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Abstract
Thefinite-temperature transport properties of the spinless interacting fermionmodel coupled to non-
interacting leads are investigated. Employing the unrestricted time-dependentHartree–Fock (HF)
approximation, the transmission probability and the nonlinear I–V characteristics are calculated, and
comparedwith available analytical results andwith numerical data obtained from aHubbard–
Stratonovich decoupling of the interaction. In theweak interaction regime, theHF approximation
reproduces the gross features of the exact I–V characteristics but fails to account for subtle properties
like the particular power law for the reflected current in the interacting resonant levelmodel.

1. Introduction

Out-of-equilibriumquantum systems have receivedmuch attention in the past few decades, both
experimentally and theoretically [1]. Amajor goal is to understand the transport of charge and energy through
molecular or nanoscale systems coupled to reservoirs such that voltages and temperature gradients can be
applied.While there exist powerful numerical and analyticalmethods to calculate ground state and finite
temperature properties of isolated interacting quantum systems, the situation becomesmuchmore involved
when these systems are coupled to reservoirs and driven out of equilibrium, even in the case when a stationary
state is reached [2]. Due to these difficultiesmost of the previous studies have been restricted to single-site
models like the spinless interacting resonant levelmodel (IRLM) or the single-impurity Andersonmodel, and
themain focus was on the zero temperature I–V characteristics, in particular in the linear regime. A variety of
methods, both numerical and analytical, have been applied like, e.g., the time-dependent densitymatrix
renormalization group [3–5], non-equilibriumGreen’s functions [6, 7], the time evolving block decimation
method [8, 9], iterated summation of the path integral [10], renormalization groupmethods [11, 12], and
time-dependent density functional theory [13–17].While in theMeir–Wingreen approach [6] the problem is
formally solved, for interactingmodels it is generally not possible to evaluate the various Green’s functions
needed as input without further approximations. In the purely numericalmethods there exist severe
limitations with respect to size and dimensionality of the systems that can be studied, and even for single-site
models the approaches are computationally very expensive.

In the present studywe utilize theHartree–Fock (HF) approximation in order to calculate the I–V
characteristics of a spinless fermionmodel that can be seen as a generalization of the IRLM to several sites. The
obvious advantages of thismethod are the relatively low computational costs compared to numerically exact
approaches, and the greatflexibility with respect to dimensionality, system size and geometry,finite
temperature, and type and range of interactions. On the other hand, it is well known thatHF calculations for
isolated systems in the ground state or in thermal equilibrium tend to overestimate the appearance of spurious
broken symmetry phases. Therefore it ismost important to benchmark the results against exact solutions. The
purpose of this study is to assess the reliability of theHF approach in the non-equilibrium setting in comparison
with available exact results.
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2.Model andmethods

2.1. Spinless fermionmodel
Weconsider a one-dimensionalmodel of spinless fermions, whereNC central sites (themolecule) with nearest-
neighbor interactionU are coupled to a left and a right lead ofNL andNR non-interacting sites. The hopping
parameter t0 is, for simplicity, chosen to be the same in the leads andwithin themolecule, while the coupling
between the leads and themolecule is described by a hopping parameter t′ and a nearest-neighbor interaction
U′. TheHamiltonian reads

H H H H H Hˆ ˆ ˆ ˆ ˆ ˆ (1)L LC C CR R= + + + +

with
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where n c cˆ ˆ ˆl l l
†= . The sites a 1+ and b are the first and the last sites of themolecule, respectively (see figure 1),

and the system size is N N N NL C R= + + . The charge currents between the leads and themolecule can be
obtained from the equation ofmotion in theHeisenberg picture. Assuming that each fermion carries the charge
e, the charge current operator from the left lead into themolecule is given by

( )I e
N

t
e H N et c c c cˆ d ˆ

d
i ˆ , ˆ i ˆ ˆ ˆ ˆ , (3)a a a aL

L
L

†
1 1

†⎡⎣ ⎤⎦= − = − = − ′ −+ +

where N̂L is the number of particles in the left lead, andℏ is set to one. Correspondingly, the operator of the
current from themolecule into the right lead reads

( )I e
N

t
e H N et c c c cˆ d ˆ

d
i ˆ , ˆ i ˆ ˆ ˆ ˆ . (4)b b b bR

R
R

†
1 1

†⎡⎣ ⎤⎦= = = − ′ −+ +

Due to particle number conservation, in a stationary state the expectation values of left and right currents are
identical, I Iˆ ˆ

L R〈 〉 = 〈 〉.
In order to probe the transport properties of a systemwe drive it out of equilibriumby applying a voltage

and/or a temperature gradient. There are two different schemes that have been proposed in the literature
[18, 19] to simulate a non-equilibrium condition. In the first setting themolecule is initially considered non-
interacting and decoupled from the leads, and each of the three isolated subsystems is assumed to be in grand
canonical thermal equilibrium at its own temperature and chemical potential. At time t=0 the interaction is
switched on, and themolecule and the leads are connected by adding ĤLC and ĤCR. The time evolution of the
system is then governed by the full Hamiltonian. For sufficiently long leads one expects that after a transient
phase a stationary state arises where the current is time-independent, and the goal is to calculate this steady state
current as function of the applied temperature and voltage bias.

In the second scheme one considers a situationwhere initially the leads and themolecule are coupled and in
thermal equilibrium at the same temperature and chemical potential. At time t=0 a voltageV is applied by
adding different potentials eV 2± to the leads. Subsequently, the time evolution is governed by the full
Hamiltonian including the voltage bias. The stationary currents thus obtained coincide with the ones of the first

Figure 1. Illustration of themodel of equation (1) for N N 3L R= = and N 2C = .

2

New J. Phys. 17 (2015) 083060 C Schiegg et al



quench scheme as long as the applied potential ismuch smaller than the bandwidth of the leads [20].However,
for larger voltages there are significant differences in the I–V characteristics.While in the partitioned scheme the
current approaches afinite value in the limitV → ∞, in the second scheme it goes to zerowhen the potential
difference exceeds the bandwidth.

Since it is not clear how to realize awell-defined temperature bias in the second setting, and sincewewant to
retain the possibility to treat both voltage and temperature gradients we use the first scheme for our calculations.
Themerits and shortcomings of both quench schemes have been extensively discussed in the literature
[5, 20, 21].

2.2. Non-interacting system
Generally, the state of a quantummechanical system is described by the densitymatrix ρ̂. In our case each
subsystem α = L, C, R is initially in thermal equilibriumwith inverse temperature βα and chemical potential μα,
and the densitymatrix reads

( ) ( ) ( )Zˆ (0) e e e , (5)H N H N H N1 ˆ ˆ ˆ ˆ ˆ ˆ
L L L L C C C C R R R Rρ = β μ β μ β μ− − − − − − −

whereZ is determined from the condition Tr{ ˆ (0)} 1ρ = . The time-evolution of the densitymatrix is
determined through

tˆ ( ) e ˆ (0)e . (6)Ht Hti ˆ i ˆρ ρ= −

In order to calculate time-dependent expectation values of observables, like the current, one has to compute the
equal-timeGreen’s function defined as

{ }G c c t c cˆ ˆ Tr ˆ ( ) ˆ ˆ . (7)lm m l m l
† †ρ= =

For non-interacting systems, i.e., when theHamiltonian Ĥ contains only bilinear combinations of the Fermi
operators,G can be obtained from the equation ofmotion

t
G t H G

d

d
( ) i[ , ], (8)= −

where thematrixH is defined by

H H c cˆ ˆ ˆ . (9)
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Equation (8) is valid also for time-dependent but non-interactingHamiltonians. Expectation values of arbitrary
products of Fermi operators can be expressed in terms of theGreen’s function Glm by applyingWick’s theorem.
Therefore, once thematrixH is numerically diagonalized, it is straightforward to calculate time-dependent
charge currents for arbitrary times.

2.3.HF approach
When interactions are taken into account the task of determining the time-evolution of the densitymatrix
becomesmuchmore involved. Exact solutions for interacting systems out of equilibrium are extremely rare and
limited to very special points in the parameter space of the consideredmodel, e.g., the self-dual pointU t2 0′ = of
the IRLM[22]. A rather simple and physically intuitive approximation arises from theHFdecoupling of the
interaction terms in theHamiltonian
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As a result, the time-evolution of the densitymatrix is governed by a non-interacting but time-dependent
Hamiltonian ĤHF, and the equation ofmotion for the one-particle densitymatrix reads

t
G t H t G t

d

d
( ) i ( ), ( ) . (11)HF HF HF

⎡⎣ ⎤⎦= −

This equation ofmotion can be solved numerically with arbitrary precision using the short-time propagation

G t t G t( ) e ( )e (12)H t t H t t
HF

i ( )
HF

i ( )HF HFΔ+ ≃ Δ Δ−

and choosing sufficiently small time steps tΔ .
So far, we have discussed the time-evolution of the system starting from a given initial state in order to

extract the transport properties from the stationary state that emerges in the course of time. As an alternative,
one can use an approach that allows one to calculate the stationary currents directly without considering
explicitly the time-evolution. Formally this is achieved by theMeir–Wingreen approach [6, 7], based on the
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non-equilibriumGreen’s function formalism. For an effectively non-interacting system like ĤHF their result for
the I–V relation is equivalent to the Landauer formula [23, 24]. It has been shown [25] that the stationary state
Green’s function GHF can be expressed in terms of scattering states as

G f l k k m( ) , (13)lm

k

k
HF

L,R

∑ ∑ ϵ α α= 〈 ∣ 〉〈 ∣ 〉
α

α
=

where kα∣ 〉 is the eigenstate ofHHF that corresponds to an incomingwave from lead α = L, Rwithwave number
k, and f ( ) (e 1)k

( ) 1kϵ = +α
β ϵ μ− −α α with t k2 cosk 0ϵ = − is the Fermi function that accounts for the thermal

occupation of the states within each lead. Explicitly, up to a normalization constant the planewave scattering
state originating in the left lead is given by

m k
r m
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e for R
(14)
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i i

i
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−

and k N(2 )Lπ ν= with N0 2Lν< < . Here we have assumed for simplicity that thewave functions in both
leads are continued periodically up to infinity, and that N NL R= . Numerically it is straightforward to connect
the planewave ansatz (14) in the left and right lead by solving the Schrödinger equation for theHFHamiltonian
within themolecule. SinceHHF itself depends on the equal-timeGreen’s function, equation (13) has to be solved
self-consistently. Numerically this is achieved through iteration. Starting with some reasonable guess for GHF

one calculatesHHF using equation (10) and from there again GHF via equation (13). The procedure is iterated
until convergence is reached. From the self-consistent solution the steady state current can then be calculated
using equation (3).

The expression for the stationary current can also be cast into the formof the usual Landauer formula

( )I
e

h
f f Td ( ) ( ) ( ), (15)L R∫ ϵ ϵ ϵ ϵ= −

whereT t( )k k
2ϵ = ∣ ∣ is the transmission probability. In contrast to the non-interacting case, hereT ( )ϵ is not

only a function of the energy, but depends also on the voltage and the temperature of the leads due to the self-
consistency condition.

2.4.DiscreteHubbard–Stratonovich transformation
If the number of interacting sites is small, ideally if there is only interaction across a single link of neighboring
sites as it is the case for N 2C = andU 0′ = , it is possible to calculate the time-dependent densitymatrix tˆ ( )ρ
exactly withmoderate numerical effort. The starting point is towrite the time evolution operator Û as a product
ofM short-time evolution operators,

U tˆ ( ) e e , (16)Ht
m

M H ti ˆ

1
i ˆ∏= = Δ−

=
−

with t M tΔ= . For small tΔ onemay further split each exponential by dividing H T Vˆ ˆ ˆ= + into non-
interacting contributions T̂ and interaction terms V̂ . Using the symmetric Trotter breakup, one obtains

( )e e e e e (17)H t T V T t T t V t T ti ˆ i ˆ 2 ˆ ˆ 2 i ˆ 2 i ˆ i ˆ 2= ≃Δ Δ Δ Δ Δ− − + + − − −

with an error of t( )3 Δ . Finally, each exponential containing V̂ can be replaced by a sumover an Ising variable
s 1= ± usingHirsch’s discreteHubbard–Stratonovich decoupling [26]

( )( ) ( )e
1

2
e e (18)U n n t U t

s

s n n ti ˆ 1 2 ˆ 1 2 i 4

1

i ˆ ˆl l l l1 1∑=Δ Δ α Δ− − − −

=±

− −+ +

with t arccos(e )U ti 2αΔ = Δ . Applying this transformation to both exponentials in equation (6) onemay express
tˆ ( )ρ as the summation over the 4M configurations of M2 Ising variables, each of them representing the time

evolution of a non-interacting system in a time-dependent potential. For not too long leads and a number of
time slices M 10⩽ one can compute these sums numerically without introducing any further source of error.
The discreteHubbard–Stratonovich decoupling has previously been used in combinationwith an iterative
summation scheme in order to calculate transport properties of the single-impurity Andersonmodel [10].We
will use theHubbard–Stratonovichmethod later to benchmark the results of theHF approximation.

3. Results

In the followingwe present numerical results for themodel defined in equation (1).We restrict ourselves to the
cases N 1C = which corresponds to the IRLM, and N 2C = whichwewill refer to as two-sitemodel, for brevity.
In the IRLMU′ is the only interaction parameter, whereas in the two-sitemodel we setU 0′ = and vary the
interactionU between the two atoms of themolecule.
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The interaction dependence of the linear conductance for a two-sitemodel similar to ours was studied in
[27] usingDMRG. In contrast to ourwork, in that paper the interaction betweenmolecule and leadswas varied,
while the interaction on themolecule was kept fixed.

Unless stated otherwise, in all calculations the length of the leads is N N 100L R= = , the inverse temperature
is t20L R 0β β= = , and the overall chemical potential of the unbiased system is 0μ = which corresponds to
half-filled band in the leads. The time-dependent current I is calculated as themean value of left and right
currents if they are different. The currents obtained from the plateau value reached in the time evolution are
identical to the steady state currents calculated from the self-consistentHF approachwithin a relative error
typically of the order of 10−5, with the exception of the cases where hysteresis occurs in the self-consistent
solution.

3.1.NC= 1: interacting resonant levelmodel
In the case where themolecule consists of a single site theHamiltonian (1) is identical to the IRLMwith
interaction parameterU′. The I–V characteristics of thismodel for the special valueU t2 0′ = is known
analytically [22], and is given in closed formby [28]
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where F3 2 is a hypergeometric function, and eV t r t t( )c 0 0
4 3= ′ . The prefactor r 3.2≈ is the lattice

regularization of the corresponding field theory. Infigure 2we compare the I–V characteristics obtainedwithin
theHF approximationwith the exact analytical result of equation (19) for hopping parameters t t0.3 0′ = and
t t0.5 0′ = . For small voltages there is a linear relation between current and voltage due to the fact that at half
filling the Fermi level is exactly at the resonance, and therefore the conductance is identical to the conductance
quantum G e h0

2= of spinless fermions. Expanding equation (19) to leading order in the voltage yields

I V G V
V

V
( ) 1

27

140
. (20)0

c

6⎛
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⎛
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⎞
⎠⎟

⎞
⎠⎟≈ −

For comparison, the relative deviationΔ of theHF currents fromperfect conduction is shown in the inset of
figure 2. A linearfit of the data on a double logarithmic scale yields V 2Δ ∝ , just like for the non-interacting
system, in contrast to the nontrivial analytical result V 6Δ ∝ . Perturbative calculations [29, 30] for the IRLM
away from the self-dual pointU t2 0′ = indicate that there exists a nonvanishing contribution V 2Δ ∝ to the
backscattered nonlinear conductance althoughwith a reducedweight compared to the noninteracting system.

For larger voltages, the exact currents reach amaximumand then decrease slowly but steadily with negative
differential conductance. TheHF currents, on the other hand, increase up to somewhat larger voltages. Then a
sudden drop occurs followed by a range of negative differential conductance quite close to the analytical result.
For voltages beyond the bandwidth, eV t4 0> , theHF current remains constantwhile the exact one continues to
decrease. The location of the jump is independent of themethod how theHF currents are calculated. In
particular there is no sign of hysteresis, i.e., solving the self-consistency equations for voltages increasing by small

Figure 2.Current voltage characteristics of the IRLM forU t2 0′ = and t t 0.3, 0.50′ = . Symbols: HF approximation, full curves: exact
results from equation (19). The inset shows (for t t0.5 0′ = ) the relative deviation I I I( )0 0Δ = − fromperfect conduction,
I G V0 0= , G e h0

2= , on a double logarithmic scale. Symbols:HF data, solid line: V 2Δ ∝ .
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steps by taking the converged result of the previous voltage as starting point for the next iteration leads to the
same curves as for incrementally decreasing voltages. The discontinuous behavior, which is obviously an artifact
of theHF approximation, can also be observed in the time-evolution of the current displayed infigure 3 for
t t0.5 0′ = and several voltages close to the jump.While for voltages below the transition (red curves) the
stationary state is reached quite fast and the plateau values increase with voltage, there is a quite strong reduction
of the stationary current within a very small range of voltages, and it takesmuch longer for the system to reach
the non-equilibrium steady state.

Figure 4 shows theHF transmission coefficientT(E) of the unbiased (zero voltage) IRLMwhich is closely
related to the local spectral functionA(E). At half filling A E E T E( ) ( ) ( )∝ , with the density of states

E
t E

( )
1 1

4
. (21)

0
2 2


π

=
−

Themost striking feature is a pronounced broadening of the central peakwith increasing interaction. The zero
temperature spectral function of the IRLMhas been calculated numerically using theChebyshev expansion [31],
and the broadening of the central peak has been obtained byfitting the data to a Lorentzian

A E
E

( )
1

. (22)
2 2π

Γ
Γ

=
+

Figure 3.Current inHF approximation as function of time for the IRLM forU t2 0′ = , t t0.5 0′ = , and several voltages close to the
sharp transition at V t e1.9c 0≈ in the I–V curve in figure 2.

Figure 4.HF transmission coefficient of the IRLMat zero voltage t t0.15 0′ = andU t 0, 0.5, 1, 1.50′ = (frombottom to top). The
inset shows the broadening 0Γ Γ of the peak as function ofU′ compared to the broadening of the exact spectral function of the zero
temperature IRLM[31] for the same hopping parameter. The solid curves are polynomial interpolations as a guide to the eye.
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In the inset offigure 4we compare our data with the broadening calculated from the exact spectral function. Up
toU t0.5 0≈ theHF results agree reasonably well with the exact ones but for larger interactions there is quite a
strong discrepancy indicating the limitations of theHF approximation.

3.2.NC= 2: two-sitemodel
The transport properties of themodel (1) in the case N 2C = are different from those of the IRLM inmany
respects due to the fact that now the Fermi level lies exactly between the two transmission resonance peaks of the
non-interacting system. Therefore, the inclusion of interactionmay not only broaden or shift these peaks but
alsomodify the transmission at small energies and thus strongly influence the conductance.

Figure 5 shows theHF transmission coefficient of the unbiased two-sitemodel for several values of the
interactionU.While for attractive interaction,U t0= − , the resonance peak is shifted to smaller energy values
and slightly broadenedwith respect to the non-interacting one, the opposite is the case for repulsive interaction.
Correspondingly, the transmission at zero energy is reducedwith increasingUwhich is expected to result in a
decreased conductance.

This expectation is confirmed in the I–V diagram (figure 6) where the linear conductance is largest for
attractive interactionU t0= − , and decreases with increasing values ofU. Remarkably, at higher voltages there is
a strong and forU t1.5 0⩾ even discontinuous increase of the current such that all curves nearly collapse in the
large voltage regime.

Figure 5.HF transmission coefficient of the two-sitemodel at zero voltage for t t0.5 0′ = andU t 1, 0, 1, 1.50′ = − (from left to
right).

Figure 6.Current voltage characteristics of the two-sitemodel for t t0.5 0′ = , t8 0β = , and several values ofU. The curves areHF
data, the symbols are obtained from theHubbard–Stratonovich approach for shorter leads with N N 20L R= = , as illustrated in
figure 7. The size of the symbols is larger than the estimated error. The dotted curve is theHF current forU t1.5 0= and t50 0β = .

7
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In order to check if the strong increase of the currents in the I–V characteristics is an artifact of theHF
approximation, we have calculated the exact time-dependent currents using theHubbard–Stratonovich
approach described in section 2.4 for shorter leads (N N 20L R= = ). The number of Trotter time slicesM=9 is
chosen such that discretization errors in the data shown in thefigure aremuch smaller than the size of the
symbols. To avoid finite size effects due to the discrete spectra of the leads, we have used a somewhat smaller
inverse temperature, t8 0β = , for the data shown infigures 6 and in 7. To get an idea about the influence of
finite temperatures we also show theHF current forU t1.5 0= and t50 0β = as dotted curve infigure 6. The
deviation from the t8 0β = result is negligible with the exception of the voltage region close to the jump. For
small voltages,V t e2 0⩽ , theHF currents agree reasonably well with the exact ones displayed as open symbols
of the same color, whereas for larger voltages they are completely off. To elucidate this behavior, the time-
dependentHF currents are comparedwith the exact ones infigure 7 for two different voltages, V t e0= and
V t e4 0= . For the smaller voltage (left panel), theHF currents for repulsive interaction nearly coincides with the
exact currents and deviate only slightly for repulsive interaction,U t0= − . Note that the stationary currents for
much longer leads indicated by arrows on the right axis are nearly identical towhat onewould obtain by
averaging over the small oscillations observed in theHFdata for N 20L = .

In the case of large voltage (right panel), theHF currents resemble the exact ones only for short times during
the transient phase of the time evolution but converge all to the same current plateau of the non-interacting
system. The exact currents on the other hand approach different stationary values depending on the interaction
strengthU.

Figure 7.Time-dependent currents for the two-sitemodel with N N 20L R= = , t8 0β = , t t0.5 0′ = , and several values of the
interaction strength. The symbols are the exact currents from theHubbard–Stratonovich approach forM=9 time slices; the full
curves areHFdata. The arrows indicate theHF stationary state currents for the same parameters in the limit of infinitely long leads.
Left panel: V t e0= , right panel: V t e4 0= .

Figure 8.Hysteresis in the current voltage characteristics of the two-sitemodel forU t1.5 0= , t t0.5 0′ = , and t50 0β = . The blue
(red) curve is obtained from the iterative solution of theHF equation (13) for adiabatically increasing (decreasing) voltage, as
indicated by the arrows. The black curve corresponds to the stationary current taken from the time evolution.
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It is therefore clear that the collapse of the different curves at large voltages in the I–V diagramoffigure 6 is an
artifact of theHF approach and indicates a fundamental failure of the approximation in this parameter range.
This observation is in contrast towhatwe found for the IRLMwhere theHF datawere in reasonable agreement
with the analytical results both for small and for large voltages, see figure 2.

Interestingly, the discontinuity of the currents appearing in the I–V diagram for sufficiently strong
interaction and low temperature can be associatedwith the existence ofmultiple solutions of the self-consistent
HF equation. Infigure 8 the currents obtained from the iterative solution of theHF equation and the stationary
current taken from the time-evolution are shown in a small range of voltages close to the jump. Performing the
iteration for voltages that increase by small steps one obtains an I–V-curve that jumps from a low to a high
current branch at a voltage ofV t e3.03c1 0≈ while in the opposite direction the jump fromhigh to low currents
occurs atV t e2.77c2 0≈ . The true transition voltage obtained from the time-evolution lies in between at
V t e3c 0≈ . The existence ofmultiple solutions in the I–V characteristics within theHF approximation and
within the adiabatic local density approximation of density functional theory has recently been discussed for a
model withHubbard-type interaction [32].

4. Conclusion

The time-dependentHF approximation is a computationally cheap and versatile approach to calculate the I–V
characteristics of weakly correlated systems atfinite temperatures. The time-evolution of the currents until a
plateau value is reached as well as an iterative solution of the self-consistentHF equations for the stationary state
yield identical results with comparable numerical effort. However, the self-consistent approach sometimes
allows formultiple solutions which leads to hysteretic behaviorwhen the voltage is varied adiabatically. This
ambiguity can be avoided using the stationary current obtained from the time-evolution approach. For amodel
of interacting spinless fermions, theHFdata agreewell with available exact results, with the exception of the
large voltage regime of the two-sitemodel where a spurious discontinuous transition is observedwithin theHF
approximation. It is straightforward to generalize theHF approach inmany respects. In addition to the charge
currents also energy or heat currents can be calculatedwhich is of particular interest when besides the voltage
there is also a temperature gradient. Furthermore, dynamical properties, e.g., the response to a time-dependent
gate voltage, can be studiedwithout significant additional effort.
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