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Abstract Results from high resolution 7-km WRF regional
climate model (RCM) simulations are used to analyse changes
in the occurrence frequencies of heat waves, of precipitation
extremes and of the duration of the winter time freezing period
for highly populated urban areas in Central Europe. The
projected climate change impact is assessed for 11 urban areas
based on climate indices for a future period (2021-2050) com-
pared to a reference period (1971-2000) using the [IPCC AR4
A1B Scenario as boundary conditions. These climate indices
are calculated from daily maximum, minimum and mean tem-
peratures as well as precipitation amounts. By this, the vulner-
ability of these areas to future climate conditions is to be
investigated. The number of heat waves, as well as the number
of single hot days, tropical nights and heavy precipitation
events is projected to increase in the near future. In addition,
the number of frost days is significantly decreased. Probability
density functions of monthly mean summer time temperatures
show an increase of the 95th percentile of about 1-3 °C for the
future compared with the reference period. The projected in-
crease of cooling and decrease of heating degree days indicate
the possible impact on urban energy consumption under future
climate conditions.
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1 Introduction

In 2050, the fraction of global urban population will in-
crease to over 69 % (Europe 82 %), which means that
around 6.3 billion people are expected to live in urban
areas (United Nations 2011). The transformation of rural
into urban areas is one of the most severe facette of an-
thropogenic land use change. Presently, only 1.2 % of
land surfaces are regarded as urban areas (Shepherd
2005), but cities are the main contributor to global green-
house gas emissions. With 78 % of the total global carbon
emissions, urban systems are to a large extend responsible
for global climate change (Grimm et al. 2008). Cities are
places of human activity and are therefore particularly
vulnerable to climate extremes like heat waves. The
overwarming of urban areas due to the urban heat island
effect (Oke, 1982b) adds to the general effect of global
temperature increase. Meteorological features like humid-
ity, wind speed or radiation as well significantly impact
human comfort. From an energetic perspective, a side ef-
fect coming along with the excessive warming is an in-
crease of cooling load in summer and a projected decrease
of heating load in winter. This aspect can result on the one
hand in increased demand of energy and higher emissions
in summer, but on the other hand, a positive feedback on
wintertime energy consumption and air pollution can be
achieved.

In the IPCC ARS (IPCC 2013), it is concluded that heat
waves, or extreme precipitation events, are more likely to
occur in the future and a high human contribution to the
already observed changes is to be assumed. The results of
Poumadere et al. (2005) suggest that climate change could
have been responsible for the European Heat Wave 2003.
This event developed into the single most catastrophic weath-
er event to have haunted Europe since the beginning of
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weather observations. The EU estimated that more than 70,
000 people within 12 countries died from heat related ill-
nesses, more than in any single event since World War II.
(Stone Jr. 2012).

For future urban planning strategies, it is important to know
how urban regions will respond to global temperature change,
especially regarding the occurrence frequency of heat waves.

Analysing a large amount of observations for Western
European Countries from 1980 to 2005, Della-Marta et al.
(2007) found that due to a change in extreme warm daily
summer maximum temperature, the length of summer heat
waves in Western Europe has doubled and the frequency of
hot days has almost tripled within this period.

Results from Meehl and Tebaldi (2004) show that the num-
ber and intensity of heat waves are supposed to increase in the
second half of the 21st century. Within that study, it is con-
cluded that the average duration of heat waves for the urban
area of Paris ranges from 11.4 to 17 days per year for the time
period 2080-2099 compared to 8.4 to 12.7 days with regard to
the time period 1961-1990.

An increase of the number and intensity of heat waves and
a general trend towards higher temperatures in Europa is stat-
ed by several studies (Trusilova et al. 2008; Beniston 2004;
Beniston et al. 2007; Beniston 2009).

Over the last decades, the spatial resolution of regional
climate models has been continuously increasing. In the
course of the PRUDENCE project (Christensen and
Christensen 2007), larger ensembles of climate models were
carried out for Europe, reaching resolutions of about 50 km.
Further studies were performed, ranging from 25 km with
regard to the ENSEMBLES project (Hewitt 2004) to 18 km
in the so-called consortium simulations (Feldmann et al.
2008).

High resolution RCMs are needed for climate impact stud-
ies for urban areas. In particular, the exceedance of threshold
values regarding maximum temperature or precipitation is of
great interest in order to relate climate change impacts to urban
population. This study uses results from an existing 7 km
WRF RCM as described in Berg et al. (2013) and Wagner
etal. (2013), in order to calculate climate indicators for differ-
ent urban areas in Europe. Except for single event studies (e.g.
Borge et al. 2008; Salathe et al. 2010, Schwitalla et al. 2011),
only a few climatological studies using WRF for a European
domain and to the authors knowledge, it is the first study
existing which discusses climatic extreme events for selected
urban areas over parts of Europe. In contrast to selected re-
gional case studies, this study benefits from consistent climate
boundary conditions which in turn allows for a European wide
analysis and a high degree of comparability between the dif-
ferent urban areas and regional climate change impacts.
Climate change indicators which are directly related to human
health are illustrated by the number of hot days, duration and
occurrence frequencies of future heat waves and number of
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tropical nights. An aspect which is affecting urban environ-
ments in general is the number of heavy precipitation days and
the number of frost days. Considering the future energy con-
sumption of urban areas, the number of heating and cooling
degree days is included in the analysis. The study combines a
spatial and a local analysis of projected climate change im-
pacts based on climate indices for the period 2021-2050 com-
pared to 1971-2000. The spatial analysis regards the whole
model domain, whereas the regional analysis presents
projected changes for 11 major urban areas. Evaluation with
observation data supports the reliability of the regional climate
model and probability density functions (PDFs) of tempera-
ture give information about future trends in the 95th
percentile.

The data and methods which have been used are presented
in Chapter 2, which also includes a brief description of the
climate indices and their calculation. An evaluation of the high
resolution RCM simulations for urban areas is shown in
Chapter 3.1, followed by a detailed presentation and discus-
sion of the spatial and regional analysis in Chapter 3.2 and 3.3,
respectively. The paper closes with a summary and conclusion
in Chapter 4.

2 Data and methods

To account for extreme events, different climate indicators are
calculated from the model output and spatially displayed for
the whole domain and along west-east and south-north
transects.

The number of tropical nights, heat waves, heavy precipi-
tation events and frost days are presented for the future 30-
year time period on the basis of relative changes compared to
the reference case. The projected development of heating and
cooling degree days gives information about the future energy
consumption in urban areas.

The climate indices are calculated from WRF output fields
generated in the course of the regional climate ensemble
modelling study presented in Berg et al. (2013) and Wagner
etal. (2013). The regional climate simulations were performed
with the non-hydrostatic Weather Research and Forecasting
(WRF) model using the Advanced Research WRF-ARW dy-
namics solver version 3.1.1 (Skamarock et al., 2008). The
IPCC AR4 simulations with the ECHAMS5/MPIOM model
system at T63 resolution (Roeckner et al. 2003) served as
GCM. The WRF simulations followed a double one-way nest
procedure in Lambert conformal map projection with the
coarse nest over all of Europe (125 x 117 grid points) at
42 km resolution and the fine nest covering Germany and its
neighbouring countries (175 x 175 grid points) at 7 km reso-
lution. The model used 40 vertical levels for both nests. For
the simulations, the following main physical options were
selected: the WRF Single-Moment 5-class scheme (WSMS5)
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microphysical parameterization (Hong et al. 2004; Hong and
Lim 2006), the modified version of the Kain-Fritsch scheme
(Kain 2004) for cumulus parameterization, the Noah land sur-
face model (Chen and Dudhia 2001), the Yonsei University
(YSU) parameterization (Hong et al. 2006) for the planetary
boundary layer, the MM5-Dudhia SW scheme (Dudhia 1989)
and the Rapid Radiative Transfer Model (RRTM) longwave
radiation scheme (Mlawer et al. 1997). For more details on the
WREF setup and the performance for temperature and precip-
itation in comparison to other RCMs, we refer to Berg et al.
(2013).

Taking the IPCC AR4 A1B Scenario (Solomon 2007) as
boundary conditions, climate projections for the time period
2021-2050 were carried out and trends calculated to be com-
pared with the reference period 1971-2000.

The fine model domain covers an area between 1.5 to 17.5°
E and 44.5 to 54.5° N. The selection of the urban areas
(Table 1) is based on their reasonable size and their regional
representativeness as a major urban agglomeration in the
region.

The cities are equally distributed throughout the model
domain (Fig. 1). All maps presented in the following are
projected on a decimal LAT/LON grid with WGS 84 projec-
tion for Germany Zone 32 N.

USGS classified land use data (USGS 2006) is used to
account for land use information. In the RCM run, an urban
area is defined via a bulk approach (Liu et al. 2006), where a
predefined roughness length of 0.8 m represents turbulence
and drag due to buildings, an albedo of 0.15 accounts for
radiative properties of urban canyons and averaged volumetric
heat capacities (3.0 J m > K ') and soil thermal conductivities
(2.24 W m ! K™!) characterize heat transfer in building
fabrics.

Meteorological variables are extracted from WRF simula-
tions on a daily basis for a reference (1971-2000) and a near
future (2021-2050) time period, with the model domain cov-
ering Central Europe. Although climate trends would be more
pronounced by the end of the 21st century, the period 2021—
2050 is chosen, because it is related to a typical time frame of
current urban planning strategies.

Over 262,500 time steps of hourly model output for 2 m
temperature and accumulated daily precipitation are analysed
to compute daily mean, maximum and minimum trends for
summer (JJA) and winter (DJF) periods. Based on these var-
iables, climate indices for major urban agglomerations in
Europe (Table 1) are calculated from the past and future 30-
year time period.

Features that significantly affect human health, i.e. hot days
and unusually high night time temperatures (tropical nights),
are analysed in particular. Associated with these effects is the
development of heavy precipitation events where daily sums
exceed a certain threshold, in this case, 20 mm. The number of
frost days with daily minimum temperatures below 0 °C has

Table1  Urban areas selected for the study, arranged according to their
population number, city size and population density (Brinkhoff 2013)
City Population Size Density
(km?) (Inhabitants/km®)
Berlin 3,415,091 892 3829
Paris 2,273,305 105 21,651
Vienna 1,763,654 415 4250
Hamburg 1,751,780 755 2315
Munich 1,402,455 310 4524
Prague 1,243,201 496 2527
Cologne 1,027,679 405 2537
Stuttgart 602,877 207 2912
Zurich 400,028 92 4348
Ljubljana 278,638 275 1013
Modena 179,353 182 985

no direct health impact to local inhabitants but is relevant for
the energy consumption in urban areas. Each climate index
refers to a threshold which is defined by the European Climate
Assessment & Dataset project ECA&D (http://eca.knmi.nl/).
Each ECA&D index which is calculated from the RCM
hourly model output using CDO (climate data operator)
tools (Mueller and Schulzweida 2010) and by this follows a
uniform standard. ECA&D climate indicators which are pre-
sented in the following are in accordance with the thresholds
recommended by the World Meteorological Organization
(WMO).

2.1 Calculation of climate indicators
2.1.1 Number of hot days

The number of days per year, where daily maximum temper-
atures exceed the threshold of 30 °C is calculated for the future
time period and compared to the reference case with regard to
the whole domain. Absolute and relative changes are to be
analysed.

2.1.2 Number of heat waves

A heat wave can be defined by a 5 °C temperature exceedance
on more than 5 consecutive days compared to a 30-year ref-
erence period. In Europe, definitions of threshold tempera-
tures differ regionally (Frich et al. 2002). In Germany, daily
maximum temperatures have to be higher than 30 °C on at
least 5 days for being considered as heat wave (Tinz et al.
2008). This criterion is used as reference in this paper.

The number of periods per year, where the threshold tem-
perature of 30 °C is reached or exceeded on more than a
defined number of consecutive days, is calculated for each
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Fig. 1 WRF nested domain with

7-km horizontal resolution,

showing USGS, 2006 classified

land use, projected on a LAT/

LON grid with the coordinate -5
system WGS 84 Zone 32 N. The : -

urban areas of interest are marked . N
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grid cell which represents one of the 11 cities mentioned in
Table 1. For this purpose, every day within the 30-year time
frame where the maximum temperature exceeds the threshold
of 30 °C is set to 1—the condition for being classified as ‘hot
day’ is true. Values which fail to correspond to this condition
are set to zero. In the following, a mask is applied, which
counts the number of periods with the most ‘hot days’ in a
row. Afterwards, the second longest time period is figured out
and the number of occurrences are counted. This procedure is
applied until the number of 5 consecutive days is reached. A
duplication of days is not allowed in the counting. Here, three
categories of heat waves can be defined and used for further
classifications. A series of 5 and 6 consecutive days is classi-
fied as ‘moderate’ heat waves, 7 to 9 days as ‘strong’ heat
waves and 10 days or more are defined as ‘severe’ heat waves.
By dividing the absolute number of each class by 30 years, the
annual average number of heat waves can be calculated for
both time periods.

2.1.3 Tropical nights

The number of days where the daily minimum temperature is
above the threshold of 20 °C is calculated. To receive annual
averages, the total number has to be divided by 30 years. The
difference between the future and past period indicates the
climate signal.

2.1.4 Heavy precipitation days

According to the WMO, heavy precipitation events are de-
fined as daily accumulated precipitation amounts exceeding
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20 mm. In the following, only these events are counted which
fall between the summer months (JJA).

The number of days where the amount of daily precipita-
tion sum is at least 20 mm is calculated, and relative annual
trends are presented. The difference between the future and
past period indicates the climate signal.

2.1.5 Frost days

This is the number of days, where the daily minimum temper-
ature is less than 0 °C. The accumulated number of days for
the 30-year periods is again divided by the number of years, to
obtain annual averages for both time periods. Relative chang-
es are analysed comparing future period and reference case.

2.1.6 Heating and cooling degree days

Heating and cooling degree days are quantitative indices to
assess the effect of ambient temperature on the demand of
energy needed for heating and cooling of residential—and
commercial buildings to maintain thermal comfort in building
interiors. Counted is the number of days, where daily mean
temperature exceeds or falls below a predefined threshold
which requires air conditioning or heating, respectively. It
has to be pointed out, however, that this indicator strongly
depends on the human condition and on factors such as build-
ings isolation and therefore can vary by city or country. This
index cannot be directly equated to the indices discussed be-
fore, but still it does reveal one of the expected impacts of
climate change on urban environments. Recent studies (e.g.
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Erhardt 2015; OrtizBevia et al. 2012) support the importance
of including these indices in climate impact studies.

Based on daily mean temperatures, heating degree days
(HDD) account for the number of days were daily mean tem-
peratures fall below 15 °C. It is assumed that at this threshold,
it is necessary to regularly heat the building interiors, especial-
ly during night-time with values dropping below 10 °C. With
daily mean temperatures exceeding 20 °C, it is assumed that
buildings have to be air conditioned. The number of days
where this threshold is exceeded with regard to daily mean
temperature is referred to cooling degree days (CDD) (CDO
2014). This study tries to investigate the overall effect of cli-
mate change on both indices by comparing the relative trends
for the European domain and for selected urban areas.

2.1.7 Probability density functions (PDF)

To statistically describe the climate change signal for single
urban areas, probability density functions are calculated for
mean 2 m air temperatures for the periods 1971-2000 and
2021-2050, whilst the 95th percentiles are compared. The
modified shape of the future PDF’s and, additionally, the shift
of the 95th percentile to higher values serves as an indicator
for the temperature change in urban areas. To estimate the
statistical significance of the RCM runs, student’s ¢ tests are
performed regarding the 95 % confidence interval.

3 Results and discussion

In order to analyse the spatial variability of model biases with
regard to temperature and precipitation, the RCM run for the
period 1971-2000 is compared with E-OBS data (Haylock
2008). Mean biases of temperature and monthly precipitation
sums are calculated for each selected urban area as well.

Accordingly, climate indices are calculated on the basis of
2 m temperature fields as well as daily precipitation amounts,
extracted from past (1971-2000) and future (2021-2050)
RCM runs. Climate trends are to be analysed with regard to
heat waves, tropical nights, heavy precipitation events, frost
days as well as heating and cooling degree days. The results
are presented for the whole domain as well as for single urban
areas. Further, probability density functions of monthly mean
temperature are shown for selected urban areas.

3.1 Evaluation of temperature and precipitation
with E-OBS data

For the evaluation of simulated temperature and precipitation,
an adapted version of the E-OBS dataset (Haylock et al. 2008)
is used. Due to temperature being a temporally and spatially
continuous variable, the originally coarse resolution E-OBS
data (25 km at a regular grid) was downscaled to 7 km (Berg

etal. 2013). For temperature, a constant lapse rate of 6.5 K/km
was multiplied by the elevation difference between the two
data sets. For precipitation, the E-OBS data set was remapped
such that the precipitation amounts are conserved. Figure 2
shows the spatial distribution of temperature and precipitation
bias with regard to the 30-year mean value. Blue colour pat-
terns indicate an underestimation, red colours an overestima-
tion compared to the observations. With regard to precipita-
tion, the colouring is reversed.

With more than 2 °C, the South Eastern part of the model
domain shows the largest warm temperature bias (Fig. 2a).
The positive temperature biases in the south-east, as well as
the negative bias in the alpine region, are carried over from the
general circulation model GCM (Berg etal. 2013). WRF tends
to reduce the cold bias from the driving GCM in Northern and
Western Europe. In the region of the Mediterranean and south-
east Europe, however, it amplifies the warm bias. The regions
with the most robust model results are to be found in the
northern part of Germany with almost no bias. According to
precipitation (Fig. 2b), the model largely shows an overesti-
mation. Highest positive biases up to 75 mm per month can be
found in the alpine and mountainous regions in general. Some
parts in the South East show a negative precipitation bias. For
precipitation, the bias from the GCM is carried over. In moun-
tainous regions, the simulation, observation and spatial inter-
polation of precipitation are additionally very challenging and
often associated with larger errors due to topographic effects.

Table 2 presents the evaluation for selected urban areas as
presented in Table 1. With regard to the model bias, the dis-
cussion above indicates regions where the RCM results are
more robust and regions which are afflicted with higher
uncertainties.

Except for Hamburg, WRF shows a slight overestimation
of mean temperature between 0.1 °C (Paris, Modena) and
1.9 °C (Munich) (Table 2). Ljubljana strikes out here with
the mean bias reaching 3.2 °C. The model shows a significant
warm bias. This effect might be caused by the comparably
small size of the urban area and its location in complex terrain,
whose effect on local climatology is not accurately accounted
for at a resolution of 7 km. Analysing the winter month (DJF)
only, the mean bias can be reduced for all urban areas. For the
urban areas of Berlin, Modena and Prag, the warm bias is
turned into a cold bias compared to the full modelling periods
as well as to summer month (JJA) only. Referring to Table 2,
climate indices including winter months (number of frost days,
heating degree days) tend to be more robust than summer time
indices such as heat waves, hot days and cooling degree days.

With regard to Fig. 2b, monthly precipitation sums can be
evaluated for the selected urban areas as well (Table 3).

In average, WRF overestimates precipitation fields of the
E-OBS data by 17 mm. The largest relative bias is to be found
for Berlin (+35 %). The urban area of Ljubljana, however,
shows a negative bias.
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Fig. 2 Mean bias between E-OBS dataset (Haylock 2008) and WRF 7-
km RCM for mean temperature (JJA) (a) and averaged summer time
(JJA) mean precipitation sum (b) for the 7-km RCM domain with blue

With regard to Table 3, a significant decrease of the mean
bias can be observed for summer precipitation (JJA) only.
Here, the urban area of Zurich shows the highest decrease of
mean bias from 23 to 5 mm. In average, the mean bias aver-
aged over all cities is decreased by a factor of two from 18 to
9 mm. The urban area of Ljubljana, however, shows an
underestimation.

Table 3 supports the findings of previous studies (Hofstra el
al. 2010; Boberg et al. 2010) indicating a general overestima-
tion compared to the E-OBS precipitation fields. This aspect
has to be considered when comparing the modelled and ob-
served monthly mean precipitation sums for selected urban
grid cells.

3.2 Spatial results
3.2.1 Hot days

The spatial variability of the number of hot days within the
model domain is presented in Fig. 3 on the basis of absolute

b v
Mean Bias
Precip [mm]

<15
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colour patterns indicating an under, red colours an overestimation of the
observations for temperature and the reversed for precipitation

simulated number of hot days per year for both past (1971—
2000) (a) and future (2021-2050) (b) periods as well as abso-
lute (c) and relative changes (d).

Red and orange colours in 3a and 3b indicate the number of
hot days, reaching 30 days or more. These patterns mainly can
be found in the southern part of the domain in southern
France, the Po-Valley and the countries Slovenia, Hungary,
Slovakia and parts of Lower Austria.

With regard to absolute changes in hot days (Fig. 3c), a
slightly different pattern is observed. Here, especially, the
Po-Valley indicates large absolute changes in the number of
hot days. The number of hot days in the eastern part of the
domain remains unchanged. A different result is retrieved
when comparing relative changes in number of hot days in
the future (Fig. 3d). The coast line in the north western part as
well as central France and the areas attached to the Alps show
significant relative changes although the absolute number is
supposed to be rather low. Some areas which have not encoun-
tered any threshold exceedance until now are supposed to face
this phenomenon in the future. Highly sensitive regions such

Table2 Mean observed (OBS) (Haylock 2008) and simulated 2-m temperature (WRF) and mean bias between observation and RCM for the reference
period 1971-2000. Summer mean (JJA) and winter mean (DJF) are shown separately

Zurich  Cologne  Hamburg  Berlin  Paris  Stuttgart ~Modena  Prague  Vienna  Ljubljana ~ Munich
OBS (°C) 9.0 10.5 9.3 9.6 12.0 9.3 13.9 9.9 10.4 9.4 8.6
WREF (°C) 10.0 11.0 9.1 10.2 12.2 10.6 14.1 10.6 11.7 12.6 10.5
Mean bias (°C) 1.0 0.5 -0.2 0.6 0.1 1.4 0.1 0.6 13 32 1.9
JJA_OBS (°C) 17.1 17.9 16.9 18.1 19.2 17.6 23.6 18.8 19.5 18.2 17.0
JJA_WREF (°C) 184 18.5 16.5 19.2 19.4 19.1 25.7 20.3 22.1 23.1 19.6
JJA_Mean bias (°C) 13 0.6 0.5 1.1 0.2 1.4 2.1 1.6 25 5.0 2.6
DJF_OBS (°C) 1.1 35 2.1 1.4 5.4 1.2 4.4 1.4 1.2 0.6 0.3
DJF_WRF (°C) 1.9 3.6 1.6 1.0 5.4 2.6 2.9 0.7 1.4 2.5 1.5
DJF_Main bias (°C) 0.8 0.1 —0.4 —0.4 0.0 1.3 -15 0.6 0.2 1.9 1.2
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Table 3 Mean values of observed (OBS) and simulated (WRF) monthly precipitation sums and averaged monthly precipitation sums considering

summer month only (JJA)—for the reference period 1971-2000

Zurich  Cologne  Hamburg Berlin  Paris  Stuttgart Modena  Prague  Vienna  Ljubljana  Munich
OBS (mm) 95 65 61 43 51 60 53 37 46 117 84
WRF (mm) 118 80 76 67 73 77 66 52 64 71 98
Mean bias (mm) 23 14 15 24 21 17 13 15 18 —46 14
JJA_OBS (mm) 131 76 70 55 49 77 42 59 60 134 123
JJA_WRF (mm) 136 88 79 71 61 94 47 69 63 71 126
JJA Mean bias (mm) 5 12 9 16 12 17 4 10 3 -63 3

as the coast lines and the pre-alpine areas show a high relative
increase of days exceeding the 30 °C limit. In past periods
(Fig. 3a), this effect has not been encountered at all for these
region, which leads to the fact that only small absolute chang-
es (Fig. 3c) lead to a high relative increase. The entire pre-
alpine region for instance is projected to face between 1 and 2
more hot days per year. These values, however, account for a
relative increase of 55 % and more. A similar effect can be
seen at the entire coast line of the North Sea for both Great
Britain and the European mainland.

The statistical significance of the modelled temperature is
analysed by applying a student’s ¢ test and plotted within
Fig. 3b. Black crosses indicate a failure of the 95 % confi-
dence interval with regard to mean temperature, which is
mostly present in the Northern part of Germany.

Figure 3d shows a horizontal cross section from west to
east, covering a distance of about 1000 km including the urban
areas of Paris, Stuttgart, Munich and Vienna (Fig. 4).

Considering relative changes in hot days (Fig. 4), a west-
east trend can be observed with values dropping from about
25 to almost 0 %. Slight fluctuations of £5 % can be observed.
The average west-east trend in relative change accounts for
about 2.5 % per 100 km. The slight increase between 200 and
450 km, the area east of Stuttgart and the plateau east of
Munich represent the complex terrain of the Vosges and the
Black Forrest, the Swabian Alb and the Bavarian Forrest re-
spectively. Similar to the pre-alpine regions, these areas are
more sensitive to climate change than others.

Both surface and cross-section plots indicate a higher in-
crease of heat waves in the western than in the eastern part of
the domain. With an increase of 20 to 25 % compared to the
reference case, in particular, the area expanding from Paris to
Stuttgart will presumably suffer from more days with elevated
summer time temperatures, promoting local heat stress for the
urban dwellers. At this point, one has to be aware that espe-
cially in the region around Ljubljana, mean biases between
model and observation over 3 °C are to be observed (Fig. 2).
This could lead to a misinterpretation of calculated indices.

The colour pattern in Fig. 3b is similar to the patterns found
by Robine (2008), where satellite observed surface

temperatures over Europe for the summer heat wave 2003
have been connected to mortality rates throughout the
continent.

3.2.2 Tropical nights

Figure 5 illustrates the number of nights, where minimum
temperatures do not fall below 20 °C. Absolute numbers of
the past (5a) and the future period (5b) are presented here, in
addition to absolute (5¢) and relative changes (5d).

The spatial patterns of Fig. 5 correspond to Fig. 3 because
‘Hot days’ regions cannot significantly cool down and high
temperatures remain throughout the night. With regard to ab-
solute values, the Po-Valley and some areas in Southern
France are assumed to face a high number of tropical nights
with occurrences of more than 30 times per year. Absolute
trends indicate a negative gradient towards the North.

Relative trends (Fig. 5d) reveal a different picture, which is
comparable to Fig. 3d. The areas along the shoreline of the
Northern Sea as well as the west and south-west part, the pre-
alpine region and the western coastline of Italy show a relative
increase of 55 % and above. In general, a larger climate signal
is projected for the number of tropical nights than for the
number of hot days and it seems that the effect is extended
more from the coast towards the mainland. With more than
45 %, the south-western and north-western parts of the do-
main show the highest relative increase in the number of trop-
ical nights, although especially in the northern part, this num-
ber represents only a small absolute value (2—4 days). Within
the Po-Valley, there is a large discrepancy between absolute
and relative changes. The most prominent changes are
projected for the southern part of France, where the number
of tropical nights is supposed to double from 7 to 15 days per
year. The area of Hamburg, for instance, experiences only four
tropical nights per year on average, but an increase of almost
50 % clearly reflects the climate signal. In average, an increase
0f 30 % is projected for Europe. With regard to Fig. 5d, a clear
trend from west to east can be observed concerning the rela-
tive increase of tropical nights which ranges from 40 % in the
area of Paris, down to less than 10 % in the vicinity of Vienna.
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Fig. 3 European domain, showing yearly averages of past (1971-2000)
(a) and projected (2021-2050) number of hot days (daily maximum
exceed 30 °C) (b). The absolute (¢) and relative trend (d) compared to
the reference period (1971-2000) is presented in the lower part. Black

3.2.3 Heavy precipitation days

Figure 6 shows the number of heavy precipitation days
(HPD) simulated for the past (1971-2000) (6a) and
projected for the future period 2021-2050 (6b). Absolute
and relative changes compared to the reference period are
presented by Fig. 6¢, d. In this study, this index is only
discussed for the summer months June, July and August
(JJA), because in Europe, heavy precipitation events are
more likely to occur in the summer months (Frei et al.
2001; Haylock et al. 2006). Second, a significant decrease
of the mean bias and the slight increase in correlation are
observed for the summer months (JJA) (Table 3).
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crosses (b) display a failure of the 95 % confidence interval with regard to
mean temperature. Cross section for Fig. 3 is indicated as black dotted
line in (d). White shading in the area of the Alps denotes no data values
due to division by zero

In general, WRF simulates heavy precipitation days occur-
ring predominantly in the areas of the Alps and within the
German and French low mountain ranges (Fig. 6a, b). Thus,
the patterns seem to reflect the topographic situation through-
out the domain. A similar image is drawn for absolute changes
(6¢) which mostly concentrate on the south western front
range of the Alps, the mountain ranges along the Rhine
Valley and on smaller spots with elevated terrain.

This explanation does not apply for the patterns of the
relative changes in heavy precipitation events (6d). An in-
crease of about 30 % can be found in the northern part of
the domain, whereas no significant trend can be observed for
the mountainous regions, where small changes carry no
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Fig. 4 Cross section as displayed
in Fig. 3, showing the relative
change in number of hot days per 25
year. The locations of four major
cities are marked with arrows

Delta Hot Days per year [%)]

Stuttgart
M

0 100

weight. Moreover, a decrease of more than —10 % is projected
for the area around Paris, but due to possible effects at the
boundary of the domain, maybe this number has to be
corrected. In contrast, the areas of North Germany, Belgium

a

Delta

Hper year

Fig.5 Yearly average of the number of tropical nights for the past (1971—
2000) (a) and future period 20212050 (b). Projected absolute (¢) and
relative (d) increase in number of tropical nights compared to the
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and The Netherlands exhibit a large relative increase of more
than 30 %. The areas in the west and north-western parts of the
domain correspond to the findings of Figs. 3 and 4 showing
more hot days and tropical nights in these regions.
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denotes no data values due to division by zero
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per year
i [days]

[ J<-05

Fig. 6 Projected number of summer days (JJA) in the period 2021-2050,
where daily precipitation sum exceeds the threshold of 20 mm (defined as
‘heavy precip’). Absolute values for the period 1971-2000 (a) and for
2021-2050 (b). Dark shading indicates higher values. ¢ shows the

3.2.4 Frost days

The number of frost days is displayed in Fig. 7 with absolute
values for simulated past (7a) and future periods (7b) with
dark colours representing high values. Absolute and relative
changes are presented in Fig. 7c, d, respectively. Here, dark
colours indicate a slight and light colours a large decrease in
number of frost days.

The patterns in Fig. 7a, b reflect the topographic situation
and the continentality. The number of days with daily mini-
mum temperature falling below 0 °C is increasing with in-
creasing elevation and distance from the Atlantic Ocean. In
general, a decrease of frost days for the period 2021-2050 is
projected. Figure 7c, showing absolute changes, indicates the
largest decrease occurring in the North Eastern part, with gen-
erally more frost days due to winter time atmospheric circula-
tion patterns. Considering relative changes (7d) again reverses
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the image. The biggest climate change impact is projected for
the north western part with a projected decrease in number of
frost days by up to 45 % at the coastline of the Atlantic Ocean.
The negative gradient from the southern border of the Alps up
North is illustrated by Fig. 8.

The peaks at 400 and 550 km might reflect the Thuringian
Forest and the low mountain range of the Harz with a smaller
projected decrease in number of frost days. With regard to
relative changes, the alpine area can be discriminated
significantly because there is no relative trend obvious. A
melting of the glaciers due to elevated summertime
temperatures and a shortening of the period with snowfall is
a more relevant impact of climate change to these regions.

With regard to absolute winter time temperatures, it has to
be considered that additional anthropogenic heating has not
been accounted for, which might increase winter time temper-
atures especially in urban areas.
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compared to the reference period 1971-2000 are shown below. The white line indicates the cross-section presented in Fig. 8

3.3 Selected urban areas
3.3.1 Climate indicators

Tables 4 and 5 show the climate trends for each selected urban
area (grid cells—Figs. 3, 5, 6 and 7). The areas are compared
based on absolute values and relative projected changes. The
statistical significance on the 95 % confidence interval was
tested by applying a student’s ¢ test for each calculated relative
change presented in Tables 4 and 5. Values which do not fulfil
this criterion are in italic type.

The projected number of hot days per year (HD) with tem-
peratures exceeding the predefined threshold of 30 °C ranges
from the maximum of about 38 for the city of Modena and
more than 25 with regard to Vienna and Ljubljana. The largest
increase is assumed for Hamburg (36 %) and Paris (30 %). For
the number of tropical nights (TN), the highest relative

increase is projected to be 74 % for Hamburg, whereas the
number of heavy precipitation events (HPD) is assumed to rise
by over 70 % for Berlin, Paris and Ljubljana. The decrease in
the number of frost days (FD) is highest for Cologne, Berlin
and Paris (over 40 %).

In average, the RCM predicts an increase of 12 % for the
number of hot days, about 30 % considering tropical nights
and a 40 % increase in heavy precipitation events. For the
number of frost days, a decrease of 30 % is projected for the
period 2021-2050 compared to the reference case 1971-2000
(Table 4).

The number of HDD and CDD for 11 selected urban areas
is presented in Table 5. Similar than for the spatial analysis,
the relative increase of CDD is more pronounced than a com-
parable decrease in HDD. With 28 %, the urban area of Paris
shows the largest relative increase of potential CDD whereas
the grid cell representing Prague is supposed to only
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Fig. 8 South-North transect
following the white line presented
in Fig. 7d, showing the relative
decrease in number of frost days
from South to North

0 100

experience 4 % more days with daily mean temperature ex-
ceeding 20 °C. With regard to HDD, relative changes range
from —3.7 % (Hamburg) to —8.1 % (Modena). Averaged over
the 11 urban areas, a relative increase of 12 % CDD and
decrease of —5.8 % HDD is projected. The urban areas of
Ljubljana and Munich show the highest positive temperature
bias (over 1.5 °C). This effect potentially leads to a misinter-
pretation of calculated threshold values.

3.3.2 Number of heat waves

With regard to human health, in particular, the number of
consecutive ‘hot days’ has to be distinguished. For this reason,
the projected number of heat waves is estimated for the 11
cities under investigation and compared with the reference
period. According to the definition given in Chapter 2, differ-
ent classes of heat waves have been listed in Table 6.

The characteristics differ from city to city. For moderate
heat waves, the urban areas of Berlin and Modena show the
highest relative increase with up to 100 %, whereas the highest
number of moderate heat waves per year is projected for

Table 4 Number of hot days (HD), tropical nights (TN) heavy
precipitation days (more than 20 mm daily sum) (HPD) and frost days
(FD) per year for every selected urban area and period 1971-2000 (past)

Delta Frost Days per year [%]

200 300 400 500 600 700 800
Distance [km]

Vienna (13 % increase). With regard to the strong heat waves,
Paris and Zurich show the biggest increase in comparison to
the reference case. Although with low annual averages, every
city is supposed to encounter heat waves with more than
10 days in the middle of the 21st century. And in some cities
like Hamburg and Berlin, such severe heat waves have not
been observed at all within the reference case. The total num-
ber of heat waves is presented in the right part of Table 6 and
in Fig. 9.

The total number of heat waves per year is increasing for
every city, excepted for Vienna and Prague with a projected
decrease of 6.4 and 12 %, respectively. This is due to the fact
that the existence of a heat wave is highly sensitive to thresh-
old values. If, like in the case of Vienna and Prague, this
threshold is only undercut by about 0.2 °C, the period is
interrupted. If the period is below 5 consecutive days, it is
not counted as heat wave. That means, unless the total number
of hot days is increasing (Table 5), the number of consecutive
hot days can also decrease. Averaged over all 11 cities, an
increase from 0.98 to 1.15 heat waves per year (17 %) is
projected. According to Figs. 4 and 5, the increase of heat

and 2021-2050 (fut). Delta indicates the projected change (%) comparing
the two time periods. Values in italics indicate a failure of the 95 %
confidence interval

City HD past HD fut Delta HD TN past TN fut Delta TN HPD past HPD fut Delta HPD FD past FD past Delta FD
(%) (%) (%) (%)
Zurich 16.0 17.4 9.0 15.0 16.7 11.6 4.1 5.0 21.1 41.1 30.7 —25.5
Cologne 113 133 16.9 9.7 13.7 41.1 2.6 33 30.5 26.7 16.9 -36.7
Hamburg 5.0 6.7 36.0 22 3.9 74.5 1.2 1.9 59.3 423 28.5 -32.7
Berlin 10.2 10.7 5.6 8.7 10.9 24.4 1.0 1.8 75.0 47.5 313 -34.1
Paris 10.7 13.9 30.2 9.4 14.1 50.0 1.0 1.8 86.4 20.2 12.9 -36.0
Stuttgart  15.0 16.5 9.8 9.5 12.0 27.1 3.0 3.7 235 39.2 27.4 —-30.1
Modena  34.0 379 11.7 25.8 333 29.0 1.8 1.8 0.0 38.1 27.3 -283
Prague 13.9 14.3 2.8 8.6 10.2 19.3 1.0 1.2 16.7 54.7 40.7 -25.6
Vienna 29.2 29.6 1.5 29.5 314 6.6 1.4 2.0 39.4 44.7 325 —274
Ljubljana 25.5 27.1 6.3 15.8 19.1 20.6 2.0 3.5 76.1 43.4 315 —274
Munich ~ 15.1 15.4 2.0 12.4 14.7 17.8 33 3.8 14.3 459 334 =272
Mean 16.9 18.4 12.0 133 16.4 29.3 2.0 2.7 40.2 40.4 28.5 -30.1
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Table 5 Absolute number of

cooling degree days (CDD) and City CDD past  CDD_fut  Delta CDD (%) HDD past HDD fut  Delta HDD (%)

heating degree days (HDD) per

year for the perlod 1971-2000 Zurich 56.5 62.7 11.0 243.0 228.1 —6.1

(past) and 2021-2050 (fut). Delta  Cologne 482 54.6 13.3 236.4 223.7 -54

indicates the projected change Hamburg  24.0 278 161 281.7 2714 ~3.7

(%) comparing the two time .

periods. Values in italics indicate Berlin 474 S5LS 8.6 245.0 2337 —4.6

a failure of the 95 % confidence Paris 46.2 59.3 28.3 2344 217.1 7.4

interval Stuttgart 523 58.1 11.0 2419 228.0 -5.8
Modena 90.7 104.3 15.1 213.7 196.4 —-8.1
Prague 51.6 53.7 4.1 249.1 236.0 -53
Vienna 87.5 95.7 9.4 2123 200.0 —5.8
Ljubljana 74.7 82.3 10.1 2274 212.5 —6.6
Munich 545 59.6 9.5 248.5 234.7 —5.6
Mean 57.6 64.5 12.4 2394 225.6 —5.8

waves in the western part is higher than in the eastern part.
Due to a mean temperature bias of over 1.5 °C, the results for
the urban areas of Munich and Ljubljana are not very robust.

3.3.3 Probability density functions

Monthly mean temperatures are extracted for one grid cell in
the centre of a selected urban region to create probability den-
sity functions in order to statistically compare the modelling
results. By calculating the values to fall below the 5 % confi-
dence interval, the tendency towards extreme trends is to be
analysed on the basis of the comparison of the future (2021—
2050) with the reference period (1971-2000). Probability den-
sity functions (PDF) of mean daily temperatures for six select-
ed urban grid cells, representing urban areas in each cardinal
direction and in the centre of the domain, are presented in
Fig. 10, whereas a statistical summary is given in Table 7.
Although the appearance of the PDF of monthly mean
temperature in the case of Vienna does not change significant-
ly, a clear shift in the 95th percentile of about 1.4 °C is

obvious. With regard to Munich, the red curve (future) tends
to be flattened compared with the blue curve and shows a
similar increase in the 95th percentile. Modena shows two
similar curves but with a shift in mean and maximum values
from 27 to 30.6 °C considering monthly summer mean tem-
peratures. The three plots illustrated in the lower part of
Fig. 10 show a distinct compression of the future curve, indi-
cating a broader range of values in the future. This effect is
largest for the city of Paris. Here, the 95th percentile strongly
reflects a climate signal, with an increase of 2 °C. The statis-
tical description of the PDF’s for all 11 cities is shown in
Table 7 on the basis of absolute changes in mean, maximum
and minimum temperature, as well as in the median.

The strongest increase of the 95th percentile is projected for
Hamburg with 3 °C and Berlin and Paris with almost 2 °C
each. Maximum temperatures are forecasted to increase by up
to 4 °C for Munich, Stuttgart and Zurich, Ljubljana and
Modena and even 4.5 °C for Paris. The changes in mean,
median and minimum are marginal compared to the increase
in maximum temperatures.

Table 6 Number of periods per
year, where the threshold

‘Moderate’ (5-6 days)

‘Strong’ (7-9 days) ‘Severe’ (>10 days) Total (=5 days)

temperature of 30 °C is exceeded

on a certain number of Reference Future Reference  Future  Reference  Future  Reference  Future

consecutive days (56 days, 7—

9 days, 10 days and more) with Zurich 0.57 0.52 0.13 0.22 0.17 0.22 0.87 0.96

regard to the specific city. Onthe  Cologne  0.39 0.35 0.09 0.13 0.04 022 0.52 0.70

right side of the plot, the yearly Hamburg ~ 0.00 0.13 0.00 0.09 0.00 004  0.00 0.26

averaged sum of all heat waves

which last at least 5 days is Berlin 0.17 0.35 0.09 0.09 00.0 0.09 0.26 0.52

counted Paris 0.26 0.43 0.04 0.35 0.13 0.09 0.43 0.87
Stuttgart 0.48 0.70 0.17 0.09 0.13 0.22 0.78 1.00
Modena 0.57 1.04 0.65 0.83 1.04 1.00 2.26 2.87
Prague 0.61 0.43 0.09 0.09 0.04 0.13 0.74 0.65
Vienna 1.00 1.13 0.65 0.48 0.39 0.30 2.04 1.91
Ljubljana  0.78 1.09 0.87 0.61 0.43 0.52 2.09 222
Munich 0.35 0.52 0.26 0.09 0.13 0.13 0.74 0.74
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Fig. 9 Total number of heat 35
waves per year with at least 5 3.0 -
consecutive days for each of the
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It seems that the projected annual mean temperature change
for Germany of about 1 °C, as presented in Wagner et al.
(2013), is not reflected by single urban areas, which indicate
a mean of 0.49 °C. It seems that the climate change impact
regarding mean temperature is less pronounced locally for
single urban areas than regionally for the whole German
domain.

4 Conclusion

Urban areas in Central Europe will react to climate change,
according to projections from an existing 7-km RCM run for
the near future (2012-2050) compared to the reference period
(1971-2000) using the IPCC AR4 A1B Scenario as boundary
conditions. The model resolution enables the analysis of cli-
mate change impact on selected urban areas in Europe al-
though the complex nature of cities cannot be fully resolved.

Modena

Stuttgart Modena Prague Vienna Ljubljana Munich

In order to support the assessment of the model results, we
have added a detailed analysis of the model bias, comparing
model results with the E-OBS dataset (Haylock 2008). We
observed a cold temperature bias in the region of the Alps
and a warm bias in the south-eastern part of the domain.
With regard to precipitation, a wet bias over the Alps and a
dry bias in the South-East can be found. The biases are partly
originated from the GCM and carried over to the RCM and
partly amplified or reduced by WRF itself. Overall, the bias of
WREF is in the same range than other RCMs (Berg et al. 2013,
Jacob et al. 2007). The analysis of the model bias allows a
comprehensive evaluation of the simulated climate change
signal for the selected urban areas. For certain cities, periods
of 5 and more consecutive days with extreme temperatures are
projected. At some locations, the number of hot days is to
increase by over 70 %, relative to the reference period. In
average, the number of heat waves is projected to increase
by 17 % and the number of tropical nights by 30 %.
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Fig. 10 Probability density functions (PDFs) extracted for the central
7 x 7-km pixel of a selected urban area. The blue line indicates the
probability density curve for extracted monthly mean summer
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Table 7 Absolute changes in 95th percentile, mean, maximum,
minimum and median of monthly mean values of 2-m temperature with
regard to the cities, analysed in the PDF plots in Fig. 10

City 95p (°C) Mean (°C) Max (°C) Min (°C) Median (°C)
Berlin @~ 1.98 0.31 1.55 148 027
Paris 1.97 0.87 448 -0.86 081
Vienna 136 025 251 141 028
Hamburg 3.02 0.62 2.92 175 038
Munich ~ 0.97 0.34 3.98 032 0.7
Prague  1.09 0.18 1.95 122 017
Cologne 131 0.55 2.87 016 029
Stuttgart  1.11 0.39 3.78 033 020
Zurich  0.73 0.46 424 055  0.65
Ljubljana 0.92 0.40 3.55 057 030
Modena  0.77 0.78 3.68 064 059

In average, the number of frost days is projected to decrease
by 26 % considering the European domain. The accompanied
decrease of HDDs has the potential to save energy needed for
heating of the buildings in winter time. This study, however,
shows that the relative increase in cooling degree days will
preponderance the relative decrease of heating degree days.

From an energetic point of view, a higher CCD number
accounts for an increased need for electrical power to operate
air conditioning systems, inferring an increase in energy con-
sumption. This effect is highly pronounced in urban areas with
generally elevated temperatures compared to the rural sur-
rounding (Oke, 1982b). Not only temperature but also precip-
itation events have to be taken into account when dealing with
urban environments, especially for cities located nearby river-
beds, already endangered from flooding during heavy precip-
itation events. Model results reveal a moderate increase in
heavy precipitation events, with a higher tendency towards
the North. Other meteorological parameters like wind speed,
humidity and shortwave radiation were also extracted from the
reference and the future WRF RCM runs, but no significant
tendency was found here. The evolution of probability density
functions for monthly mean temperatures reflects the tendency
for a shift to higher temperatures in the future for every select-
ed city, which again is an indicator for an intensification of
extreme events like heat waves. In average, the 95th percentile
is projected to increase by 1.4 °C.

This study shows additional evidence that regional climate
models like WRF can help to understand how global climate
change will be pronounced on regional scales. The output
from these kinds of models can in turn be used as boundary
condition for high resolution city or even street scale models
which can help to locally predict climate change impacts in
order to strengthen the resilience of future cities.

Our study benefits from a combined analysis of climate
change impacts on urban areas in comparison to the overall

projected changes for Europe. Consistent climate boundary
conditions are driving the RCM, which allows for the analysis
of several urban areas within one modelling approach.
Addressing different climate indicators and their interrelation,
the study aims to increase the understanding of expected cli-
mate change effects on urbanized areas and urban dwellers.
For future studies, it is aimed to further increase the model
resolution and incorporate specific urban canopy parameteri-
zations (Kusaka et al. 2001; Martilli et al. 2002) within the
framework.
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