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A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the
perturbation expansion in the interaction strength. We use the Nambu formalism and the standard
many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara
self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in
its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the
position of the 0 2 p phase boundary at which the Andreev bound states reach the Fermi energy as well as for
the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level
occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states
with the precision surpassing any (semi)analytical approaches employed thus far.

N
anostructures attached to leads with specific properties display interesting and important quantum
effects at low temperatures. Much attention, both from experimentalists1 and theorists2, has been paid
in recent years to a quantum dot with well separated energy levels attached to BCS superconductors. In

particular, the behavior of the supercurrent (Josephson current) that can flow through the impurity in equilib-
rium without any external voltage bias between two superconducting leads was in the center of interest3–5. The
Josephson current through quantum dots with tangible on-dot Coulomb repulsion can induce a transition
signalled by the sign reversal of the supercurrent observed experimentally6–10.

This so called 0 2 p transition is induced by the underlying impurity quantum phase transition (QPT) related
to the crossing of lowest many-body eigenstates of the system from a spin-singlet ground state with positive
supercurrent (0-phase) to a spin-doublet state with negative supercurrent (p-phase)11. In single-particle spectral
properties this transition is associated with crossing of the Andreev bound states (ABS) at the Fermi energy as has
also been experimentally observed12,13. Continuous vanishing of the ABS energies at the transition is a direct
consequence of crossing of many-body eigenstates13 and may serve as an important consistency check of pro-
posed theories. The latter cover by now a broad scope of techniques ranging from numerically exact (and
computationally expensive) numerical renormalization group (NRG)14,15 suitable for zero-temperature and
finite-temperature quantum Monte Carlo16,17 to (semi)analytical methods based on expansion around the atomic
limit18–20, mean-field theory21–24, or formalisms specialized on the strongly correlated systems such as slave-
particles25,26 and functional renormalization group (fRG)27.

However, despite of the versatility of these approaches, there still remain vast regions of the parameter space
with direct experimental relevance (D *v C *v U , see, e.g., Ref. 8) where most of the above approaches cannot be
applied and one has to resort either to overly heavy numerical methods (NRG or QMC) or to conceptually flawed
spin-symmetry-broken mean-field approach. The latter approach is not excessively elaborate and often gives
quantitatively acceptable results24, although at the expense of breaking the spin symmetry of exact solution. In
particular, spin-polarized mean-field solutions even after the symmetrization described in Ref. 24 still exhibit at
the transition unphysical discontinuities in the ABS energies24 and in finite-temperature supercurrents28.

The aim of this paper is to provide a conceptually clean and computationally inexpensive generic formalism for
addressing the 0 2 p transition in that widespread regime without strong-correlations (i.e., without the Kondo
effect). We show that a resummed perturbation theory (PT) incorporating the second-order dynamical correc-
tions to the spin-symmetric mean-field (Hartree-Fock) solution yields at zero temperature a nearly perfect
description of the 0-phase including the position of the phase boundary in a wide parameter range outside of
strong correlations. The precision of this solution is unprecedented by any so far employed (semi)analytical
methods including fRG. On the other hand, the solution developed from the non-interacting limit breaks down at

OPEN

SUBJECT AREAS:

SUPERCONDUCTING
DEVICES

SUPERCONDUCTING PROPERTIES
AND MATERIALS

Received
5 January 2015

Accepted
28 January 2015

Published
6 March 2015

Correspondence and
requests for materials

should be addressed to
V.J. (janis@fzu.cz) or
T.N. (tno@karlov.mff.

cuni.cz)

SCIENTIFIC REPORTS | 5 : 8821 | DOI: 10.1038/srep08821 1

mailto:janis@fzu.cz
mailto:tno@karlov.mff.cuni.cz
mailto:tno@karlov.mff.cuni.cz


the phase boundary and any perturbative description of the p-phase
and, consequently, also finite temperatures which mix 0 and p solu-
tions, remains elusive. Although the second-order PT has been
applied to this problem previously in [Ref. 23, Sec. V] and, especially,
in a (otherwise unpublished) part of Meng’s master thesis [Ref. 29,
Ch. 4], these studies were limited to the particle-hole symmetric case
only (in Ref. 23 in just two limits D=C=1 and D=C?1) and did not
use crossing of the ABS as the definition of the boundary of the 0-
phase. Instead, they defined the 0 2 p transition by equalling the
approximated Kondo temperature with the superconducting gap,
namely D 5 C/(1 2 hS(0)/hv), which however holds only qualita-
tively. The generic character of the PT method and the proper def-
inition of the 0 2 p boundary in the Green-function formalism have
thus remained unnoticed.

Results
A single impurity Anderson model is used to simulate the quantum
dot with well-separated energy levels connected to the superconduct-
ing leads in the experimental setup13,14,16,28. The Hamiltonian of the
system consisting of a single impurity with the level energy e and
local Coulomb repulsion U attached to two superconductors reads

H~e
X

s~:,;

d{
sdszU d{

:d:d{
;d;z

X
s~R,L

Hs
leadzHs

T

� �
, ð1Þ

where the BCS Hamiltonian of the leads is

Hs
lead~

X
ks

E kð Þc{skscsks{Ds

X
k

eiWs c{sk:c{s{k;zH:c:
� �

, ð2Þ

with s 5 L, R denoting the left/right lead, respectively. Finally, the
hybridization term between the impurity and the contacts is given by

Hs
T~{ts

X
ks

c{sksdszH:c:
� �

: ð3Þ

The individual degrees of freedom of the leads are unimportant for
the studied problem and are generally integrated out, leaving us with
only the active variables and functions on the impurity. Due to the
proximity effect there are locally induced superconducting correla-
tions on the impurity and the most direct way to handle them is via
the Nambu spinor representation of the local fermionic operators in
which the one-electron impurity (imaginary time/Matsubara) Green
function (GF) is a 2 3 2 matrix

Ĝs t{t’ð Þ:
Gs t{t’ð Þ, G{s t{t’ð Þ
�Gs t{t’ð Þ, �G{s t{t’ð Þ

 !

~{
ds tð Þd{

s t’ð Þ
� �� 	

, ds tð Þd{s t’ð Þ½ �h i

d{
{s tð Þd{

s t’ð Þ
� �� 	

, d{
{s tð Þd{s t’ð Þ

� �� 	
 !

,

ð4Þ

where the bar denotes the hole function.
The impurity GF can be exactly found for an impurity without

onsite interaction (U 5 0) by method analogous to Appendix A of
Ref. 19. When assuming identical left and right superconducting
gaps DL 5 DR ; D as well as tunnel couplings tL ¼ tR:t it can be
written in terms of Matsubara frequencies vn ; (2n 1 1)p/b as
(e~�h~1 throughout the paper; we also skip the spin index as we
only consider spin-symmetric solutions)

Ĝ0 ivnð Þ~
ivn 1zs ivnð Þ½ �{e, DWs ivnð Þ

DWs ivnð Þ, ivn 1zs ivnð Þ�ze½


 �{1

, ð5Þ

where s ivnð Þ~ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zv2

n

q is the hybridization self-energy due to the

coupling of the impurity to the superconducting leads. We have
denoted by C 5 2pt2r0 the normal-state tunnel coupling magnitude

(r0 being the normal-state density of states of lead electrons at the
Fermi energy) and DW ; D cos(W/2) with W 5 WL 2 WR being the
difference between the phases of the left and right superconducting
leads.

The impact of the Coulomb repulsion U . 0 on the Green func-
tion is included in the interaction self-energy matrix Ŝ ivnð Þ:
S ivnð Þ, S ivnð Þ
�S ivnð Þ, �S ivnð Þ


 �
, so that the full propagator in the spin-sym-

metric situation is determined by the Dyson equation Ĝ{1 ivnð Þ~
Ĝ{1

0 ivnð Þ{Ŝ ivnð Þ. The symmetry relations for the Green function
equation (4) reformulated in the Matsubara representation as
�Gs ivnð Þ~{Gs {ivnð Þ and �Gs ivnð Þ~Gs {ivnð Þ imply the same
for the self-energies, i.e. �Ss ivnð Þ~{Ss {ivnð Þ and �Ss ivnð Þ~
Ss {ivnð Þ. Therefore, the Green function explicitly reads

Ĝ ivnð Þ~{
1

D ivnð Þ

ivn 1zs ivnð Þ½ �zezS {ivnð Þ, {DWs ivnð ÞzS ivnð Þ

{DWs ivnð ÞzS {ivnð Þ, ivn 1zs ivnð Þ½ �{e{S ivnð Þ

 !
:

ð6Þ

The negative determinant of the inverse Green function D ivnð Þ
:{det Ĝ{1 ivnð Þ

� �
~v2

n 1zs ivnð Þ½ �2z ezS ivnð Þ½ � ezS {ivnð Þ½ �
z DWs ivnð Þ{S ivnð Þ½ � DWs ivnð Þ{S {ivnð Þ½ � determines via its
zeros the existence and positions of the ABS. This determinant is
real within the gap and can go through zero D(v0) 5 0 determining
the (real) in-gap energies 6v0 of the ABS symmetrically placed
around the Fermi energy (center of the gap). The ABS are important
for transport of the Cooper pairs through the quantum dot and
usually provide the dominant contribution to the dissipation-less
Josephson current J through the impurity, which can be evaluated
at zero temperature by an integral of the anomalous Green function
(see the Methods section)

J
4D

~{

ð?
{?

dvn

2p
= G ivnð Þs ivnð Þe{iW2
h i

~{C sin
W

2
Res G; {v0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2{v2
0

q z

ð{D

{?

dv

p

<G vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2{D2
p

2
64

3
75:

ð7Þ

While the first line uses the thermal representation via Matsubara
frequencies the second one is the analytic continuation to the real
frequencies (spectral representation) which allows us to distinguish
the direct supercurrent through the lower ABS (corresponding to the
residue of the anomalous impurity Green function at the negative
ABS frequency) from the tunneling current between the continuum
band states below the SC gap.

Spin-symmetric Hartee-Fock approximation. As the exact
expression for this model’s self-energy is unknown we resort to the
standard Matsubara perturbation theory summing one-particle
irreducible diagrams for the self-energy.

The simplest diagrams are the first-order Hartree-Fock contribu-
tions represented by the first diagrams on the r.h.s. of equations in
Fig. 1. Their mathematical equivalents read

SHF~
U
b

X
n[Z

G ivnð Þ and SHF~
U
b

X
n[Z

G ivnð Þ: ð8Þ

The HF approximation leads just to a static, frequency-independ-
ent mean-field self-energy neglecting any dynamical correlations
caused by particle interaction. Despite of this simplicity and contrary
to the common belief, this approximation yields without any sym-
metry breaking the 0 2 p quantum phase transition and we thus use it
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as a convenient and sufficiently simple demonstration of the generic
features of the perturbation expansion. The Hartree-Fock approxi-
mation consists of two self-consistent non-linear equations that can
be reformulated in terms of auxiliary quantities Ed~ezU d{

sds

� 	
(mean-field energy of the level) and d ; C cos(W/2) 1 Dd (related
to the locally induced gap Dd ; 2U Æd#d"æ). They read

Ed~ez
U
2

{
U
b

X
n[Z

Ed

DHF ivnð Þ ,

d~C cos
W

2
{

U
b

X
n[Z

d{C cos
W

2
1{

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

nzD2
q

0
B@

1
CA

DHF ivnð Þ :

ð9Þ

Since we are primarily interested in the zero-temperature QPT
where the energies of the ABS approach zero v0 R 0, we can approx-
imate the denominators in the integrals by their low-frequency
asymptotics DHF iv?0ð Þ<E2

dzd2z 1zC=Dð Þ2v2, which implies

v0<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

dzd2
q 


1zC=Dð Þ. Near the quantum critical point we then

obtain

Ed 1z
U

2v0 1z
C

D


 �2

2
6664

3
7775~ez

U
2

,

d 1z
U

2v0 1z
C

D


 �2

2
6664

3
7775~C cos

W

2
1z

U
D
I C

D
,W


 �� �
,

ð10Þ

with the band contribution expressed via the function I x,Wð Þ

~

ð?
0

dt
2p

cosh2t

cosh2 t=2ð Þ xzcosh tð Þ2zx2 cos2 W=2ð Þsinh2 t=2ð Þ
. Re-

parametrizing Ed 5 (1 1 C/D)v0 cos y and d 5 (1 1 C/D)v0 sin y
we arrive at

U

2 1z
C

D


 �2 zv0

2
6664

3
7775cosy~

ez
U
2

1z
C

D

,

U

2 1z
C

D


 �2 zv0

2
6664

3
7775siny~

C cos
W

2

1z
C

D

1z
U
D
I C

D
,W


 �� �
:

ð11Þ

At the QPT characterized by v0 5 0 the solubility condition
(cos2 y 1 sin2 y 5 1) gives us the equation for the HF phase boundary

U

2 1z
C

W


 �
2
664

3
775

2

~ ez
U
2

� �2

zC2 cos2 W

2
1z

U
D
I C

D
,W


 �� �2

ð12Þ

that generalizes the corresponding well-known expression in the
atomic limit D R ‘27,30. This HF phase boundary plotted in Fig. 2
is not particularly precise, however, it yields qualitatively reasonable
results. Moreover, we have noticed that when the band contribution I
in equation (12) is omitted one gets a surprisingly good and extremely
simple approximation for the boundary, that we call here the general-
ized atomic limit (GAL), lying for half-filling (E~{U=2) typically
very close to the numerically exact results by NRG, see Fig. 2a–b.
Obviously, the HF approximation heavily overestimates the contri-
bution from the band continuum.

Eqs. (11) may be used also around the QPT, when v0 is small (and
unknown). We can see that v0 is positive on one side of the boundary
while it is negative on the other side. Since v0 . 0 by construction, we
must conclude that the solution with negative v0, that we identify
with the p-phase region, is unphysical. We cannot go beyond the
phase boundary from the 0-phase to the p-phase within this perturb-
ative approach based on the assumption of a nondegenerate ground
state.

Dynamical corrections. The qualitative predictions of the HF
approximation can be significantly improved by including
dynamical corrections into the self-energy, which come from the
second order of the perturbation expansion represented by the
second and third diagrams on the r.h.s. of equations in Fig. 1. The
two diagrams originate in two different types of intermediate
propagation consisting of either normal or anomalous propagator.
The mathematical equivalents for the second-order contributions
read

S 2ð Þ ivnð Þ~{
U2

b

X
m[Z

G ivnzinmð Þx inmð Þ ð13Þ

and

S 2ð Þ ivnð Þ~{
U2

b

X
m[Z

G ivnzinmð Þx inmð Þ, ð14Þ

where

x inmð Þ~ 1
b

X
n[Z

G ivnð ÞG ivnzinmð ÞzG ivnð ÞG ivnzinmð Þ½ � ð15Þ

is the two-particle bubble consisting of the normal and anomalous
parts and nm 5 2pm/b is the m-th bosonic Matsubara frequency.

These first two orders of the perturbation expansion are well con-
trollable on the one-particle level. The higher contributions to the
self-energy become more complex and their classification more com-
plicated. For a general discussion of this problem see Ref. 31.

The second order self-energy correction together with the first-
order (in U) HF counterparts are inserted into the equation for the
Green function, equation (6). We obtain a self-consistent nonlinear
functional equation for the whole Green function as a function of
frequency. This equation is solved numerically at zero temperature.
We noticed, however, that nearly identical results are obtained by
computationally less elaborate method which evaluates the dynam-
ical self-energies by using just a fully converged HF solution as the
input GF. The convolutions in the second-order self-energies are
thus evaluated just once at the beginning of the procedure and con-
sequently used as fixed inputs into the self-consistent procedure
iterating the Green function through the HF self-energy. It should
be stressed that while the second-order contribution may be simpli-
fied in this way, the full self-consistency loop between the GF and the

Figure 1 | Diagrammatic representation of the first two orders of the
perturbation expansion in the Coulomb interaction for the normal (top)
and anomalous (bottom) parts of the self-energy. The wavy line represents

the Coulomb interaction and the lines with single (double) arrow represent

the normal (anomalous) propagators according to equation (4).
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HF self-energy is mandatory — any compromises there lead to even
qualitatively wrong results.

Discussion
We have carried out the above mentioned procedure both in the
Matsubara formalism as well as in the spectral representation (per-
forming the analytic continuation described in Methods) with ident-
ical results. We have found that the 0-phase smoothly develops from
the noninteracting limit U 5 0 and terminates at the 0 2 p phase
boundary beyond which there exists no regular self-consistent solu-
tion for the GF. In the spectral representation this is associated with
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Figure 2 | Phase diagrams in the C 2 U (a), U 2 W (b), and C{e (c)
parameter planes. We compare the phase boundaries calculated by

numerically exact NRG with various analytical approximations: fRG (only

in panel (a); data taken graphically from Fig. 2 of Ref. 27), spin-symmetric

HF, the second-order PT/dynamical corrections (DC), and generalized

atomic limit approximation (GAL) U2/(1 1 C/D)2 5 (2e 1 U)2 1

4C2 cos2(W/2).

Figure 3 | Comparing various methods of calculation of one-particle
quantities. Panels (a) and (b) show supercurrent at half-filling as a

function of the phase difference W for U 5 4D (a) and U 5 8D (b)

calculated by numerically exact NRG, and analytically approximative fRG,

spin-symmetric HF and, finally, the second-order PT/dynamical

corrections (DC) showing a nearly perfect agreement with NRG (unlike

the other two methods). Inset in panel (a) depicts the ABS energies v0 as

functions of W for the two values of the Coulomb interaction U. The green

dashed line in panel (b) represents the HF tunneling current component.

In panel (c) the occupation number n~ d{
sds

� 	
and locally induced SC gap

Dd ; 2U Æd#d"æ (inset) are plotted as functions of the level energy for two

values of the phase difference W 5 0 (with no phase transition) and W 5 p

(exhibiting phase transition). fRG data in panels (a), (b) were graphically

taken from Fig. 4b of Ref. 27.
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the energy of ABS v0 reaching zero. The results for the phase bound-
aries, shown in Fig. 2, and one-particle quantities in the 0-phase in
Fig. 3 exhibit unprecedented precision of the dynamical corrections
approximation which gives numerical results nearly identical to the
numerically exact NRG data produced by the ‘‘NRG Ljubljana’’ open
source code32,33 for all studied parameter sets as well as all physical
quantities. Surprisingly, it outperforms in the regime of not-so-weak
interaction even the fRG method designed for the strong correlations
(see the U-axis scale in Fig. 2a). This is likely due to the static-vertex
implementation of the fRG in Ref. 27. The limitations of the static-
vertex approximation have been discussed before (see Ref. 34, Sec.
9.4.6), nevertheless it is currently the only one technically viable for
fRG. On the other hand our dynamical corrections properly include
the frequency dependence of the correlation effects (even if just
perturbatively) which probably explains their superiority over the
fRG in the description of 0-phase quantities as well as the phase
boundary. In this context, we would also like to point out an inter-
esting observation we have made. In Fig. 3b we plot (by the green
dashed line) the tunnelling part of the supercurrent (the second term
in the lower equation (7)) for the HF solution and see that it coincides
in the overlapping range of parameters with the full supercurrent
solution of the fRG in the p-phase. Although plotted for clarity just in
Fig. 3b this observation holds for all J 2 W characteristics taken
graphically from Ref. 27. Since our HF solution breaks down at the
phase boundary we cannot extrapolate beyond it, nevertheless there

is obviously some subtle correspondence between the spin-symmet-
ric HF solution and the p-phase solution of the fRG.

To conclude, we have presented a systematic perturbative expan-
sion for the 0 2 p transition in the superconducting Anderson model
and found out that its second order yields at zero temperature excel-
lent results for the phase boundary and quantities in the 0-phase such
as locally induced superconducting gap or supercurrent surpassing
any (semi)analytical methods employed to this model so far.
Although demonstrated here explicitly just for the symmetric case
CL 5 CR for simplicity, the method produces equally good results
also in the general case. Moreover, we have also verified numerically
that the formalism is gauge-invariant, i.e., physical quantities depend
on the phase difference WL 2 WR only and conserves current, i.e.,
supercurrents calculated at left/right junctions are identical.
Furthermore, the full second-order PT is thermodynamically con-
sistent (unlike, e.g., fRG34).

The method cannot be, however, continued to the p-phase with-
out modifications taking into account the degeneracy of the doublet
ground state. Moreover, we have observed that the Matsubara form-
alism at finite temperatures does not detect any sharp phase bound-
ary found at T 5 0. To our best knowledge there is presently no
(semi)analytical method that would conceptually correctly and
quantitatively reasonably describe the p-phase. The spin-polarized
HF suffers from the discontinuity problems mentioned in the
Introduction while the fRG solution returns e- and U-independent
quantities in the p-phase27 apparently closely related with the sim-
plest spin-symmetric Hartree-Fock approximation as discussed
above, which is clearly not sufficient. The construction of an analyt-
ical theory of the p-phase thus remains an open challenge for future
study.

Methods
The necessary information for the study of the crossing of ABS as well as for obtaining
the particular components of total current can not be obtained directly from the
expressions in Matsubara frequencies. To access it we analytically continued the
expressions to the real-frequency domain.

The inverse Green function (4) can be represented as

Ĝ{1 zð Þ~
z 1zs zð Þ½ �{e{S zð Þ DWs zð Þ{S zð Þ
DWs zð Þ{S {zð Þ z 1zs zð Þ½ �zezS {zð Þ


 �
ð16Þ

where

s zð Þ~{
iC
f

sgn Im zð Þ ð17Þ

is a dynamical renormalization of the impurity energy level due to the hybridization
to the superconducting leads. We introduced a renormalized complex energy f 5 j 1

ig related to z 5 v 1 iy via f2 5 z2 2D2. The following convention for complex square
root is used:

jg~vy, sgn j~sgn v, sgn g~sgn y, ð18Þ

so that f 5 z for D 5 0. The renormalized energy f along the real axis is then real
outside the energy gap and imaginary within it. Accordingly to this definition the
function s(z) is imaginary outside the energy gap and real within it,

s v+i0ð Þ~+
iC sgn vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2{D2
p for vj jwD,

s v+i0ð Þ~ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2{v2
p for vj jvD:

ð19Þ

This definition allows for a straightforward analytic continuation of the Matsubara
Green function to real frequencies. An illustrating example of the normal and
anomalous spectral functions is plotted in Fig. 4. The Green function has a gap around
the Fermi energy from 2D to D and two poles at 6v0, jv0j , D. The positions of
these poles are given by zeroes of the determinant, det Ĝ{1 v0ð Þ

� �
~0. Since the

function s(v) has a square-root singularity at gap edges, the gap is fixed and does not
depend on interaction strength.

Calculating the self-energy from diagrammatic expansion calls for the analytic
continuation of sums over Matsubara frequencies. The sum of a one-particle function
F over fermionic Matsubara frequencies can be rewritten in the spectral representa-
tion as35

Figure 4 | Normal (2Im G/p, upper panel (a)) and anomalous
({ ImG=p, lower panel (b)) spectral density for U 5 4D, C 5 2D, W 5 p/
2 and e 5 2U/2 (half-filling) calculated using the dynamical corrections
from the second-order of the perturbation expansion. The heights of the

arrows marking the Andreev bound states represent their residues.
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1
b

X
n[Z

F ivnð Þ?{
1
p

ð{D

{?
z

ð?
D

� �
dvf vð ÞIm F vzi0ð Þ

z
X

i

f við ÞRes F,við Þ,
ð20Þ

where vi are the isolated poles within the gap and f(v) is the Fermi-Dirac function.
This formula can be used directly to calculate the static Hartree-Fock self-energies (8)
and the Josephson current (7).

Similar approach can be utilized to calculate the two-particle bubbles and the
second-order dynamic corrections, Eqs. (13)-(15). For the sake of simplicity we resort
to zero temperature. Choosing a correct contour in the upper complex half-plane we
arrive at an expression for the normal part of the bubble,

xn vzð Þ~{
1
p

ð{D

{?
dx Im G xzð Þ G xzvzð ÞzG x{vzð Þ½ �

zRes G,{v0ð Þ G {v0zvð ÞzG {v0{vð Þ½ �
ð21Þ

and analogously for the anomalous part xa. We have abbreviated v1 5 v1i0. The
resulting bubble has an extended gap from 2D 2 v0 to D 1 v0. The contributions
from the isolated states at 62v0 from the normal and anomalous parts exactly cancel
out each other, so there are no gap states in the full bubble x 5 xn 1 xa. Taking this
into consideration we arrive at a formula for the normal self-energy,

S 2ð Þ vzð Þ~ U2

p

ð{D

{?
dx Im G xzð Þx x{vzð Þz U2

p

ð{D-v0

{?
dx Im x xzð ÞG xzvzð Þ

{U2 Res G,{v0ð Þx {v0{vð Þ
ð22Þ

and similarly for S 2ð Þ. Integrals of this kind can be evaluated numerically using fast
Fourier transform algorithms which makes the calculation simple and efficient.
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28. Luitz, D. J., Assaad, F. F., Novotný, T., Karrasch, C. & Meden, V. Understanding
the Josephson current through a Kondo-correlated quantum dot. Phys. Rev. Lett.
108, 227001 (2012).

29. Meng, T. Andreev bound states in Josephson quantum dot devices. Master’s thesis,
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