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Abstract Seasonal precipitation forecasts are important sources of information for early drought and
famine warnings in West Africa. This study presents an assessment of the monthly precipitation forecast
of the Climate Forecast System version 2 (CFSv2) for three agroecological zones (Sudan-Sahel, Sudan,
and Guinean zone) of the Volta Basin. The CFSv2 performance is evaluated for the Sahel drought 1983
and for all August months of the reforecast period (1982–2009) with lead times up to 8 months using a
quantile-quantile transformation for bias correction. In addition, an operational experiment is performed
for the rainy season 2013 to analyze the performance of a dynamical downscaling approach for this
region. Twenty-two CFSv2 ensemble members initialized in February 2013 are transferred to a resolution
of 10 km × 10 km using the Weather and Research Forecasting (WRF) model. Since the uncorrected CFSv2
precipitation forecasts are characterized by a high uncertainty (up to 175% of the observed variability), the
quantile-quantile transformation can clearly reduce this overestimation with the potential to provide skillful
and valuable early warnings of precipitation deficits and excess up to 6 months in ahead, particularly for the
Sudan-Sahel zone. The operational experiment illustrates that CFSv2-WRF can reduce the CFSv2 uncertainty
(up to 69%) for monthly precipitation and the onset of the rainy season but has still strong deficits regarding
the northward progression of the rain belt. Further studies are necessary for a more robust assessment of
the techniques applied in this study to confirm these promising outcomes.

1. Introduction

Numerical weather forecasts allow to predict weather conditions up to 10 days in advance. Longer forecasting
periods, however, are highly desirable for many purposes such as agricultural production, water supply and
distribution management, and prevention and preparation for weather-related humanitarian disasters. Reli-
able seasonal precipitation forecasts are important especially for subtropical/tropical water-limited regions,
where precipitation deficits during the rainy season heavily affect large parts of the population, most of them
living indirectly or directly from rainfed agriculture. In those regions the monsoon rain is the crucial source
of precipitation. West Africa, the area of interest in this study, is affected by an intensive intraseasonal, inter-
annual, and interdecadal rainfall variability [Nicholson, 2001; Schneider et al., 2011] causing large-scale and
long-lasting droughts in the past, such as the Sahel droughts in the beginning of the 1980s. Agriculture in
West Africa is highly vulnerable to subnormal precipitation amounts, since large parts of its agriculture relies
on rainfed crop production [Wani et al., 2009]. Knowing the variability of monsoonal rains in advance may
contribute to prevent crop failures which could finally help to stabilize or even increase the level of food
security.

Since the end of the 1990s, precipitation forecasts for the upcoming rainy season in West Africa are opera-
tionally performed within the framework of PRESAO (Prévisions Saisonniéres en Afrique de l’Ouest). PRESAO is
a joint initiative of the African Centre of Meteorological Applications for Development (ACMAD), the national
weather services of the West African countries, and several international weather and climate research insti-
tutions (for further information, see www.acmad.net). The current seasonal PRESAO forecast product is a map
for the seasonal precipitation amount from June to August, highlighting those regions in West Africa with

RESEARCH ARTICLE
10.1002/2014JD022692

Key Points:
• Performance of CFSv2 reforecasts for

West Africa is intermediate
• Statistical bias correction improves

the reforecast quality
• Numerical downscaling can also be a

valuable approach

Correspondence to:
J. Siegmund,
jonatan.siegmund@pik-potsdam.de

Citation:
Siegmund, J., J. Bliefernicht, P. Laux,
and H. Kunstmann (2015), Toward
a seasonal precipitation prediction
system for West Africa: Perfor-
mance of CFSv2 and high-resolution
dynamical downscaling, J. Geophys.
Res. Atmos., 120, 7316–7339,
doi:10.1002/2014JD022692.

Received 22 OCT 2014

Accepted 14 JUN 2015

Accepted article online 18 Jun 2015

Published online 4 AUG 2015

©2015. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided
the original work is properly cited, the
use is non-commercial and no
modifications or adaptations are made.

SIEGMUND ET AL. SEASONAL PREDICTIONS FOR WEST AFRICA 7316

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://www.acmad.net
http://dx.doi.org/10.1002/2014JD022692
http://creativecommons.org/licenses/by-nc-nd/3.0/


Journal of Geophysical Research: Atmospheres 10.1002/2014JD022692

expected deficit or excess in precipitation. The forecast product is based on the analysis of several sources
of information, e.g., the latest forecast information of global seasonal ensemble prediction systems (GSEPS)
such as the Climate Forecast System (CFS) from National Centers for Environmental Prediction (NCEP) [Saha
et al., 2006, 2013] and the precipitation forecasts of the national weather services for their region of interest
based on statistical techniques which use sea surface temperature observations and predicted atmospheric
information from GSEPS. In a final step, the individual information is merged and reinterpreted by the group
of meteorologists to formulate a harmonized precipitation forecast for West Africa. The main advantage of
PRESAOs seasonal precipitation forecasts is the usage of various sources of information and forecasting tech-
niques in combination with meteorological expert knowledge. The reliability of the seasonal PRESAO forecasts
has been analyzed by few studies only. In a report by Mason and Chidzambwa [2009], e.g., PRESAOs reliability
has been found to be reasonable. However, the current operational practice of PRESAO also has shortcomings:

1. The premonsoonal and postmonsoonal periods are not covered by the forecasts, yet these periods are very
important for agricultural considerations.

2. The current forecasts provide the total precipitation sum of a 3 month period, but the weather information
is needed at a much higher temporal resolution. The relevance of the 3 month sums for smallholders in the
tropics is questionable as several rainfall characteristics on smaller time scales are needed [Hansen et al.,
2011; Moron et al., 2013].

3. Agriculturally relevant intraseasonal precipitation characteristics, such as the date of the onset of the rainy
season or the length of intraseasonal dry spells, are not provided by the current procedure yet are highly
desired by local stakeholders in agriculture [Roncoli et al., 2002].

4. The lead time is limited to 1 month. But an extension of the forecasts’ lead time would expand the range of
options for preventive actions that allow to cope with extreme events like droughts.

In order to deal with these shortcomings, GSEPS can be a first source of information for providing regional
precipitation forecasts for West Africa. Several international weather institutions run their own GSEPS to pro-
vide forecasts for precipitation and other variables with lead times of 6 months and more. Prominent GSEPS
are the CFS of NCEP and the global EPS of the European Centre for Medium-Range Weather Forecast (ECMWF)
[Stockdale et al., 2011]. One of the earliest studies showing that real-time temperature and precipitation fore-
cast of GSEPS can be skillful for many geographical regions was performed by Wilks and Godfrey [2002]. Ndiaye
et al. [2011] furthermore found promising results of GSEPS forecasts for the West African Sahel region.

The integral part of these systems is a coupled oceanic-atmospheric general circulation model. The latest gen-
eration of these models, the CFS version 2 (CFSv2) and the fourth generation of the global EPS of ECMWF,
became operational in 2011 [Saha et al., 2013; ECMWF, 2014]. These systems include a set of reforecasts, pro-
viding the possibility to investigate the system’s predictive skill over a long time period. ECMWF’s seasonal
forecasting products have been analyzed and used for applications in Africa, e.g., by Dutra et al. [2013a, 2013b],
Di Giuseppe et al. [2013], or Mwangi et al. [2014]. Recently, Sheffield et al. [2014] developed a drought monitor-
ing and forecasting system, using downscaled CFSv2 seasonal temperature and precipitation predictions in
combination with hydrological modeling and remote sensing approaches. The CFSv2 reforecasting skill has
systematically been analyzed for various geographical regions of the world, focusing on sea surface temper-
ature (SST), precipitation, and further variables. For instance, Hu et al. [2012] and Xue et al. [2013] analyzed
CFSv2’s reforecasting potential for North Atlantic and global tropical SST, respectively.

The West African rainfall regime is only weakly triggered by El Niño–Southern Oscillation variations. This is
one of the reasons dynamically driven long-time precipitation forecasts only exhibit intermediate forecast-
ing skills for this region, so far [e.g., Yuan et al., 2011; Dutra et al., 2013b]. For instance, Yuan et al. [2011]
found a low predictive skill for precipitation over West Africa for lead times higher than 1 month. Even for
the 1984 Sahel drought patterns, the CFSv2 reforecast with a lead time of 4 months only had shown very
low correlation with the reanalysis data. Zuo et al. [2013] analyzed CFSv2’s reforecasting skill for monsoonal
precipitation and tropical SST for Southeast Asia, Equatorial Africa, and Central America. The prediction of
monsoonal precipitation was found to be skillful for America and Asia up to 5 months in advance, while the
predictive skill was comparatively low for the African monsoon probably due to the low model performance
of predicting the tropical Atlantic SST. Monsoonal rainfall in West Africa is on the large scale forced by an inter-
play of atmospheric and oceanic circulation patterns, e.g., nearby Atlantic sea surface temperatures and the
current Atlantic Meridional Overturning Circulation (AMOC) situation [e.g., Fontaine and Janicot, 1996;
Shanahan et al., 2009]. A detailed overview of the large-scale driving factors is given by Nicholson [2013].
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On the regional scale, precipitation patterns are additionally modified by the land surface conditions
[e.g., Steiner et al., 2009; Kunstmann and Jung, 2007]. The combination of these factors modulates timing,
strength, and positioning of the West African monsoon.

Real-time forecasts of global EPS can be accessed for many atmospheric variables via operational archives.
The type of variables, the temporal resolution, and the lead time of the available forecast information is suffi-
cient for many real-time applications. However, a crucial shortcoming remains the coarse spatial resolution of
global forecasts. A specific application highlighting this problem for hydrological applications in West Africa
was presented by Lebel et al. [2000]. It is therefore common in weather forecasting and climate projections
to transfer large-scale general circulation model (GCM) information to the geographical region of interest by
using statistical or dynamical downscaling approaches. A common approach in dynamical downscaling is to
nest an atmospheric model in a GCM, simulating the atmospheric flow for a limited geographical region. One
of the earliest applications for West Africa was performed by Jenkins [1997]. Since then, many further dynam-
ical downscaling approaches have been performed for this region [e.g., Jung and Kunstmann, 2007; Sylla et al.,
2011]. Recently, the CFSv2 reforecasts have been tested for dynamical downscaling purposes yet not for West
Africa. For instance, Huang and Chan [2013] used RegCM3 for tropical cyclone genesis over the western North
Pacific. The reforecasting of cyclone landfall frequency and locations could be slightly improved by the dynam-
ical downscaling approach. Statistical approaches are used to improve the precipitation forecast of GCMs
for West Africa [e.g., Ndiaye et al., 2009]. An overview of statistical and dynamical downscaling approaches
for West Africa is given by Paeth et al. [2011]. Recently, Yuan et al. [2013b] presented a study to establish a
hydrological drought forecasting system for Africa based on CFSv2. The meteorological forecasts of CFSv2 are
refined by statistical approaches and used as input information for a land surface model.

The novelty of this study is two sided: First, an evaluation of the CFSv2 reforecast performance for monthly pre-
cipitation amounts in August is performed for the entire reforecast period and for lead times up to 8 months
with a special focus on the severe Sahel drought 1983. In contrast to former studies performed for this region,
e.g., Yuan et al. [2013a] or Zuo et al. [2013], this study analyzes the raw and corrected CFSv2 monthly precip-
itation amounts. The correction of the CFSv2 precipitation forecasts is performed using a quantile-quantile
transformation similar to Themeßl et al. [2011] but applying this approach for ensemble forecast and for
monthly precipitation for eliminating systematic differences between forecasts and observations. The corre-
sponding performance of the corrected and raw CFSv2 forecasts is evaluated in the physical and probability
space using standard metrics often applied in an operational forecasting for two important forecast attributes:
Forecast accuracy and forecast uncertainty. The latter attribute tends to receive only little attention in many
studies. In this study, we construct a novel relative measure which relates the uncertainty of the CFSv2
forecasts to the observational uncertainty.

Second, the conduction of a seasonal forecasting experiment is performed, using a dynamical downscaling
approach to provide a regional ensemble forecast consisting of 22 members for the rainy season 2013 in West
Africa. The Weather and Research Forecasting (WRF) model is applied using the real-time ensemble forecasts
of CFSv2. WRF has been recently tested for this region in a reanalysis framework by Klein et al. [2015] focus-
ing on the model’s ability to represent dominant large-scale atmospheric patterns that drive the West African
monsoon. The performance of this regional ensemble prediction system is analyzed for standard variables
in seasonal forecasting such as the monthly precipitation amount. Additionally, an intraseasonal daily rain-
fall characteristic, the date of the onset of the rainy season, is analyzed. Those intraseasonal characteristics
are needed to improve the current operational practices in West Africa. The performance of our approach is
investigated in comparison to the raw CFSv2 forecasts, a low-skill reference forecast, and two observational
monitoring products. In addition, this study gives first insights whether the usage of raw, statistically corrected
or dynamically downscaled CFSv2 forecasts is worth to be used as an additional source of information for the
PRESAO seasonal outlooks.

2. Study Area and Data
2.1. Description of the Study Area
The area of interest in this study (Figure 1) is West Africa with a focus on the Volta Basin. Spanning six countries,
the Volta Basin ranges over various climatic and ecologic regimes. For the analyses the Volta Basin is subdi-
vided into three agroecological zones: the Sudan-Sahel zone north of 11∘N, the Sudan zone between 11∘N
and 8.5∘N referring to Barry et al. [2005], and the Guinea Coast south of 8.5∘N referring to Sylla et al. [2009].
In Figure 2 the monthly areal precipitation amounts for the three agroecological zones are illustrated.
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Figure 1. The Volta Basin in West Africa and the agroecological zones for which the analyses are performed and the
domains used for dynamical downscaling (spatial resolution of Domain 1 (Domain 2) is 30 km × 30 km
(10 km × 10 km)). Land and sea color signatures indicate the elevation level.

The northern zones are characterized by one rainy season with a peak during July and August, while the pre-
cipitation regime of the Guinean Coast zone is characterized by two rainy seasons per year with peaks in
May/June and in September. The shaded areas in Figure 2 show the interannual rainfall variability, indicated by
the range between the 10th and 90th percentiles of the period from 1971 to 2010. Additionally, the monthly
areal precipitation of the extreme dry year 1983 is highlighted in Figure 2. The monthly precipitation amount
of 1983 is characterized by strong negative deviations from the climatological mean, in particular from July
to September for the Guinean Coast and the Sudan zone.

In addition to that, Figure 3 illustrates the northward propagation of the rain belt over West Africa during the
summer rainy season. As known from Nicholson [2009], this rain belt does not represent the location of the
land Intertropical Convergence Zone (ITCZ) but is a result from uprising air in between the African Easterly Jet
and the Tropical Easterly Jet. In addition, a very specific rainfall characteristic of southern West Africa in the
midsummer dry period between July and August is illustrated in Figure 3, ranging from Côte d’Ivoire to Nigeria
along the Guinean coastline. This summer drop in rainfall is also mirrored by the local vegetation: In the area
around the coastal regions of Ghana, Togo, and Benin the rain forest is interrupted by a savanna corridor, the
so called Dahomey Gap [Salzmann and Hoelzmann, 2005].

2.2. Reforecasts and Real-Time Forecasts of the Climate Forecast System Version 2
The provided CFSv2 data consist of three products, the CFS reanalysis (CFSR), the CFSv2 reforecasts, and the
CFSv2 real-time forecasts. In this study we use the 28 years (1982–2009) set of CFSv2 reforecasts and the
real-time forecasts of February 2013 which are briefly described in the following sections.
2.2.1. CFSv2 Reforecasts
The CFSv2 reforecasts have the advantage that the performance of a forecasting technique can be tested for
many years. For every month during the time period from 1982 to 2009, 20–28 reforecasts over a time period
of 9 months are available. Additionally, several reforecasts with shorter lead times (3 months and 45 days) are
provided for the period 1999–2009. The temporal resolution of the data is 6 h with a spatial resolution of 1∘

[Saha et al., 2013; Saha and Tripp, 2013]. These reforecast data are available for selected atmospheric variables
at various pressure levels provided by NOAA [2014]. In this study we use the monthly precipitation data of
the 9 months forecast runs to analyze the CFSv2 performance. Due to the large data amount, not all pressure
levels of the forecast runs are archived by NOAA [2014]. Thus, only a very limited number of pressure levels
would be available as input information for dynamical downscalings. To overcome this problem, we use CFSv2
real-time forecasts.

SIEGMUND ET AL. SEASONAL PREDICTIONS FOR WEST AFRICA 7319



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022692

Figure 2. Mean monthly areal rainfall and rainfall variability for the three agroecological zones and the Volta Basin itself
taken from GPCC reanalysis (1971–2010). Percentiles refer to all observations of the 40 year period from 1971 to 2010. In
addition, the mean monthly areal rainfall amount of 1983 is illustrated.

2.2.2. CFSv2 Real-Time Forecasts
The CFSv2 operational forecasts continue the CFSv2 reforecasts, operationally providing real-time forecasts
with three different lead times. Every day four 9 months runs are initialized at 0, 6, 12, and 18 UTC. In addition,
three 3 month runs are initialized at 0 UTC, and three 45 days runs (nine per day) are initialized at 6, 12, and
18 UTC. The operational CFSv2 data are provided in 6-hourly resolution for all variables needed to drive WRF
[Skamarock et al., 2008]. For the downscaling we use temperature, u wind and v wind components, relative
humidity, and geopotential height at 28 pressure levels. Additionally, sea level pressure and surface pressure
are used. The sea surface temperature information is substituted by the skin temperature in order to overcome
the problem of missing sea surface temperature data along the shoreline.

The CFSv2 real-time forecasts runs of the last 7 days are available by a 7 days rotating archive at NOAA [2014].
While CFSR provided the initial conditions for the reforecasts, the Climate Data Assimilations System (CDAS
by NCEP/National Center for Atmospheric Research) provides the initial conditions for the operational CFSv2
forecasts. CDAS is the operational continuation of CFSR. This is why the data assimilation for the CFSv2 oper-
ational forecasts has a resolution of T574 (at equator ≈ 34 km) instead of T382 (at equator ≈ 52 km) as for
the CFSv2 reforecasts. This is one of the key differences between the reforecasts and the real-time forecasts
of CFSv2 [Saha et al., 2013; NCEP, 2013].

2.3. Observational Data
To compare the precipitation forecasts of the global CFSv2 and the regional CFSv2-WRF with measure-
ments, we use different observational data sets. These are globally gridded gauge measurements (Global
Precipitation Climatology Centre, GPCC) and gauge-corrected satellite data (RFE2).
2.3.1. GPCC
The Global Precipitation Climatology Centre (GPCC) data sets provided by the German Weather Service are
globally gridded monthly land surface precipitation amounts. In this study the GPCC Full Data Reanalysis
version 6.0 [Schneider et al., 2011] with a resolution of 0.5∘ available from 1971 to 2010 is used. In addition,
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Figure 3. Mean monthly rainfall over West Africa for the central months of the summer monsoon from GPCC reanalysis
(1971–2010).

we use the monthly precipitation amounts of Near Real-Time First Guess Monthly Land-Surface Precipitation
[Ziese et al., 2011], available at a resolution of 1∘ from 2005 until today. The GPCC data sets are pure gauge
measurements, interpolated to a regular grid for global land surfaces.

A generally critical aspect, which has to be considered when comparing model data to gridded precipitation
data sets, is the data set’s gauge station density in the study area. For the GPCC reanalysis this has been globally
analyzed by Lorenz and Kunstmann [2012]. In West Africa, as well as in most other parts of the world, the
number of gauges used for GPCC has been continuously decreasing during the last decades. While the gauge
station density in the study area is comparatively high for the 1980s, it is quite low for the years after 2000.
2.3.2. RFE2
African Rainfall Estimate version 2 (RFE2) [NOAA CPC, 2013] is a combined satellite-gauge data product, oper-
ationally provided by the Climate Prediction Center, National Weather Service of the United States of America
(CPC), and is part of the Famine Early Warning System Network. The spatial resolution is 0.1∘, available for the
entire African continent in the time period from 2001 until today. The rainfall estimates in RFE2 are derived
from three satellite data sets and are merged by a maximum likelihood estimation. Finally, the data are
fitted to the Global Telecommunication System (World Meteorological Organization Global Telecommunica-
tion System) gauge measurements [NOAA CPC, 2013]. The RFE2 data are used for the comparison with the
real-time forecasts because of its high temporal and spatial resolution, making RFE2 preferable against other
monitoring products. A further advantage is the fast data availability with a latency of only 6 h.

3. Methodology
3.1. Statistical Correction of the CFSv2 Precipitation Forecasts
Prior to the analyses of the CFSv2’s reforecast performance, we apply a normal-quantile transform [see
Themeßl et al., 2011; Bogner et al., 2012; Krzysztofowicz, 1997] to the raw CFSv2 data, in order to remove the
systematic differences between forecasts and observations. This technique is a frequently used correction
method for eliminating systematic differences. Themeßl et al. [2011] used this approach for the correction of
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daily precipitation amounts obtained from a regional climate model and illustrated that the approach is supe-
rior in combination with further statistical downscaling techniques. Bardossy and Pegram [2011] refined this
methodology by introducing weather patterns into the correction algorithms. They applied this approach for
areal averaged daily precipitation amounts from a regional climate model. In our approach we follow the work
of Themeßl et al. [2011] but our correction algorithm is applied for monthly areal precipitation amounts, sim-
ilar to the fashion of Bardossy and Pegram [2011], but for each month of the year, each lead time and region
separately. The following steps are performed:

1. Sort all observations x = {x1, x2, ..., xn} of a given region for all August months of the selected time
period (1971–2010) from smallest to largest value and determine ranks Rxi

for each observation xi , where
i = 1, 2, ..., n and n = number of observations.

2. Determine an empirical cumulative distribution function of the observations Fx by calculating cumulative
frequencies pi for each observation using the plotting position formula pi = Rxi

∕(n + 1).
3. Sort all reforecast ensemble members y = {y1, y2, ..., ym} from all ensembles with the same lead time

(1982–2009) from smallest to largest and determine ranks Ryi
for each forecast value yi , where i = 1, 2, ...,m

and m = number of reforecasts.
4. Determine empirical cumulative distribution function Fy by calculating cumulative frequencies qi using the

same plotting position formula qi =
Ryi

(m+1)
.

5. Determine corrected forecast value y′i for each qi by using the inverse cumulative distribution function of
the observations y′i = F−1

x (qi).
6. Repeat steps 3 to 5 for each lead time.

We use the GPCC reanalysis as reference climatology for the correction of CFSv2 precipitation and apply the
transformation for monthly mean areal precipitation.

3.2. Statistical Verification of the CFSv2’s Precipitation Reforecasts
In a first step, a verification of the CFSv2 reforecast performance for the monthly areal precipitation amount
is performed for the Sahel drought 1983. The target month of this investigation is August 1983 where very
unusual low-precipitation amounts have been observed. In order to investigate whether CFSv2 would have
forecasted this event 6 months in advance if it had been operational at that time, the CFSv2 reforecast runs
with a duration of 9 months, initialized in February 1983, are used for this analysis. In addition, this analysis is
repeated for shorter (1 to 5 months) and longer lead times (7–8 months) using CFSv2 reforecast ensembles
initialized from November 1982 to July 1983 in order to analyze how the ensemble spread (forecast uncer-
tainty) and the forecast accuracy are evolving related to the lead time. As reference data for these analyses,
the GPCC reanalysis observations are used.

In a second step, a verification of the CFSv2 reforecasts is performed for monthly areal precipitation amounts of
the August months of the entire retrospective forecast period from 1982 to 2009. To estimate the uncertainty
of the reforecasts, the interdecile range (IDRy) of the ensemble forecast is calculated. The IDRy is the difference
between the 10th and the 90th percentiles of the members of an ensemble forecast. Thus, the IDRy ranges
between 0 mm and infinity; low values indicate a small uncertainty. We calculate the CFSv2 reforecast IDRy for
the target month August and various lead times (𝜏). A desirable characteristic of a (re)forecast system is a small
forecast uncertainty compared to the observational uncertainty. To construct a relative measure which can
quantify this relationship, the IDR of CFSv2 reforecasts is divided by the IDR of the climatological distribution
of the observations (IDRx), resulting in a relative interdecile range (RIDR). The IDRx is the difference between
the 10th and the 90th percentiles of the GPCC August observations for the analyzed period:

RIDR(𝜏) =
IDRy(𝜏)

IDRx
(1)

The RIDR can range between 0 and infinity. If RIDR is smaller than 1, the CFSv2 forecast uncertainty (width of
the ensemble spread) is smaller than the observed variability based on the past GPCC observations. If RIDR is
1, the forecast uncertainty is identical to the observational uncertainty.

To quantify the forecast accuracy, we calculate the relative mean absolute differences (RMADs) between
reforecasts and observations for various lead times (pertaining August):

RMAD(𝜏) =
1
n

∑n
i=1 |xi − ȳi(𝜏)|

x̄
⋅ 100% (2)
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where xi is the observed monthly areal precipitation (here for August) in the ith year; yi is the arithmetic mean
of the CFSv2 ensemble (here for August) in the ith year; n is the number of joint reforecast and observation
pairs; and x̄ is the observed climatological mean (GPCC) of the monthly areal precipitation (here for August)
calculated from GPCC reanalysis data. The RMAD ranges between 0% and positive infinity where a low value
indicates a high accuracy. A forecast with a RMAD of zero is identical to the GPCC observations.

The RMAD and the RIDR are selected to evaluate the corrected and raw CFSv2 precipitation forecasts in the
physical space. The major reason is that corrected GSEPS precipitation forecasts (using statistical approaches)
are also used for subsequent applications like drought forecasting. The corrected GSEPS precipitation is usu-
ally the main input information for distributed land surface models or hydrological models. In this case the
absolute values of the corrected CFSv2 forecasts are of interest, as well, and corresponding verification mea-
sures can give some valuable insight regarding the performance of a selected forecasting technique in the
physical space. In addition, we calculate the ranked probability score RPSy to determine the accuracy of CFSv2
forecasts in the probability space. The ranked probability score was proposed by Epstein [1969], and it is one
of the most frequently used scores to determine the quality of probabilistic forecasts. Detailed information
regarding the calculation of this measure is given by Wilks [2011]. In this study the forecast probabilities are
determined for three precipitation categories based on the terciles. The categorization is identical to the
frequently applied three categories (“below average,” “climatology,” and “above average”) in seasonal fore-
casting [Wilks and Godfrey, 2002] which are based on terciles. These precipitation categories are also used
in PRESAO [Mason and Chidzambwa, 2009]. We also calculate the ranked probability score RPSx using the
climatological forecasts to compare the accuracy of the CFSv2 precipitation forecast (corrected and raw) in
comparison to a low-skill reference forecast. The same precipitation categories are used for a calculation of
the RPSx using the GPCC observations. If RPSy is smaller (greater) than RPSx , the accuracy of the CFSv2 forecast
is better (worse) in comparison to the climatological forecast. They are identical if RPSy = RPSx .

The evaluation using the areal precipitation amount for a given region is similar to the work presented by
Bardossy and Pegram [2011] who corrected the gridded RCM precipitation output with gridded observed pre-
cipitation based on a quantile-quantile transformation. In our approach, we aggregated the monthly CFSv2
and GPCC precipitation fields directly to the scale of the agroecological zones. The primary reason is the sparse
precipitation network in West Africa in particular within the last 20 years [e.g., Lorenz and Kunstmann, 2012]
which have been used for the generation of global precipitation products such as GPCC. The aggregation is
performed to obtain a better estimate for the observed areal precipitation. In this case the estimation of the
areal precipitation is based on a higher number of observations in comparison to an evaluation on a finer
spatial scale.

Probabilistic skill scores are often very low, in particular for precipitation extremes, hiding the real value of
a forecast system although the accuracy in terms of a probabilistic binary warning system can be very high.
This problem is illustrated by, e.g., Jolliffe and Stephenson [2012] or Bliefernicht [2011]. To overcome this prob-
lem, we determine hit rate and false alarm rate to evaluate the CFSv2 precipitation forecasts in terms of a
binary warning system. The hit rate H and false alarm rate F are calculated for both terciles based on a set
of 20 probability thresholds used for a warning to determine the curves of the relative operating character-
istics (ROC diagram) [e.g., Hogan and Mason, 2012]. A positive skill is indicated when the hit rate is larger
than the false alarm rate (H > F). Based on this information, we also calculate the Peirce skill score PSS
which is the hit rate minus the false alarm rate [e.g., Hogan and Mason, 2012] PSS = H − F. In comparison to
other common binary skill measures, the PSS has the property that it can be used to assess the value of the
forecast information, one of the most important forecast attributes in weather forecasting or in climate pre-
diction. The Peirce skill score is identical to the maximum economic value of a forecast system [Richardson,
2003]. The economic value is a measure to address the utility of a warning system in terms of monetary
costs. The number of alarms of a warning system is related to alarm costs due to protective action and the
corresponding number of misses to monetary losses. To determine the benefit of a warning system, the total
expense (sum of alarm costs and monetary losses) of the warning system is compared to the optimum total
expense of a warning system that produces no warning (no protection) or always a warning (total protection).

3.3. Dynamical Downscaling of CFSv2 Real-Time Forecasts Using WRF
In order to investigate the benefit of a dynamical downscaling of the CFSv2 forecasts, the operational forecasts
for 2013 are downscaled for the Volta Basin to a resolution of 10 km × 10 km using WRF-ARW version 3.4.1
[Skamarock et al., 2008]. The operational simulation experiment is performed using 22 members of the CFSv2
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forecast runs initialized in February 2013 to cover the most important time of the rainy season in West Africa
(June, July, and August) with a sufficient lead time. This technique has the additional advantage that the pre-
monsoon period from March to May is covered. This period is needed to forecast the date of the onset of the
rainy season. Since CFSv2 provides a number of forecasts with lead times less than 3 months, only those sim-
ulation runs with a lead time of 9 months can be used for this experiment. The total number of these forecast
runs is still very large (n = 112 for February 2013) because four 9 months simulation runs are initialized every
day. To reduce the computational amount for the downscaling experiment and to create an ensemble with
a large range of different initiation times, only one CFSv2 simulation per day is selected for the downscaling
experiment ensemble. Due to missing time steps in the provided CFSv2 data, not all of the 28 CFSv2 February
simulation runs are used. Finally, the experiment uses a time-lagged ensemble consisting of one 0 UTC sim-
ulation run of almost each day in February 2013. The CFSv2 input data are available in 38 vertical levels and
6-hourly temporal resolution.

The downscaling is conducted until 31 August 2013 using two one-way nesting domains (Figure 1). The
horizontal resolution of the inner domain is 10 km. In both domains we use 28 atmospheric levels with an
atmospheric top at 5000 Pa with an adaptive time step for numerical integration. The high model top is chosen
in order to be able to represent the very high altitude of the tropopause, as it is typical for tropical regions like
the study area. The combination of a comparably low vertical resolution with a high model top has formerly
been used in, e.g., Jung and Kunstmann [2007] for this region. The WRF model is nested in the CFSv2 based
on conventional sponge technique where the atmospheric forcing is purely determined from the boundary
conditions. Beside this technique, there are several further approaches such as the spectral nudging [e.g., von
Storch et al., 2000]. An overview about various alternative nesting approaches is given in, e.g., Liu et al. [2014].

We also performed a comprehensive analysis in a reanalysis framework using WRF and ERA-Interim data
regarding the ability to represent large-scale atmospheric features that drive the West African monsoon. The
results of these experiments are summarized in Klein et al. [2015]. The selected parameterization schemes and
further model setup such as the vertical resolution used in the ensemble experiment are based on experiences
from former studies made for this region using MM5 [Jung and Kunstmann, 2007] and using WRF to down-
scale ERA-Interim and CFSR reanalysis data for the wet seasons 1999 and 2002 [Bliefernicht et al., 2013]. For
the microphysics we use the WRF single-moment 3-class scheme [Hong et al., 2004]; the longwave radiation is
calculated by a Rapid Radiative Transfer Model based on Mlawer et al. [1997], while the Dudhia scheme [Dudhia,
1989] is used for the shortwave radiation. The land surface physics are computed by the Noah Land Surface
Model [Tewari et al., 2004], and the planetary boundary layer is treated by the Yonsei University scheme [Hong
et al., 2006]. As cumulus scheme we use the Betts-Miller-Janjic scheme [Janjic, 1994], and CFSv2 soil moisture is
used for land surface initialization. A distinct model spin-up time is not considered, because the time between
the initialization in February and the monsoonal rainfalls between June and September can be expected to
be sufficient for the regional model to build up the relevant atmospheric circulation features.

3.4. Calculation of Intraseasonal Rainfall Characteristics
The definition of ORS (onset of the rainy season) applied in this study is based on an agricultural approach
to recommend planting time following Laux et al. [2008]. The method has already been applied for the Volta
Basin in West Africa [Laux et al., 2008, 2009] and further improved for Cameroon [Laux et al., 2010]. The ORS
is defined as the first day of a wet spell with significant rainfall amounts for cropping and without any crop
damaging dry spell within the month afterward. In this approach, these criteria are translated into the fol-
lowing three fuzzy rules: (1) at least 25 mm total precipitation within five consecutive days. (2) This period is
characterized by a wet starting day (wet = min 2 mm/d) and at least two further wet days in that period. (3)
No dry spell longer than 6 days during the next 30 days. Since the WRF and CFSv2 produce multiple “drizzle”
events, the ORS approach used in this study is slightly modified by an empirical 2 mm threshold, transferring
all daily precipitation amounts smaller than 2 mm into 0 mm. Otherwise, the drizzle results in unrealistic early
ORS dates.

4. Results
4.1. Statistical Analyses of CFSv2 Reforecasts for Monthly Areal Precipitation
Figure 4 shows the comparison of a corrected CFSv2 6 months lead time reforecast ensemble to the GPCC
observations for the rainy season 1983 across the Volta Basin. In addition, the raw CFSv2 precipitation fore-
casts are shown in the background. The statistical correction can clearly reduce the ensemble spread of the
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Figure 4. Bias-corrected and raw CFSv2 reforecast for monthly areal precipitation for the major drought event 1983,
ensemble (20 runs) initialized in February. As all ensemble members start from different days in February, the entire
ensemble forecast starts in March.

CFSv2 precipitation forecast reducing the CFSv2 forecast uncertainty. For the Sudan-Sahel zone the ensem-
ble mean of the corrected reforecast is very close to the observed areal precipitation from March to July.
Yet the ensemble mean overpredicts the observed precipitation during August and September. Although all
observations are within the ensemble spread, the comparison of the CFSv2 reforecast with the observed vari-
ability (Figure 2) illustrates shortcomings for this event, even for the corrected CFSv2 forecast. The uncertainty
of the corrected precipitation forecast is very large especially during July, August, and September, and the
severe drought in August is not indicated by many CFSv2 ensemble members. For the Sudan zone, the ensem-
ble mean of the corrected CFSv2 forecasts overpredicts the areal precipitation amounts during most of the
months of the investigation period in particular for August. The observations in August are even lower than
the ensemble’s 10th percentile. The unusually dry conditions during July and August at the Guinea Coast are
also not indicated by the corrected CFSv2 ensemble mean. The observations are even lower than the 10th
ensemble percentile.

Averaged over all zones and months (March–September), the corrected CFSv2 ensemble spread is in a similar
range (IDRy of 1983 = 79 mm) like the observed variability (IDRx of 1983 = 77 mm). Although the CFSv2 is
characterized by a high forecast uncertainty, the ensemble spread is not able to cover all observations, in
particular for those months which are extremely dry.

The ensemble means and ensemble spreads of eight uncorrected and corrected CFSv2 ensembles with lead
times of 1–8 months pertaining August 1983 in comparison to the observed August precipitations for all
zones are illustrated in Figure 5. Corrected and uncorrected CFSv2 reforecasts overestimate the observed
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Figure 5. Corrected and raw CFSv2 reforecast ensemble spread for monthly areal precipitation for different lead times
for the major drought event in August 1983. The 1 month lead time values are calculated from an ensemble initialized in
July 1983, and the 8 months lead time values are calculated from an ensemble initialized in December 1982.

precipitation amount within all lead times, with the general tendency that the ensemble spread of the cor-
rected forecast is lower and the ensemble mean of the corrected forecast is closer to the observations. The
figure also illustrates that the forecast accuracy of the different CFSv2 ensembles does not steadily increase
with decreasing lead time in all zones. For instance, the ensemble means with 5 and 6 months lead time in the
Sudan-Sahel zone are closer to the observations than the ensemble means with lower lead times. A different
picture is given for the Sudan zone, the Guinea Coast, and the Volta Basin. For these zones the means of the
ensembles with 1 month lead time are closest to the observations with a tendency of a decreasing forecast
accuracy for longer lead times from 1 to 4 months lead time. The ensembles with lead times of 4 and more
months have likely the same inaccuracy for these zones. Furthermore, the forecast uncertainty of the ensem-
bles with shorter lead times is not generally lower than the forecast uncertainty of ensembles with longer
lead times. Only at the Guinea Coast the ensemble with 1 month lead times has a much smaller uncertainty
than the ensembles with longer lead times. Figures 4 and 5 illustrate that the ensemble mean of the raw and
corrected CFSv2 forecast is not the best indicator for a warning of precipitation deficit or excess. For drought
or strong precipitation warnings it is certainly better to select a lower and higher quantile, respectively.

The corrected and raw CFSv2 reforecasts for the monthly areal precipitation amount of the three subzones of
the Volta Basin and the Volta Basin itself are given for each August of the investigation period in Figure 6. The
observations are sorted from the lowest to the highest precipitation amount of the investigation period. The
monthly precipitation amounts of the raw CFSv2 6 months lead time reforecasts are considerably too high for
almost all August months of the 28 years in the Guinean Coast and the Sudan zone. In the Sudan-Sahel zone,
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Figure 6. Predicted (6 months lead time CFSv2 reforecast ensembles) and measured (GPCC) monthly areal precipitation
for the Volta Basin, August 1983–2009. Spread: 10th–90th ensemble percentile. The years are sorted from the lowest to
the highest observed precipitation amount.

the forecasts are generally in the range of the observations, but the ensemble means only show very small
interannual variability in all subregions (66 mm Guinea Coast, 56 mm Sudan zone, 68 mm Sudan-Sahel zone,
and 29 mm for the entire Volta Basin) while the observed variability is much higher (226 mm, 170 mm, 192 mm,
and 143 mm, same order as before). Furthermore, the ensemble means do not show a general increasing
tendency with increasing observations. The monthly precipitation amounts of the corrected CFSv2 6 months
lead time reforecasts, in general, are in the range of the observations for all August months of the 28 years in
all of the subzones. But still, the ensemble means in all subregions only show very small interannual variability
(55 mm Guinea Coast, 37 mm Sudan zone, 48 mm Sudan-Sahel zone, and 35 mm for the entire Volta Basin).
Similar to the raw CFSv2 data, an increasing tendency of the ensemble mean with increasing observations is
difficult to identify.
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Figure 7. RMAD for the raw and corrected CFSv2 reforecast ensemble means with various lead times for the target
month August. RMAD is the mean absolute distance between the ensemble mean and the corresponding GPCC
observation, divided by the mean (1971–2010) GPCC observation in percent; see equation (2). The RMAD ranges
between 0% and positive infinite where a low value indicates a high accuracy. With a RMAD of zero a forecast would be
identical to the GPCC observations.

The ensemble spreads are very wide in all cases of the raw CFSv2 reforecasts, in some years even as wide as
the GPCC variability. This indicates a high uncertainty of the ensemble forecasts, limiting their suitability for
drought warnings. Despite the wide ensemble spreads, the observations are out of the range of the forecast
ensembles for all subzones in most of the drier years. Since the bias correction smallered the ensemble spread,
the observations now are captured by the forecast in most of the years. But still, the driest and wettest years
are not within the ensemble spread in all four subregions.

The forecast accuracy of the uncorrected and corrected CFSv2 precipitation forecasts for six different lead
times is illustrated in Figure 7. The statistical correction can clearly improve the forecast accuracy for the
Guinean Coast, the Sudan zone, and the Volta Basin for all lead times but not for the Sudan-Sahel zone. The
forecast accuracy of the uncorrected reforecasts differs considerably for the subregions. For the Guinea Coast,
the RMAD decreases by decreasing lead time, while for the Sudan zone and the Sudan-Sahel zone this char-
acteristic is not shown. The RMAD values for all three subregions are at a similar value of around 30% for the
1 and 2 months lead time ensembles. However, at longer lead times (5 to 6 months) the deviations between
forecasts and observations for the Guinea Coast are considerably higher than for the other subzones, reach-
ing up to 80% of the GPCC climatological mean. In contrast to this, the RMAD values of the corrected CFSv2
reforecasts are very similar for all lead times. The accuracies of the forecasts for the two southern zones as well
as for the entire Volta Basin are around 20% of the climatological mean. In the case of the Sudan-Sahel zone
the RMAD is slightly higher but does not exceed 35%.

The relative measures for describing the forecast uncertainty of the uncorrected and corrected CFSv2 refore-
casts for the West African study area are indicated in Figure 8 for six different lead times. The statistical
correction can clearly reduce the forecast uncertainty for all geographical regions and for all lead times. The
RIDR values of the uncorrected CFSv2 reforecasts do not generally decrease or increase by decreasing lead
time. Furthermore, for every lead time and all zones the RIDR is larger than 1 (red line), indicating that the
ensemble spread of the CFSv2 forecasts is higher than the observed variability based on the GPCC informa-
tion. This high forecast uncertainty (reaching up to almost 200% of the observed natural variability at the
Sudan-Sahel zone) is a very adverse characteristic of the CFSv2 reforecasts. The RIDR values of the corrected
CFSv2 reforecasts are all close to 1, meaning that the corrected CFSv2 reforecasts still are characterized by an
uncertainty that is very similar to the observed variability, in particular for longer lead times. However, for both
shortest lead times RIDR slightly decreases below 1 illustrating that there is a tendency that the corrected
ensemble spread is slightly smaller in comparison to the observed variability.

Figure 9 shows the accuracy of the corrected and the uncorrected CFSv2 precipitation forecast for different
lead times in comparison to the accuracy of the climatological forecast based on the ranked probability score.
This information can also be used to determine the skill of the CFSv2 precipitation forecasts. A positive skill
is indicated when the RPS of the CFSv2 precipitation forecast is below the RPS of the climatological forecast.
Figure 9 indicates that the applied statistical correction method can clearly improve the CFSv2 precipitation
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Figure 8. RIDR (see equation (1)) for various lead times out of 28 years (1982–2009) raw and corrected CFSv2 reforecasts
for the target month August. RIDR is the interdecile range of the ensemble forecast (IDRy ) for August, divided by the
interdecile range of the GPCC observations for all Augusts. RIDR is an expression of uncertainty where values smaller
than 1 (red line) indicate forecasts with uncertainties that are smaller than the natural variability.

forecasts for the different lead times and for all geographical regions removing the strong negative skill of
the uncorrected CFSv2 precipitation forecasts. However, the corrected CFSv2 precipitation forecasts are only
slightly better in comparison to the climatological forecasts. For certain lead times and geographical regions,
the corrected CFSv2 forecasts show still a negative skill. The skill of the corrected CFSv2 precipitation forecast
when this information is used for a warning is illustrated for the different geographical regions and lead times
in the ROC diagrams of Figures 10 and 11. The diagonal of the ROC diagram shows the zero skill line (H = F).
The larger the area between a curve and the diagonal of a ROC diagram, the higher the skill of the corrected
CFSv2 precipitation forecast. In addition, the individual PSS skill scores of the corrected CFSv2 forecasts are

Figure 9. The performance of the corrected and raw CFSv2 precipitation forecasts for different lead times and the
different study regions using the ranked probability score (RPS) in comparison to the climatological forecasts for the
target month August 1982–2009.
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Figure 10. The relative operating characteristics (ROC) for the individual zones as an average over six lead times for
above average (precipitation excess) and below average (precipitation deficit) events, corrected CFSv2 precipitation
forecasts, August months from 1982 to 2009. The diagonal in the ROC diagram indicates the no skill line (H = F).

listed in Table 1 for all geographical regions, lead times, and events based on the assumption that the optimal
probability threshold is used for decision-making. The ROC diagrams and PSS indicate a low to moderate skill
of the corrected CFSv2 precipitation forecasts when this information is used for a warning for all geographical
regions, lead times, and both event types. However, the performance of the forecasting system depends on
the geographical region and the lead time and the event considered. In general, the CFSv2 precipitation fore-
casts are more skillful for the Sudan-Sahel zone (mean PSS = 0.365) in comparison to the Sudan zone (mean
PSS = 0.295) and the Guinean Coast (mean PSS = 0.262). The CFSv2 precipitation forecasts are slightly better
for precipitation excess (mean PSS = 0.345) than for precipitation deficits (mean PSS = 0.270). The CFSv2 pre-
cipitation forecasts are positive for all lead times with the highest skill for the first month (mean PSS = 0.469)
and moderate skills for the fifth month (mean PSS = 0.318) and sixth month (mean PSS = 0.284). However, the
skill of the CFS precipitation forecast is not monotonically decreasing with increasing lead time as indicated
in the ROC diagrams. The lowest performance is given for the fourth month (mean PSS = 0.173). Since the
PSS is identical to the maximum economic value, the maximum economic value of the corrected CFS forecast
system ranges between 0.029 and 0.626 with a total mean of 0.307 indicating that the corrected CFS precip-
itation forecasts have the potential to provide valuable information regarding the warning of precipitation
anomalies in August in this region.

4.2. CFSv2-WRF Results for Monthly Precipitation and Intraseasonal Rainfall Characteristics
The CFSv2-WRF forecasts of the monthly precipitation amount for the three subregions and the entire Volta
Basin for the rainy season 2013 in comparison to the raw and corrected CFSv2 and the GPCC climatology
forecasts are illustrated in Figure 12. The climatology forecast is based on 40 years (1971–2010) of the GPCC
data period. The forecasts are compared the GPCC first guess precipitation data. The comparison of the
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Figure 11. The relative operating characteristics (ROC) for the individual lead times as an areal weighted average of the
three agroecological zones of the Volta Basin for above average (precipitation excess) and below average (precipitation
deficit) events, corrected CFSv2 precipitation forecasts, August months from 1982 to 2009. The diagonal in the ROC
diagram indicates the no skill line (H = F).

corrected CFSv2 and CFSv2-WRF ensembles with the observational data shows that in the Sudan-Sahel zone
the CFSv2 ensemble mean is close to the observations. The WRF ensemble still covers the observational data
for the first 3 months, while from June to August the entire ensemble underestimates the observed precip-
itation amounts. In the Sudan zone the observations are only located within the corrected CFSv2 ensemble
spread from March to June. In contrast to this, the CFSv2-WRF ensemble covers the GPCC first guess obser-
vations for most of the months, especially during the summer. The GPCC climatology forecast shows that the
rainy season 2013 was not very unusual in the Sudan-Sahel zone and the Sudan zone and thus could very well
be forecasted by the climatologic mean, whereas June 2013 was unusually dry at the Guinea Coast, and thus,
the observations are outside the ensemble spread of the climatology forecast ensemble. In this zone, only
the CFSv2-WRF ensemble predicted the very dry conditions in June, while CFSv2 and CFSv2-WRF could not
predict the conditions in July and August. There is a major mismatch between the forecasted and observed
precipitation amounts in the time between the two rainy seasons (July and August) at the Guinean Coast, in
particular for the CFSv2-WRF ensemble.

Table 1. The Peirce Skill Score of the Corrected CFSv2 Precipitation Forecasts Determined for Each Geographical Region
of the Volta Basin, Event Category (Below = Precipitation Excess, Above = Precipitation Deficit), and for Six Lead Times
(Months)a

Region Event Category 1 2 3 4 5 6

Sudan-Sahel Below 0.311 0.156 0.256 0.289 0.344 0.400

Sudan-Sahel Above 0.521 0.175 0.392 0.456 0.567 0.509

Guinean Below 0.499 0.522 0.411 0.144 0.233 0.056

Guinean Above 0.415 0.298 0.099 0.029 0.175 0.257

Sudan Below 0.444 0.133 0.222 0.067 0.238 0.133

Sudan Above 0.626 0.351 0.573 0.056 0.351 0.351
aThe Peirce skills score is a measure for the skill of binary forecasting system and is identical to maximum economic

value of a warning system. August months of 1982 to 2009.
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Figure 12. Seasonal raw and corrected CFSv2, CFSv2-WRF, and GPCC climatology forecasts for monthly areal precipitation at the three agroecological zones of
the Volta Basin for the rainy season 2013 in comparison to GPCC first guess. CFSv2 and CFSv2-WRF ensembles are built out of the 22 CFSv2 simulation runs
initialized in February 2013; the GPCC climatology forecast is based on the observed variability of 40 years of GPCC observations (1971–2010). The shaded areas
cover the ensemble spread (10th–90th percentiles) for the forecast.
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Figure 13. Monthly precipitation amount (mm) of the CFSv2 and CFSv2-WRF ensemble mean (each from 22 members of the ensemble initialized in February)
compared to the RFE2 measurements for the rainy season 2013.
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Figure 14. The predicted date of the onset of the rainy season (ORS in Julian days), of the CFSv2 raw ensemble, CFSv2-WRF ensemble in comparison to the ORS
dates calculated from RFE2 observations. The early ORS is the 25th percentile of the ORS dates from the 22 ensemble members, and late ORS is based on the
corresponding 75th percentile. It is noted that the ORS distribution calculated from the RFE2 data set is quite unusual in northern an central Ghana. The very late
onset dates in 2013 result from very unusually dry conditions during June in this region.
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The spatial distribution of the predicted monthly precipitation amount for the entire forecast period is illus-
trated in Figure 13 using the ensemble mean. The predicted information is compared to the observed monthly
precipitation amount taken from the RFE2 data set. Due to the finer resolution, the downscaled monthly
precipitation shows considerably finer detailed information. The raw CFSv2 ensemble shows only weak zonal
differentiations and too high rainfall amounts in many parts of the simulation domain. The CFSv2-WRF ensem-
ble’s rainfall patterns against this show a clear north-south gradient and specific local rainfall characteristics
like the anomalous dry conditions around the coastal region of Ghana, Togo, and Benin (Dahomey Gap). But
the characteristic midsummer dry period through July and August at the Guinean Coast is not represented in
both ensemble forecasts. During the months July and August, the rain belt of the CFSv2-WRF ensemble does
not or too slowly penetrate northward. This results in too high precipitation amounts in the southern and too
low precipitation amounts in the northern regions of the domain, compared to the RFE2 map.

The predicted onset of the rainy season (ORS) dates for the raw CFSv2 and the CFSv2-WRF data sets is illus-
trated in Figure 14 for the Volta Basin and compared to the observed ORS dates calculated from the RFE2
observations. The figure shows the mean date of the ORS and early and late dates of the ORS to illustrate
the uncertainty of the forecast for this specific variable. The early and late dates of the ORS are based on the
25th and 75th percentiles of the calculated ORS dates of the forecast ensemble. The observed ORS dates (ORS
RFE2) show a clear north-south gradient that is disturbed by a very high spatial variability. In large parts of
northern Ghana the ORS was very late in 2013 (between 19 July and 28 August). In contrast, both modeled
ORS dates are comparatively smooth, resulting from the averaging of 22 ensemble members. The maps of the
single ensemble members (not shown) produce a similar variability as the RFE2 map.

The ORS dates calculated from the CFSv2 ensemble are too late for large parts of the northern Volta Basin.
Against this, the CFSv2-WRF-derived ORS dates are closer to the observations in amplitude and spatial differ-
entiation in this region. In the very southern part, the CFSv2 ORS dates are near to the observed dates, referring
to their general amplitude while the CFSv2-WRF ORS dates are mainly too early. To be highlighted here is the
following: the unusually late onset dates in central Ghana (resulting from the dry June) can be seen in the
CFSv2 ORS dates (indicated by the orange pixel) even though the absolute date is too early. The CFSv2-WRF
ensemble does not show this pattern. The ORS date spread (range from the “early ORS” to the “late ORS”) of
the CFSv2 maps is very large all over the Volta Basin, even up to 60 days for parts of Burkina Faso. Against this,
the ORS date spread of the CFSv2-WRF ensemble has (except for the very eastern part of the Volta Basin) a
maximum of 20 days and thus has a lower uncertainty.

5. Summary and Discussion

In this study we investigated the forecast performance of the monthly precipitation forecast of NOAA’s CFSv2
by using the raw and corrected precipitation reforecast with a special focus on three agroecological zones of
the Volta Basin for all August months of the period ranging from 1982 to 2009. The precipitation reforecast of
CFSv2 is corrected by using a quantile-quantile transformation for eliminating systematic differences between
reforecasts and observations. The corrected and raw precipitation forecasts are compared to a climatological
forecast and GPCC observations using the ranked probability score, the ROC diagram, and the Peirce skill
score as a measure for the maximum economic value. Since GSEPS precipitation forecasts are often used in
distributed modeling approaches, e.g., in hydrology or agriculture, an evaluation of the forecast accuracy and
uncertainty is also performed in the physical space using a standard measure for determining the forecast
accuracy and a novel relative measure that addresses the forecast uncertainty of an ensemble forecast in
comparison to the observational uncertainty.

In a first step, we analyzed the raw and corrected CFSv2 monthly precipitation reforecasts for one single
drought event 1983. In all three zones the precipitation during the unusual dry conditions of the central
months of the rainy season 1983 has been overestimated by the raw and the corrected reforecast ensem-
ble, but the statistical correction clearly reduces the ensemble spread and improves the accuracy for various
lead times. Even though the ensemble spread was very large, the observations in some cases were not even
covered by the lowest ensemble member. The analysis of the corrected and raw CFSv2 precipitation fore-
casts for the August months of the entire data period from 1982 to 2009 shows that the raw CFSv2 strongly
overestimates precipitation amounts for dry August months and for all regions. This overestimation can be
reduced when the statistical correction is applied to the CFSv2 precipitation forecasts. However, both raw and
corrected forecasts show only very small interannual variability all over the Volta Basin from 1982 to 2009.
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The introduction of the novel relative measure highlighted a CFSv2 ensemble spread of the raw precipitation
forecasts which is clearly larger than the observed variability. This strong overestimation in terms of variabil-
ity can be reduced by using the selected quantile-quantile transformation. The corrected CFSv2 precipitation
forecast is for various lead times and agroecological zones even slightly better in comparison to a climato-
logical forecast, as the ranked probability score indicates a positive skill. This outcome confirms the general
findings of the study of Zuo et al. [2013] which was done on a much broader scale for our study region. In
addition to the study of Zuo et al. [2013], we also assessed the skill and forecast value (the economic value)
of using the CFSv2 precipitation forecast for an early warning of upcoming precipitation deficits and excess
in this region. We illustrated a low to moderate skill up to six 6 months in advance for all three geographi-
cal regions and for both event types when the corrected CFSv2 forecast is used for a warning. The maximum
economic value of this warning system ranges between 0.029 and 0.626 with an average of 0.307 indicating
the potential of providing valuable seasonal precipitation forecasts for this region based on corrected CFSv2
precipitation forecast. In order to better understand the reasons for CFSv2’s general overestimation of rainfall
in West Africa, in-depth and process-based analyses of the CFSv2 forecasts are necessary to figure out which
large-scale processes of the West African monsoon system can adequately be forecasted and which cannot.
Since the reasons for the Sahel drought 1983 were extraordinary SST anomalies in the Indian and tropical
eastern Atlantic Ocean [Bader and Latif , 2011; Nicholson, 2009], analyses regarding a proper reproduction of
these SST patterns by CFSv2 are of high importance for future studies. In addition, future contributions should
consider additional drought events to obtain a more general view of the usability of the CFSv2 product for
drought prediction.

In a second step, we conducted a dynamical ensemble downscaling approach using WRF, driven by the oper-
ational seasonal CFSv2 forecasts. The downscaling was performed for the rainy season 2013 using a subset of
the CFSv2 9 months forecast initialized in February. While some studies already investigated dynamical and
statistical downscaling approaches for the CFSv2 reforecasts in other regions of the world [Huang and Chan,
2013; Yuan et al., 2013b], the only study dealing with a downscaling technique for West Africa based on CFSv2
seems to be the study presented by Yuan et al. [2013a] using a Bayesian merging method. The downscaling
of Yuan et al. [2013a] did allow only a slight improvement of the raw CFSv2 drought forecast for lead times
longer than 1 month. In a study by Castro [2012] for North America, the WRF downscaling of CFS1 Reforecasts
led to improvements in many aspects of the seasonal forecasts.

In this study CFSv2-WRF was compared to the raw and statistically corrected CFSv2 precipitation forecasts, a
climatological forecast, and in comparison to observational data sets. The target variables of this study were
monthly rainfall information (aggregated from daily data) and the agriculturally relevant date of the onset
of the rainy season (ORS). This intraseasonal precipitation feature jointly accounts for daily rainfall amounts,
the number of wet days, and dry spell criteria. Predicted ORS dates are highly desired by local agriculture in
West Africa [Roncoli et al., 2002] and many other parts of the tropics. The seasonal predictability of ORS dates
for other regions of the world has formerly been analyzed using sets of GCM reforecasts with a combination
of various statistical techniques by Moron et al. [2006] for Senegal and Robertson et al. [2009] for Indonesia.
Vellinga et al. [2013] analyzed the predictability of the monsoon onset using UK’s seasonal forecasting system
(GloSea4) and found modest results.

Compared to the CFSv2 raw data, the downscaling showed marginal improvements of total rainfall amounts
for the Volta Basin. The forecast uncertainty, expressed by the ensemble spread, was clearly reduced in com-
parison to the raw CFSv2 forecast but not in comparison to the corrected CFSv2 forecast. A severe CFSv2-WRF
deficit was found for the downscaling approach regarding the seasonality of monthly precipitation patterns
during July and August due to a reduced movement of the monsoonal rain belt. Although the downscaling
can reduce an overestimation of the CFSv2 raw precipitation forecasts from March to June, the midsum-
mer dry period in July and August at the Guinean Coast was not reproduced. In case of the ORS dates, the
CFSv2-WRF ensemble better represents the spatial distribution of the observed ORS dates and the dates are
in a more realistic range than the CFSv2 ORS dates, especially in the northern part of the study area. Since
the monthly precipitation patterns are used by distributed modeling approaches in hydrology, agriculture,
and further fields, future contributions should focus on an in-depth evaluation of the spatial precipitation
patterns forecasts by GSEPS using corresponding measures for field verification. For future studies it will also
be of importance to give physical insights into the representation of important atmospheric features like the
Tropical Easterly Jet and the African Easterly Jet in both the raw and WRF-downscaled CFSv2 forecasts.

SIEGMUND ET AL. SEASONAL PREDICTIONS FOR WEST AFRICA 7336



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022692

This study presented a first analysis whether a statistical correction and dynamical downscaling of a GSEPS
could be a valuable addition to the current operational PRESAO practice in West Africa. The selected
approaches can be adequate techniques to cope with the limitations of the seasonal PRESAO forecasts, espe-
cially concerning the temporal and spatial resolution, the lead time, and the possibility to derive intraseasonal
precipitation characteristics. The selection of the quantile-quantile transformation for a correction of the raw
CFS precipitation forecast seems to be a promising technique indicated by a low positive skill. In compar-
ison to the dynamical downscaling approach, this technique is not computational demanding and can be
also easily implemented on personal computer at the national weather services. The corrected CFSv2 refore-
casts are in observation ranges but have still deficits at the very dry and very wet years. The outcomes of
the dynamical downscaling experiment offered first promising results but also showed a clear deficiency. In
order to further improve the current downscaling approach, further simulation experiments are necessary
to improve the modeled movement of the ITCZ within CFSv2-WRF. According to Nicholson [2009], the main
influencing factors for the positioning of the monsoonal rain belt are the positions of the African Easterly Jet
and the Tropical Easterly Jet. Klein et al. [2015] showed that changing a parameterization scheme can have a
strong influence on the positions of both jets so that changing the current parameterization schemes might
improve the movement of the rain belt. In addition, systematic investigations for multiple years are neces-
sary to generally assess the added value of this technique. To perform such experiments, it is inevitable that
the operational CFSv2 forecasts are stored in full vertical resolution for future years and full reforecasts are
available for the entire period 1982–2009 or for selected years. For the application of a time-consuming and
computational demanding dynamical downscaling in the framework of African meteorological services, it
would be also desirable to develop a technique to reduce the ensemble size while conserving the specific
characteristics of an ensemble forecast.
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