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Abstract A hub-and-spoke railway system is an efficient
way of handling freight transport by land. A modern rail–
rail train yard consists of huge gantry cranes that move the
containers between the trains. In this context, we consider
a rail–rail transshipment yard scheduling problem (TYSP)
where the containers arrive to the hub and need to be placed
on a train that will deliver them to their destination. In the lit-
erature, the problem is decomposed hierarchically into five
subproblems, which are solved separately. First, the trains
have to be grouped into bundles in which they visit the yard.
Next, the trains have to be assigned to tracks within these
bundles, namely parking positions. Then the final positions
for the containers on trains have to be determined. Next, the
containermoves that need to be performed are assigned to the
cranes. Finally, these moves have to be sequenced for each
crane for processing. In this paper, an integratedMILPmodel
is proposed, which aims to solve the TYSP as a single opti-
mization problem. The proposed formulation also enables us
to define more robust and complex objective functions that
include key characteristics fromeach of the above-mentioned
subproblems. The strength of our proposed formulation is
demonstrated via computational experiments using the data
from the literature. Indeed, the results show that the TYSP
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can be solved without the use of decomposition techniques
and more insight can be obtained from the same input data
used to solve particular single decomposed subproblems.
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1 Introduction

According to a recent study by the Organisation for Eco-
nomic Co-operation and Development (OECD), an intergov-
ernmental organization with 54 member countries, global
trade-related freight and emissions are increasing and are set
to quadruple by 2050.1 Among all modes of transport, rail
continues to be very attractive as it has one of the smallest
CO2 emissions and enables transportation of larger quantities
of goods between the major destinations. Also, if compared
with air transshipment, rail is much cheaper and when com-
pared to other land transport possibilities, rails are much less
obstructed by the traffic congestion and more popular than
inland waterway transportation.

Modern railway systems have rail–rail transshipment
yards where containers are not specifically received or
dispatched, but simply transferred on their way to their des-
tination between the rails. This transfer is achieved by using
gantry cranes that operate above the trains. The cranes allow
for a fast and reliable container handling and are therefore
considered as a very important part of the hub-and-spoke rail-
way system. Although broad studies have been conducted in
the area of railway optimization (Cordeau et al. 1988) and
intermodal transportation (Crainic and Kim 2007) in gen-

1 http://www.internationaltransportforum.org/Press/PDFs/
2015-01-27-Outlook2015.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-016-0470-4&domain=pdf
http://www.internationaltransportforum.org/Press/PDFs/2015-01-27-Outlook2015
http://www.internationaltransportforum.org/Press/PDFs/2015-01-27-Outlook2015


58 J Sched (2017) 20:57–65

eral, the literature on rail–rail transshipment yards is scarce,
mainly focusing on traditional shunting yards. In these con-
ventional yards, as one can see in Fig. 1, the position of a
container is changed by rearranging railcars via shunting hills
(humps) and a systemof track switches (Dahlhaus et al. 2000;
Hansmann and Zimmermann 2008; Gatto et al. 2009; Jacob
et al. 2011; Boysen et al. 2012b) (classification tracks). How-
ever, the surveys by Bontekoning et al. (2004) and Macharis
andBontekoning (2004) show that themodern rail–rail trans-
shipment yard in which containers are positioned with the
help of gantry cranes, is an emerging technology and gives a
chance for a more efficient transshipment.

Figure 2 illustrates a schematic representation of a mod-
ern rail–rail transshipment yard (Boysen et al. 2012a). As
one can see, the containers can be transshipped among trains
without the need to exchange railcars. This is done with the
help of huge gantry cranes operating above the tracks and the
containers can be moved directly between the trains. How-
ever, if the receiving train of a given container is not present
in the terminal then it will be moved to the storage area that
usually consists of a sorter with buffer and a transport sys-
tem that moves the container to a suitable position where it
is stored temporarily using the so-called shuttle cars. That
container can be later retrieved from the storage and placed
on the desired train. This operation is called a split move,
as opposed to a direct move, because it requires two crane
operations. An example of this kind of rail–rail system, also
known asMega Hub, is Hanover–Lehrte in Germany (Rotter

2004) or Port Bou on the border between France and Spain
(Martinez et al. 2004).

In the recent studies, the rail–rail transshipment yard
scheduling problemhas been decomposed hierarchically into
following subproblems:

(1) Schedule time slots to service the trains.
(2) Assign a railway track to each train.
(3) Decide on the outbound positions of the containers on

trains.
(4) Assign container moves to gantry cranes.
(5) Create a schedule for cranes to move all containers to

their target outbound positions.

Subproblem 1 is often called a bundling of trains. Train
yards have a limited number of tracks available to process the
incoming trains simultaneously and thus we have to group
the trains into bundles (time slots) in which they are oper-
ated. Due to safety issues, the gantry cranes cannot move
while the trains are moving, thus the trains are processed
in a given bundle and no train can leave the station before
containers from all the trains are moved to their outbound
positions. Once all the trains have been assigned to a bundle,
it is essential to assign tracks to individual trains within a
bundle. This influences the distance the cranes have to cover
when moving from one train to another, which is called a
vertical move, and is solved within subproblem 2. However,
the container could be placed to the front of the train, in the

Fig. 1 Schematic
representation of shunting yard
as presented in Boysen et al.
(2012a)

Fig. 2 Schematic
representation of rail–rail
terminal as presented in Boysen
et al. (2012a)

123



J Sched (2017) 20:57–65 59

middle or in the back, which would also have an impact on
the crane movement. If a crane has to move on longer dis-
tance, it could create conflicts with other cranes and cause
collisions that need to be avoided. The final position of the
container on its receiving train is set by solving subprob-
lem 3, which causes horizontal moves along the train. Next,
we have to assign the container moves to gantry cranes by
solving subproblem 4. Quite often we have to consider lim-
itations on the horizontal area each crane is moving in order
to avoid collisions. There are train yards with cranes oper-
ating on different heights allowing them to move one over
another, but only when the over-passing crane carries no con-
tainer, see Dorndorf and Schneider (2010). This and many
more safety constraints require us to pick only those moves
for a given crane that can be handled by it, while keeping
a balanced workload for all of them. Finally, we have to
sequence the assigned moves on the cranes defined as prob-
lem 5. Even though we kept safety measures while solving
the previous problem, we have to consider the possibility of
cranes colliding with each other. In practice, when solving
the last problem, we also have to consider how the contain-
ers are transferred to and picked from the storage, as those
operations will affect the container availability and usually
have an impact on the crane schedule.

Even thoughdecomposing a complexproblem into a series
of subproblems and solving them sequentially is a useful
way of finding good feasible solutions, it is well known that
such methods can lead to sub-optimal solutions. Therefore,
in this paper we present a single model that will allow us to
solve three of the five presented problems simultaneously:
one bundling, two train to track assignment and three decide
on the outbound positions. This way we are using more input
data and our model is able to provide better crane schedules
as input for subproblems 4 and 5. To the best of authors’
knowledge, an integrated approach to this important problem
has not been covered in the existing literature and is the focus
of our paper.

The remainder of the paper is structured as follows. In
sect. 2, the literature review of thework related to the rail–rail
transshipment yard problem is presented. Section 3 contains
a problem description and mathematical model. Results of
computational experiments are presented in Sect. 4. Finally,
Sect. 5 summarizes the paper.

2 Literature review

In the literature, the subproblems defined in Sect. 1 are solved
separately. The assignment of trains to bundles, subproblem
1, is investigated in Boysen et al. (2011) and extended in
Boysen et al. (2012c). A basic transshipment yard schedul-
ing problem is presented that minimizes a weighted objective
function that considers split moves and the number of revis-

its by the trains. The problem is shown to be NP-hard in
the strong sense and the authors present different heuristics
and exact solution procedures. Kellner et al. (2012) present a
solution procedure that can be used to solve a decision variant
of problem 2, i.e. the parking problem of trains. The assign-
ment of a given bundle of trains to tracks aims to minimize
the makespan of train processing. A genetic algorithm is pre-
sented and tested in a simulation study. The same problem
is also solved in Alicke and Arnold (1998) using a simpler
approach. The authors consider only the tracks assignment of
trains without including horizontal parking positions, sorter
operations or multiple cranes. Instead, they develop a simple
priority weighting value for container moves based on their
total horizontal distance, which is used to approximate the
workload between two trains. These weights are then applied
to solve a quadratic assignment problem to determine the
track assignment of trains. Bostel and Dejax (1998) propose
a solution for problem 3. The authors aim to determine the
initial and the final positions of a container in such a way that
they are as close together as possible, so the travel distances
of cranes and the resulting costs of train processing are mini-
mized. It is assumed that each container can be stored on any
railcar and weight restrictions are not considered. A similar
approach is also discussed in Corry and Kozan (2008). Sta-
tic and disjoint crane areas for problem 4 are investigated in
Boysen and Fliedner (2010) for a bundle of trains with given
parking positions to minimize the makespan of train process-
ing. The sorting system is assumed to be activated whenever
the initial and the final positions of a container move are in
different crane areas.

A paper that jointly treats problems 4 and 5 is given by
Alicke (2002). A given set of crane moves is assigned
to cranes with overlapping areas of operation, which are
blocked whenever a crane enters an area. If one of the posi-
tions of a container move falls in that overlapping area, the
procedure decides which of two neighbouring cranes process
that move. This model takes the speed and the availability of
shuttle cars from the sorter system into account. The problem
is modelled as a constraint satisfaction problem and tested
on datasets supposed to reflect the situation of theMega Hub
in Hannover–Lehrte in Germany. The authors propose and
compare different heuristic rules for fixing variables of the
constraints. Related problems also occur within container
terminals and have been covered by Zhu and Lim (2006),
Moccia et al. (2006), Lim et al. (2007) and Sammarra et al.
(2007).

3 Problem description

In this section, we present a mixed integer linear program-
ming model that integrates the bundling, track assignment
and outbound positioning subproblems. Obviously, it is not
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possible to bundle the trains in such a way that every con-
tainer will go directly to the train with correct destination.
Frequently, the cranes have to make two moves on the same
container—first a drop off in the storage area and later a pick
up from there to position the container on the receiving train.
This operation is called a split move. A split move can occur
in two situations—either the receiving train will arrive in a
later bundle and the container can only be taken then, or it
was supposed to go on a train that was already processed
in an earlier bundle, which means that the train will have to
revisit the station. In order to minimize double-handling of
the containers, it is desirable that both split moves and revis-
its are avoided. In what follows, we provide further details
about the problem.

We have been given a maximum number of the tracks, G,
on the train yard, the total number of trains, N , that needs
to be scheduled with L containers on every train. Observe
that a smaller number of containers can easily be modelled
that way by assuming that there are containers that will not be
moved. The total number of containers,C , is, therefore, equal
to N × L . We know for every container on which train car it
is (i.e. its inbound position on the train) and we also know the
receiving train. The task is to find the outbound position for
each container that will minimize the total processing time of
the cranes, which is calculated as the total number of vertical
and horizontal moves performed by the cranes.

Vertical moves are dependent on the train assignment to
the tracks, horizontal moves depend on the car positioning
for each container. If a container requires a split move, a
penalty is introduced. The penalty for using storage is equal
to the maximum distance the crane will have to move in
worst case and is equal to 2 × (G + L). We assume in this
paper that the capacity of the storage area is unlimited. If
the storage space was limited not all problem instances from
the literature could be solved. We could introduce a penalty
for overflowing the storage area, but this is left as a future
work.

The following decision variables are defined:

xn, j,k Train n is assigned to bundle j and track k; xn, j,k ∈
{0; 1}

oi,p Container i leaves the train yard on car p of its
receiving train; oi,p ∈ {0; 1}

di Container i is moved directly to its receiving train;
di ∈ {0; 1}

si Container i requires a split move for transferring to
its receiving train; si ∈ {0; 1}

rn Train n needs to revisit the train yard to pick all its
remaining containers; rn ∈ {0; 1}

hi Number of places container i is moved horizontally;
hi ∈ Z

+
vi Number of places container i is moved vertically;

vi ∈ Z
+

bn1,n2 Trains n1 and n2 are in the same bundle; bn1,n2 ∈
{0; 1}; n1 < n2

pn1,n2 Trainn1 is in an earlier bundle than trainn2; pn1,n2 ∈
{0; 1};

From the problem description above, we have the follow-
ing input data:

N Number of trains
G Number of tracks
L Length of station (measured in the number of

containers)
C Total number of containers, C = N × L
J Number of bundles, J = ⌈ N

G

⌉

ci,p Container i arrives on railcar p; ci,p ∈ {0; 1}
arri The train id on which container i should arrive

in the train yard; 1 ≤ arri ≤ N
depi The train id on which container i should depart

from the train yard; 1 ≤ depi ≤ N
C(n) Set of containers that should be moved to train

n
C(n1, n2) Set of containers that should be moved from

train n1 to train n2

In the following equations, we will use indexes:

i = 1 . . .C
j = 1 . . . J
n, n1, n2 = 1 . . . N
k, k1, k2 = 1 . . .G
p, p1, p2 = 1 . . . L

With all the above information providedwewant to assign
as many containers to the proper trains as possible while
trying to reduce the potential processing times by keeping
the inbound and outbound positions of the containers close
to each other. In other words, we would like to minimize the
following objective function:

min
C∑

i=1

(hi + vi + M × si ) +
N∑

n=1

M2 × rn, (1)

where M and M2 are constants that are defined in the follow-
ing section.

The first part of the objective function minimizes the total
number of vertical moves made between the tracks and hor-
izontal moves made along the trains. We assume that a split
move (i.e. storing a container in a storage and not moving it
directly from train to train) will generate maximum possible
vertical and horizontal moves (either because the receiving
train will arrive in later bundle or was already handled and
has to revisit the station). The penalty for a split move is
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equal to (G+ L), so it is always undesirable when compared
to a direct move. This function only minimizes the distances
between a container’s inbound and outbound positions and
does not take into account the moves that cranes have to per-
form in-betweenwithout carrying any containers.We neither
decide on which moves should be performed by which crane
and how the cranes operate—this is a future task that can be
handled once the outbound positions of the containers are
known, nor do we consider the order in which the contain-
ers are moved. Thus we assume that all outbound positions
are empty—the containers that arrived on the trains will be
moved either to the receiving train or to the storage area,mak-
ing the train fully available to receive new containers, but we
do not check “when” this would happen. As stated above, the
penalty for a split move M is equal to (G + L), whereas the
penalty for a train revisit is equal to 24 split moves, which is
equal to 24 × (G + L). The reasoning behind these values
is as follows: a split move takes around 2, 5mins to process
and the average time of a revisit is 60mins. Thus, the ratio
between M2 and M is equal to 60

2.5 = 24.
For a schedule to be feasible, following constraints have

to be satisfied:

di + si = 1; ∀i (2)
L∑

p=1

oi,p = 1; ∀i (3)

∑

i∈C(n)

oi,p ≤
⌈ |C(n)|

L

⌉
; ∀p∀n (4)

J∑

j=1

G∑

k=1

xn, j,k = 1; ∀n (5)

N∑

n=1

xn, j,k ≤ 1; ∀ j∀k (6)

G∑

k=1

xn1, j,k +
G∑

k=1

xn2, j,k − 1 ≤ bn1,n2; ∀ j∀n1∀n2 (7)

G∑

k=1

xn1, j,k + bn1,n2 − 1 ≤
G∑

k=1

xn2, j,k; ∀ j∀n1∀n2 (8)

bn1,n2 +
G∑

k=1

xn2, j,k − 1 ≤
G∑

k=1

xn1, j,k; ∀ j∀n1∀n2 (9)

∑

i∈C(n1,n2)∪C(n2,n1)

si = |C(n1, n2) ∪ C(n2, n1)|

×(1 − bn1,n2); ∀n1∀n2 (10)
n2−1∑

n1=1

bn1,n2 +
N∑

n3=n2+1

bn2,n3 ≤ G − 1; ∀n2 (11)

bn1,n2 + bn2,n3 − 1 ≤ bn1,n3; ∀n1≤n2≤n3 (12)

|k1 − k2| ×
⎛

⎝
J∑

j=1

xarri , j,k1 +
J∑

j=1

xdepi , j,k2 − 1

⎞

⎠

≤ vi ; ∀i∀k1∀k2 (13)

|p1 − p2| × (ci,p1 + oi,p2 − 1) ≤ hi ; ∀i∀p1∀p2 (14)
j∑

j2=1

G∑

k=1

(xn1, j2,k − xn2, j2,k) ≤ pn1,n2; ∀ j∀n1∀n2 (15)

if |C(n2, n1)| > 0 then rn1 ≥ pn1,n2; ∀n1∀n2 (16)

bn1,n2 + pn1,n2 + pn2,n1 = 1; ∀n1∀n2 (17)

Equations 2 ensure that each container is either to be
moved directly between trains or through a split move. Each
container must have an outbound position assigned, which
is defined in Eq. 3. Next, in constraints 4 each position on a

given train is taken at most
⌈ |C(n)|

L

⌉
times. Equation 5 ensure

that each train is assigned to exactly one bundle and one track.
Since each bundle has at most G trains and the trains do not
occupy the same track in a given bundle, each track in a given
bundle is taken atmost one time. This is defined in constraints
6. The model can be improved if it is known that the number
of trains is divisible by the number of tracks, which would
mean that each bundle has exactly G trains in it and the
inequality could be changed to equality in this constraint.
Constraints 7 ensure that when trains n1 and n2 are assigned
to the same bundle then variable bn1,n2 becomes 1. However,
it is also essential to ensure that bn1,n2 becomes 0 in the case
when trains n1 and n2 are assigned to different bundles. This
is achieved by constraints 8 and 9. Equation 10 say that if
trains n1 and n2 do not belong to the same bundle, contain-
ers between them cannot be exchanged without causing split
moves. As there are in any bundle at mostG tracks available,
constraints 11 guarantee that there are at most G − 1 other
trains in a bundle with any other train n2. Then a transitive
relation for variable bn1,n2 is expressed in constraints 12.

If a container i arrives at track k1 on car p1 of train arri
and departs from track k2 on car p2 of its receiving train
depi , the cranes will have to make |k1 − k2| and |p1 − p2|
vertical and horizontal moves, respectively. These are more
formally defined by constraints 13 and 14. It is worth noting
that penalties of vertical and horizontal moves are indepen-
dent of which bundles trains arri and depi of a container i are
assigned as we only measure here the direct movements of
containers. Next in constraints 15, we set the value of pn1,n2
to 1 if train n1 is in an earlier bundle than train n2. If a train
n1 arrives before train n2 and there are containers that need
to be transported from n2 to n1, then the train n1 has to revisit
the station. This is implied by constraints 16. Finally, Eq. 17
is used to improve the lower bound by restricting that only
one of these situations can occur: trains n1 and n2 are in the
same bundle; train n1 is in an earlier bundle than train n2 or
train n2 is in an earlier bundle than train n1.
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We extend this model to include additional constraints for
arrival and departure times of the trains. The time constraints
can be expressed as availability of the train within a given
bundle. If a train n is not available in a bundle j , because it has
not arrived yet to the station, then we set

∑
k xn, j,k to zero.

For each train n and all tracks k, we set the variable xn, j,k to
0 if the j < Arrivaln and j > Departuren , where Arrivaln
and Departuren are bundle numbers or in other words time
slots of availability, in which the train n can enter the train
yard.

To compare the results from our integrated model with
the literature, we need to change the objective function. The
model in Boysen et al. (2011) minimizes the number of split
moves and revisits, ignoring the positioning of containers.
Therefore, in order to compare the performance of our model
with Boysen et al. (2011), we use the same set of variables
and constraints as defined earlier but formulate the objective
function as follows:

min
C∑

i=1

M × si +
N∑

n=1

M2 × rn (18)

To fully understand the differences between our model
and the one from Boysen et al. (2011), we present two solu-
tions for the problem at hand. The toy-example instance
has four trains, four containers per train and two tracks.
Therefore, we provide two bundles to perform the container
movements. According to the objective function from the
referenced paper, both solutions presented in Fig. 3 have two
split moves which require two revisits, so they are consid-
ered equally good. Also, both solutions are optimal in terms
of the problem 1: bundling—there is no better train to track
assignment that could reduce the number of split moves or
revisits. However, if we consider the crane movements, it is
easy to notice that in the second solution the containers that
are to be swapped are much closer to each other. In fact,
they do not require any horizontal movements, which was

the case in Solution 1. This will reduce the processing time
of each bundle and will make only Solution 2 an optimal
solution. The larger instances with more trains and contain-
ers have much more complex, but similar situations in which
bundle assignment could lead to multiple equally good solu-
tions. These solutions can be differentiated by taking into
consideration the crane movements and distances between
the container positions and that is what the proposed model
is doing.

4 Computational experiments

Extensive computational experiments were performed using
the datasets from Boysen et al. (2011) with arrival and depar-
ture restrictions. In the datasets from Boysen et al. (2011),
the information about initial positioning of the containers
was missing, so we added this information to the datasets
by sequentially placing the containers for a particular receiv-
ing train one after the other. For example, if train A had
5 and 16 containers for trains B and C , respectively, then
in train A positions from 1 . . . 5 are occupied by contain-
ers for train B and positions from 6 . . . 21 are occupied by
containers for train C . We implemented the model using
Gurobi software and the tests were conducted using an Intel
i5 1, 7GHz machine with 4 GB of RAM memory, setting
the time limit to 20mins and the threads limit of the solver
to two due to the Hyper Threading technology available on
the machine. Finally, we compared the results with Boysen
et al. (2011) regarding the number of revisits and the num-
ber of split moves. Obviously, our model provides a solution
with additional information on the outbound positions of the
containers, but as this information was not present in Boysen
et al. (2011), we could not compare those results.

Tables 1 and 2 show the total number of split moves and
revisits over all the instances that were solved. We can notice
that the more containers there are per train, the more revis-

Fig. 3 Two undistinguishable solutions according to Boysen et al. (2011), which have different objective values in integrated model
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Table 1 Number of split moves
over 2240 instances solved

Number of tracks Containers per train

20 28 30 36 40 42 54 Total

2 14199 20493 22118 27462 30681 32377 42475 189805

4 11964 16844 18187 22230 24843 26107 34005 154180

6 5711 9154 10229 12807 14304 15478 21792 89475

8 7174 10980 12284 15390 17786 18914 27566 110094

Grand total 39048 57471 62818 77889 87614 92876 125838 543554

Table 2 Number of revisits
over 2240 instances solved

Number of tracks Containers per train

20 28 30 36 40 42 54 Total

2 372 449 474 520 538 552 628 3533

4 431 488 498 553 552 562 597 3681

6 200 286 307 356 378 380 444 2351

8 239 351 361 420 458 495 580 2904

Grand total 1242 1574 1640 1849 1926 1989 2249 12469

its and split moves are required within the instances. It is
also worth noting that for instances with two, four and six
tracks, there were 12 trains considered and therefore for the
same number of trains and containers the total number of
split moves and revisits decreases as additional tracks pro-
vide higher flexibility. However, for eight tracks, we had 16
trains; thus this has higher total values in the tables as com-
pared to the solution with six tracks. In most instances, the
revisits are forced due to the impossible assignment of two

trains in the same bundlewith respect to the arrival and depar-
ture restrictions.

Tables 3 and 4 show the average difference in number
concerning split moves and revisits over all solved instances.
The difference is calculated by subtracting fromour result the
value obtained byBoysen et al. (2011). Thus, if the difference
is lower than 0 then it means that we have more split moves
or revisits compared to Boysen et al. (2011). However, if
the difference is higher than 0 then we managed to obtain a
lower number of split moves or revisits. These values were

Table 3 Average difference in number of split moves in comparison to Boysen et al. (2011)

Number of tracks Containers per train

20 28 30 36 40 42 54 Total

2 0.0000 −0.9125 −0.3125 −0.3000 −0.3125 0.0000 −0.7125 −0.3643

4 −0.0125 −0.6125 0.0000 −0.9250 0.3000 −0.6000 −0.3000 −0.3071

6 0.0000 0.0000 0.0000 −0.0125 −0.0250 0.0000 −11.2875 −1.6179

8 −0.6500 −0.6750 −0.0500 −1.6750 −2.6125 −2.7625 −27.4250 −5.1214

Grand total −0.1656 −0.5500 −0.0906 −0.7281 −0.6625 −0.8406 −9.9313 −1.8527

Minus sign means that we obtained more split moves on average

Table 4 Average difference in number of revisits in comparison to Boysen et al. (2011)

Number of tracks Containers per train

20 28 30 36 40 42 54 Total

2 0.0000 0.0375 0.0125 0.0125 0.0125 0.0000 −0.0125 0.0089

4 0.0000 0.0250 0.0000 0.0375 −0.0125 0.0250 0.0125 0.0125

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0875 −0.0125

8 0.0250 0.0250 −0.0125 0.0250 0.0250 −0.1750 −0.2500 −0.0482

Grand total 0.0063 0.0219 0.0000 0.0188 0.0063 −0.0375 −0.0844 −0.0098

Minus sign means that we obtained more revisits on average
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calculated and we took the average over all solved instances.
The aggregated results are presented in the tables.

First we notice that on average the difference inmost cases
is<1. It means that the results obtained by our model are not
very different to the ones in Boysen et al. (2011). Indeed,
most of the instances are solved exactly the same way with
respect to split moves and revisits. However, some solutions
differ by different allocations of split moves and revisits.
The ratio between these two operations was 1

24 and in most
cases solutions differ in a way that there is one more revisit
but twenty-four split moves less (and multiples of that) in the
original solution when compared to our result and vice versa.
If we consider the eight track instances, we can notice that
for a larger number of containers per trainwe obtained higher
differences. This is caused by the time limit we used in our
computational study and those instances were just not solved
to optimality by the solver, which is especially noticeable
for the instances with 54 containers per train. Over all 2240
instances, only 111 had a different result to Boysen et al.
(2011), and among them 72 were instances with eight tracks,
which were the hardest to solve and did not complete within
the time limit.

To perform a fair comparison between our model and
Boysen et al. (2011), we removed the horizontal and ver-
tical movements from the objective function as stated in 18.
This creates a model that minimizes the total number of
split moves and revisits. As a result, we obtained exactly the
same objective functions scores as in Boysen et al. (2011).
The average solving time for Gurobi was 3, 13s, but one
should keep in mind that the solver performs a pre-solve
routine to remove redundant constraints (in this case the
constraints about the positioning of the containers). Themax-
imum solving time was 46, 81s for the biggest instances
available.

Our results show that the decomposition from Sect. 1
works very well for the rail–rail transshipment yard schedul-
ing problem. However, having a more integrated model that
solves three out of five subproblems using the same amount
of information has benefits. Our approach considers a wider
spectrum of information and provides a global optimum for
the set of problems instead of the local optimum for a given
subproblem. Even though in most cases the solutions are
exactly the same, there are instances which have different
trains to bundle assignments caused by the optimization of
container positioning tominimize the total cranemovements.
This would not have been possible if the decomposed prob-
lems were solved one after another.

5 Conclusions

In this paper, we propose a more general approach to solve
the transshipment yard scheduling problem. A mathematical

model has been formulated, implemented and tested in an
extensive computational study. The obtained results are very
interesting in comparison to previous works in this field. It
appears that the more general approach has provided very
similar, if not exactly the same, solutions for the instances
analysed in the literature. Thus the decomposition scheme
seems to work well for this problem. However, the impor-
tant difference between the existing approaches and the one
proposed in this paper is the information that we receive
as output of the model. The mathematical model presented
above allows us to answer three out of five questions raised
by the decomposition scheme, while the previous approaches
answered only one specific question. The benefit of the pro-
posed approach is that it uses the same amount of input
information to provide a solution, which is much richer in
information when compared to an existing approach. Not
surprisingly, it is at the cost of computational time that is
required to generate the answers, but might be a more fea-
sible solution in scenarios where the outbound positioning
of the containers is also very important. The obtained result
is a global optimum for the three subproblems considered in
this paper, while previous approaches provided an optimal
solution for a single subproblem which most likely is only
locally optimal if the other subproblems derived from the
decomposition are included. Finally, the proposed model is
solved to optimality (if time allows). But there is huge poten-
tial for new heuristics to be created based on the research and
understanding of the model.
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