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Abstract
Compounds containing two alkyne groups in close vicinity at the rigid skeleton of camphorsulfonamide show unique reactivities

when treated with electrophiles or catalytic amounts of platinum(II). The formed product structures depend not only on the reagents

used but also on the substituents attached to the triple bonds. Cycloisomerisations with perfect atom economy lead to polycyclic

heterocycles that resemble to some extent the AB ring system of paclitaxel. Herein, we present practical synthetic methods for the

selective synthesis of precursor dialkynes bearing different substituents (alkyl, aryl) at the triple bonds, based on ketals or an imine

as protecting groups. We show for isomeric dialkynes that the reaction cascade induced by Pt(II) includes ring annulation, sulphur

reduction, and ring enlargement. One isomeric dialkyne additionally allows for the isolation of a pentacyclic compound lacking the

ring enlargement step, which we have proposed as a potential intermediate in the catalytic cycle.
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Introduction
Enantiomerically pure raw materials, available in a sustainable

manner from the natural “chiral pool” [1], offer a convenient

entrance for the chemical synthesis of other chiral compounds,

e.g., rare natural products and their analogues [2], or chiral cata-

lysts [3,4]. A prominent example for such a “chiral pool”

starting material is camphor. Both its substituents and its

bicyclic skeleton can easily be modified and adapted to the

purpose at hand, e.g., natural product synthesis [5]. The

Wagner–Meerwein and Nametkin-type rearrangements are the

most common reaction patterns [6] and the addition of organo-

metallic reagents to the camphor carbonyl group allows for

selective introduction of additional substituents and functional
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Scheme 1: Synthesis of 3-oxo-camphorsulfonylimine (3) [13,15] and its bis-alkynyl derivatives 4 from camphor-10-sulfonic acid (1).

groups (e.g., as in [7]). Camphor was the source of chirality in

Holton’s taxol synthesis [8] and other approaches to the taxane

group of compounds [9-11].

From cheap camphor-10-sulfonic acid (1), a cyclic sulfonimide

2 can easily be obtained which is readily converted into useful

auxiliaries [12], or oxidized to the oxoimide 3 (Scheme 1) [13-

15]. This versatile intermediate can be reduced to provide a

chelating ligand for chiral catalysis [16], or oxidised to

oxaziridines used as efficient chiral oxidising reagents [13,17-

19].

The reaction of the oxoimide 3 with two equivalents of the lithi-

um salt of a terminal alkyne leads to compounds 4 where two

alkynyl substituents, a sulfonamide and a hydroxy group are

found in vicinal positions (Scheme 1) [20]. A hydroxy group

neighbouring an alkynyl substituent, under treatment with acids,

normally leads to Rupe and Meyer–Schuster rearrangements,

forming unsaturated carbonyl compounds. This was indeed ob-

served in camphor-derived bicyclic alcohols containing a single

ethinyl group [21,22], occasionally accompanied by a

Wagner–Meerwein rearrangement [23]. However, no such

products were found with any of the diynes 4. Our first attempts

to employ 4a as a ligand with Ti(IV) resulted, somewhat sur-

prisingly, in the addition of HCl under simultaneous annulation

(three-carbon expansion [24,25]) of a carbocyclic five-mem-

bered ring to the 2,3-position of the bicyclic camphor-derived

moiety (Scheme 2a) [20]. Reactions of 4a with halogens (e.g.,

bromine) or acids were even more puzzling. In addition to the

annulation, an unprecedented formation of a ketone accompa-

nied by the reduction of sulphur took place, to give a cyclic

sulfinamide 6 (Scheme 2b) [26]. In this case, the mechanism of

the reaction proceeded through cationic intermediates as evi-

denced by in situ NMR spectroscopy.

Catalysis by Pt(II) can drive the reaction even further: besides

annulation and sulphur reduction, one finds a cleavage of the

C–C bond between the atoms bearing the OH and NH groups

(ring enlargement). The result is an isomerisation of 4a and 4b

to form tricyclic compounds 7 containing a nine-membered

carbocyclic ring (Scheme 3a) [27]. Isomerisations are the best

examples for a perfect “atom economy” [28-30] since all atoms

Scheme 2: Reactions of bis-alkynyl camphor derivative 4a with TiCl4
and with Br2, respectively.

of the starting material are found in the product, and thus fulfil

an important requirement of “green chemistry” [31].

However, a different Pt(II)-catalysed reaction cascade was ob-

served for 4c, with adamantyl groups at the alkynes. Here, the

annulation step is followed by a C–H bond-activation process,

to establish an additional bond to one of the adamantyl groups

(8 in Scheme 3b) [32]. The simplest diyne 4d with R = H, in

contrast, gave a ring enlargement from six to seven members

together with a 1,2-oxygen shift instead (9 in Scheme 3c) [33].

This clearly demonstrates that the substituents at the triple

bonds have a decisive influence on the outcome of the catalytic

reaction. This was also confirmed by the reaction of 4e

(R = benzyl): in addition to the expected product 7 in analogy to

that of 4b, there was also a considerable amount of a reduced

species 10 lacking sulphur reduction and ring enlargement, with

structural similarity to the simple product from the Ti(IV) reac-

tion with 4a. The reducing agent is Pt(II), which is oxidised to

Pt(III) during the reaction (Scheme 3d) [34].

Scheme 3 also depicts paclitaxel (taxol, 11), an important anti-

cancer drug, as there are some similarities (shown in red in

Scheme 3) but also differences to our compounds obtained by

Pt(II) catalysis from, e.g., 4a. The eye-catching dimethylmeth-

ylene bridge over the largest carbocyclic ring is of course the
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Scheme 3: Reactions of bis-alkynylcamphor derivatives 4a–e with cat-
alytic amounts of PtCl2(PhCN)2.

most striking similarity, although this ring is in our compounds

one-carbon unit smaller (9 vs 10 members in taxol) and lacks

the oxygen substituent bearing the amino acid side group. In

both compounds, we find a keto group in the largest ring.

Instead of the six-membered ring annulation in taxol, there are

the substituents of the original triple bonds in our compounds,

precisely in the same positions. In addition, where taxol has the

bridgehead hydroxy and its neighbouring benzoate groups, we

find the heterocyclic reduced isothiazole ring in the product of

the Pt(II) catalysis. Other camphor derivatives prepared as

entrance to taxoid compounds have a carbocyclic ring at this

place in the precursor [10] and a nine-membered ring with a

keto group after oxidative bond cleavage [11]. The similarities

between our materials and taxol do, of course, not mean that

similar biological activity is necessarily involved, but it might

be worthwhile investigating.

Since the results of the Pt(II) catalysis depend on the nature of

the substituents at the alkyne groups, it would be of interest to

explore the course of the reaction when the two substituents are

different. In this article, we develop reasonable synthetic proce-

dures for the starting diynes, and present the first result of a cat-

alytic Pt(II) reaction of such mixed substituted compounds.

Results and Discussion
For the preparation of the diynes 4, a 2:1 ratio (or slightly larger

for complete reaction) of the lithium salt of a terminal alkyne

and of the oxoimide 3 is applied. The ratio should, however, not

be increased too much. For instance, with benzylacetylene, the

expected diyne 4e (Scheme 3d) is obtained, with only traces of

monosubstituted compounds. However, with a 3:1 ratio, the

main product is formed by reaction of only one equivalent of

lithium salt with the C=N double bond, leaving the carbonyl

group intact. In addition, the formed propargyl group is isomer-

ized to an allene moiety, obviously due to the excess of the

strongly basic lithium salt [35]. This unexpected monosubstitu-

tion remains unexplained and is not applicable as basis for a

general selective synthesis of monoalkynylcamphor derivatives.

Alkynes can also be cleaved from the bis-alkynyl compounds 4

by reaction with CuCl, but again, there are selectivity issues that

prevent a general application [36]. We therefore set out to

explore whether some selectivity is observed when lithium salts

of terminal alkynes are reacted with the oxoimide 3 in a 1:1

ratio (Table 1). As alkyne precursors, phenylacetylene,

1-heptyne, 1-ethynyladamantane, and 1-ethynyl-1-methoxycy-

clohexane were used. In all cases, mixtures of 12 and 13,

together with starting oxoimide 3 and the bis-alkynyl product 4

were obtained. The very slow addition of the acetylide and

dilute oxoimide solutions slightly improved the yields of the

mono-adducts 12 and 13, but the formation of the bis-adducts

could not be fully suppressed. With increasing bulkiness of the

alkyne substituent (R = adamantyl, methoxycyclohexyl) the

reaction tends to become more selective towards mono-addi-

tion, but less selective with respect to the alkylation site, and the

2-alkynyl and 3-alkynyl products are formed in similar

amounts. Alkynes with small substituents (e.g., heptyne or

phenylacetylene) preferentially attack at the C=N bond of the

sulfonylimine, suggesting that the carbon atom of the C=N is

more electrophilic than that of the C=O bond. However, with

bulkier alkynes (e.g., 1-adamantylacetylene or 1-methoxy-1-

ethynylcyclohexane), an attack at the carbonyl group becomes

more pronounced. Presumably, the C=O carbon atom in 3-oxo-

camphorsulfonylimine is sterically more accessible, whereas the

sulfonylimine C=N carbon is more electrophilic. Steric and
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electronic properties thus counteract and the overall selectivity

of the reaction depends on a balance between both factors.

Table 1: Selectivity in the reaction of oxoimide 3 with alkynyllithium
compounds.

Entry R 12:13 Yield 12 + 13

1 phenyl 80:20 42%
2 n-pentyl 90:10 35%
3 1-adamantyl 70:30 88%
4 1-methoxycyclohexyl 50:50 67%

Whilst chromatographic separation of the mixture of the

monoadducts 12 + 13 from the starting material 3 and the bis-

adduct 4 is straightforward, the isolation of pure 12 and 13

requires careful control of the chromatography conditions

(SiO2, CHCl3/diethyl ether gradient 0 to 10%), and has been

used on a small scale for analytical purposes only. The ratios

12:13 given in Table 1 were determined by integration of the

signals of the methyl groups in the 1H NMR. The ratios in the

crude product and after isolation of the mixture of 12 and 13 by

chromatography were found consistent.

In the IR spectra, compounds 12 show a typical NH stretching

vibration at approximately 3217 cm−1, and a C=O stretch at

1764 cm−1. Compounds 13, in contrast, can be recognised by

their OH stretching vibration at 3444 cm−1 and the C=N stretch

at 1653 cm−1. Both compounds display a C≡C stretch at very

similar wavenumbers around 2227 cm−1, and asymmetric and

symmetric SO2 stretching vibrations. These are found at about

1314 and 1143 cm−1 in compounds 12, and at slightly higher

wavenumbers of approx. 1330 and 1160 cm−1 in 13. In the
1H NMR spectra, the signals of the geminal methyl groups

come with a chemical shift difference of about 0.2 ppm in 12,

but almost coincide to form one signal in compounds 13. The

opposite holds true for the diastereotopic protons of the

CH2SO2 moiety, which nearly coincide in 12, but come as two

doublets spaced about 0.2 ppm apart in 13. Compounds 12

display a singlet near 5 ppm for the SO2NH proton, whereas

spectra of 13 show a singlet for the OH group at about 3.2 ppm.

Similarly, the 13C NMR signals of the methyl groups nearly co-

incide in 13 but are approximately 2 ppm apart in 12. Com-

pounds 12 show a signal for the C=O near 206 ppm and one for

the sulfonamide carbon at about 65 ppm. In compounds 13,

there is a signal for the C=N around 194 ppm and one for the

tertiary alcohol carbon near 73 ppm. All other signals of the

camphor framework and the alkynyl substituent come at rela-

tively similar values and do not allow distinguishing between

12 and 13 reliably.

In view of the above results, it was clear that a more selective

method was needed that generally allows for mono-alkynyl-

ation and for differentiation between the carbonyl group and the

sulfonylimine. One way to achieve this could be in the chemo-

selective reduction of the C=N group of oxoimide 3, addition of

the alkynyl moiety to the carbonyl group, and re-oxidation of

the sultam to the sulfonimide (see Scheme 4). There are a num-

ber of reductions of oxoimide 3 reported in the literature, using

a variety of reducing agents. All of them lead either to com-

plete or to unselective reduction of the C=N and C=O bond.

Thus, LiAlH4 reduces the C=O and C=N group of 3, and 3-exo-

hydroxycamphorsultam is obtained in good yields [16]. Under

Meerwein–Ponndorf–Verley conditions (Al(OiPr)3/iPrOH), a

mixture of the 3-hydroxyimine, 3-oxocamphorsultam and

3-exo-hydroxycamphorsultam is produced. Prolonged reaction

over several weeks eventually leads to 3-exo-hydroxycamphor-

sultam as the sole product.

Scheme 4: Attempted selective synthesis of 3-alkynyl derivatives via
sulfonylimine reduction of oxoimide 3.

We now found that the sulfonylimine of 3 could be reduced

selectively to the sultam 14 in the presence of Zn/HOAc, as

shown in Scheme 4. The product shows an IR stretching vibra-
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tion at 1760 cm−1 and a 13C NMR signal at 209.7 ppm for the

unreacted C=O group. The presence of the sultam can be

deduced from the NH stretching vibration at 3180 cm−1, a 13C

signal of the sulfonamide carbon at 65.0 ppm and a 1H NMR

signal for the NH at 5.57 ppm. These data are very similar to

those of compound 12 where C=O and sulfonamide coexist. In

contrast to 12, the 1H NMR signal of the NH in 14 comes as a

doublet, due to coupling with the adjacent CH proton at

3.58 ppm. The latter proton also appears as a doublet. The intro-

duction of an alkynyl substituent into the 3-position does not

pose any problem and can be achieved by reaction with

PhC≡CLi under standard conditions, to produce 15 in high

yield. Two equivalents of the acetylide are required because the

first one deprotonates the nitrogen of the sultam before the

second equivalent undergoes the desired nucleophilic addition

to the carbonyl group. All attempts to re-oxidise the sultam 15

to the sulfonimide 13, using Cl2/pyridine [37] or N-tert-

butylphenylsulfinimidoyl chloride/DBU [38] under literature

conditions, were unsuccessful due to the sensitivity of the

alkyne to oxidising conditions.

Our next strategy was to modify the carbonyl group in the 3-po-

sition and introduce the alkyne at the sulfonamide side, as

shown in Scheme 5 and Scheme 6. The carbonyl group in 3 can

be selectively protected as an acetal by reaction with orthofor-

mates at room temperature in the presence of an acid. Thus, 3,3-

dimethoxycamphersulfonylimine 16 and 3,3-diethoxycampher-

sulfonylimine 16’ were prepared [18,39]. The subsequent reac-

tion of these acetals with one equivalent of lithium phenyl-

acetylide or 1-heptynyllithium under conditions described

above for the synthesis of 12 and 13 introduced the alkyne into

the 2-position of the camphor skeleton, to provide the sultams

17. The removal of the acetal-protecting group occurred under

comparatively mild conditions by stirring a mixture of 17 with

acetone and conc. HCl. Acetone as solvent was best as it allows

for trans-acetalisation to acetone dimethylacetal and 12 rather

than hydrolysis to methanol and 12. Overall, yields are higher

throughout when the methyl acetal is used. To obtain the

camphor-derived hydroxysultam 18 bearing an alkyne substitu-

ent in 2-position rather than in 3-position, 12 was reduced with

NaBH4 under standard conditions. Compound 18 was prepared

for comparison of the analytical data with that of compound 15.

Although the IR spectra look fairly similar, the two isomers can

be distinguished from their NMR spectra, in particular the 1H

and 13C signals of the atoms in 2 and 3 position. Thus, the

proton in the 3-position in 18 comes at higher chemical shift

than the one in the 2-position in 15 (4.31 ppm vs 3.67 ppm).

Likewise, the signals of carbons 2 and 3 are further downfield,

when hydrogen is attached to them. In addition, carbon 4 is

affected and appears at higher chemical shift in compound 15,

where the alkynyl substituent is nearby.

Scheme 5: Selective synthesis of 2-alkynyl derivatives by protection of
the 3-oxo group as an acetal.

Scheme 6: Selective synthesis of 2-alkynyl derivatives by protection of
the 3-oxo group as an imine.

As an alternative to the introduction of an acetal, an imine was

tested for its suitability as a protecting group for the carbonyl

moiety, as shown in Scheme 6. 3-Oxocamphorsulfonylimine 3

was converted into the imine 19 by reaction with 2-phenylethyl-

amine in the presence of TiCl4 [40]. The reaction of 19 with one

equivalent of the lithium phenylacetylide under the conditions

described above for the synthesis of 12 and 13 provided the

sultam 20 selectively, with exclusive introduction of the alkyne

into the 2-position at the camphor skeleton [41]. When two

equivalents of the acetylide are used, the reaction still produces

20 only, and no reaction at the 3-position in the imine was ob-

served. The high selectivity of this reaction can be explained by

the large difference between the electron-deficient sulfonyl-

imine and the electron-rich imine. The sulfonylimine carbon

atom is significantly more electrophilic and thus more prone to
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Scheme 7: Synthesis of the bis-alkynyl derivatives bearing different
alkyne substituents and their platinum-catalysed cycloisomerisation.
Compounds 21a and 22a: R1 = Ph, R2 = pentyl; compounds 21b, 22b
and 23: R1 = pentyl, R2 = Ph.

attack by the acetylide. In the case of 3-oxocamphorsul-

fonylimine, this difference between the reactive functional

groups (C=O vs C=N-SO2R) was much less pronounced,

leading to poor selectivity. The general 1H and 13C signal

pattern of the camphor skeleton in compound 20 is fairly simi-

lar to the one found for compounds 12, indicating that the

alkyne has indeed been introduced at the sulfonamide side. Also

the 13C signal at 175.8 ppm shows clearly the presence of the

imino group in 3-position. For a sulfonimide, a signal at higher

ppm values (approx. 190 ppm) would have been expected. The

removal of the imine-protecting group turned out to be some-

what difficult and could be performed only under relatively

harsh acidic conditions using aqueous HCl under reflux to

provide 12 in moderate yield. Overall, the protection of the car-

bonyl group as an acetal appears more convenient than as an

imine.

Starting from the 2-alkynyl-3-oxo compound 12a, the mixed

bis-alkynyl compound 21a was prepared by reaction with

1-heptynyllithium, and accordingly, 21b was obtained from

reaction of 12b with PhC≡CLi (Scheme 7) [41,42]. Two equiv-

alents of the alkynyllithium compound are necessary because

the first one is required for the deprotonation of the relatively

acidic proton at the sulfonamide nitrogen.

Compounds 21a and 21b were then reacted with 5 mol %

PtCl2(PhCN)2 at 60 °C in CHCl3 [42]. For 1H NMR monitor-

ing, the same conditions were applied, but CDCl3 was used as

solvent. Within 10 hours, compound 21a converts cleanly into

product 22a without the observation of intermediates or side

products. Under microwave irradiation, the reaction is com-

plete within 30 min at 80 °C, without impairing the selectivity.

The structure of 22a is analogous to the one observed previ-

ously with the bis-phenylalkynyl compound [27] as a starting

material. Cyclisation of the alkynes and a three-carbon ring

enlargement lead in a single step to a rare bicyclic carbon

framework that bears some similarity to that of the anticancer

drug paclitaxel. Remarkably, the sulfonamide group was

reduced to a sulfinamide in the course of the reaction, and one

of the former alkynyl carbons was oxidised to a ketone. The

presence of the sulfinamide can be deduced from the fragmenta-

tion pattern in the mass spectrum where the loss of SO can be

seen which is further supported by the IR spectrum. Only one

S=O vibration can be identified at 1098 cm−1, in a similar posi-

tion as the S=O vibrations in DMSO (1050 cm−1) or tert-butyl-

sulfinamide (1032 cm−1) [43]. The strong band at about

1330 cm−1, typical for the asymmetric S=O stretch in sulfon-

amides and sulfones, is absent in 22a. The IR spectrum also

shows the presence of two carbonyl groups at 1680 and

1611 cm−1, and these are further confirmed in the 13C NMR

spectrum (signals at 198.3 and 210.8 ppm). The NH of the sulfi-

namide seems to be strongly involved in hydrogen bonding with

the carbonyl group nearby, as evidenced from the NH stretching

vibration in the IR at 3110 cm−1 and the 1H NMR signal at an

unusually high chemical shift of 11.97 ppm. The ring-expanded

carbon skeleton has been corroborated from 1H/13C NMR

together with 2D experiments, which allowed for a complete

and unequivocal assignment of all signals.

Upon reaction with catalytic amounts of PtCl2(PhCN)2, com-

pound 21b converts into two products, apparently in a parallel

reaction, and these were separated by chromatography. One

product is the expected 22b, whose structure is analogous to

22a described above. The other one, 23, has undergone alkyne

cyclisation but the ring expansion has not yet taken place. The

sulfonamide reduction and formation of the ketone are just

about to occur, as the oxygen atom involved is on its way of

being transferred from the sulphur onto the carbon atom.

The structure of 23 was established by two-dimensional
1H/13C NMR experiments, and by comparison with relatively

similar compounds obtained in the reaction of the bis(phenyl-

alkynyl)-derivative of 4a with triflic acid [26], or with K[ReO4]

[27]. The polycyclic carbon skeleton in these is identical, but

the latter compounds are protonated at the sulfonimide nitrogen

and form the triflate or perrhenate salts. The newly formed five-

membered ring in 23 is evident from the 13C NMR signals at

84.0, 90.0, 138.5, 136.0 and 125.5 ppm, and a 1H signal at

5.80 ppm. The enolate carbon is detected at 151.4 ppm in
13C NMR. Neither NMR nor IR show any evidence for carbon-

yl groups, but there is a medium intense C=C stretching vibra-

tion at 1653 cm−1 and two strong bands at 1324 cm−1 and

1059 cm−1 for the asymmetric and symmetric stretches of the
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Scheme 8: Proposed mechanism of the platinum-catalysed cycloisomerisation.

O=S=N moiety. Compared to the SO2 moiety in sulfonamides

(e.g., 21b with 1330 cm−1 and 1128 cm−1) the symmetric

stretch is at unusually low wavenumbers.

The formation of products 22 and 23 can be explained from the

proposed reaction mechanism, shown in Scheme 8. The attack

of the catalyst at the OH and possibly at the alkyne in the imme-

diate neighbourhood could be inferred from the fact that the 1H

signal of the OH of 21 broadens significantly upon addition of

PtCl2(PhCN)2. Concomitantly, a small amount of uncoordi-

nated PhCN is observed in the 1H NMR spectrum. The coordi-

nated Pt centre, as a Lewis acid, promotes the release of the OH

proton from A and its transfer onto one of the alkyne carbon

atoms to form intermediate B. The resulting vinylic carbocation

undergoes an electrophilic attack at the neighbouring alkyne,

which in turn reacts with the sulfonamide oxygen nearby. Both

steps are strongly facilitated by the geometry changes when the

linear alkyne moieties convert into bent alkene ones, as the

reactive centre is literally pushed into the functional group it

next reacts with. The intermediate D can be regarded as the

common precursor for the parallel formation of the observed

products, 23 by dissociation from the Pt catalyst and proton

migration from the sulfonamide to the alcoholate, and 22 by a

cascade of electron movements as indicated by the arrows in D.

Conclusion
Several methods for the synthesis of camphor-derived dialkynes

having two different alkynyl substituents in close vicinity to

each other and to a sulfonamide group were developed. Ketals

turned out to be most efficient for the protection of carbonyl

groups, leading to pure dialkynes with a well-defined substitu-

tion pattern. The reactivity of a pair of isomers containing a

phenyl and a pentyl group attached to the triple bonds towards

cycloisomerisation induced by Pt(II) catalysis was studied. The

expected annulation–sulphur reduction–ring enlargement

cascade leading to a product resembling paclitaxel to some

extent was found in both cases. However, one of the isomers

yielded a second product lacking the ring-enlargement step and

containing an additional sulphur–oxygen–carbon linkage. The

platinum complex of this compound was postulated before as an

intermediate in the sulphur-reduction step of the cascade reac-

tion, and the isolated product thus supports our mechanistic

considerations. Platinum(II) catalysis applied to camphor-

derived dialkynes with two different substituents can thus not

only give valuable insight in the mechanism of such cycloiso-

merisations and help to clarify the role of the substituents, but

also yields a novel type of taxoid compounds of complex poly-

cyclic structures with potential biological effects.
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