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Abstract
Self-diffusion in a two-dimensional simplefluid is investigated by both analytical and numerical
means.We investigate the anomalous aspects of self-diffusion in two-dimensional fluidswith regards
to themean square displacement, the time-dependent diffusion coefficient, and the velocity
autocorrelation function (VACF)using a consistency equation relating these quantities.We
numerically confirm the consistency equation by extensivemolecular dynamics simulations forfinite
systems, corroborate earlier results indicating that the kinematic viscosity approaches afinite, non-
vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion
coefficient.We obtain the exact solution of the consistency equation in the thermodynamic limit and
use this solution to determine the large time asymptotics of themean square displacement, the
diffusion coefficient, and theVACF. An asymptotic decay law of theVACF resembles the previously

known self-consistent form, t t1 ln( ), howeverwith a rescaled time.

1. Introduction

Self-diffusion is one of the basic transportmechanisms in liquids. Its theoretical investigation goes back to the
pioneeringwork of Alder andWainwright [1, 2]. Usingmolecular dynamics (MD) simulations they found that
the velocity autocorrelation function (VACF), which is defined as v vC t t0º á ñ( ) ( ) · ( ) , displays so-called long-
time tails being characterized by an asymptotic decay proportional to t d 2- . Here, the brackets denote a thermal
equilibrium average and d= 2, 3 specifies the dimension of the space occupied by the considered liquid. Soon
after, thisfindingwas corroborated byKawasaki [3]withinmode-mode coupling theory. The long-time tails are
caused by hydrodynamic interactions between a tagged particle and the vortexflow induced by the particle
motion relative to the rest of thefluid. At the lower dimension d=2, the resulting t1 long-time tail though is
inconsistent withinmode-coupling theory. Amodified asymptotics based on a self-consistent argumentwas
suggested in [4–7] leading to a slightly faster decay according to

C t
t t

1

ln
. 1~( ) ( )

The diffusion coefficient describing the self-diffusion of afluid particle is defined as D t C t td
d

t1

0òº ¢ ¢( ) ( ) and

consequently, according to (1), grows asymptotically in time as tln . Yet another time-integration yields the

mean square displacement (MSD) of a tagged particle, r t d D t t2 d
t2

0òáD ñ = ¢ ¢( ) ( ) , where

r r rt t 0D º -( ) ( ) ( ) denotes the spatial increment of the tagged particle in the time t. In the case of a two-
dimensional fluid (1) asymptotically leads to r t t tln2áD ñ ~( ) . There have been various studies of the actual
asymptotic formof theVACF and the diffusion coefficient aswell as of theMSDbyMD simulations [8–12], all of
them, however, being inconclusive concerning the logarithmic correctionswhich turn out as tooweak to be
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reliably detected.Most of these studies rather identified an algebraic behavior of theMSDof the form

r t t . 22áD ñ ~ a( ) ( )

For 1a > such a spreading is known as superdiffusion. This phenomenonwas discoveredmore than 90 years
ago for the separation of a pair of particlesmoving in a turbulent fluid [13]. Superdiffusion has been extensively
studied over the past thirty years or so and amultitude of possiblemechanisms have been identified [14–20]. The
probability density function (PDF) of the displacement r tD ( ) provides a distinguishing criterion, which though
does not uniquely identify the underlyingmechanism.Gaussian PDFs are known for normal diffusion andwere
also found by Liu andGoree in a two-dimensional systemof particles interacting via a Yukawa potential [21, 22].
On the other hand,motionswith a broad distribution of jumps orflights typically lead to PDFs characterized by
heavy tails [20].

The purpose of the present investigation is to resolve the puzzle of the anomalous behavior, both by
analytical and numericalmeans. As the central result wefind for the scaling exponentα the value 1 of normal
diffusion and identify a particular slowly varying function causing theMSDgrowing disproportionately in time.
The analytical result is based on self-consistentmode-coupling theory [23] and compared to numericalMD
simulations.

2.Gaussian nature of displacement

In theMD simulationswe consideredN particlesmoving on a two-dimensional square with periodic boundary
conditions under the influence of a pairwiseWeeks–Chandler–Andersen potential [24]. The number density
was chosen as 0.6r = and the temperature asT=1. In this parameter region the superdiffusive behavior is
most pronounced. The accordingHamiltonian equations ofmotionwere solved bymeans of a velocity
Verlet algorithmwith a time step t 10 3D = - . For the precise specification of the used dimensionless units and
for further details, see Shin et al [18].

Infigure 1(a)PDFs P xD( ) of the x-component of the displacement r tD ( ), based on the corresponding
histograms, are displayed semi-logarithmically for different times t. At all times the agreement withGaussian
distributions represented by a parabola is perfect. Also aKolmogorov–Smirnov test confirms theGaussian
nature of the distributions at a high confidence level. Hence, for the considered times, the distribution of the
displacement is fully characterized by itsfirst, vanishing,moment and the secondmoment given by theMSD.
Deviations from aGaussian displacement distributionmight be expected only at the very short time scales
characterizing themicroscopicmotion of the fluid particles. Figure 1(b)presents a semi-logarithmic plot of the
PDFs of rr t2 2D º D ( ) for different times t as a function of r t2D . For normal diffusion all data would collapse
onto a single straight line. The decreasing inclinationwith increasing time however indicates a superdiffusive
spreading. Infigure 2(a) this anomalous spreading is characterized by theMSDper time, r t t2áD ñ( ) , for
different system sizesN. AsN becomes larger, the disproportionate increase of theMSDwith time becomes
longer, however eventually it approaches normal diffusionmotion growing proportionally to time. In order to
quantify the increase of theMSDwe determined a local exponent ta( ) by subdividing time on a logarithmic

Figure 1.PDFs of xD obtained fromMDsimulations are presented in (a) for different times. The dashed lines represent Gaussian
distributions with vanishingmean values and variances obtained from theMSDdata. In (b) the PDF of rr t2 2D º D ( )multiplied by
theMSD r t2áD ñ( ) is displayed as a function of the squared displacement normalized by the time, r t2D . The dashed lines represent
exponential distributions, rr texp 2 2-D áD ñ{ ( ) }.
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scale into intervals of equal length 0.1 onwhich the logarithmof theMSDwas approximated by a linear function
of tln . The local exponentwas then estimated from the slope of the fitted straight line. Figure 2(b) exhibits the
local exponent ta( ) as, on average, decreasing with time until it eventually reaches the value 1. The time atwhich
thefinal value 1a = is reached depends on the sizeN of the system,which becomes larger asN increases. As
long as ta( ) is larger than 1, on average, it is steadily decreasingwithout developing any plateau. This behavior
presents a strong indication against a constant exponent 1a > .

3. Self-consistency relation forfinite size systems

Following [25–27]we express theVACF at sufficiently large times by a sumoverwave-vectors k of the form

C t
k T

m L
e , 3

k

k D t t t

0

B
2

d
t

2

0å ò
r

= n

¹

- ¢ + ¢ ¢( ) ( ){ ( ) ( )}

withm denoting the particlemass and L the side length of the systemdomain.Here the diffusion coefficientD(t)
and the kinematic viscosity coefficient tn ( ) are determined by the respectiveGreen–Kubo formulas

D t t C td
d

t1

0ò= ¢ ¢( ) ( ) and t L k T t P P td 0
t

xy xy
2

B 0òn r= ¢á ¢ ñ( ) ( ) ( ) ( )/ , withPxy(t) denoting the off-diagonal
element of the pressure tensor [28]. Details of the derivation of (3) are given in the appendix.

We validated (3) by the comparison of theMD results for theVACF and a numerical addition of the k-sum.
TheMD simulationswere run for differently large systemswith particle numbers N 160, 320, 640, 32 000=
and 160 000 at the fixed density 0.6r = . The results of this comparison are displayed infigure 3. The agreement
is excellent for all but the smallest times at which the dynamics is still dominated bymolecular kinetics rather

than by hydrodynamic laws and also for those times t n l L cs
2 2= + , with integer numbers n l, , at which a

signal propagatingwith sound velocity csmay return to its starting point. Here the sound velocity is given by
c p mSs r= ¶ ¶( ) with the pressure p and entropy S [29]. The small humps ofC(t) at the respective times are
not reproduced by the expression(3), because only the contribution of the diffusive transversal velocityfield is
considered and the propagation of the longitudinal part is neglected [27].

For finite systems both the viscosity coefficient and the diffusion coefficient converge to afinite value
howeverwith different size dependencies.While the diffusion constant D D t Llim lnt= µ¥ ( ) diverges with

L N r= , the viscosity attains afinite value in this limit in accordance with other numerical studies of two-
dimensional fluidswith pairwise short-range repulsive interactions [30, 31]. Based onMD simulations for
different system sizes, we found t Llim 1.4769 0.9859tn n= = -¥ ( ) . For later usewe note that the time-

integral of the viscosity can be represented as t t t bd
t

0ò n n¢ ¢ = +( ) where b 0.2674= - is almost

independent of L. Further details of our study related to the viscosity will be published elsewhere.

Figure 2.TheMSDper time, r t t2áD ñ( ) , is displayed in (a) as a function of time for several system sizes. TheMSD follows the
thermodynamic limiting law, (9), up to a time depending on the size of the system and then approaches normally diffusive behavior.
The local scaling exponent ta( ) displayed in (b) decays on averagemonotonically until it reaches the value 1 of normal diffusion.
Black dashed lines in both panels were obtained from the analytical solution (9).
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4. Self-consistency relation for infinitely large systems

In the thermodynamic limit, i.e. for L  ¥with the density ρ kept constant, the sumon k in (3) can be
replaced by an integral yielding

C t
k T

m D t t t

1

4 d
. 4t

B

0ò
r p n

=
¢ + ¢ ¢

( )
{ ( ) ( )}

( )

For three-dimensional systems the right-hand side ismultiplied by a factor of two, and the denominator
containing the time integral is taken to the power 3

2
. The diffusion aswell as the viscosity coefficients can be

replaced by constant valuesD and ν, respectively, leading to the notorious long-time tail of theVACF,
C t t 3 2µ -( ) in three dimensions [12, 25, 32, 33].

Substituting the viscosity integral by the form t bn + inferred fromourMD simulations, (4) becomes a
relation between theVACFC(t) and the diffusion coefficientD(t) of a two-dimensional fluid. Further,
introducing the function

rG t D t t t b t t bd
1

4
5

t

0

2ò n nº ¢ ¢ + + = áD ñ + +( ) ( ) ( ) ( )

and observing that C t D t G t2 2 ¨= =( ) ˙ ( ) ( ) one obtains from (4) the following closed equation for the auxiliary
functionG(t):

G t
a

G t
t t¨ , 60=( )

( )
( ) ( )

with a k T m8 0.0663B p r= »( ) . The auxiliary functionG(t) can be interpreted as the position of a particle of
mass 1moving in a repulsive logarithmic potential a Gln- . Consequently, the ‘energy’
E G t a G t2 ln2= -˙ ( ) ( ) is conserved and the general solution of (6) is readily found as

G t
E

a
s texp erfi , 71 2= - + -{ }( ) ( ( )) ( )

where zerfi 1- ( ) denotes the inverse function of the imaginary error function z uerfi d e
z u2

0

2

ò=
p

( ) , and

s t a t t
G t

a
2 e erfi

2
8E a

0
0= - +

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ∣ ˙ ( )∣ ( )

is a scaled and shifted time variable. Using (5) relatingG(t) and theMSDwe determined the parameters
E G t a G t2 ln0

2
0= -˙ ( ) ( ) and c G t a a te erfi 2 2E a

0 0º -- (∣ ˙ ( )∣ ) for initial times varying in the interval
t7 7.50  in such away that the difference between theMSD following fromMDsimulations of a system

with 160 000 particles and its value according to (6) becomesminimal for times t7 110  . A comparison
for larger times is notmeaningful because offinite size effectsmanifesting themselves as a series of humps caused
by the sound velocity of the fluid, see figure 3.We found optimal parameter values as E= 1.3688 and
c 0.1585= - . These values turn out to be insensitive to the precise location of the time interval out of which the
initial times t0 is chosen. TheMSD, the diffusion coefficient, and theVACF then assume the following forms

Figure 3.The graphs of theVACF resulting fromMDsimulations (solid line) and from thefinite-size equation (3) (dotted line) are
comparedwith each other for different system sizes.
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r t
E

a
s t t b4 exp erfi , 92 1 2 náD ñ = - + - --

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( ( )) ( )

D t a s t2 erfi , 101 n= --( ) ( ( )) ( )

C t a
E

a
s t2 exp erfi . 111 2= - -{ }( ) ( ( )) ( )

Figure 4 presents a comparison of theMSDaccording to (9) and estimates fromMDsimulations. The agreement
is excellent up to a characteristic time beyondwhich finite size effects become influential.

In order to elucidate the asymptotic behavior of the above expressions wemake use of the approximation

s s s serfi ln
1

2
ln ln

1

2
ln ln ... 121

1 2

p p» + + +- ⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭( ) { [ ]} ( )

holding for large arguments s. It follows from the leading termof the asymptotic expansion of the imaginary
error function x xerfi ex2 p»( ) ( ) by successive inversion [34]. ForC(t),D(t), and r t2áD ñ( ) , the influence of
the order of approximation for the inverse imaginary error function is compared infigure 4.Using the lowest-
order approximations, s serfi ln1 1 2»- ( ) { } and s s serfi ln ln ln1 1

2
1 2p» +- ( ) { ( )} , one obtains

C t a s2 eE a0 1= -( )( ) and C t a s t s t2 e lnE a1 1p= -( ) ( ( ) ( ) )( ) . Likewise one finds D t a s t2 ln0 n= -( ) ( )( )

and D t a s t s t2 ln ln ln1 1

2

1 2
p n= + -{ }( ) [ ( ) ( ( ))]( ) . Going to the next higher order approximation one

obtains C t a s t s t s t2 e ln ln lnE a2 1

2

1 2 1

p p= +
-⎡⎣ ⎤⎦{ }( ) ( ) ( ( ) { ( )})( ) for theVACF and accordingly

D t a s t s t s t2 ln ln ln ln ln2 1

2

1

2

1 2
p p n= + + -⎡⎣ ⎤⎦{ }{ }( ) ( ) ( ( ) [ ( )] )( ) for the diffusion coefficient. For the

MSD it turns out that the lowest-order approximation r t s t t b4 e E a2 0 náD ñ = - --( ) { ( ) }( ) is insufficient
because it attains a negative value. To the first-order onefinds r t s t s t t b4 e lnE a2 1 p náD ñ = - --( ) { ( ) ( ) }( )

and to the second order r t s t s t s t t b4 e ln ln lnE a2 2 1

2

1 2
p p náD ñ = + - -- ⎡⎣ ⎤⎦{ }( )( ) ( ) ( ) { ( )}( ) . As demon-

strated infigure 4, theVACF is alreadywell described by the first-order approximation.Only if the viscosity is
disregarded, yielding C t0n= ( ) and D t0n= ( ), amarked deviation is noticeable. For the diffusion coefficient and
similarly for theMSD the first- and second-order approximations almost exactly agreewith the exact solution
and theMD result.

The decisive difference between standard self-consistentmode-coupling theory and the present self-
consistent theory relies on the appearance of themodified time-like variable s(t). Due to the large factor
e 10E a 8» multiplying t in s(t) the logarithmic corrections s t E a tln ln» +( ) are strongly enhanced by an
additive constant that becomes negligible only at extremely large times t 108 .

5. Conclusions

Wedetermined the asymptotic behavior of self-diffusion in two-dimensional liquids based on the
thermodynamic-limit form(4) of the self-consistency relation (3) relating theVACF and the diffusion
coefficient under the assumption that the viscosity approaches afinite, non-vanishing value in the

Figure 4.MDresults for theVACF of a systemwith 160 000 particles as a function of time are compared in (a)with the exact
expression(11) and several approximations thereof. The lowest-order approximation C t0 ( )( ) and C t0n= ( ) show sensible deviations,
while thefirst-order approximation C t1 ( )( ) is virtually indistinguishable from the exact solution C texact ( ). Likewise, the different
levels of approximations forD(t) and r t2áD ñ( ) are presented in panels (b) and (c), respectively. ForD(t) the exact expression(10), its
approximation D t1 ( )( ) , and theMD simulation result agree with one another while D t0 ( )( ) and D t0n= ( ) visibly deviate. In the case of
MSD, the exact expression (9), r t2 2áD ñ( ) ( ), and theMD result agree with each other, however r t2 1áD ñ( ) ( ) and r t2

0áD ñn=( ) show
visible deviations. The lowest-order approximation r t2 0áD ñ( ) ( ) is not shown because it gives negative values. The inset in each panel
demonstrates that the deviations of the 0n = expressions are still present for very large times, whereas C t0 ( )( ) , D t0 ( )( ) , r t2 1áD ñ( ) ( ),
and higher-order approximations agree with the corresponding exact solutions.
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thermodynamic limit. The resulting behavior of theVACF assumes the same functional formof the standard
self-consistentmode-coupling theory C t t tln 1µ -( ) ( ) with the essential difference that the time is scaled by a
large factor.While the scaling behavior as predicted by the standard theory sets in only at unobservably large
times, our expression for C t s t s tln 1µ -( ) ( ( ) ( ) ) as well as the according expressions for the diffusion
coefficient and theMSDhold for all those times that are larger than the kinetic time scale set by themolecular
interactions.
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Appendix. Derivation of the self-consistency condition (3)

Following [25–27]we review the derivation of (3) based on the laws of linearized hydrodynamics [27, 35]. This
equation establishes a self-consistency relation between theVACFC(t) and the time-dependent diffusion
coefficientD(t) if the time-dependent kinematic viscosity coefficient tn ( ) is known.

By introducing the average v vt 0á ñ( )∣ of the velocity v of a tagged particle at time t, conditioned on the
particle’s initial velocity v0, one can express theVACF in terms of the average over all initial velocities as

v v vC t t . A.10 0= á á ññ( ) · ( )∣ ( )

Note that the outer average is defined by theMaxwell–Boltzmann distribution at the temperature of the fluid.
The conditional average of the tagged particle can be approximated by using a spatial averagewith the fluid

velocityfield u r vt, ; 0( ), which is the solution of the linearizedNavier–Stokes equationswith the initial
condition u r v r v, 0; 0

1
0d=

r
( ) ( ) . That is, the conditional average is expressed as

v v u r v r rt t P t, ; , d , A.20 0òá ñ =( )∣ ( ) ( ) ( )

where rP t,( ) describes the spreading of the tagged particle in space being determined by themass diffusion
equation

r
r

P t

t
D t P t

,
, A.32¶

¶
= 

( ) ( ) ( ) ( )

with the initial condition r rP , 0 d=( ) ( ). The velocityfield u r vt, ; 0( ) can be split into longitudinal and
transversal components, u r vt, ; 0( )∣∣ and u r vt, ; 0^( ), respectively. The longitudinal part describes sound
propagation, which is fast. It leads to a rapidly decaying contribution to the correlation function and therefore
can be neglected at large times. The remaining transversal contribution is governed by the following vorticity
diffusion equation

u r v u r v
t

t t t, ; , ; . A.40
2

0n
¶
¶

= ^ ^( ) ( ) ( ) ( )

Both diffusion equations (A.3) and (A.4) are conveniently solved bymeans of a spatial Fourier transformation,
yielding

kP t, e , A.5k D t td
t

2

0ò= - ¢ ¢˜( ) ( )( )

u k v v
v k

kt
k

, ;
1

e , A.6k t t
0 0

0
2

d
t

2

0ò
r

= - n
^

- ¢ ¢{ }˜ ( ) · ( )( )

where a tilde specifies the spatial Fourier transformation and k n L2p= is a vector in the reciprocal space with
n n n,x y= ( ) being a pair of integers. Parseval’s theorem allows one to transform the spatial integral in (A.2) into
a sumover all allowed reciprocal vectors, yielding upon averaging over v0 the desired result, (3). A similar
equationwas also obtained by Erpenbeck andWood [26].
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