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The solubility of tugarinovite (MoO2) in pure water was investigated at temperatures between 400 and 800∘C and at pressures
ranging between 95 and 480MPa by using in situ synchrotron X-ray fluorescence (SXRF) to separately analyze high temperature
aqueous solutions in a hydrothermal diamond anvil cell (HDAC).The concentration of molybdenum in the fluid at 400 and 500∘C
was below detection; however, at temperatures between 600 and 800∘C, the solubility of tugarinovite increased with increasing
temperature by two orders of magnitude.Themolybdenum concentration at 600∘C and 800∘C is 44 ppm and 658 ppm, respectively.
The results complement the data of Kudrin (1985) and provide the firstmeasurement ofMoO2 solubility at pressure and temperature
conditions comparable to intrusion-related Mo deposit formation. The data are also relevant to the study of water chemistry and
corrosion product transport in supercritical-water-cooled reactors, where Mo-bearing steel alloys interact with aqueous solutions
at temperatures greater than 600∘C. The application of in situ SXRF to solubility measurements of sparingly soluble minerals is
recommended because it circumvents analytical uncertainties inherent in determinations obtained by quenching and weight loss
measurements.

1. Introduction

Metal solubility data over a wide range of temperatures and
pressures are fundamental for a quantitative modelling of
the metal transport by hydrothermal fluids in the Earth
crust and in various industrial processes. Molybdenum in
magmatic ore deposits is transported and deposited by
high temperature aqueous fluids exsolved from a cooling
magma. Although the solubility of MoO3 (molybdite) has
been experimentally investigated over a wide range of P-T-X
conditions by many workers [1–7], comparatively few studies
have examined the solubility of MoO2 (tugarinovite) [8–10].
In the absence of sulfur, MoO2, rather than MoO3, would be
the stable oxide at the temperatures and f o2 conditions typical
for Mo ore formation [4, 7, 11, 12].

The addition of molybdenum as an alloying element
increases the tensile strength and chemical durability of
steel used in jet engines, gas turbines, and power generation
reactors [13, 14]. Molybdenum-bearing high strength steel
alloys are among the candidate materials considered for use

in the construction of the next generation of supercritical-
water-cooled reactors (SCWR) [15, 16]. For example, the
Generation-IV SCWR, which is designed to function at
temperatures up to 625∘C and pressures ranging from 25 to
30MPa [15], is one of the six reactor design concepts devel-
oped tomeet the need for an energy efficient advanced reactor
[17]. An important challenge in the design and successful
deployment of a SCWR is controlling water chemistry under
conditions of high temperature and pressure [15, 18–21].
Hence, knowledge of the solubility of metal oxides produced
at the steel-supercritical water interface is important for
predicting corrosion and corrosion product transport within
the reactor.

To this end, we present in situ synchrotron X-ray flu-
orescence (SXRF) analyses of supercritical aqueous fluids
in equilibrium with synthetic MoO2 in a modified Bassett-
type hydrothermal diamond anvil cell (for design details of
a Bassett-type HDAC see [22]). In situ analysis of the fluid
at high temperature and pressure was employed in order
to circumvent errors inherent in ex situ methods [23–26].
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Our results complement the data of Kudrin [8] by pro-
viding solubility measurements at pressures and temper-
atures comparable to intrusion-related Mo ore formation
and at the anticipated operating temperature conditions of
supercritical-water-cooled reactors.

2. Previous Studies on Molybdenum
Oxide Solubility

Natural molybdenum oxides include molybdite (MoO3) and
tugarinovite (MoO2). Most solubility studies have been con-
ducted on MoO3. Ivanova et al. [1] performed dissolution
experiments in Ti-autoclaves at vapour saturation pressures
at temperatures between 150 and 300∘C. The aqueous solu-
tions, which were analyzed colorimetrically after quenching
to room temperature, contained between 770 and 1390 ppm
Mo. Gong et al. [2] used cold-seal pressure vessels to measure
the solubility of MoO3 at 417

∘C at pressures between 29 and
150MPa.They showed that, at the studied P-T conditions, the
solution contained 3200 ppm Mo. In both of these studies,
however, neither pH nor oxygen fugacity were constrained.

Ulrich andMavrogenes [4] trapped solutions equilibrated
with MoO3 in synthetic quartz-hosted fluid inclusions at
pressures of 200MPa and temperatures ranging between
500 and 800∘C. The pH was buffered using a muscovite, K-
feldspar, and quartz assemblage and the oxygen fugacity was
constrained using a Ni/NiO or Re/ReO2 buffer. Analysis of
the synthetic fluid inclusions by laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) shows that
the molybdenum concentration in pure H2O increased with
increasing temperature from 380 to 8155 ppm. X-ray absorp-
tion near-edge structure (XANES) spectra obtained from
synthetic fluid inclusions at the temperature of liquid-vapour
homogenization suggest that the dominant Mo species is
H2MoO4.

Meredith et al. [5] used synchrotron X-ray fluorescence
to measure the solubility of MoO3 in oxygenated water in a
hydrothermal diamond anvil cell. The concentration of Mo
in solution ranged from 3995 ± 13 ppm at 400∘C and 44MPa
to 8663 ± 59 ppm at 500∘C and 113MPa.

Dadze et al. [6] determined the solubility of crystalline
MoO3 in aqueous solutions of HClO4 at 300

∘C and 10MPa.
They suggested that the acidity of the solution was a deter-
mining factor controlling the solubility of molybdenum
trioxide under hydrothermal conditions and assumed that
monomeric forms H2MoO4

0, HMoO4
−, and MoO4

2− are
produced by the dissolution of MoO3. Rempel et al. [3] stud-
ied the solubility of molybdenum trioxide in water vapour
at 300, 320, and 360∘C and 3.9–15.4MPa. They reported
Mo concentrations of 17.9, 23.5, and 28.7 ppm at 300, 320,
and 360∘C, respectively, and concluded that the predominant
species is a monomeric hydrated complex of the form
MoO3 ⋅ 𝑛H2O(g). Hurtig and Williams-Jones [7] measured
the solubility of MoO3 in HCl-bearing water vapour and
vapour-like aqueous fluids having a density between 0.005
and 0.343 g/cm3 at temperatures between 300 and 500∘C and
1.3–42.5MPa. They suggested that, at 400∘C and 20MPa,
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Figure 1:MoO3 solubility versus temperature fromprevious studies.
Pressures reported are 44–113MPa (Meredith et al. 2011), 200MPa
(Ulrich and Mavrogenes 2008), 29–150MPa (Gong et al. 2005),
1.3–42.5MPa (Hurtig and Williams-Jones 2014), and 3.9–15.4MPa
(Rempel et al. 2006). Red symbols designateMoO3 solubility in pure
water.

the major molybdenum-bearing species in the low density
aqueous solutions is MoO3(H2O)8. They also noted that the
hydration number of the dominant species decreases as the
temperature increases. The concentration of molybdenum in
the quenched experimental condensates ranged from 3 to
481 ppm. Titanium autoclaves were used in the experiments
by Rempel et al. (2006); Dadze et al. (2014) and Hurtig and
Williams-Jones (2014). Figure 1 shows MoO3 solubility as a
function of temperature reported in previous studies.

Comparatively few data are available on the solubility
of MoO2 [8–10]. This is due to problems of measuring the
solubility of sparingly soluble minerals under conditions of
extreme temperature and pressure. Kudrin [8] determined
the solubility of tugarinovite (MoO2) in water and aqueous
solutions of HCl, NaOH, and KOH at temperatures between
250 and 450∘C and at pressures between 9MPa and 100MPa.
He showed that the concentration of Mo in pure water
increases with increasing temperature from 0.01 ppm at
300∘C to 25 ppm at 450∘C. The experiments were conducted
using titanium autoclaves while the redox conditions were
controlled using Ni-NiO, Cu-Cu2O, or Fe3O4-Fe2O3 buffers.
Kudrin suggested that various Mo (VI) hydroxy complexes
are the predominant species of molybdenum in the solution.
Cao [10] studied MoO2 solubility in NaCl solution from 300
to 450∘C using a chrome lined vessel and the solubility ranges
from 5 to 315 ppm. He showed that, in these solutions, both
Mo (V) and Mo (VI) can exist stably at high temperatures in
the form of HMoO4

−, NaHMoO4
0, and Na2MoO4

2.
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Table 1: X-ray diffraction data for synthetic MoO2 crystals used as starting material and tugarinovite (MoO2).

Synthetic MoO2 starting material Tugarinovite
(JCPDS: file number 32-671)

Pos. [∘2𝜃] d (Å) Intensity ℎ 𝑘 𝑙 d (Å) Intensity
18.3801 4.827 2.05 1 0 1 4.805 2
25.9998 3.427 100 1 1 1 3.420 100
31.9055 2.805 0.84 1 0 1 2.813 4
36.7193 2.447 7.93 2 0 0 2.442 30

1 1 1 2.437 30
36.9918 2.430 18.92 2 1 1 2.426 70
37.3586 2.407 12.09 2 0 2 2.403 35
41.3568 2.183 1.67 2 1 0 2.181 6

0 2 1 2.171 2
41.8854 2.157 2.53 2 1 2 2.156 5
49.5028 1.841 2.97 3 0 1 1.841 11
53.0658 1.726 11.45 2 1 1 1.725 30
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Figure 2: Raman spectrum of synthetic MoO2 used as starting
material.

3. Experimental Procedures

3.1. Synthesis and Characterization of Starting Materials.
Crystals of synthetic MoO2 were grown by chemical trans-
port using TeCl4 as a transport agent at the Institute of
Physics, Augsburg University, Germany [27, 28]. X-ray pow-
der diffraction data collected from the startingmaterial using
CuK𝛼 radiation is compared to tugarinovite [29] in Table 1.

Raman spectra of the starting material, obtained using
a Horiba Jobin-Yvon LabRam HR confocal instrument
equipped with a 100mW 532 nm Nd-YAG diode laser (Top-
tica Photonics) and a Synapse charge-coupled device (CCD;
Horiba Jobin-Yvon) detector at St. Mary’s University, Halifax,
are shown in Figure 2. Frequency calibration was performed
using a pure silica standard (521 cm−1). Each Raman spec-
trum represents an average of two accumulations with 20-
second acquisition times at 100% laser power. Raman shifts

for synthetic material are in close agreement with previously
publishedRaman spectra obtained fromMoO2 [11, 12, 30–32].

3.2. Hydrothermal Diamond Anvil Cell. A Bassett-type
hydrothermal diamond anvil cell (HDAC) was modified
so that an aqueous fluid in equilibrium with MoO2 could
be separately analyzed by microbeam synchrotron X-ray
fluorescence. The sample chamber consisted of a cylindrical-
shaped laser-milled recess in the culet face of the upper
diamond anvil and the hole in a rhenium gasket that was
pressed between the two diamond anvils (Figure 3). Optical
profilometer measurements indicated that the recess in the
diamond is 300 𝜇m in diameter and 37 𝜇m deep (Figure 4),
and the hole in the rheniumgasket is 125𝜇mdeep and 400𝜇m
in diameter.

The diamond anvils were fitted into silicon nitride seats
located at the center of two opposing stainless steel platens.
The platens were then drawn together along three guide
posts using tightening screws. Each silicon nitride seat was
heated using platinum resistance wire while the tempera-
ture of the system was monitored using S-type (Platinum-
Rhodium) thermocouples (Omega�) and controlled with a
programmable temperature controller. The temperature of
sample chamber was calibrated by observing the melting
point of NaNO3 (308

∘C), the alpha-beta phase transition
of quartz (573∘C), and the melting point of NaCl (801∘C).
The water density was determined from the observed liquid-
vapour homogenization temperature and the pressure at
a given temperature was calculated using the equation of
state (EOS) of water [33–35]. The EOS of pure water is
a good estimate of pressure because of the very low Mo
concentration in the fluid at all temperatures and pressures
measured.

The MoO2 crystal resides on the culet face of the lower
diamond anvil and within the Re gasket (Figure 3(a)). A
horizontal X-ray microbeam passes through the fluid-filled
recess in the diamond anvil above the Re gasket. This
configuration ensures that the incident X-ray beam does
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Figure 3: (a)The schematic diagram of the modified hydrothermal diamond anvil cell. The upper diamond anvil was recessed and the X-ray
beam went through the recess. A rhenium gasket was squeezed by two diamond anvils together. A 10x objective microscope was placed on
top of the HDAC to view the sample chamber in real time. (b) shows the sample chamber at room temperature. The MoO2 sample, vapour
bubble, and the recess of the upper diamond are visible. The sample chamber is surrounded by the rhenium gasket. The X-ray beam path
(blue line) is also visible.
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Figure 4: 3D profile of the culet face of the recessed diamond anvil. Inset shows the depth and volume of the recess. This 3D profile was
prepared using an optical profilometer.

not interact with the MoO2 crystal and that the detector is
shielded from possible excitation of the crystal by scattered
X-rays. Figure 3(b) is a photograph of the sample chamber
as viewed through the diamond anvils showing the vapour
bubble, the opaque MoO2 crystal fragment in H2O, and the
path of the X-ray beam through the sample chamber.

TheHDACwas purged with argon gas in order to prevent
oxidation at high temperatures. Kapton film windows on the
wall of the HDAC allowed for transmission of the incident
beam and the exit of fluorescence X-rays from the sample to
the detector.

The redox conditions of the system at various temper-
atures were buffered by the reaction Re + O2 ↔ ReO2
[36–39]. The appearance of rhenium oxide on the gasket
surface indicates that partial oxidation of the Re metal gasket
occurred in these experiments (Figure 5).

3.3. Synchrotron X-Ray Fluorescence Analysis. Synchrotron
X-ray fluorescence (SXRF) spectra were collected using the
X-raymicroprobe at beamline 20-ID at the Advanced Photon
Source (APS), Argonne National Laboratory. X-ray fluores-
cence spectra were collected using a four-element Vortex
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Figure 5: SEM image of ReO2 crystals on the rheniumgasket surface
after following the experiment.

Table 2: Measured Mo concentrations in standard solutions.

Standard (ppm) Measured concentration (ppm)
10 31
50 75
100 141
500 543
1000 977
2500 2500

detector positioned horizontally at 90∘ to the incident X-
ray beam. The energy of the incident X-rays was 23.2 keV
and the beam flux was 1 × 1011 photons/second. The precise
positioning of the X-ray beam through the sample chamber
was facilitated by the visible fluorescence of the beam in the
diamond anvil (Figure 3(b)).

Standard solutions having Mo concentrations of 10, 50,
100, 500, 1000, and 2500 ppmwere used to derive a calibration
curve. The solutions were prepared by diluting 10000 ppm
(GFS Chemical) or 1000 ppm (Fluka Analytical) stock solu-
tions with deionized water. An average of seven spectra was
collected from each standard solution in the HDAC. The
integration time for each spectrumwas 60 s. PyMCA spectral
analysis software [40] was used to analyze all SXRF spectra.

Table 2 gives the measured Mo concentrations for the
standard solutions and Figure 6 shows the calibration curve
determined by linear regression of the standard solution data
[41].

3.4. ExperimentalMethod. Deionizedwater, a small fragment
of synthetic MoO2, and an air bubble were sealed in the
sample chamber in the HDAC (Figure 7(a)). The gasket
was conditioned by repeated heating and cooling until the
observed liquid-vapour homogenization temperature (𝑇𝐻)
was constant.

Spectra were collected from the fluid in 30-minute inter-
vals for up to 4 hours. The HDAC was held at 400, 500,
600, 700, and 800∘C for at least 30 minutes before the first
spectrum was collected.
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Figure 6: Calibration curve derived frommeasured Mo concentra-
tions in standard solution.

Table 3: The measured concentration of Mo in solution at different
temperatures and pressures.

Temperature (∘C) Pressure (MPa) Concentration (ppm)
400 95 bdl∗

500 193 bdl∗

600 292 44 (±26)
700 387 67 (±26)
700 387 117 (±26)
800 479 658 (±43)
∗bdl: below detection limit.

It was noted during trial runs that prolonged exposure
to the X-ray beam at high temperatures resulted in the
precipitation of a Mo-rich solid from the fluid at some point
along the beam path (Figure 7(b)). In order to eliminate this
effect, spectrum acquisition was limited to 60 s intervals.

Two-dimensional Mo K𝛼 elemental maps of the sam-
ple chamber were made at each pressure and temperature
condition to correct for any changes in the position of the
HDAC due to thermal expansion and to make sure that no
Mo-bearing solids, formed by beam-induced radiolysis, were
present.

4. Data Treatment and Results

The density of the fluid (684 kg/m3) was calculated from
the observed liquid-vapour homogenization temperature
(313∘C). Table 3 gives the pressure and temperature condition
for each SXRF measurement.

The concentration of dissolved Mo in the fluid at each
temperature and pressure condition was determined using
the linear regression parameters of the calibration curve
(Table 3). Examples of SXRF spectra obtained for three
different molybdenum standards are shown in Figure 8. The
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Figure 7: View of the sample chamber in the HDAC at 23∘C (a) and 600∘C (b). Note the presence of a vapour bubble at room temperature
and a small opaque phase (red arrow) in the center of sample chamber at 600∘C.
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Figure 8: X-ray fluorescence spectra obtained fromMo standards (a) 10 ppm, (b) 500 ppm, and (c) 2500 ppm.
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Figure 9: Variation of Mo concentration determined from XRF spectra collected at different time intervals at (a) 700∘C and (b) 800∘C.

uncertainty of the measured concentration was calculated
using

𝑆𝑥 = 𝑆𝑦|𝑚|√ 1𝑘 + 𝑆
2
𝑚𝑥2𝑆𝑦 + (𝑆𝑏𝑆𝑦)

2 − 2𝑥𝑆2𝑚𝑥𝑆2𝑦 , (1)

where 𝑆𝑥 is the uncertainty in 𝑥, |𝑚| is the absolute value of
the slope, 𝑆𝑦 is the standard deviation of the measured values
of 𝑦, 𝑏 is the intercept value, 𝑆𝑏 is the intercept error or the
estimate of standard deviation of the intercept, 𝑆𝑚 is the slope
error or the estimate of standard deviation of the slope, 𝑥 is
the arithmeticmean of used standard concentrations, and 𝑘 is
the number of replicate measurements of the unknown [41].

A minimum detection limit (MDL) of 0.5 to 3.0 ppm
Mo was calculated from 3𝑐√𝐼𝑏/𝐼𝑝, where 𝑐 is the standard
concentration, 𝐼𝑏 is the background intensity, and 𝐼𝑝 is the
peak intensity [42, 43].

Kudrin [8] examined the dissolution kinetics for MoO2
in pure water and showed that equilibrium was attained after
about 2 hours at 450∘C and log fO2 = −25.1. The HDAC in
our study was held between 2 and 4 hours prior to SXRF
analysis. Figure 9 shows that at 700∘C the Mo concentration
varies from 70 ± 26 ppm in the first 2 hours and increases to117±27 ppmafter four hours. At 800∘C, theMo concentration
is 686 (±43) ppm after 2.5 hours.

5. Discussion

Previous studies have shown that the molybdenum oxide
solubility is effected to different degrees by solution compo-
sition, temperature, pressure, pH, and oxygen fugacity. Our
analyses show that there is an exponential increase in solubil-
ity at temperatures above 500∘C (Figure 10) which indicates
that pure water could transport significant concentrations of
Mo at magmatic temperatures.

Ulrich and Mavrogenes [4] presented solubility data for
molybdenum in H2O at temperatures between 500 and

800∘C. In all of their experiments MoO3 was reduced to
MoO2 and Mo was oxidized to MoO2. The presence of a
small opaque phase, interpreted to be MoO2, present in
some of their synthetic fluid inclusions indicates that MoO2
precipitated from the solution at high temperatures prior
to microcrack healing. If equilibrium was attained before
fluid entrapment, then the concentration of Mo in that fluid
should reflect the solubility of MoO2. However, the solubility
reported by Ulrich and Mavrogenes (2008) at 800∘C and
200MPa (i.e., 0.8 wt%) is more than an order of magnitude
higher than the solubility reported in the present study. This
discrepancy may be due in part to differences in the pressure
conditions used in the different experiments or because the
synthetic inclusions represent samples of fluid that equili-
brated with the highly solubleMoO3 used as startingmaterial
in the experiments of Ulrich and Mavrogenes (2008). The
reduction of the fluid at high temperatures may have resulted
in the precipitation of MoO2 during closure and necking of
the fluid-filled microcracks in quartz.

5.1. Molybdenum in Intrusion-Related Hydrothermal Systems.
Many ore deposits of molybdenum form in high tempera-
ture intrusion-related hydrothermal systems. Fluid inclusion
studies suggest that Mo deposition usually occurs at temper-
atures between 450 and about 700∘C and pressures between
100 and 170MPa [44–51]. Furthermore, Mo is thought to
be transported by low to intermediate density, supercritical
aqueous fluids [52–56] as mononuclear hydroxy complexes
[57–61]. AlthoughMo is usually transported in the hexavalent
state it is also transported in a lower valence state (+4) under
more reducing conditions [8, 62].

The temperature-redox conditions for porphyry Mo
deposits are shown in Figure 11 [63, 64]. At these ore-forming
conditions, MoO2 rather than MoO3 is the stable oxide [4,
7, 11, 12]. Fluid inclusion studies of porphyry Mo deposits
indicate that low salinity fluids play an important role in Mo
transport [65–70]. Candela and Holland [58] concluded that
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Figure 10: Solubility MoO2 solubility in pure water as a function of temperature. The pressure condition for each measurement is shown on
each plot.
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in magmatic systems Mo partitioning is independent of the
chlorine content of magmas and associated aqueous phases.
Zajacz et al. [54] studied the effect of fluid chlorinity as a
parameter on fluid/melt partitioning. They distinguished a
group of elements (As, Mo, Cu, Sb, Bi, and B) displaying

a distinct negative correlation with the chlorinity of the
fluid, which suggests transport as non-chloride (i.e., hydroxy)
complexes. Of these elements, Mo, As, Sb, and B are known
to occur as hydroxy complexes in hydrothermal fluids [71–
74]. Fluorine is not an important ligand involved in the
hydrothermal transport of Mo in granite-related systems
[58, 61, 75]. Some studies have demonstrated the importance
of chloride complexing for Mo partitioning [4, 76]. Ulrich
and Mavrogenes (2008) suggested a correlation between the
solubility of Mo oxides and the chloride content in the fluid.
Tattitch and Blundy (2017) have shown that fluid-melt Mo
partition coefficient increases with the increasing salinity
and a mono-chloride complex controls Mo partitioning. The
results presented here may explain why low salinity fluid
inclusions prevail in some Mo ore deposits. The presence of
sulfur in such systems would result in the precipitation of
molybdenite [10, 77–79].

5.2. Relevance of MoO2 Solubility to Supercritical-Water-
Cooled Reactor (SCWR). As discussed above, Generation-IV
SCWR is designed to function at temperatures up to 625∘C
and at pressures ranging from 25 to 30MPa. The successful
deployment and long term operation of these SCWRdepends
on the durability of the materials in the presence of water
under conditions of extreme temperature, pressure, and radi-
ation [15, 18–20]. Mo-bearing alloys are among the candidate
materials considered in the construction of SCWR. Previous
experiments have shown that a significant amount of Mo
from the walls of Hastelloy C and Alloy 625 autoclaves may
be dissolved in pure water at 450∘C after 280 hours [15].
Molybdenumoxidesmay form in the passivation layer of steel
alloys [80–87] and dissolution of these oxides could result in
contamination and degradation of the reactor performance
by creating thermal barriers on heat transfer surfaces.
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The next generation of supercritical water reactors are
expected to operate at even higher pressures and temper-
atures [17]. The data shown in this study indicate that
partially dissolution of a Mo-bearing passivation layer in a
SCWR may affect water chemistry and the efficiency of the
reactor.This example underscores the need to compile amore
comprehensive oxide solubility database that can be used to
predict supercritical water chemistry. To achieve this goal,
we recommend that in situ SXRF solubility measurements
be employed to experimentally evaluate the durability of
candidate alloys under conditions of extreme temperature
and pressure.

6. Conclusions

In situ synchrotron X-ray fluorescence analysis of aqueous
fluids in a modified hydrothermal diamond anvil cell was
used to determine the solubility of synthetic MoO2 in pure
water up to 800∘C and 480MPa. The results show an expo-
nential increase in solubility at temperatures above 600∘C
to a maximum concentration of 658 ± 43 ppm Mo at 800∘C
and 480MPa. The results on the MoO2-H2O system provide
insights into Mo transport in pure water and in low salinity,
high temperature aqueous solutions involved in ore-forming
systems. The data are also relevant to understanding Mo
transport in supercritical-water-cooled reactors and demon-
strate the potential of in situ SXRF for further solubility
studies of sparingly soluble oxide minerals under conditions
of extreme temperature and pressure.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This research used resources of the Advanced Photon Source
(APS), an Office of Science User Facility operated for the US
Department of Energy (DOE) Office of Science by Argonne
National Laboratory, and was supported by the US DOE
under Contract no. DE-AC02-06CH11357 and the Canadian
Light Source and its funding partners. The authors thank Dr.
Steve Heald for his assistance with our experiment at sector
20 of the APS. We acknowledge support from the GEN-IV
program. Funding to the Canada Gen-IV National Program
was provided by Natural Resources Canada through the
Office of Energy Research and Development, Atomic Energy
of Canada Limited, and Natural Sciences and Engineering
Research Council of Canada. Pritam Saha acknowledges the
receipt of support from the CLS Graduate and Post-Doctoral
Student Travel Support Program and Nova Scotia Graduate
Scholarship.

References

[1] G. F. Ivanova, N. I. Lavkina, L. A. Nesterova, and A. P.
Zhudikova, “Equilibrium in the MoO3-H2O system at 25–
300∘C,” Geochemistry International, vol. 12, pp. 163–176, 1975.

[2] Q. Gong, C. Yu, K. Cen, and Y. Wang, “Experimental determi-
nation of MoO3 and WO3 solubilities in supercritical fluids,”
Acta Petrologica Sinica, vol. 21, no. 1, pp. 240–244, 2005.

[3] K. U. Rempel, A. A. Migdisov, and A. E. Williams-Jones,
“The solubility and speciation of molybdenum in water vapour
at elevated temperatures and pressures: Implications for ore
genesis,” Geochimica et Cosmochimica Acta, vol. 70, no. 3, pp.
687–696, 2006.

[4] T. Ulrich and J. Mavrogenes, “An experimental study of the
solubility of molybdenum in H2O and KCl-H2O solutions
from 500 ∘C to 800 ∘C, and 150 to 300 MPa,” Geochimica et
Cosmochimica Acta, vol. 72, no. 9, pp. 2316–2330, 2008.

[5] P. R. Meredith, A. J. Anderson, and R. A. Mayanovic, “An in-
situ investigation of the solubility of molybdenum trioxide in
oxygenated water at supercritical conditions,” in Proceedings of
the 5th International Symposium on Supercritical Water-Cooled
Reactors, 2011.

[6] T. P. Dadze, G. A. Kashirtseva, M. P. Novikov, A. V. Plyasunov,
and Y. B. Shapovalov, “The solubility of MoO3 in aqueous solu-
tions of HClO4 at T = 300∘C and P = 100 bar by experimental
data,” Doklady Earth Sciences, vol. 456, no. 1, pp. 548-549, 2014.

[7] N. C. Hurtig and A. E. Williams-Jones, “An experimental
study of the solubility of MoO3 in aqueous vapour and low
to intermediate density supercritical fluids,” Geochimica et
Cosmochimica Acta, vol. 136, pp. 169–193, 2014.

[8] A. V. Kudrin, “The solubility of tugarinovite MoO2 in aqueous
solutions at elevated temperatures.,” Geochemistry Interna-
tional, vol. 22, no. 9, pp. 126–138, 1985.

[9] A. V. Kudrin, “Behavior of Mo in aqueous NaCl and KCl
solutions at 300-450∘C,”Geochemistry International, vol. 26, no.
8, pp. 87–99, 1989.

[10] X. Cao, Solubility of Molybdenite and The Transport of Molyb-
denum in Hydrothermal Solutions, Iowa State University, Ames,
Iowa, USA, 1989.

[11] G. Solferino and A. J. Anderson, “Thermal reduction of molyb-
dite and hematite inwater and hydrogen peroxide-bearing solu-
tions: Insights on redox conditions in Hydrothermal Diamond
Anvil Cell (HDAC) experiments,” Chemical Geology, vol. 322-
323, pp. 215–222, 2012.

[12] P. A. Spevack and S. McIntyre, “Reactivity and stability of
sulphided thin films of molybdenum to dry air,” Applied
Catalysis, vol. 64, no. C, pp. 191–207, 1990.

[13] H. N. Lander, “Energy related uses of molybdenum,” Molybde-
num in the Environment, vol. 2, p. 773, 1977.

[14] R. B. Ross, Metallic materials specification handbook, Springer
Science & Business Media, 2013.

[15] D. Guzonas, P. Tremaine, and J.-P. Jay-Gerin, “Chemistry con-
trol challenges in a supercritical water-cooled reactor,” Power
Plant Chemistry, vol. 11, no. 5, pp. 284–291, 2008.

[16] D. Guzonas andR.Novotny, “Supercritical water-cooled reactor
materials - Summary of research and open issues,” Progress in
Nuclear Energy, vol. 77, pp. 361–372, 2014.

[17] U. S. DoE, “A technology roadmap for generation IV nuclear
energy systems,” in Proceedings of the Nuclear Energy Research
AdvisoryCommittee and theGeneration IV International Forum,
2002.

[18] G. P. Gu, W. Zheng, and D. Guzonas, “Corrosion database for
SCWR development,” in Proceedings of the 2nd Canada-China
Joint Workshop on Supercritical-Water-Cooled Reactors, 2010.

[19] S. Baindur, “Materials challenges for the supercritical water-
cooled reactor (SCWR),” Bulletin of the Canadian Nuclear
Society, vol. 29, no. 1, pp. 32–38, 2008.



10 Geofluids

[20] D. F. Torgerson, B. A. Shalaby, and S. Pang, “CANDU technol-
ogy for Generation III+ and IV reactors,” Nuclear Engineering
and Design, vol. 236, no. 14-16, pp. 1565–1572, 2006.

[21] T. R. Allen, Y. Chen, L. Tan, X. Ren, K. Sridharan, and S.
Ukai, “Corrosion of candidate materials for supercritical water-
cooled reactors,” in Proceedings of the 12th International Con-
ference on Environmental Degradation of Materials in Nuclear
Power Systems-Water Reactors, pp. 1397–1407, August 2005.

[22] W.A. Bassett, A. H. Shen,M. Bucknum, and I.-M. Chou, “A new
diamond anvil cell for hydrothermal studies to 2.5GPa and from−190 to 1200∘C,” Review of Scientific Instruments, vol. 64, no. 8,
pp. 2340–2345, 1993.

[23] A. Verlaguet, F. Brunet, B. Goffá, and W. M. Murphy, “Exper-
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