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Abstract
Superfluidity andBose–Einstein condensation are usually considered as two closely related phenomena.
Indeed, inmostmacroscopic quantum systems, like liquid helium, ultracold atomicBose gases, and
exciton-polaritons, condensation and superfluidity occur inparallel. In photonBose–Einstein
condensates realized in the dyemicrocavity system, thermalizationdoesnot occur bydirect interaction
of the condensate particles as in the abovedescribed systems, i.e. photon–photon interactions, but by
absorption and re-emissionprocesses on thedyemolecules, which act as a heat reservoir.Currently,
there is no experimental evidence for superfluidity in thedyemicrocavity system, though effective
photon interactions havebeen observed from thermo-optic effects in the dyemedium. In thiswork,we
theoretically investigate the implications of effective thermo-optic photon interactions, a temporally
delayed and spatially non-local effect, on the photon condensate, and derive the resultingBogoliubov
excitation spectrum.The calculations suggest a linear photondispersion at lowmomenta, fulfilling the
Landau’s criterionof superfluidity.We envision that the temporally delayed and long-range nature of
the thermo-optic photon interactionoffer perspectives for novel quantumfluid phenomena.

1. Introduction

For a gas sufficiently cold and dense that the thermal de Broglie wavelength exceeds the interparticle spacing,
quantum statistical effects come into play. Specifically, formassive bosonic particles, Bose–Einstein
condensation into amacroscopically populated ground stateminimizes the free energy, as has been
experimentally demonstrated in the gaseous regimewith ultracold atomsmore than 20 years ago [1].

More recently, Bose–Einstein condensation has also been observedwith exciton-polaritons,mixed states of
matter and light, andwith photons [2–5]. Unlike particles with a non-vanishing restmass, photons usually do
not showBose–Einstein condensation. The thermal photons of blackbody radiation have no chemical potential,
corresponding to a non-conserved particle number upon temperature variation. Therefore, blackbody radiation
photons vanish at low temperature instead of showing a phase transition to a condensate. This difficulty was
overcome in 2010 by confining photons in a dye-solution filled optical resonatormade of twomirrors spaced in
themicrometer regime [3, 5]. The shortmirror spacing effectively imprints a low-frequency cutoff for the
photon gas, and in the presence of amirror curvature the problembecomes formally equivalent to a two-
dimensional systemof harmonically confinedmassive bosons. By repeated absorption and re-emission
processes, photons thermalize to the (rovibrational) temperature of the dye solution at room temperature.

Experimentally, both the thermalization of the photon gas to the dye temperature [6] andBose–Einstein
condensation of photons above a critical particle number have been observed [3, 5]. For larger condensate
fractions, the size of the condensate increases, which is attributed to aweak repulsive interactionmainly due to
the thermo-optic effects.

So far, it is not known if the photongas, in addition to exhibitingBose–Einstein condensation, is a superfluid
[7]. The existence of superfluidity is believed to require direct interparticle interactions, as e.g. present for
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polaritons, forwhich superfluidity has been established [8–13]. On the theoretical side, the concept of a nonlinear
photonfluidwasfirst introducedbyBrambilla et al and Staliunas [14, 15], whousedhydrodynamic equations to
describe electromagneticfields in a cavity.Chiao et al subsequently proposed to generate a photon superfluid in a
nonlinear optical cavity using theKerr-effect and furthermorepredicted sound-likemodes at the low-momentum
part of theBogoliubov dispersion [16, 17].

In this paper, we examine the effect of thermo-optic interactions on the dispersion of a photon gas trapped
inside an opticalmicrocavity. The thermo-optic effect, also known as thermal lensing, wasfirst introduced by
Gordonwhile studying transient effects of the output power and the beam size upon inserting a liquid cell inside
the laser cavity [18]. In a propagating configuration in stationary conditions, the temporal delay of the thermo-
optic effect does not play a role. The signatures of superfluidity and non-local effects from the associated
thermo-optic nonlinearity have been experimentally observed in this configuration [19, 20]. In another work,
Strinati andConti have theoretically studied the stationary state of dyemicrocavity photon condensate subject to
a non-local thermo-optic nonlinearity [21].

We report a theoretical study on the effects of a thermo-optic nonlinearity giving rise to a temporally delayed
and non-local effective photon interaction for the photon condensate in the dye-microcavity system. Assuming
a planemirrormicrocavity geometry, we derive the Bogoliugov dispersion for such a system subject to small
perturbations. For a suitable parameter range, wefind a linear dispersion at lowmomentum, corresponding to a
phonon-type dispersion.We discuss the possibility of superfluidity of the photon condensate based on such
temporally delayed and long-range interactions.

In the following, section 2 discusses some general properties of the photon gas subject to the thermo-optic
interactions, and section 3 gives steady-state solution. In section 4we derive Bogoliubovmodes of the system
and the resulting elementary excitation dispersion. Finally, section 5 concludes themanuscript.

2. Thermo-optic interactions in a photon gas

Webegin by discussing some general formulas describing the systemof a photon gas trapped in a dye
microcavity subject to thermo-optic interactions. In the experimental scheme of [3, 4], Bose–Einstein
condensation of photons is achieved in a dyemicrocavity (see figure 1)with themirror spacing in thewavelength
regime. This leads to a large frequency spacing between longitudinalmodes, comparable to the emissionwidth
of the dyemolecules. Therefore, to good approximation only photons of a fixed longitudinalmode order q are
found in the resonator, and the two remaining transversemode quantumnumbersmake the system two-
dimensional. The transverse TEM00-mode has the lowest allowed frequency, which imposes a low-frequency
cutoff.Moreover, the photon dispersion becomes quadratic, i.e.massive particle-like, and themirror curvature
imposes a harmonic confinement on the photon gas.

One can show that the photon gas in the cavity is formally equivalent to a two-dimensional gas ofmassive
bosonswith effectivemass m k n c n cz cph 0 0

2 w= = ( ) , where cw denotes the cutoff frequency, kz the
longitudinal wavevector, and n0 the refractive index of the solution. The photon energy in the paraxial limit is:

Figure 1. Schematics of the dye-filledmicrocavity setup. Themirrors M1,2 are spherically curvedwith radiusR, leading to a harmonic
trapping potential for the photon gas. The optical cavity imposes a non-zero cut-off frequency for the trapped photons, with the
longitudinalmodal quantumnumber q. The remaining transversemodal quantumnumbersmake the photon gas two-dimensional.
The photon gas thermalizes by repeated absorption re-emission processes to the spectral temperature of the dyemolecules.
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trapping frequency of the harmonic potential is given by c n LR 20W = ( ) , where L andR are themirror
spacing and curvature, respectively. Finally Eint is the effective photon interaction energy, as will be discussed
below.

Thermal equilibriumof the photon gas is achieved by repeated absorption and re-emission processes by the
dyemolecules. For the described two-dimensional, harmonically confined system it is known that a Bose–
Einstein condensate exists atfinite temperature. Accounting for the two-fold polarization degeneracy of
photons, onefinds the critical particle number:

N
k T

3
. 2c

B
2 2



p
=

W
⎜ ⎟⎛
⎝

⎞
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For 2 3.6 10 Hz10pW = ´ ´ , as derived for L 2 mm= , R 1 m= , and n0= 1.33, at room temperature
(T 300 K=  ) one obtains N 99 000c » for the critical particle number.

During the course of the absorption re-emission processes of the dyemolecules, a small fraction of inelastic
processes due to dye’s finite quantum efficiency ( 95%h  for the case of rhodamine dye solution) causes local
heating of the solvent. Due to the temperature dependence of the solution refractive index, the optical distance
between themirrors is decreased at the corresponding transverse position in the cavity. This is equivalent to a
local rise of the photon gas potential. In other words, the heatingwith a corresponding decrease of the refractive
index results in a smaller optical wavelength, hence a higher photon energy is required to locallymatch the
mirror boundary conditions. The resulting interaction energy is:
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where n TbD = D , with n Tb = ¶ ¶ as the thermo-optic coefficient of the solution.
The photon gas is well described by an equilibrium state, if thermalization by coupling to the dyemolecules

is faster than both loss and pumpprocesses. In this case, photons can relax towards the ground state of the
harmonic trapping potential and form aBose–Einstein condensate before they are lost throughmirror
transmission or inelastic processes in the dye [22, 23]. Accounting for the thermo-optic effective photon
interactions, the condensate dynamics can be describedwith a generalized time-dependent Gross–Pitaevskii
equation:
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In the above equation r t,y
( ) denotes the slowly varying envelope of the condensate wavefunction (in the

mean-field treatment) in the rotated frame of cw . Note that the above equation ismore general and captures the
full 3D behavior of thewavefunction as x y z t, , ,y ( ). Also instead of using the effective trapping potential of
equation (1), we imposeDirichlet boundary conditions on the sphericalmirror surfaces. Similar as in cold atom
physics literature [24, 25], here we do not consider interaction effects of the thermal cloud, due to itsmuch lower
density.

The time evolution of the relative local temperature is determined by the heat transport equation as:

T r t

t C
T r t

c

C n
r t

,
, , . 5

v v

2 in

0

2k a w
y

¶D
¶

=  D +
  ( ) ( ) ∣ ( )∣ ( )

For a simplifiedmodel with an approximated version of this equation, see [29]. Thefirst termon the right-
hand side accounts for the heat diffusion and the second term for heating through inelastic processes in the dye
solution. The parametersκ andCv are the thermal conductivity and volume heat capacity, respectively. Further,

ina is the inelastic absorption coefficient and is related to the absorption coefficientα via the quantum efficiency
of the dye η, as 1ina h a= -( ) .

Moreover, the following normalization condition for thewavefunction is held:

v r Nd , 6
V

2
BECò y =

∣ ( )∣ ( )

whereNBEC is the total number of photons in the condensate. Table 1 gives relevant parameters of a typical dye-
filled cavity setupwithmethanol solvent [23, 26].
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3. Steady-state

In the steady state, the temperature is settled to a stationary valueT rss
( ), and the the time evolution of the

condensate wavefunction is given by r t r; ess
tiy y= m- ( ) ( ) . The stationary forms of equations (4) and (5) are:
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Themirrors (M1,2 infigure 1) aremacroscopically large.Moreover, their thermal conductivity exceeds that of
thedye solution, and in all of the calculations, for the sake of simplicity,we assume T 0D = on themirror surfaces.

3.1. Numerical solution
In the presence of amirror curvature, as required to obtain a trapping potential, the coupled sets of equation (7)
can only be solved numerically.Without a thermo-optic nonlinearity (i.e. for 0b = ), the ground state of the
harmonic trap is the lowest energy state. Following the usual conventionwe normalize the chemical potential to
yield 0m = in this interaction-less case. For earlier work investigating the steady state properties of a thermo-
optic interaction in the harmonically trapped condensate inside amicrocavity, see [21].

Using a fully numerical algorithmwe solved the above coupled nonlinear equations to investigate the effect
of nonlinearity on the interacting condensate. The results for a symmetric cavity withmirrors of R 1 m= radius
of curvature are shownby the solid lines infigure 2. In the absence of the thermo-optic interaction theGaussian
condensate radius is r m1 2 6 mBEC ph m= W  for the quoted values of the cavity length andmirror radius
of curvature.

Panel (a) shows the variation of the condensate radius from the interaction-less case rD and the chemical
potential mD as a function of number of photons in the condensate. As can be seen both of these parameters

Table 1. List of physical parameters of a dye-filled cavity setup used in this paper. The properties
of the solvent,methanol, are from [26]. The value of the inelastic absorption coefficient is for
1mMsolution of R6G inmethanol solvent and is calculated from the experimental data in [23],
assuming a quantum yield of 95% for the dye [27].

L mm( ) min
1a -( ) n0 Kn

T

d

d
1b = -( )˜ C JK mv

1 3- -( ) Wm K1 1k - -( )

2 0.63 1.33 4.8 10 4- ´ - 1.9 106´ 0.168

Figure 2. (a)Variation of the condensate radius (solid blue linewith circles) and the chemical potential (solid red linewith squares) as a
function of number of photons in the condensate, as obtained by numerical solution of the problem for cavitymirrors of radius
R 1 m= . For comparison, the red dashed linewith squares gives the variation of the chemical potential obtained using theGreen’s
functionmethod for the problemwithflatmirrors. (b)The solid blue linewith circles gives themaximum temperature increase in the
dyemicrocavity as the number of photons in the condensate, obtained from the numericalmethod for curvedmirrors with R 1 m=
radius. The dashed blue linewith circles shows the corresponding results obtained using theGreen’s function approach forflat
mirrors. The results are for L 2 mm= mirror spacing and absorption coefficient 0.63 min

1a = - . For theGreen’s functionmethod
calculation investigating theflatmirror problem, the quoted value for the photon number refers to the number of photons in an area

rBEC
2p . rBEC corresponds to the interaction-less condensate radius of the curvedmirror problem. In this way, the assumed average

photon density is the same for both of the numerical and theGreen’s function approaches.
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linearly increase as the photon number becomes larger, implying a larger condensate with a higher energy. This
is consistent with the physical consequence of a repulsive interactionmediated by thermo-optic nonlinearity. To
clarify the behavior further, figure 2(b) shows themaximumvalue of the temperature increase in the dye
microcavity as a function of condensate photon numberNBEC. As can be seen the temperaturemonotonically
increases with increasing number of photons, giving rise to a larger change of the refractive index, hence a
stronger effective photon interaction.

A comparisonwith experimental results is not straightforward since the condensatemode diameter increase
reported in [6] corresponds to the accumulative stationary value observed for a pulsed pumpwith certain
repetition rate. The values here are nevertheless smaller than the experimentally observed ones.We attribute this
discrepancy to the boundary conditions used for the temperature distribution, which imposes that TD vanishes
at themirror surfaces. Amore realisticmodel in the presence of the thermo-optic nonlinearity needs to account
for thefinite thermal-conductivity of themirrors and include the thermal properties of bothmirror layers aswell
as the substrate. However, we expect the dynamic properties of the condensate, as discussed in the following, to
be less affected by the thermal properties of themirrors since the local properties of the heat transfer will
dominate in that case.

3.2. Green’s function approach
Aside frombeing computationally expensive, the fully numericalmethod fails to provide onewithmore physical
insight about the problem. In this sectionwe propose an alternativemethod by employing theGreen’s function
of the heat diffusion problem,making the analysismore efficient.Moreover, this form can be used further for
elementary excitation studies as will be discussed in the next sections.

The coupled eigenvalue problemof equation (7) can be efficiently solved usingGreen’s function of heat
diffusion problemwhen proper boundary conditions are applied. TheGreen’s function of the heat transfer
problemwill be determined as:

G r r r r a; , 82
NL d ¢ = - ¢
   ( ) ( ) ( )

G z L r b, 2; 0 . 8NL r =  ¢ = ( ) ( )

For simplicity in our analytic calculations themirrors are assumed to beflat at z L 2=  , and extended to
infinity in the transverse plane (xy-plane).

As equation (8) are isomorphic to an electrostatic problem, image theory can be used tofind a closed-form
Green’s function.Using proper positive and negative images at nL z2 + ¢( ) and n L z2 1 + - ¢( ( ) )
respectively, we obtain:
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where x y2 2r = + and x y2 2r¢ = ¢ + ¢ .
When combinedwith the eigenvalue problemof thewavefunction in equation (7) one obtains the following

equation for the steady-state:
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Equation (10) has the formof aGross–Pitaevskii equation, while the interaction term is different from the
usual contact form.Here, the interaction potential has an integral formdescribing a non-local interaction given
by theGreen’s function, where the strength of the interaction potential at point r


is related to thewhole

condensate wavefunction distribution.
Figure 3 shows the variation of theGreen’s function G r ; 0NL

( ) as a function of ρ in the transverse plane for
differentmirror separations. As can be seen at afixed radial point the value of theGreen’s function increases as
the cavity length becomes larger. This behavior implies that the temperature changes from a 2Ddistribution to
3D in thicker cavities. In the limit of very largemirror spacing theGreen’s function approaches a Coulomb-type
long-range interaction given by G r r r r; 1NL ¢ » - ¢

   ( ) ∣ ∣. This behavior can be clearly observed infigure 3
where the thick cavity Green’s function (L 10 mm= ) and the asymptotic Columbic form (black dashed line) are
in a good agreement.

To compare the predictions of these two approaches, we have used the generalizedGross–Pitaevskii
equation (10) to calculate the stationary features of the condensate. Unlike the previousmethod however, the
Green’s function approach only allows for a treatment of aflatmirror geometry. The red dashed line with
squares infigure 2(a) shows the chemical potential variation for the homogeneous problem calculatedwith this
method. Similarly, the dashed linewith circles infigure 2(b) shows the corresponding variation of themaximum
temperaturewith the number of photons in the condensate. The obtained results from theGreen’s function
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approach are in approximate agreementwith the numerical results for the problemwith curvedmirrors, and
show the same trend.We point out that an exact agreement is not expected here due to the differentmirror
geometries, with correspondingly different condensatemode profiles.

In contrary to the case of atomic BECswhere the range of interaction is strictly limited by the interaction
type, the photon fluid shows a unique feature of possessing a tunable interaction range froma local form to a
highly non-local gravitational type interaction in relatively thin and thick cavities, respectively. In practice, the
requirement of photon Bose–Einstein condensation for a low-frequency cutoff imposes amaximumusable
cavity length for corresponding experiments.

4. Small perturbations andBogoliubovmodes

Forweak perturbations the dynamics of the system can be found by assuming smallfluctuations around the
stationary solutions.We use the following ansatz to determine the Bogoliubovmodes, whereΩ denotes the
frequency of the perturbations

r t r u r v r a; e e e , 11ss
t t ti i i* *y y= + + m- W + W -   ( ) ( ( ) ( ) ( ) ) ( )

T r t T r t r t r b; e e . 11ss
t ti i* *d d= + +- W + W   ( ) ( ) ( ) ( ) ( )

Inserting this ansatz into the original nonlinear equations and neglecting the termswith orders higher than
one in the perturbation, one can derive the following linear coupled equations for the smallfluctuations
u r v r,
 ( ) ( ), and t rd
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To beginwith, we derive a solution that neglects the temporal delay of the temperature and assumes that it
follows the time dependency of the condensate density r t, 2y

∣ ( )∣ .With this assumption the temperature change
T r t,D
( ) is given by a diffusion-type equation, as forTss in equation (7), which yields a non-local, but

Figure 3.Variation of theGreen’s function G r r,NL ¢
 ( ) versus ρ (the radial parameter) in the transverse planewhen r z0, 0¢ = =


.

The effect ofmirror separation and non-locality are compared for different L. As can be seen theGreen’s function extends furtherwith
an increases in the cavity length. Thismeans that the interaction range is longer in thicker cavities. For largemirror spacing, the
Green’s function is in good agreement with the gravitational-type dependency given by r r1 - ¢

 ∣ ∣ (black dashed line).
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instantaneous effective interaction. Later in this sectionwewillmodify this assumption to take into account the
temporal delay of the temperature distribution due to thefinite heat conductivity.

For a translationally invariant problem, a planewave ansatz of the form e k ri
 · would bewell suited to describe

the spatial part of the excitations.More suited for this problem, given that the condensate wavefunction ry
( ) is

not spatially uniform, is theGreen’s function approach, building upon the stationary eigenfunctions discussed
in the previous section. Themirrors imposeDirichlet boundary conditions and break the translational
invariance along the z-axis. Therefore, we approximate the longitudinal variation of thewavefunction as

L q z L2 sin p( ), and define an effective 2DGreen’s function in the transverse plane:
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whereK0 is the 0th-ordermodifiedBessel function.
As can be inferred, this effective 2Dpotential is translationally invariant in the transverse plane, and leads to a

well-defined transversemomentum k

for the elementary excitation. Therefore, the Bogoliubov dispersion of

this system is properly defined for frequencyΩ and the transversemomentum k

, and from equation (12) is

determined as:
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Here G kNL
ˆ ( ) is the Fourier transformof G D

eff
2 r( ), and in thefirst formula 0ss

2y∣ ( )∣ can be approximated as:
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2 BEC

BEC
2

y
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Equation (15) gives the dispersion in the presence of the thermo-optic interaction. At largemomenta, the
first term on the right-hand side dominates, yielding the usual particle-like quadratic dispersion of photons, see
also equation (1). In otherwords, when themomentum is large the interactions have negligible effect.

The thermo-optic interactions impact the low-momentumpart of the dispersion, and the corresponding
effect is predominantly determined by the function G kNL

ˆ ( ), i.e. the Fourier transformof theGreen’s function.
Forwavevectors k k q Lz p= , within the range that the paraxial limit is fulfilled, G kNL

ˆ ( ) becomes almost k-
independent, hence a linear tendency for low-momentum excitations is expected.

So farwe have ignored the explicit dynamics of the delayed temperature given by the Ṫ -term in the heat
equation. This effect can be taken into account by employing the properGreen’s function of the heat equation in
equation (5)which depends on time aswell as the position. This time-dependent Greens’ functionmodifies the
aforementioned dispersion of equation (15) to a transcendental equation for the dispersion (i.e. kW( )) after
substituting G kNL

ˆ ( )with G k,NLD Wˆ ( ) as:
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Equation (18) together with equation (15) gives the final results for the quasi-particle dispersion, including
the effects of both non-locality and the delay in such thermo-optic interactions. As the formof the
transcendental equation suggests, the delayed nature of the interaction leads to complex frequenciesΩ, implying
an instability of the condensate. Compared to the non-local case only, this is themain qualitativemodification of
the temporal effect.We notice this behavior can be comparedwith the dynamical instability predicted and
observed in polariton condensates[28].While the instability of the latter is due to the coupling of the condensate
with the exciton reservoir, in this dyemicrocavity system the condensate instability occurs due to the thermal
coupling to the dye solutions. At longer times, we expect that the thermo-optic interaction destroys the photon
condensate for larger interaction strengths.

Figures 4(a), (b) show the real and imaginary part of the dispersion respectively for various number of
photons in the condensateNBEC. The thick, dotted black line in panel (a) gives the (quadratic) free-particle

7

New J. Phys. 19 (2017) 115009 HAlaeian et al



dispersion in the absence of interactions. As stated above, at largemomenta this free particle behavior is
approached, and the imaginary part asymptotically approaches zero (figure 4(b)), leading to a stable condensate
with a quadratic dispersion4.

The low-momentumbehavior however, noticeably deviates from the non-interacting dispersion. The
difference between the interacting photonfluid dispersion and the ideal one increases for larger photon
numbers. Figures 4(c) and (d) show the zoomed-in real and imaginary part of Bogoliubov dispersion at very low
momenta. The linear dispersion behavior offigure 4(c), accompaniedwith low imaginary value as infigure 4(d),
means that the lowmomentumquasi-particles behave like phonons, andmovewith a constant velocity vc in the
photon condensate. This feature suggests that the photonBEC can potentially be a superfluid, a feature that can
be better understood using the non-local effect of theGreen’s function.

In equations (15) the effect of non-locality is implicit in G kNL
ˆ ( ) and G k,NLD Wˆ ( ). A good physical intuition

can be established by studying two extreme cases for this effect. As demonstrated infigure 3, the interaction
range decreases in thin cavities. In such cavities the interaction ultimately reduces to a local onewith

G r r r r;NL d¢ » - ¢
   ( ) ( ), hence G k 1NL =ˆ ( ) , leading to a linear dispersion. Therefore, for a contact interaction

the dispersion is separated to two distinct forms, one for free particles at largemomenta ( k2W µ ) and one for
sonicmodes for smallmomenta ( kW µ ). The other extreme happens for thick cavities where the fluid becomes
fully 3Dwith a long range, gravitational-type interactionwhere G r r r r; 1NL ¢ = - ¢

   ( ) ∣ ∣.With

G k k1NL
2=ˆ ( ) , this Green’s functionwould lead to a constant, k-independent dispersion at lowmomenta.

Figure 4. (a)Real and (b) imaginary part of the quasi-particle dispersion in the presence of a thermo-optic effective photon interaction,
given by equations (15) and (18) for different photon numbersNBEC.Other parameters are L 2 mm= , 0.63 min

1a = - , and q=9.
In (a) the black dotted line shows the free-particle dispersion for comparison. The effect of interaction inmodifying the low-
momentumpart of dispersion from this free-particle tendency is increased asmore photons are put in the condensate. At larger
momenta all condensates seems to behave as free-particles which their dispersion tends to behave quadratically as free-particles (a),
with zero imaginary parts (b). Zoomed-in (c) real and (d) imaginary part of the dispersion at very lowmomentum. For this range the
real part behaves linearly and the imaginary part is small, suggesting a superfluid behavior.

4
For amomentum k, bothΩ and *-W are solutions of the dispersion equations. However as the behavior of these two branches are not

different here we only show the results for the solutionwith positive real part.
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Toprovide a better understanding of the dependency of the dispersion in terms of physical parameters such
as L N, BEC, and ina , we define a criticalmomentum kcritical, as the largestmomentum atwhich the dispersion is
significantlymodified by the interaction. Using the above given dispersion relations this parameter is
determined as:

k
n

G k
2

0 2
cm

. 19sscritical
0

in ph
critical w

y
a b

k
∣ ( )∣ ˆ ( ) ( )

Where Ĝ is a general representation for theGreen’s function and could be either of G kNL
ˆ ( ) for the non-local

case, or G k,NLD Wˆ ( ) for the non-local and delayed one.
Figures 5(a)–(c) shows the behavior of the criticalmomentum as a function of some experimental

parameters. The solid blue lines correspond to the predictions considering both delay and non-locality given by
theGreen’s function of equation (18). For comparison, the dashed red lines are obtainedwhen only considering
the non-locality as given by theGreen’s function of equation (16).While the critical wavevectors have similar
dependencies to the experimental parameters, the inclusion of the temporal delay decreases the values. As
discussed earlier, the inclusion of the temporal delay also results in complex eigenfrequenciesΩ (figure 4(b)),
leading to condensate instabilities.

The results of figures 5(a) and (c) show that the critical wavevector increases with both inelastic absorption
coefficient ina and photon numberNBECwith corresponding dependency ina and NBEC , respectively. As
shown infigure 5(b) the critical wavevector decreases for largermirror separations L, when the interaction
becomesmore non-local.

According tofigure 4(c), the thermo-optic interaction leads to a linear dispersion at lowmomenta,
indicating the existence of sonicmodes in this regime, which fulfills the Landau’s criterion of superfluidiy. The
slope of this line at low energies determines the velocity of sound in the condensate. Figure 5(d)–(f) shows the
dependency of this critical velocity vc on the inelastic absorption coefficient, the cavity length, and the number of
photons in the condensate, respectively, showing that the critical velocity increases with an increase in the
inelastic absorption and photon number and decreases with increasing the cavity length.

Figure 5.The solid blue line gives the critical wavevector as a function of (a) the inelastic absorption ina (for
L N2 m, 6 10BEC

4m= = ´ ), (b) the cavity length (for m N0.63 , 6 10in
1

BEC
4a = = ´- ), and (c) the number of photons in the

condensate (for m L0.63 , 2 min
1a m= =- ), accounting both for the delay and the non-locality of the thermo-optic effective photon

interaction. For comparison, the dashed red lines give the critical wavevector when only the non-locality of this interaction, following
equation (16), is considered. The lower panels (d)–(f) show the behavoir of the critical velocity (vc) for corresponding experimental
parameters, where both the non-locality and the temporally delayed features of thermo-optic interaction are considered. As described
in the text, by increasing the interaction strength either viamore absorption (a), (d) or larger photon numbers (c), (f), the interaction
affects quasi-particles up to largermomenta, as seen from the larger critical wavevector aswell as the larger critical velocity. Panels (b),
(e) show that the use of a larger cavity length, whichmakes the interactionmore non-local, weakens the interaction effect, and reduces
both the critical wavevector and the critical velocity.
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5. Conclusions

In this workwe investigated the effect of a thermo-optic interaction, a temporally delayed and spatially non-local
interaction, on a photon Bose–Einstein condensate in a dye-filledmicrocavity system.We derived the general
formof the dispersion in such systems, calculated the spectrumof Bogoliubovmodes in a plane-mirror
microcavity, and identified a linear scaling for the low-energymodes. At larger transversemomenta, the usual
quadratic free-particle dispersion of cavity photons is restored. The derived linear dispersion, corresponding to
sonicmodes, fulfills Landau’s criterion for superfluidity.

We envision several experimental and theoretical follow up studies based on the reported results here. To
obtain accurate quantitative predictions, it would be important to investigate the implications of afinite heat
conductivity of themirrors on both the stationary and the dynamical features of the condensate subject to the
thermo-optic nonlinearity.

For an experimental test of superfluidity based on the thermo-optic nonlinearity a possible setup could use a
photonfluid in awedge-shaped cavity composed of two tilted flatmirrors, allowing the photon droplet toflow
freely. By intentionallymaking a perturbation on one of themirrors in the flowing path of the photonfluid,
scatteringwould be observed if the fluid is dissipative. However, in the superfluid phase the photon droplet
passes the perturbationwithout being scattered. By directlymonitoring the photon condensate-defect
interaction one should be able to distinguish between these two different phases.

Another followupwork could search for long-lived vortices of the photon condensate in a curvedmirror
microcavity. Along these lines, the implications of such a trapping potential on the Bogoliubovmodes and the
spectrumof elementary excitations should be studied.

Another fascinating topic for future investigations is the search for analogies between the long-range
thermo-optic interaction and gravitational physics and its consequences, including possible black-hole physics .
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