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Abstract In order to cope with the steady decline of the number of in situ gauges worldwide, there is a
growing need for alternative methods to estimate runoff. We present an Ensemble Kalman Filter based
approach that allows us to conclude on runoff for poorly or irregularly gauged basins. The approach focuses
on the application of publicly available global hydrometeorological data sets for precipitation (GPCC, GPCP,
CRU, UDEL), evapotranspiration (MODIS, FLUXNET, GLEAM, ERA interim, GLDAS), and water storage changes
(GRACE, WGHM, GLDAS, MERRA LAND). Furthermore, runoff data from the GRDC and satellite altimetry
derived estimates are used. We follow a least squares prediction that exploits the joint temporal and spatial
auto- and cross-covariance structures of precipitation, evapotranspiration, water storage changes and run-
off. We further consider time-dependent uncertainty estimates derived from all data sets. Our in-depth anal-
ysis comprises of 29 large river basins of different climate regions, with which runoff is predicted for a
subset of 16 basins. Six configurations are analyzed: the Ensemble Kalman Filter (Smoother) and the hard
(soft) Constrained Ensemble Kalman Filter (Smoother). Comparing the predictions to observed monthly run-
off shows correlations larger than 0.5, percentage biases lower than 6 20%, and NSE-values larger than 0.5.
A modified NSE-metric, stressing the difference to the mean annual cycle, shows an improvement of runoff
predictions for 14 of the 16 basins. The proposed method is able to provide runoff estimates for nearly 100
poorly gauged basins covering an area of more than 11,500,000 km2 with a freshwater discharge, in volume,
of more than 125,000 m3/s.

1. Introduction

The percentage of geographically and temporally accessible runoff is of crucial importance for sufficient
freshwater supply. Early estimates on the human appropriation of accessible runoff have been presented in
Postel et al. [1996], and they raised awareness on the problem of declining water availability per capita, pri-
marily due to a growing world population. The increase in the population of 45% stands opposed to an
increase of accessible runoff of only 10% within 30 years. Falkenmark and Rockstr€om [2004] estimated an
increase of water requirements by about 1,300 m2 per capita per yr for each additional person. V€or€osmarty
et al. [2010] stress that 80% of the world’s population is exposed to high levels of threat to water security
and that 65% of the total continental discharge is classified as moderately to highly threatened. Accord-
ingly, recent hydrological and hydrometeorological research must aim at an improved observation, model-
ing, and understanding of the terrestrial water cycle, in particular runoff.

The importance of long-term monitoring of hydrological variables was recognized by the World Meteoro-
logical Organization (WMO) already in 1980, which led to the initiation of the Global Runoff Data Centre
(GRDC). The GRDC collects and harmonizes global runoff observations from national hydrological services
and makes them available to the public. However, over many catchments around the world, runoff is not
gauged [Bl€oschl et al., 2013].

In Dai and Trenberth [2002], it is reported that the annual runoff rate over the unmonitored areas is compa-
rable to that over the monitored areas. Furthermore, studies by Sivapalan et al. [2003], Shiklomanov et al.
[2002], Milzow et al. [2011], and Fekete et al. [2012] stress that the number of active river gauges is steadily
decreasing. Figure 1a exemplarily shows river basins without any measurements and basins with more than
5 years of missing data during the period 2000–2010. Since a similar decline can be observed for rainfall
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gauges [Lorenz and Kunstmann, 2012], the hydrological community has to face a significantly shrinking
database for the most important water cycle variables.

The serious problem of runoff data availability and its importance for hydrological cycle studies led the
International Association of Hydrological Sciences (IAHS) to launch the study framework Prediction in Unga-
uged Basins (PUB). The goal of 10 years of PUB was to predict the hydrological cycle in ungauged basins by
improving the understanding of climatic and landscape controls on hydrological processes [Bl€oschl et al.,
2013]. It has been realized that on top of data quantity data quality also tremendously affects the perform-
ance of modeling [McMillan et al., 2010].

With respect to river runoff, one of the motives of PUB was to seek for spaceborne alternatives, as tradi-
tional runoff data acquisition at in situ gauges is typically costly and time consuming. These alternatives
indeed have the potential to be highly valuable for hydrology [Alsdorf et al., 2007]. In terms of runoff, it has
been already demonstrated by Koblinsky et al. [1993] that satellite-based altimetry can be used to describe
river level variations. Therefore, many studies made use of satellite data in order to analyze the water cycle
over ungauged basins [e.g., Khan et al., 2011]. However, Alsdorf et al. [2007] already indicated high uncer-
tainties in satellite derived hydrological data due to poor spatial and temporal resolutions and the inabilities
to e.g., penetrate clouds or smoke. In terms of precipitation, e.g., AghaKouchak et al. [2012] analyzed

Figure 1. (a) Distribution of ungauged and poorly gauged catchments. The dark red areas indicate catchments without any measurements between 2002 and 2012 while the observed
runoff time-series over the light red basins contain more than 5 years of missing values during that period. The white catchments can be considered to be dischargeless (e.g., desserts).
(b) Location of the 29 basins given in Table 2 where the dot in each basin is located at the respective river gauge. The 16 dark blue shaded basins are used for validating the runoff pre-
dictions in section 4.
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different systematic and random errors in satellite-derived precipitation data sets over the United States. It
was further stressed by Fekete et al. [2012] that there is still no substitute for in situ discharge monitoring.
Thus, the combination and harmonization of spaceborne and terrestrial data is a big challenge of the cur-
rent hydrological research.

Another major task of the hydrological community is the closure of the terrestrial water budget. Even if the
basic equation of the terrestrial water cycle

P2ET2R2 _M50 (1)

with precipitation P, evapotranspiration ET, runoff R, and water storage changes _M appears simple, it is known
from many studies that a real closure on larger spatial scales can not be achieved with current data sources.

For a long time, a major issue of analyzing the hydrological cycle was missing observation-based data of
the terrestrial water storage. In essence, direct observation of the water storage components (e.g., snow,
ice, surface water, soil, (un)saturated underground storages) was not possible on large spatial scales [Rodell
and Famiglietti, 1999]. Measurements of water storage changes by measurements of changes in ground-
water levels and in soil water saturation are not reliable due to the insufficiently known storage coefficients
and also the inadequate density of monitoring points on large spatial scales [Riegger et al., 2012].

Only after the launch of the twin satellites of the Gravity Recovery and Climate Experiment GRACE, closing
the water budget on shorter time scales became possible [Tapley et al., 2004]. Sheffield et al. [2009] com-
bined satellite-based precipitation, model-based evapotranspiration, and GRACE data to close the water
budget over the Mississippi River basin over the time period of 2003–2005. Rodell et al. [2004a] closed the
water budget using GRACE at basin scales to estimate evapotranspiration as the residual of the water
budget. In Syed et al. [2005], [2007], and [2009], GRACE data have been used for deriving freshwater dis-
charge using a coupled land-atmosphere water balance.

In a similar study, Sneeuw et al. [2014] compared the performance of estimated runoff derived from water bal-
ance closure with those from models and in situ data. In a more extensive analysis, Lorenz et al. [2014] com-
pared combinations of different gridded observations, atmospheric reanalysis models, land surface
hydrological models, partially model-based data sets and GRACE to derive and evaluate an ensemble of
hydrological and hydrometeorological budget-based runoff estimates. However, most of these studies did not
close the water budget explicitly, but estimated a single water cycle variable from the remaining ones. Thus,
all the errors and uncertainties in the input data sources inevitably propagate to the estimated variable.

Other approaches, which make use of data assimilation techniques, are presented in e.g., Pan and Wood
[2006]. The authors developed a Constrained Ensemble Kalman Filter (CEnKF), which enforced water budget
closure, thereby, providing a constrained best estimate of the basin-scale water budget. Similarly, Pan et al.
[2012] combined estimates of the terrestrial water budget from different data sources and enforced the
water balance constraint using the previously developed constrained Kalman filter technique.

In general, the term data assimilation is used for combining observation data with hydrological, hydrome-
teorological, or land surface models. The application usually ranges from extensive global reanalysis models,
which simulate the whole atmosphere and the land surface [e.g., Dee et al., 2011], to models which focus on
the land surface only [e.g., Reichle et al., 2002; Rodell et al., 2014a]. However, it is well known that our current
model systems suffer from biases or errors in the simulated water cycle variables, which finally lead to
imbalances in the water budgets [e.g., Lorenz and Kunstmann, 2012]. We therefore propose a data assimila-
tion framework, where the mathematical description is kept as simple as possible. In fact, the approach is
based on the terrestrial water budget equation (1) only, which can be considered as the most simple hydro-
logical model. On the other hand, we want to exploit all the advantages and strengths from widely used
global available data sets for the major water cycle variables, and thus, use real data instead of complex
model equations within an Ensemble Kalman Filtering framework. The algorithm is, therefore, proposed as
an alternative postprocessing tool, which can be used for combining, correcting, and predicting basin-scale
time series of the four major water cycle variables. In this study, however, we focus on the estimation of run-
off as an performance evaluation step of the proposed approaches.

The data sets that are used are presented in section 2, while we describe the methods in section 3. In section
4, different configurations of the assimilation framework are analyzed and the best setup is used for

Water Resources Research 10.1002/2014WR016794

LORENZ ET AL. BASIN-SCALE RUNOFF PREDICTION 8452



estimating runoff over 16 large river basins. These estimates are then validated against monthly runoff obser-
vations during the period 2005-2010 using the common performance metrics correlation, relative bias (PBIAS),
and the Nash-Sutcliffe Efficiency (NSE) coefficient. However, as runoff over many catchments follows a domi-
nant annual cycle, we further analyze a NSE-type metric, which relates the estimates to the mean annual cycle
from historic data. In section 5, the performance of the presented approach is compared with similar studies,
while section 6 contains a conclusion of the major findings and an outlook.

2. Data

A detailed description of the applied data sets is given in Lorenz et al. [2014] and Sneeuw et al. [2014]. Here
only a brief overview of the different data sets of the four water cycle variables is provided. The most impor-
tant information is further summarized in Table 1.

2.1. Runoff
In order to attain maximum data coverage, both in space and time, data are collected from different sour-
ces, namely the Global Runoff Data Center (GRDC), the ArcticRIMS project Water Survey Canada, the United
States Geological Survey, United States Army Corps of Engineers (USACE), the ORE HYBAM project, the
Department of Water, Land and Biodiversity Conservation, Government of Australia, and the Department of
Water Affairs and Forestry, Republic of South Africa.

The runoff database is further enhanced by using estimates from satellite altimetry over the Amazon, Ob,
Don, and Danube basins. The methods for deriving runoff from altimetry data are described in Tourian et al.
[2013]. They proposed a statistical approach based on quantile functions to infer a functional relation
between altimetric water level and historic river gauge data. Using such a statistical function, the water level
measurements from satellite altimetry is then mapped to an estimation of runoff at river gauges.

2.2. Precipitation
Four different observation based precipitation data sets, namely the data from the Global Precipitation Cli-
matology Center (GPCC) [Schneider et al., 2008], the Global Precipitation Climatology Project (GPCC) [Adler
et al., 2003], the Climatic Research Unit (CRU) [Harris et al., 2014], and the University of Delaware (DEL) [Mat-
suura and Willmott, 2012], are used. From these data sets, GPCC, CRU, and DEL are based on gauge observa-
tions only. The low spatial resolution GPCP product is a combination of different rainfall sensors. Currently,
the GPCP includes microwave, infrared, and gauge based observations of precipitation [e.g., Huffman et al.,
2009]. The largest number of stations are included in the GPCC product, while CRU and DEL are based on a
much smaller number of rainfall gauges. Despite the pure number of stations, also the spatial coverage is
significantly different between these three data sets. An analysis of the different precipitation products is
presented in e.g., Lorenz and Kunstmann [2012].

Table 1. Summary of the Observation and Model-Based Data Sets Containing Precipitation (P), Actual Evapotranspiration (ET), Water
Storage Changes ( _M), Runoff From River Gauges (Robs), and Satellite Altimetry (Ralt)

Variable Data Set Version

Resolution

Time PeriodSpatial Temporal

P GPCC 6.0 0.5 83 0.58 1 month 1901–2010
GPCP 2.2 2.58 3 2.58 1 month 1979–present
CRU 3.22 0.58 3 0.58 1 month 1901–2013
DEL 3.02 0.58 3 0.58 1 month 1900–2010

ET ERA interim 0.758 3 0.758 1 month, 1 day, 6 h 1979–present
GLDAS NOAH 3.3 1.08 3 1.08 1 month, 3 h 1948–present
GLEAM v1B 0.258 3 0.258 1 day 1984–2007
MOD16 A2 0.58 3 0.58 1 year, 1 month, 8 days 2000–2013
FLUXNET MTE 0.58 3 0.58 1 month 1980–present

_M GRACE GFZ R5 1 month 2002–present
GRACE CSR R5 1 month 2002–present
MERRA LAND 1.0 1

2

�
3 2

3

�
1 month, 1 day, 1 h 1980–present

GLDAS NOAH 3.3 1.08 3 1.08 1 month, 3 h 1948–present
WGHM NOUSE 0.58 3 0.58 1 month 1960–2009

Robs GRDC
Ralt Tourian et al. [2013]
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2.3. Evapotranspiration
In contrast to the precipitation data (which are all based on similar observations), evapotranspiration data
are derived from quite different modeling and data merging approaches. A comprehensive overview over
different global evapotranspiration data sets can be found in Mueller et al. [2011] and Mueller et al. [2013].
Here we use three evapotranspiration-only products, namely the Global Land-surface Evaporation: the
Amsterdam Methodology (GLEAM) [Miralles et al., 2011], the Fluxnet Multi Tree Ensemble (MTE) [Jung et al.,
2009, 2010], and data from the Moderate-resolution Imaging Spectroradiometer (MOD16) [Mu et al., 2007,
2011].

Besides these products, we also use modeled evapotranspiration from version 2 of the Global Land Data
Assimilation System (GLDAS2) [Rodell et al., 2004b] (i.e., the NOAH3.3 realization) and the ERA interim Rean-
alysis from the European Centre for Medium-Range Weather Forecasts (ERA I) [Simmons et al., 2006; Berris-
ford et al., 2009; Dee et al., 2011].

GLEAM is based on multisatellite observations and combines a wide range of remotely sensed observations
within a Priestley and Taylor-based framework [Miralles et al., 2011]. In contrast to this multisatellite-
approach, MOD16 is based on remote sensing data from the MODIS satellites and global meteorological
data. The data sets are combined using the Penman-Monteith method [Mu et al., 2007]. Finally, the MTE
data set provides global evapotranspiration by empirical upscaling of eddy-covariance measurements from
the FLUXNET network [Jung et al., 2009].

2.4. Water Storage Changes
2.4.1. GRACE Data
In this study, GRACE observations of the temporal gravity field changes are applied for deriving basin-scale
water storage changes. In particular, 10 years (2003–2012) of GRACE release 5 data from the two data proc-
essing centers GeoForschungsZentrum Potsdam (GFZ) [Dahle et al., 2013] and the Center for Space
Research, The University of Texas at Austin (CSR) [Bettadpur, 2012] are used. The spherical harmonic coeffi-
cients are filtered with a regularization type filter, as described in Sneeuw et al. [2014]. Then, the spectral

Table 2. River Basins Which Were Used in This Study Including the Respective River Gauge, its Location, the Area of the Basin, and the
Mean Annual Discharge Between the Period 1980–2010 as Provided From GRDCa

River Station Latitude Longitude Area (km2) Discharge (m3/s)

1 Amazon Obidos 21.95 255.51 46,72,876 1,71,915
2 Congo Kinshasa 24.3 15.3 36,15,546 38,652
3 Mississippi Vicksburg 32.32 290.91 29,38,538 18,661
4 Ob Salekhard 66.57 66.53 29,26,321 12,939
5 Yenisei Igarka 67.48 86.5 24,54,961 19,388
6 Lena Kyusyr 70.7 127.65 24,17,932 17,761
7 Mackenzie Arctic Red River 67.46 2133.75 16,66,073 9194
8 Volga Volgograd Power Plant 48.81 44.59 13,45,070 8143
9 St. Lawrence Lasalle 45.42 273.62 9,43,769 8575
10 Orange Vioolsdrif 228.76 17.72 8,28,475 169
11 Don Razdorskaya 47.54 40.65 3,78,180 685
12 Pechora Oksino 67.6 52.2 3,04,670 4857
13 Fraser Hope 49.38 2121.45 2,28,874 2657
14 Neva Novosaratovka 59.84 30.53 2,25,651 2490
15 Olenek 7.5 km d/s of mouth of Pur 72.12 123.22 1,99,723 1257
16 Fitzroy (west Australia) The Gap 223.09 150.11 1,26,986 138
17 Niger Lokoja 7.8 6.76 21,00,508 5070
18 Danube Ceatal Izmail 45.22 28.72 7,71,277 6490
19 Tocantins Tucurui 23.76 249.65 7,52,993 10966
20 Rio Xingu Altamira 23.22 252.21 4,45,289 8062
21 Kolyma Kolymskaya 68.73 158.72 4,21,802 3262
22 Severnaya Dvina (northern) Ust-Pinega 64.15 41.92 3,30,709 3392
23 Churchill Above Red Head Rapids 58.12 294.63 2,99,391 337
24 Rio Parnaiba Luzilandia 23.45 242.37 2,97,049 692
25 Yana Ubileynaya 70.75 136.08 2,20,949 1127
26 Thelon below outlet of Schultz Lake 64.78 297.05 1,71,346 924
27 Rhine Rees 51.75 6.4 1,69,706 2392
28 Elbe Neu Darchau 53.23 10.89 1,34,037 701
29 Rio Santiago El Capomal 21.83 21.05 1,26,986 161

aThe location of the basins is shown in Figure 1b. From the 29 catchments, the first 16 are used for validating the runoff predictions.
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data are transformed to a 0:5
�
3 0:5

�
grid using the equations from Wahr et al. [1998] and then aggregated

over catchments to derive catchment-specific time series. As these time series represent water storage
anomalies, the data have to be numerically differentiated in order to arrive at the required flux quantity,
water storage changes. This is done by applying the method of three-point central differences. Further
details on the preprocessing of GRACE-data can be found in Sneeuw et al. [2014] and Lorenz et al. [2014].
2.4.2. Land Surface Models
As GRACE-data are only available from 2002 on, we also need some legacy data for deriving the statistical
inter and intra-catchment relationships between water storage changes and the other water cycle variables
(see section 3.2). Therefore, we use data from GLDAS2. Additionally, we also apply data from the land-only
replay of the Modern-Era Retrospective analysis for Research and Applications (MERRA LAND) [Reichle et al.,
2011] and the WaterGAP Global Hydrology Model (WGHM) [D€oll et al., 2003, 2014]. In contrast to the two
land surface models MERRA LAND and GLDAS2, which do not contain a routing scheme (R. Reichle, 2013,
personal communication, M. Rodell, 2012, personal communication), WGHM is tuned against observed dis-
charge at 724 gauging stations [D€oll et al., 2003]. It is assumed that this improves the reliability of the water
availability estimates from the model. Data from WGHM have been used for various water budget studies
[e.g., Ramillien et al., 2006; Schmidt et al., 2006; Kusche et al., 2009; Forootan et al., 2012; D€oll et al., 2014].

2.5. Data Consistency
For the comparison of the runoff estimates with observations, we have remapped all the input fields to the
same grid resolution (0:5

�
30:5

�
) using a first-order conservative interpolation [Jones, 1999]. From these

fields, area-weighted averages were computed over the study regions shown in Figure 1 and Table 2.

The water storage changes _M computed from GRACE via the central difference scheme are an approxima-
tion of the true derivatives. In the spectral domain they differ by a sinc function. In fact, the numerical deriv-
atives from the central difference scheme are not compatible yet to the hydrological signals (P, ET and R in
equation (1)). The hydrological water storage changes should hence be filtered using a filter that resembles
the sinc function in the frequency domain. Swenson and Wahr [2006] proposed to smooth the time series of
the other water cycle variables according to

~F t5
1
4

Ft211
1
2

Ft1
1
4

Ft11; (2)

where F are time series of precipitation, evapotranspiration, and observed runoff. The indices t – 1, t, and
t 1 1 refer to the previous, current, and following month. We apply this filter to all the time series of precipi-
tation, runoff and evapotranspiration.

3. Methods

3.1. Overview
For estimating basin-scale water cycle variables, different formulations of an Ensemble Kalman Filter (EnKF)
[Evensen, 1994; Houtekamer and Mitchell, 1998; Evensen, 2003,] framework are applied, which successively
predict and correct the state vector containing precipitation, evapotranspiration, runoff, and water storage
changes

Xt5 PT
t ETT

t RT
t

_M
T
t

h iT
(3)

with t being the time-index, Pt; ETt; Rt , and _Mt four subvectors with dimensions N31½ � and N the number
of catchments. A summary of the different input parameter and formulas for the Ensemble Kalman Filter
(EnKF), the hard (CEnKFh) and soft (CEnKFs) constrained Ensemble Kalman Filter, the Ensemble Kalman
Smoother (EnKS), and the hard (CEnKSh) and soft (CEnKSs) constrained Ensemble Kalman Smoother are pre-
sented in Tables 3 and 4, respectively.

It can be construed that all the filter equations are linear. With the assumption that the errors of the variables
are normally distributed, a single-state Kalman filter (SSKF) is sufficient to achieve the same results. Instead we
present an ensemble Kalman filter (EnKF) approach, which will allow for its extension to assimilate on the
global scale. Predicting and estimating grid-point values globally results in huge (spatial) covariance matrices,
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which might cause computational issues, for example, during inversion. Therefore, we propose and proceed
with the EnKF framework.

3.2. Derivation of the Prediction Equation
On monthly timescales, it can be assumed that the basin-scale water cycle variables follow a (more or less)
distinct annual cycle. Therefore, the anomalies at time-step t are expressed as

rt5Xt2~Xt (4)

where Xt is the state vector from (3). ~Xt represents the long-term mean annual cycle for each of the four
water cycle variables for every basin through

~Xm5
1

T=12

XT=12

i

Xi;m; (5)

where the indices i and m refer to different years and months, respectively. It is further assumed that the
prediction from time-step t–1 to t is expressed through a stochastic process of first order

rt5Art21et; (6)

where A is a (yet unknown) prediction function and et some zero-mean white prediction noise with covari-
ance matrix Dfeg5QP and with the auto- and cross-covariance matrices

Table 3. Overview of the Different Parameters and Variables for the Assimilation Framework

Parameter Equation Dimension

State vector
Xt 5 PT

t ETT
t RT

t
_M

T
t

h iT 4N31

Annual cycle
~Xm 5

1
T=12

XT=12

i;m

Xi;m

4N31

Residuals rt 5 Xt2~X t 4N31

Auto-covariance
R 5

1
T21

XT

t51

rt rT
t

4N34N

Cross covariance
RD 5

1
T22

XT

t52

rt rT
t21

4N34N

Prediction matrix Â 5 RD R21 4N34N

Prediction noise QP 5 R2 RD R21 RT
D

4N34N

Control input B 5 2Â I
� �

4N38N

Ut 5 ~X t21 ~X t

� �T 8N31

Observation vector
Yt 5 PT

t;obs ETT
t;obs RT

t;obs
_M

T
t;obs RT

t;alt

h iT 5N31

Observation covariance

QO;t 5

RP;t 0 0 0 0

0 RET;t 0 0 0

0 0 RRobs ;t 0 0

0 0 0 R _M ;t 0

0 0 0 0 RRalt ;t

2
666666664

3
777777775

5N35N

Observation relation matrix

Ht 5

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 0 I 0

2
666666664

3
777777775

5N34N

Constraints GXt 5 0 N34N

G 5 I 2I 2I 2I½ �
Augmented obs. rel. matrix Ht;aug 5 Ht G½ �T 6N34N

Augmented observation vector Yt;aug5 Yt 0½ �T 6N31

Augmented observation covariance
QO;t;aug 5

QO;t 0

0 QWB;t

" #
6N36N
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R5Dfrtg and RD5Dfrt; rt21g: (7)

The prediction matrix A is given through
the so-called least squares prediction or
multiple ordinary least squares regression,
which is described in e.g., Moritz [1980]
and Kurtenbach et al. [2012]. As the true
process dynamics A are not known, we
are looking for an approximation Â, with
which the prediction from time-step t to
t 1 1 reads as

r̂t5Ârt21; (8)

where r̂ is the predicted state. The
approximated prediction matrix should
minimize the prediction error

e5rt2r̂t (9)

in a least squares sense, i.e.,

eeT ! min (10)

According to (9), the total error can be expressed as

eeT5 rt2r̂tð Þ rt2r̂tð ÞT

5 rt2Ârt21
� �

rt2Ârt21
� �T

5rtrT
t 2rtrT

t21Â
T
2Ârt21rT

t 1Ârt21rT
t21Â

T

(11)

The corresponding error covariance matrix is given through

Dfeg5EfeeTg5 R2 RDÂ
T
2Â RT

D1Â RÂ
T
: (12)

An estimate for A is found by minimizing the trace of the error covariance matrix, which is the case
for

Â5 RD R21: (13)

For a more detailed derivation, see e.g., Kurtenbach et al. [2012]. As it is assumed that this prediction matrix
remains constant over time, the time-index has been omitted. Inserting (13) into (12) yields

Dfeg5 R2 RD R21 RD5QP (14)

which is the error covariance matrix of the predictor Â or, in the common Kalman notation, the covariance
matrix of the prediction noise. As the true auto- and cross-covariances between anomalies of precipitation,
evapotranspiration, runoff, and water storage changes are also unknown, they are approximated by the
empirical sample covariance matrices

R̂5
1

T21

XT

t51

rtrT
t (15)

R̂D5
1

T22

XT

t52

rtrT
t21 (16)

The two matrices are shown in Figures 2a and 2b.

Putting (4) into (6), the process model reads as [Tourian, 2013]

Table 4. Overview of the Assimilation Algorithma

Parameter Equation

Initial state X1
0;d 5 X01 ed with ed � N 0;QPð Þ

Prediction step X2
t;d 5 ÂX1

t21;d1BUt211 Ed with ed � N 0;QPð Þ
Prediction covariance

R̂
2

X;t 5
1

D21

XD

d51

X2
t;d2X

2

t

� �
X2

t;d2X
2

t

� �T

Observation Innovations Vt;d 5 Yt2Ht X2
t;d1 mt;d with mt;n � N 0;QO;t

� �
Kalman Gain Kt 5 R̂

2

X ;t HT
t HtR̂

2

X;t HT
t 1QO;t

� �21

Correction step X1
t;d 5 X2

t;d1Kt Vt;d

Corr. covariance
R̂

1

X;t 5
1

D21

XD

d51

X1
t;d2X

1

t

� �
X1

t;d2X
1

t

� �T

Klaman Gain (smoother) Kt 5 R̂
1

X ;t Â R̂
2

X;t11

� �21

Smoothing step Xt;d 5 X1
t;d1Kt Xt11;d2X2

t11;d

� �
Smoothed covariance R̂X;t 5 R̂

1

X ;t1Kt R̂X;t112R̂
2

X;t11

� �
KT

t

aFor the constrained predictions, the observation vector (Yt ), the observa-
tion relation matrix (Ht ), and the observation covariance matrix (QO;t ) are
replaced with the augmented parameters (Yt;aug; Ht;aug; QO;t;aug).
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Xt2~Xt
� �

5Â Xt212~Xt21
� �

1et

5Âxt212Â ~Xt211et (17)

) Xt5ÂXt212Â ~Xt211~Xt1 et

which can be rewritten as

Xt5ÂXt211BUt211 et (18)

with

Figure 2. Temporal (a) Auto-covariance (top left) and (b) cross-covariance (top right) matrix (R and RD , see equations (15) and (16))
between anomalies of precipitation, evapotranspiration, runoff, and water storage changes. The anomalies are computed with respect to
the ensemble mean annual cycle from all available data sources. The matrices thus represent the overall mean covariance structure of the
water cycle variables. Both matrices consist of 16 submatrices, of which each has the dimension 29329½ �. These submatrices therefore rep-
resent the auto- and (temporal) cross-covariance between the different study regions and water cycle variables. (c) Least squares predic-
tion matrix Â (bottom left) and (d) the corresponding error matrix QP (bottom right).
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B5 2Â I
� �

and Ut5
~Xt21

~Xt

" #
(19)

Thus, the prediction is based on the covariances between the state variables (through the least squares pre-
diction matrix) and the mean annual cycle through the control input Bt21Ut21.

The control input is computed from the collection of data sets, which were described in section 2. For each
water cycle variable, the annual cycle is given through the mean of all respective data sources. As we are
mainly interested in the performance of the methodology as a predictor, only past data from 1980 to 2002
are used for computing the mean annual cycle.

3.3. Derivation of the Observation Equation
The first observation group relates the state vector to observed precipitation, evapotranspiration, runoff,
and water storage changes. Thus, the framework allows the assimilation of an arbitrary number of observa-
tion data of water cycle variables. These variables can be further used as constraints, if they are assumed to
be highly precise.

For assimilating runoff observations from satellite altimetry Rt;alt, another observation group is added to the
observation vector. The runoff estimates in the state vector are directly related to the altimetry observa-
tions, which then gives the full observation equation through

Pt;obs

ETt;obs

Rt;obs

_Mt;obs

Rt;alt

2
666666664

3
777777775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Yt

5

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 0 I 0

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ht

Pt

ETt

Rt

_Mt

2
666664

3
777775

|fflfflffl{zfflfflffl}
Xt

1 mt (20)

or, as in the common Kalman literature,

Yt5HtXt1 mt; (21)

where mt is the zero-mean white observation noise with covariance matrix Dfmg5QO. The computation of this
covariance matrix is discussed in section 3.5. If the observed time series contain missing values, the observa-
tion relation matrix has to be adjusted accordingly. Therefore, the time-index t is used here to indicate a
dynamic observation relation matrix, which changes depending on the number of available observations.

Similar to the control input in section 3.2, the observations are computed from the collection of input data
sources shown in Table 1. It is common practice in hydrology to use an ensemble mean instead of single
models or data sets [e.g., Kirtman et al., 2013]. Nevertheless, high-quality observations over e.g., a single
catchment (if available) could be used here as well. This will be further analyzed in future studies.

3.4. Closure of Catchment-Scale Water Budgets
Water budget closure between the four water cycle variables can be achieved by adding state constraints
to the assimilation scheme. These constraints adjust the estimates of precipitation, evapotranspiration, run-
off, and water-storage changes in a way that the catchment-scale water budgets are closed. There are sev-
eral methods for adding such constraints to the assimilation scheme [e.g., Simon and Chia, 2002; Simon,
2010]. Here we discuss and apply two straightforward approaches for adding water budget constraints.

Both methods are based on the augmentation of the observation vector by adding some pseudo observations of
the water balance closure. The terrestrial water balance equation (1) can be written as a state constraint through

I 2I 2I 2I½ �

Pt

ETt

Rt

_Mt

2
666664

3
77777550; (22)

where 0 is a N31½ � vector which contains only zeros and I are N3N½ � identity matrices.
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When we write these constraints in shorter matrix notation

GXt50 (23)

with G5 I 2I 2I 2I½ �, we can augment the observation equation (20) through

Yt

0

" #
5

Ht

G

" #
Xt1

mt

xt

" #
; (24)

where xt is some zero-mean white noise with covariance QWB for the pseudo observations of the water
budget closure.

If the water budget should be perfectly closed, the method is usually referred to as perfect observations or
hard constraints. This can be easily achieved by assuming the pseudo observations to be noise free, i.e.,
QWB50. However, this assumption can lead to numerical issues, as the augmented observation error covari-
ance matrix is singular. Furthermore, by considering the large differences between the data sources of pre-
cipitation, evapotranspiration, and water storage changes, such a constraint might be too strict.

Therefore, one could allow some small imbalances. Such constraints are thus called imperfect observations
or soft constraints. In this case, we add some small nonzero observation errors, i.e., xt � N 0;QWBð Þ. In order
to be consistent with the basin-specific characteristics, this error is chosen to be 10% of the mean annual
cycle of runoff [Fekete et al., 2012].

3.5. A Multidata Approach for Estimating Basin-Scale Errors
As there are plenty of data sources, it is difficult to identify the ‘‘best’’ data sets for each of the water cycle
variables. It was shown in Lorenz et al. [2014] that there is no such data set that performs consistently well
on the global scale. Moreover, a proper description of the observation errors is essential in order to success-
fully apply any Kalman Filtering approach. Therefore, an ensemble-based approach has been chosen, where
numerous realizations of observations are estimated, based on the range of the input data sources.

First, the range of the collection of input data sets for the water cycle variable F (which is either precipita-
tion, evapotranspiration, or water storage changes) is computed for every catchment n and every time-step
t. This range is assumed to be a proxy for the uncertainty of each of the four water cycle variables. Therefore,
all precipitation anomalies from K different data sets are stored in a vector:

fn;t5 fn;t;1 fn;t;2 � � � fn;t;K½ �T (25)

where the fn;t;k are the anomalies with respect to the mean annual cycle ~F t . From this vector, the range is
given through

Dfn;t5
1
2

max fn;t
� �

2min fn;t
� �� �

(26)

The sample covariance and correlation matrices are then estimated through

RDf 5
1

T21

XT

t51

Dft2Df
� �

Dft2Df
� �T

(27)

qDf 5 RðdiagÞ
Df

� �21
2

RDf RðdiagÞ
Df

� �21
2

(28)

where RDf ðdiagÞ is the diagonal variance matrix of RDf . These correlation matrices thus describe the relation-
ship between the uncertainties of the water cycle anomalies from different catchments. In order to use as
much data as possible, the matrices are computed from past data only (i.e., until 2002). Then, the correlation
matrices are rescaled with the ensemble standard deviation from actual data (i.e., from 2003). Although multi-
ple data sets for each of the hydrological variables are used, there is not enough data for estimating reliable
ensemble standard deviations for every time-step. Therefore, a cyclostationary approach has been chosen:

rF;n;m5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KðT=12Þ21

XK

k51

XT=12

i51

Fn;k;i;m2~F n;k;m
� �2

vuut (29)
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where the index i represents a single year and m a single calendar month (e.g., January, February, etc.). K is
the number of data sets for a single variable and ~F n;k;m the long-term mean annual cycle of the kth data set
over catchment n for month m. The standard deviations for the other calendar months are computed like-
wise. The error covariance matrix is then given by

RP;m5 I rF;m
� �

qDf I rF;m
� �

(30)

where I is the N 3 N unit matrix and

rF;m5 rF;1;m rF;2;m � � � rF;N;m½ � (31)

The matrices for each water cycle variable are then combined in the full observation error covariance matrix

QO;t5

RP;t 0 0 0 0

0 RET;t 0 0 0

0 0 RRobs;t 0 0

0 0 0 R _M;t 0

0 0 0 0 RRalt;t

2
666666664

3
777777775
; (32)

where RRobs and RRalt are the covariance matrices for the runoff observations from GRDC and satellite altime-
try, respectively. The mean monthly index m has been replaced with the time-index t in order to account
for the monthly errors in the runoff observations from GRDC and satellite altimetry. According to e.g. Fekete
et al. [2012], traditional discharge measurements usually have an accuracy of 5–10%. We thus compute the
errors of the runoff observations from GRDC to be 5% of the reported values. The errors from satellite altim-
etry are obtained by propagating the errors of the altimetric water level measurements through the rating
curve model, as described in Tourian et al. [2013].

Obviously, correlations between the uncertainties of different water cycle variables are neglected. As the
data come from totally different sensors, we think that this is a reasonable assumption. However, it should
be further investigated how, for example, a fully populated observation error covariance matrix affects the
performance of the assimilation framework.

Figure 3 shows histograms of random perturbations derived from the covariance matrix in (32). These ran-
dom values are used for computing an ensemble of perturbed observations within the EnKF. Here we only
show some exemplary realizations for the three catchments Amazon, Danube, and Yana for January and
July. It is obvious that the chosen methodology is able to produce different perturbations for different
catchments, variables, and months. For example, the precipitation perturbations in January over the Ama-
zon basin show a wide spread as only about 73% are within the range between 250 and 50 mm/month.
On the contrary, in July, almost 100% are within the same interval. Over the Yana basin, almost 100% of the
precipitation perturbations are between 210 and 10 mm/month. The method is thus able to provide per-
turbations which depend on the climatic conditions, but also on the spread of the different data sets over
the basins. However, it should be mentioned that a limited number of rainfall gauges in a basin can lead to
very similar precipitation estimates from different products. This suggests a good agreement between these
data sources, even if the true precipitation can be totally different.

3.6. Computation of the Least Squares Prediction Matrix
According to equations (13) to (16), the least squares prediction matrix Â and its error covariance matrix QP

are computed from the auto- and cross-covariance matrices between anomalies of precipitation, evapo-
transpiration, runoff, and water storage changes. In order to capture reliable covariance structures, a collec-
tion of different data sources (which are listed in Table 1) has been used instead of single data sets. As it is
avoided to use the same data twice, the covariance matrices are derived from a different period (1980 until
2002) than the period during which runoff is estimated (2003 until 2010). The two matrices R and RD are
shown in Figures 2a and 2b.

It is emphasized that these matrices are derived from the anomalies, which consist of random errors, cli-
matic variability and extreme events. They thus represent covariances mainly due to features which deviate
significantly from the annual cycle. Both the auto- and cross-covariance matrix show high positive inter-
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catchment covariances throughout most basins especially for precipitation, evapotranspiration, and water
storage changes. These characteristics have been already addressed in Riegger et al. [2012], where it is con-
cluded that inter-catchment correlations can be expected e.g., for neighboring catchments due to local cli-
matic conditions.

The off-diagonal elements in R and RD for runoff are comparatively small. This indicates that there are no
such strong inter-catchment correlations (or covariances) for runoff. Thus, at the anomaly level, climatic and
physical variations in time series of runoff are rather local phenomena.

The inter-variable covariances are generally lower. Some strong relationship between precipitation, water
storage changes, and, to a certain extent, runoff can be detected. This is indicated by relatively high cova-
riances on the main-diagonals of the corresponding matrix blocks. At the anomaly level, this is intuitive as,
for example, an exceptionally strong precipitation event might lead to high runoff and an increased water
storage. The second case can be clearly identified by the high covariances on the main diagonals of the
upper right and lower left submatrices, respectively. In terms of precipitation and runoff, such a strong rela-
tionship can only be observed over some catchments. As an example, the gauges of the four basins Ama-
zon, Tocantins, Rio Xingu, and Rio Parnaiba are all located at the North-Eastern part of South America. Over
these catchments, there are high inter-catchment and inter-variable covariances between precipitation, run-
off, and water storage changes.

On the contrary, evapotranspiration generally does not show such high covariances with any of the other
water cycle variables. This indicates that there is no strong coupling between the anomalies of evapotranspira-
tion and other water cycle variables. The reason for this is the stable periodic characteristic of the

Figure 3. Histograms of 10000 random realizations drawn from a multivariate normal distribution with zero mean and the observation
error covariance matrix from (32). The histograms show the distributions of the random perturbations for the three catchments (left col-
umn) Amazon, (middle column) Danube, and (right column) Yana for (top row) precipitation, (middle row) evapotranspiration, and (bot-
tom row) water storage changes. The left bars (bright colors) correspond to the perturbations of January while the right bars (dark colors)
show the perturbations in July. The figure only shows the absolute value of the perturbations as they are symmetric around zero. The num-
bers in the top right corner of every histogram are the ensemble mean values of precipitation, evapotranspiration, and water storage
changes for January and July, respectively, in mm/month.
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evapotranspiration time series. Compared to the other water cycle variables, the total signal power (i.e., the
root mean square RMS) of the evapotranspiration anomalies are very low and their dynamics possess a ran-
dom behavior (not shown here).

When comparing the auto- and cross-covariance matrices in Figures 2a and 2b, they both show similar
structures, even if the covariances in RD are generally lower. The top right submatrix in Figure 2b shows,
as hydrologically expected, a strong cross-covariance between precipitation and water storage changes
with a time-lag of 1 month. On the other hand, the bottom left submatrix does not show such high cova-
riances. Thus, after a strong precipitation event, the impact on the water storage can be seen even 1
month later. There is no such strong coupling between e.g., anomalies of precipitation and runoff, even
if that could have been expected. This suggests that, based on the empirical covariances, significant
deviations from the mean annual cycle of precipitation do not necessarily lead to exceptional runoff
months.

The least squares prediction matrix and its corresponding error covariance matrix can be derived from the
auto- and cross-covariance matrices according to equations (13) and (14). The two matrices Â and QP are
shown in Figures 2c and 2d.

Instead of just using fully populated covariance matrices, we can distinguish between three cases:

1. Covariances between catchments and variables (case 1)
2. Covariances between catchments (case 2)
3. Covariances between variables (case 3)

In the first case, it is assumed that there are covariances between both the catchments and the water cycle
variables. In case two and three, either the covariances between the water cycle variables (case 2) or the
catchments (case 3) are neglected. In Figures 2c and 2d, only the matrices for case 1 are shown. The other
two cases are derived from these matrices by removing all submatrices except for those on the main diago-
nal (case 2) or all elements except for those on the main diagonals of each submatrix (case 3). It will be dis-
cussed in section 4.1.3 if these three cases lead to different predictions. Besides that, initial tests confirmed
that using equation (8) with different configurations of the least squares prediction matrices can explain
about 70% of the runoff anomaly variance (not shown). However, this must not hold true for the other
water cycle variables, which might be less predictable through such a covariance-based least squares
approach.

3.7. Performance Metrics
For validating the estimated time series of precipitation, evapotranspiration, runoff, and water storage
changes, numerous performance metrics can be evaluated. In hydrology, it is common to use correlation,
the percentage bias (PBIAS) [Gupta et al., 1999], and the Nash-Sutcliffe Efficiency (NSE) [Nash and Sutcliffe,
1970]. From these, correlation describes the level of common information content between two time series.
As it is insensitive to the amplitude and the mean value, the PBIAS between an observed (Yt) and predicted
(Xt) time series,

PBIAS5

XT

t51
Xt2Ytð ÞXT

t51
Yt

51 2
�X
�Y
; (33)

gives precise information about the relative difference between the long-term means. Finally, both metrics
are summarized in the NSEmean coefficient

NSEmean512

XT

t51
Xt2Ytð Þ2XT

t51
Yt2�Yð Þ2

(34)

which is highly sensitive to the agreement in phase, amplitude, and mean between two data sets. The NSE-

mean further represents the normalized mean squared error between e.g., an observed and predicted time
series [Lorenz et al., 2014].
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In this study, an alternative formulation of the NSE coefficient, which takes the long-term annual cycle of a
variable into account, is proposed:

NSEcycle512

XT

t51
Xt2Ytð Þ2XT

t51
Yt2~Y
� �2

(35)

where ~Y is not the long-term mean, but the long-term mean annual cycle. Similar to the common Nash-
Sutcliffe Efficiency, (35) gives information if the estimated time-series Xt is a better predictor than the long-
term annual cycle from historic data ~Y (NSEcycle> 0). If NSEcycle< 0, the estimated time-series can not
improve the long-term mean annual cycle with respect to the observations. This indicates that the esti-
mated residuals (with respect to the mean annual cycle) then do not capture the short- and long-term cli-
matic variability in the observations.

4. Results and Discussion

In this section, the performance of the presented approach will be discussed. First, different set-ups of
the assimilation framework are analyzed in order to find an appropriate configuration. Therefore, several
tests are run with both the unconstrained and hard Constrained Ensemble Kalman Filter (hereafter EnKF
and CEnKFh). For these tests, the framework estimates runoff over 16 of the 29 catchments, where con-
tinuous runoff observations during the period 2005–2010 are available (see Figure 1 and Table 2). The
runoff observations from the GRDC for these 16 catchments are removed from 2005, i.e., they are not
assimilated. Thus, all following performance metrics are derived from the comparison between observed
runoff and the estimates from the data assimilation framework during the period 2005–2010.

4.1. Sensitivity Analysis
4.1.1. Ensemble Size
In an Ensemble Kalman Filtering framework, the true state covariance matrices are approximated by empiri-
cal sample covariance matrices. Therefore, it has to be investigated if and how different ensemble sizes
have an impact on the estimates. Studies like e.g., Mitchell et al. [2002] provide a comprehensive analysis of
this issue. Here, estimated and observed runoff are compared with respect to the ensemble size. Figure 4a
thus shows the NSEmean between observed and estimated runoff for the first five catchments out of the 16
study regions, namely the Amazon, Congo, Mississippi, Ob, and Yenisei basins.

From these catchments, there are catchments with (Amazon and Ob) and without (Congo, Mississippi, and
Yenisei) runoff observations from altimetry. Furthermore, these catchments cover the main climatic regimes,
i.e., the tropics (Amazon and Congo), mid- (Mississippi) and high-latitudes (Ob and Yenisei). This allows a
basic analysis with respect to different runoff characteristics.

The figure clearly shows that NSEmean remains rather constant throughout all ensemble sizes, especially
over the Amazon, Ob, and Yenisei basins. The largest variations can be observed for the Mississippi basin
when ensemble sizes smaller than 5000 are used. However, these variations are negligible compared to the
magnitude of the performance metric. The impact of the ensemble size on the unconstrained (dark colors)
and constrained (bright colors) are very similar. From this analysis we have chosen an ensemble size of
10000 as Figure 4a clearly shows that using larger ensembles does not lead to improved results.
4.1.2. Perturbation Analysis
As any Ensemble Kalman Filtering approach involves random drawings of perturbations, the estimates from
repeated runs of the EnKF can show a certain spread. In order to analyze this uncertainty within the proposed
framework, the EnKF and CEnKFh are run with a fixed ensemble size of 10000 for 500 times. Figure 4b shows
the distribution of the Nash-Sutcliffe Efficiency between observed and estimated runoff for the 16 study
regions.

Foremost, the NSE values show a very small spread, even if there are large differences between the catch-
ments. For most catchments, the interquartile range (IQR) of the NSE is below 0.04. Larger values can be
observed for the Orange or Don basins, where the IQR can reach values up to 0.06. Runoff over these catch-
ments usually does not follow a typical annual cycle and has a lower overall magnitude. Therefore, even
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small changes in the predicted time-series can result in significantly different performance metrics. But
compared to the inter-catchment variability of NSE values, this spread appears negligible.

Comparing the performance metrics from the unconstrained (EnKF) and the constrained (CEnKFh) estimates
clearly shows that there is no significant difference in terms of spread. Thus, even if the water budgets are
forced to be closed, the estimated runoff time-series from multiple runs of the CEnKFh show a (negligible)
variability.
4.1.3. Structure of the Least Squares Prediction Matrix
It is investigated how the different covariance structures in the least squares prediction matrix influence the
results. This analysis thus helps to identify if the estimates benefit from fully populated covariance matrices
(covariances between both catchments and water cycle variables, case 1) or if covariances between catch-
ments only (case 2) or water cycle variables only (case 3) provide better results.

Figure 4c shows the NSE between observed runoff and the estimates from the EnKF and CEnKFh over 16
catchments for different configurations of the prediction matrix. Most catchments show positive values for
all three cases, while the highest values are clearly achieved by case 3. In addition, using an unconstrained
(darker dots) or constrained (brighter dots) does not lead to significantly different metrics. The worst per-
formance can be observed for the Orange, Don, and Fitzroy basins, where case 1 and 2 lead to negative
NSE values. The reasons for this are again the low overall magnitudes and irregular dynamics of the runoff
time-series over these catchments.

The best performance can be achieved when correlations only between the water cycle variables are
assumed (case 3). This can be understood from case 2, where the runoff estimates for a specific catchment

Figure 4. Sensitivity analysis showing the NSE values between observed and predicted runoff. (a) NSE derived from multiple runs of the fil-
ter using different ensemble sizes (the darker and brighter colors are derived from the EnKF and CEnKFh, respectively). (b) Box-and-whisker
plots from 500 runs of the EnKF (blue) and the CEnKFh (red) with the same settings and an ensemble size of 10000. The boxes represent
the 25% and 75% percentile of the distribution of performance metrics. The top and bottom whiskers cover approximately 99.3% of the
data, if a normal distribution is assumed. (c) NSE from the EnKF (dark colors) and the CEnKFh (bright colors) using a fully populated predic-
tion matrix (case 1, blue), and prediction matrices which neglect correlations between water cycle variables (case 2, green) or catchments
(case 3, red).

Water Resources Research 10.1002/2014WR016794

LORENZ ET AL. BASIN-SCALE RUNOFF PREDICTION 8465



depend only on runoff from other basins. From a climatic point of view, this would make sense as for exam-
ple, the tropical catchments often show similar runoff characteristics. However, this relationship is obviously
not strong enough for providing reasonable estimates.

On the other hand, it is noted that the use of fully populated prediction matrix (case 1) does not lead to bet-
ter results. For instance, the NSE values for case 1 do not always lie between those from case 2 and 3. The
reason for this behavior is not yet fully understood, and therefore, needs further investigation. Henceforth,
we will use covariance structures as in case 3 for the proposed methods.

4.2. Prediction Performance
After the identification of a suitable set-up, this section discusses the overall prediction performance of the
proposed method. The filter is run with an ensemble size of 10000 and case 3 of the prediction matrix in six
different configurations (see section 3.1). The estimated time-series for the 16 study regions are shown in
Figures 5 and 6, while the performance metrics with respect to the runoff observations are summarized in
Figure 7.

In terms of correlation, an overall good agreement between the dynamics of estimated and observed runoff
can be identified. Over most catchments (except for Orange and Fitzroy), the different configurations led to
correlations larger than 0.6. The catchments with high amplitudes and a dominant annual cycle in the run-
off time-series (Amazon, Congo, Mississippi, Ob, Yenisei, Lena, Mackenzie, Volga, Pechora, Fraser, Neva, and
Olenek) show correlations of at least 0.8. This good agreement can be explained by the repeating annual
cycle of runoff, which is reproduced well by all six set-ups (see Figures 5 and 6). The main reason for this is
the strong control input, which forces the runoff estimates to follow the mean annual cycle. However, sev-
eral catchments show significant climatic variations, which are revealed by the anomaly time-series in the
right columns of Figures 5 and 6. For example, over the Amazon basin, even if there is a dominant annual
cycle, the anomalies still show some significant dynamics, which are reproduced quite well by the esti-
mates. Also over Congo, Mississippi, Ob, Volga, Fraser, Neva, and Olenek, the estimated runoff anomalies
show significant long-term variations, which agree well with the observations.

For Lena, Pechora, and Olenek, the runoff observations show a significant second peak during the late
summer months, that can not be captured by the estimates. Over the Mackenzie basin, the estimates can
only capture the annual cycle but none of the exceptional events. Additionally, e.g., the sudden drop in the
constrained anomalies during 2008 can not be found in the observations.

It must be noted that the anomalies for many of the catchments with a dominant annual cycle are rather
small, which complicates the estimation of exceptional events. This also explains why the correlations over
these basins, despite the disagreement of the anomalies, are still very high.

Over catchments with lower overall magnitudes and irregular time-series dynamics (St. Lawrence, Orange,
Don, Fitzroy), several configurations achieve correlations of 0.5 and more. Thus, the runoff estimates are in
principle able to capture a large part of the climatic variability in the observations. But when looking at the
time-series for these four basins (Figures 5 and 6), the estimates do not agree well with the observations.
Over Don, both the estimates and the observations show a peak in runoff during the summer months dur-
ing the years 2005 and 2006. In 2007 and 2009, there are no such peaks in the observations, but still in the
estimated runoff. Nevertheless, on the anomaly level (right columns in Figures 5 and 6), observed runoff
shows a slight decreasing trend during the period 2005 until 2010 which is also roughly reproduced by the
estimates. That being said, if runoff over such basins is estimated from a water balance approach, it is man-
datory that all input variables are highly consistent in both their magnitudes and dynamics. Otherwise, due
to the biases in the estimates of the other water cycle variables, some artificial short-term variations are
introduced, which finally result in both low correlation values and high relative biases.

Overall, the estimates are not able to reproduce extreme events in the runoff time-series (e.g., Mississippi in
2008). This can be explained by several reasons. First of all, runoff is predicted using a least squares predic-
tion, which exploits covariance information. In fact, this information reflects only the averaged statistical
relationship between the variables and basins. The statistical relationships of extreme events are thus not
well represented. Moreover, the filtering of the input data, as described in section 2.5, significantly dampens
the peaks in the time-series. An extreme event could disappear simply due to the smoother input time-
series. On the other hand, the predictions show a significant increase during heavy flooding events over the
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Figure 5. Time-series of observed (black) and predicted runoff from different configurations of the Kalman Filter and Smoother for the study regions 1–8, showing the (left column) full
runoff time-series and (right column) runoff anomalies, where the mean annual cycle from historic runoff data has been removed.
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Figure 6. Time series of observed (black) and predicted runoff from different configurations of the Kalman Filter and Smoother for the study regions 9–16, showing the (left column) full
runoff time-series and (right column) runoff anomalies, where the mean annual cycle from historic runoff data has been removed.
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Fitzroy river in January 2008, February/March 2010 and December 2010/January 2011 (source: bom.gov.au).
These were induced by heavy rain events, which can be also detected in the input precipitation data sets
(not shown). The presented approach can therefore capture such extreme events, if these also occur in e.g.,
the precipitation time-series. This, however, must not always be the case: persistent rainfall during the end
of the previous and the beginning of the next month can lead to a flooding event, even if (due to the
monthly resolution) there are no exceptional features in the precipitation time-series.

When analyzing the performance of the different configurations, there is hardly any difference between the
unconstrained, constrained, filtered, and smoothed estimates. The largest spread in terms of correlation can
be observed over the Don basin (CEnKFh and CEnKFs: 0.72, CEnKSh and CEnKSs: 0.60), where the correlations
of the filtered are significantly higher than the smoothed predictions. This holds also for the unconstrained
and constrained estimates. Other significant differences can only be observed over the Fitzroy basin (EnKF:
0.54, CEnKSh and CEnKSs: 0.48). For most catchments, however, the different configurations have only little
impact on the dynamics of the estimated time-series.

Figure 7. Performance metrics between observed and predicted runoff over all 16 study regions. The statistics are based on the period
between 2005 and 2010. The colors indicate different configurations of the assimilation framework.

Water Resources Research 10.1002/2014WR016794

LORENZ ET AL. BASIN-SCALE RUNOFF PREDICTION 8469



Despite a slight underestimation of runoff over most catchments, the PBIAS values in Figure 7 show a differ-
ent picture as there are significant differences between the metrics from the six set-ups. Even if there are
many catchments where most configurations provide PBIAS values<6 10% (Amazon, Congo, Mississippi,
Ob, Volga, St. Lawrence, Don, Pechora, Fraser, and Neva), it is obvious that the constrained estimates show
generally larger biases. This can be particularly observed over the high-latitude catchments Yenisei, Lena,
Mackenzie, Don, Pechora, Fraser, Olenek, and Fitzroy, where the PBIAS values of the unconstrained and con-
strained estimates differ by more than 10%. An explanation for this can be a high uncertainty of the runoff
estimates. When using such constraints within an assimilation framework, each variable in the state vector
receives a correction, so that the water budgets are closed. This correction is based on the relative uncer-
tainty of the respective variable. Thus, uncertain variables receive stronger corrections. The runoff estimates
over the catchments showing large differences between the unconstrained and constrained predictions
can therefore be assumed to be more uncertain than e.g., the predictions over the Amazon, Ob, or Volga
basins. As a consequence, forcing the water budgets to be perfectly closed seems to be too strict. This
assumption is supported by the better performance of the soft constrained estimates over most basins.

Over some of the catchments, however, the anomalies of the unconstrained estimates are small or almost
zero throughout the whole period (Yenisei and Mackenzie), i.e., they are based mainly on the control input.
When compared with observed runoff, the peaks in the unconstrained estimates are sometimes over- and
sometimes underestimated. Thus, the errors cancel out, which leads to an overall small PBIAS value.

In contrast to most other catchments, the estimates over the Congo, Mackenzie, and Fraser basins show
some distinct biases. For Mackenzie and Fraser, the constrained estimates significantly underestimate runoff
over nearly the whole study period. The estimates from the CEnKSh and CEnKSs predict the lowest runoff
over both basins. In these cases, constraining and smoothing results in a significant bias with respect to the
observations. The same holds true for the Congo basin, where especially the estimates from CEnKSh and
CEnKSs overestimate runoff.

In the hydrological community, NSEmean values> 0.5 usually indicate an acceptable performance of runoff
estimates [e.g., Santhi et al., 2001; Moriasi et al., 2007]. This is the case for 13 of the 16 estimated catchments.
Several catchments even show NSEmean values> 0.8 (Amazon, Congo, Ob, Yenisei, Lena, Mackenzie,
Pechora, and Fraser). These are mainly basins with large amplitudes and a rather stable annual cycle in the
runoff time-series. For such catchments, it is thus suggested to analyze the NSEcycle metric (bottom row of
Figure 7). This metric obviously shows significantly smaller values than the NSEmean. Still, there are positive
values over 14 of the 16 study regions. This inherently means that the estimates over these 14 catchments
agree clearly better with the runoff observations than the values of the mean annual cycle.

It must be mentioned that over catchments with a less dominant annual cycle (St. Lawrence, Orange, Don,
or Fitzroy) the annual cycle from historic data is obviously a bad predictor. Thus, positive NSEcycle values can
be expected even if the estimates show only good agreement during a limited period or for distinct peaks.
In such cases, using the NSEmean gives more information about the performance of an estimated time-
series.

Significant improvements in terms of positive NSEcycle values can be found over Amazon, Congo, Mississippi,
Lena (EnKF and EnKS), Volga, St. Lawrence, Don, Neva, and Fitzroy. Even more than the classical NSEmean

metric, the NSEcycle is very sensitive with respect to the agreement of extreme events and long-term climatic
variations. From the anomaly time-series in Figures 5 and 6 it is obvious that the predictions successfully
reproduce the long-term variations in the residual runoff observations over Amazon, Congo, Mississippi, Lena
(EnKF and EnKS), Don, and Neva.

It becomes evident that even with high NSEmean values over Ob, Yenisei, Lena, Mackenzie, Pechora, and
Fraser, several configurations provide worse estimates than the mean annual cycle from historic data. Thus,
the variability on top of the annual cycle, which is induced by the assimilation, does not improve the esti-
mates. Ob seems to be a special case, as the anomalies of the estimates and the observations show similar
long-term variations. In the end, the large differences, especially during 2005 and 2006, between the esti-
mates and observations seem to result in a negative NSEcycle value.

In the case of Yenisei, Lena, Pechora, Fraser, and Olenek, constraining the estimates dampens the maximum
of runoff during the summer months. This can be identified by the negative peaks in the anomaly time-

Water Resources Research 10.1002/2014WR016794

LORENZ ET AL. BASIN-SCALE RUNOFF PREDICTION 8470



series in Figures 5 and 6, where the hard constrained estimates from CEnKFh and CEnKFs assume the lowest
runoff. Over the Olenek basin, using soft constraints actually leads to a better agreement, even if the sec-
ondary peaks during the late summer months are still missing. This is not the case for the Yenisei, Lena,
Pechora, and Fraser basins, where the unconstrained estimates provide better results. Especially for the
Lena basin, the long-term variability in the anomaly estimates from the EnKF and EnKS agrees well with the
observations, even if the peaks in the anomalies are higher. A closer look reveals similar features over the
Yenisei, Pechora, and Fraser basin. Over all these basins, the soft constrained estimates are able to capture
some of the negative peaks in the residual time-series, but also show several unrealistic variations. Thus,
using such constraints can lead to a better representation of short-term features, but the unconstrained
estimates are able to capture the climatic long-term variations.

Interestingly, over all high-latitude catchments with a distinct snow accumulation phase (i.e., where runoff
is close to zero), most configurations are able to reproduce the low runoff during the winter months. It can
be assumed that these phases do not change drastically from year to year as the observations show only lit-
tle deviations from the long-term annual cycle. Thus, during these phases, the estimates are mainly based
on the control input (i.e., the mean annual cycle), which explains the good agreement with the
observations.

5. Comparison to Similar Studies

In Troy et al. [2011], the water budgets of several basins over Northern Eurasia have been estimated using
multiple data sources. They further estimate basin-scale runoff from a weighted water-balance approach,
which is roughly comparable to our method. During their validation period between 1984 and 1999, they
achieve NSEmean values of 0.94 over the Lena and Yenisei and 0.89 over the Ob basin with respect to
observed monthly runoff. Even if our performance metrics are based on a different period, we achieve simi-
lar values (Lena: 0.95 from EnKF and EnKS, Yenisei: 0.92 from EnKF and EnKS, and Ob: 0.90 from CEnKFh).

Recently, Gudmundsson and Seneviratne [2014] published an approach for estimating gridded runoff over
Europe. They also present a catchment-scale validation for several European river basins, including the
Rhine and Elbe basin. These two basins are not included in our performance analysis due to missing data
during the selected study period. However, when estimating runoff using our ensemble based approaches,
we obtain NSEmean values of 0.66 (Rhine, EnKF) and 0.62 (Elbe, CEnKFh and CEnKFs), which is in good agree-
ment with the findings from Gudmundsson and Seneviratne [2014].

In Kang et al. [2014], the Variable Infiltration Capacity (VIC) [Liang et al., 1994] model has been applied to the
Fraser river basin. During their validation period from 1969 to 2006, the model estimated monthly runoff
with respect to the observations from the gauging station at Hope with a NSEmean of 0.85. In our study, the
runoff estimates for the Fraser basin during the period 2005–2010 show a comparable performance
(NSEmean 5 0.90 from EnKF, CEnKFs, and EnKS).

Riegger and Tourian [2014] proposed a methodology, that is based on the characterization of the relation-
ship between runoff and water storage changes. They simulated monthly runoff over five catchments,
namely the Mackenzie (NSEmean 5 0.93), Ob (0.95), Lena (0.87), Yukon (0.81), and Yenisei (0.63) basins. Our
approach is able to estimate runoff with a similar performance (Mackenzie: 0.90 from EnKF and EnKS, Ob:
0.90 from CEnKFh, Lena: 0.95 from EnKF and EnKS, and Yenisei: 0.92 from EnKF and EnKS).

6. Conclusion

In this study, a data-assimilation framework is proposed, which can be employed for predicting and correct-
ing catchment-scale time-series of runoff. One of the major design parameters of the framework is the use
of as much real data as possible instead of using complex model equations. Thus, the approach is based on
the terrestrial water budget equation only, which is included in an Ensemble Kalman Filtering framework.
The prediction scheme predicts precipitation, evapotranspiration, runoff, and water storage changes using
the so-called least squares prediction method. By this, we can exploit temporal and spatial covariance struc-
tures between different catchments and water cycle variables. For the observation equations of the
dynamic process model, the most recent versions of widely used data sources for precipitation, evapotrans-
piration, runoff, and water storage changes are applied. We further use estimated runoff from satellite
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altimetry in order to both fill the gaps in the time-series of gauge-based runoff observations but also to
improve the predictions.

The filter is first run with different ensemble sizes and three different structures of the prediction matrix for
finding a suitable set-up of the framework. The predictions from the filter are then compared with observed
runoff from GRDC on a monthly basis. So far, the best results can be achieved by assuming correlations
between water cycle variables only (case 3).

In order to enforce water budget closure between the estimated parameters, we further add appropriate
water budget constraints to the framework. Therefore, it is distinguished between hard constraints, which
assume perfect closure of the water budgets, and soft constraints, which allow a small well defined imbal-
ance. In the end, the framework is run in six different configurations: the Ensemble Kalman Filter, the hard
and soft Constrained Ensemble Kalman Filter, the Ensemble Kalman Smoother, and the hard and soft Con-
strained Ensemble Kalman Smoother.

In order to assess the performance of our data-assimilation approach, runoff is predicted over 16 large river
basins and validated against in situ data. The performance analysis shows that the proposed method is able
to estimate runoff with correlations larger than 0.8 for 12 of the 16 study regions. In terms of the PBIAS, val-
ues are less than 6 20% for most of the catchments (except for Orange and Fitzroy). Finally, the NSEmean

values are larger than 0.5 for 13 of the 16 catchments. As the runoff time-series of several catchments are
dominated by a strong annual cycle, we further analyze the NSEcycle, which relates the performance of the
predictions to the long-term mean annual cycle. For 14 of the 16 study basins, at least several configura-
tions achieve NSEcycle -values larger than 0. The time-series clearly show that the reason for this good per-
formance is a promising agreement between the observed and predicted long-term variations in the runoff
time-series.

The validation further shows that the different aforementioned configurations lead to similar time-series
and performance metrics for most of the studied catchments. The different configurations thus have only a
minor impact on the dynamics of the predicted time-series. As a general pattern, the constrained configura-
tions seem to suffer from larger biases. This holds especially true for the Yenisei, Lena, Mackenzie, Pechora,
Fraser, and Olenek basins. This results in rather negative NSEcycle values. The soft constrained configurations
provide slightly better results, which highlights the uncertainty in the data sources of water cycle variables.
Enforcing a strict closure of water cycle from uncertain data might thus lead to numerical artifacts.

As a conclusion, the method is able to provide runoff estimates over the catchments shown in Figure 8,
where only few or even no runoff observations are available after the year 2002. These catchments cover an

Figure 8. River basins for which runoff can be predicted using the Ensemble Kalman Filter approach based on global hydrometeorological data sets. For the green areas, more than 5
years of data after 2002 are available. The blue areas are (currently) poorly gauged basins with less than 5 years of data after 2002, but more than 5 years of continuous runoff measure-
ments during the period 1980–2002. These catchments cover an area of more than 11,500,000 km2 and provide a mean annual discharge volume of more than 1,25,000 m3/s of fresh-
water resources.
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area of more than 11,500,000 km2 and provide a discharge volume of more than 125,000 m3/s of freshwater
resources.

The performance analysis emphasizes the promising performance of the proposed method for predicting
runoff. There is still room for improvement. Over Ob, Yenisei, Lena, Mackenzie, Pechora, and Fraser, several
configurations provide worse predictions than the mean annual cycle from historic data, despite the high
NSEmean values. The reason for this has to be analyzed in more detail, as the bad performance of the con-
strained predictions indicates large inconsistencies in the data sources of the water cycle variables.

Furthermore, the predictions are not able to reliably reproduce extreme events in the runoff time-series as
it is not appropriate to predict e.g., flooding events from monthly data. Also because the least squares pre-
diction further exploits covariances, which describe the overall mean relationships between water cycle var-
iables and catchments, Future studies must address an appropriate statistical characterization of
exceptional events in the time-series of the water cycle variables.

Overall, the presented configurations of the data assimilation framework allow, despite their limitations and
shortcomings, to both fill data gaps and extend the streamflow time-series for basins with discontinued
observations. Thereby, the framework is an alternate option for predicting runoff of ungauged and poorly
gauged basins.
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