
expansion coefficient, and DT is the thermal diffusivity.

The solution of (A1) obeying the initial conditions (13)
and (26) is readily expressed in a closed form in the Fourier
space. By assuming time-dependent coefficients ν(t), Dl(t),
and DT(t) and v0 = v0ex, the longitudinal and transverse
velocities ũ•(k, t) = ∫ dx e−ik ·xu•(x, t), • = ⊥, ‖, become

ũ⊥(k, t) =
v0

n̄

[
ex −

kx

k
k̂

]
e−k2

∫
t

0 ν(t′)dt′ , (A2a)

ũ‖(k, t) =
v0

n̄
kx

k
k̂ cos (cskt)e−

k2
2 ∫

t
0 Γs(t′)dt′ , (A2b)

where k and k̂ denote the magnitude and unit vector of k,
respectively, and Γs(t) = Dl(t) + (γ � 1)DT(t) is the sound
attenuation coefficient.

In the two-dimensional case, from the inverse Fourier
transform of (A2a), the transverse velocity has the following
closed-form expression:

u⊥x (r, θ, t)

=
v0

4πn̄r2

(
2 cos 2θ −

2B(t) cos 2θ − r2 sin2 θ

B(t)
e−

r2
4B(t)

)
,

(A3a)

u⊥y (r, θ, t) =
v0

8πn̄r2

(
4 −

4B(t) + r2

B(t)
e−

r2
4B(t)

)
sin 2θ, (A3b)

where r and θ denote the polar coordinates of x and
B(t) = ∫

t
0 ν(t ′)dt ′. From the condition u⊥ = 0, we can easily

find the location of each vortex center (0, ±y0), where

y0 = 2
√
ξB(t) ≈ 2.24

[ ∫ t

0
ν(t ′)dt ′

]1/2

(A4)

and ξ ≈ 1.26 is the positive solution of (ξ + 1
2 )e−ξ = 1

2 . For
convergent ν(t) (i.e., limt→∞ ν(t) = ν), we have ∫

t
0 ν(t ′)dt ′

≈ νt at large t and thus obtain the
√
νt time scale of y0.

APPENDIX B: TRANSPORT COEFFICIENTS
FROM GREEN–KUBO FORMULAS

We consider the following five time-dependent transport
coefficients which are defined by the Green–Kubo relationship
in terms of correlation functions:

diffusion coefficient: D(t) =
1
d

∫ t

0
〈v(0) · v(t)〉dt ′, (B1a)

heat conductivity: λ(t) =
V

dkBT2

∫ t

0
〈J(0) · J(t ′)〉dt ′, (B1b)

shear viscosity: η(t) =
V

kBT

∫ t

0
〈Pxy(0)Pxy(t ′)〉dt ′, (B1c)

bulk viscosity: ζ(t) =
V

kBT

∫ t

0
〈δP(0)δP(t ′)〉dt ′, (B1d)

kinematic viscosity: ν(t) =
η(t)
n̄m

. (B1e)

Then the respective flux is defined as

J =
1
V



∑
i

eivi +
1
2

∑
j,i

(
f ij · vj

)
rij


, (B2a)

FIG. 10. MD estimation of transport
coefficients. The time-dependent behav-
ior of the autocorrelation functions for
J(t), Pxy(t), and δP(t) is presented in
(a), (b), and (c), respectively, and the
corresponding transport coefficients are
shown in (d), (e), and (f). The red solid
lines, green dashed-dotted lines, and
blue dashed lines depict the results of
N = 512, 1024, and 2048, respectively
(V = L2 = 853.3, 1707, and 3413). The
black dotted lines represent auxiliary
lines corresponding to t�2.
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Pxy =
1
V



∑
i

mvixviy +
1
2

∑
j,i

rijxfijy


, (B2b)

δP =
1

dV



∑
i

mvi · vi +
1
2

∑
j,i

rij · f ij


− 〈P〉 . (B2c)

Here V and 〈P〉 are the volume and the average pressure of the
system, respectively, and ei, f ij, and rij are the energy of atom i,
the inter-atomic force, and the position vector between atoms
i and j, respectively. Figure 10 displays the MD estimation
results of these flux correlation functions and the respective
transport coefficients.

The sound attenuation coefficient, defined as

Γs(t) = Dl(t) + (γ − 1)DT(t), (B3)

can be obtained from the heat conductivity λ(t), shear viscosity
η(t), and bulk viscosity ζ(t), whereby the thermal diffusivity
DT(t) and the longitudinal diffusivity (kinematic longitudinal
viscosity) Dl(t) are related to these three coefficients as

DT(t) =
λ(t)
n̄CP

, (B4a)

Dl(t) =
1

n̄m

(
2 (d − 1)

d
η(t) + ζ(t)

)
, (B4b)

where CP and γ are the isobaric heat capacity and the ratio of
the specific heat of the system, respectively.

APPENDIX C: THERMODYNAMIC PARAMETERS
FROM THE PHASE-SPACE VOLUME

Here we briefly review Meier and Kabelac’s method39

and apply this method for the calculation of the necessary
thermodynamic parameters in two-dimensional fluid systems.
Starting from the entropy S = kB ln Ω, where Ω is the phase-
space volume, the adiabatic speed of sound, for example,
defined as

cs =

√(
∂P
∂ρ

)
S
=

√
−

V2

M

(
∂P
∂V

)
S
, (C1)

can be expressed in terms of derivatives of the phase-space
volume with respect to the energy E and the volume V, yielding

cs =

√
V2

M

(
1
ω

∂Ω

∂V

(
2

1
ω

∂2Ω

∂V∂E
−

1

ω2

∂2Ω

∂E2

∂Ω

∂V

)
−

1
ω

∂2Ω

∂V2

)
,

(C2)
where ω = ∂Ω

∂E is the phase-space density and M and ρ are the
total mass (i.e., M =

∑N
i=1 mi) and mass density (i.e., ρ = M/V )

of the system, respectively.
Defining the center of mass related quantity G,

G =
N∑

i=1

pit −
N∑

i=1

mixi = Pt −
N∑

i=1

mixi, (C3)

we express the phase-space volume depending on the con-
served quantities N, V, E, P, G as

TABLE I. The phase-space functionsΩmn (m + n ≤ 2) of the two-dimensional
NV EPG ensemble.

Ω00 =
1

N−1 〈K〉=kBT

Ω10 = 1

Ω01 =
1
V 〈K〉 −

〈
∂U
∂V

〉
= P

Ω11 =
N−1

V − (N − 2)
〈
K−1

(
∂U
∂V

)〉
Ω20 = (N − 2)

〈
K−1

〉
Ω02 =

N−2
V2 〈K〉 − 2 N−1

V

〈
∂U
∂V

〉
−

〈
∂2U
∂V2

〉
+ (N − 2)

〈
K−1

(
∂U
∂V

)2
〉

Ω (N , V , E, P, G) =
1

CN

∫
dxN

∫
dpN

Θ

(
E −

P · P
2M

− H

)
× δ*

,
P−

N∑
i=1

pi
+
-
δ *

,
G− t

N∑
i=1

pi +
N∑

i=1

mixi
+
-
,

(C4)
where P =

∑N
i=1 pi is the total momentum, H = K + U is the

Hamiltonian of the system, K is the kinetic energy of the sys-
tem, U is the potential energy of the system,Θ is the Heaviside
step function, and CN is a normalization constant rendering the
phase-space volume dimensionless.

We define the phase-space functions as Ωmn =
1
ω

∂m+nΩ
∂Em∂Vn .

Expressions of Ωmn in terms of the kinetic energy K and the
volume derivatives of the potential energy ∂nU/∂Vn can be
derived by using derivatives of (C4). We list the phase-space
functions Ωmn (m + n ≤ 2) of the two-dimensional NV EPG
ensemble in Table I.

Thermodynamic state functions appearing in (A1a) and
(A1b),

adiabatic speed of sound: cs =

√
V

M βS
, (C5a)

thermal expansion coefficient: α = βTγV , (C5b)

ratio of the specific heats: γ =
CP

CV
, (C5c)

isobaric heat capacity: CP = CV
βT

βS
, (C5d)

can be expressed in terms of Ωmn using

isochoric heat capacity: CV = kB(1 −Ω00Ω20)−1, (C6a)

thermal pressure coefficient: γV = kB
Ω11 −Ω01Ω20

1 −Ω00Ω20
, (C6b)

isothermal compressibility: β−1
T

= V


Ω01 (2Ω11 −Ω01Ω20) −Ω00Ω
2
01

1 −Ω00Ω20
−Ω02


, (C6c)

adiabatic ompressibility: β−1
S

= V [Ω01 (2Ω11 −Ω01Ω20) −Ω02] . (C6d)

APPENDIX D: OBJECTIVE VORTEX IDENTIFICATION

In order to demonstrate that the pair of vortices that are
obtained by means of the Helmholtz decomposition of the MD
vector field is Galilean-invariant, we use the following two
objective criteria.47–49 Both criteria rely on the gradient ∇u
of the considered velocity field u, which is decomposed into
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FIG. 11. Test of two objective criteria for vortices. According to the Q- and
λ2-criteria, two vortices can be consistently identified located in regions
around the zeroes of the transversal fields u⊥(x, t). This velocity field is
obtained for a system of size N = 2048 at time t = 4. The displayed spatial
domain is restricted to x ∈ (�15, 15) × (�15, 15).

its symmetric and anti-symmetric parts S and A, respectively,
defined as

S =
1
2

[
∇u + (∇u)T

]
,

A =
1
2

[
∇u − (∇u)T

]
,

(D1)

where XT denotes the transpose of the matrix X.
The first, so-called Q-criterion locates a vortex where the

scalar function Q defined as

Q =
1
2

[
|Ω|2 − |S|2

]
(D2)

is positive. Here |X|2 = Tr(XXT ) defines a norm of the matrix
X. The second, so-called λ2-criterion locates a vortex where
the second eigenvalue λ2 of the matrix S2 + Ω2 is negative,
whereby the two eigenvalues of S2 +Ω2 are ordered such that
λ1 > λ2.

Figure 11 confirms that there are two vortices with
positions located around (0, ±y0) with y0 defined in (A4).
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