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Abstract

Charge ordering instabilities are studied in a multiorbital model of cuprate superconductors. A
known, key feature of this model is that the large local Coulomb interaction in the Cud,:_,: orbitals
generates local moments with short range antiferromagnetic (AF) correlations. The strong simplifying
ansatz that these moments are static and ordered allows us to explore a regime not generally accessible
to weak-coupling approaches. The AF correlations lead to a pseudogap-like reconstruction of the
Fermi surface. We find that the leading charge instability within this pseudogap-like state is to a phase
with a spatially modulated transfer of charge between neighbouring oxygen p, and p,, orbitals accom-
panied by weak modulations of the charge density on the Cud,_ 2 orbitals. As a prime result of the AF
Fermi-surface reconstruction, the wavevectors of the charge modulations are oriented along the crys-
talline axes with a periodicity that agrees quantitatively with experiments. This suggests a resolution to
adiscrepancy between experiments, which find axial order, and previous theoretical calculations,
which find modulation wavevectors along the Brillouin zone diagonal. The axial order is stabilized by
hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate
superconductors. The main implication of our results is that charge order emerges from the pseudo-
gap state, and is not the primary source of the pseudogap.

1. Introduction

Cuprate high-temperature superconductors are, over a broad range of doping, characterized by anomalous
thermal, transport, and spectral properties [1]. These are due to a ‘pseudogap’ phase, which has been attributed
variously to incoherent fluctuations of incipient antiferromagnetic (AF) [2—6], stripe [7], superconducting
order [8—11], or combinations thereof [ 12—15]; to strong correlation physics [ 16] and to exotic microscopic
nonsuperconducting phases, including ‘loop currents’ [17] and ‘d-density waves’ [18]. Experimentally, the
physics underlying the pseudogap has proven difficult to isolate, in part because unambiguous signatures for the
different pseudogap scenarios are lacking.

Renewed efforts to understand possible connections between the pseudogap, superconductivity, and non-
superconducting phases have been spurred by evidence for charge order in various underdoped cuprates,
including YBa,Cu3O0¢+x (YBCO) [19-21], Bi,Sr,CaCuOg4s [22, 23], Bi,Sra—xLa,CuOg 5 (BSCCO) [24], and
HgBa,CuO4.s (HBCO) [25, 26]. Notably, charge order is observed at similar doping levels to where the
pseudogap is observed. Incommensurate charge modulations oriented along the crystalline axes, with

wavevectors near ¢* = 0.3 reciprocal lattice units, were seen by resonant x-ray scattering (RXS) [20, 24, 27, 28],
x-ray diffraction [21, 29-31], and scanning tunneling microscopy (STM) [23, 24,27, 32, 33] in zero magnetic
field. NMR [19, 34] and ultrasound experiments [35] found that the charge correlations are long-range only in
finite magnetic fields. Consistent with the onset of some kind of electronic order, a Fermi surface reconstruction
was revealed by quantum oscillation experiments [36, 37], and by transport measurements of Hall, Seebeck, and
Nernst coefficients [25, 38, 39]. Ultrasound data suggest that the charge modulations form a biaxial
‘checkerboard’ pattern [35], while STM data have been interpreted either in terms of checkerboard [32] or
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uniaxial [23, 33, 40] order. A direct causal connection between charge order and the onset of pseudogap features
atatemperature T appears unlikely: first, the charge ordering temperature T, typically lies below T" [21,41];
second, the ordering wavevector g does not connect Fermi surface sections at the Brillouin zone (BZ) boundary
from which the pseudogap emerges [24, 27]. Nonetheless, it has been proposed that charge ordering
fluctuations above T, may contribute essentially to the pseudogap [42,43].

An intriguing feature of charge order in YBCO and BSCCO is that there appears to be a strong intra-unit cell
transfer of charge between oxygen atoms in each CuO, plaquette, rather than the inter-unit cell charge transfer
normally associated with charge-density waves. The most direct evidence for this comes from STM experiments
(23,33, 40], and further support is provided by x-ray scattering [28]. Roughly then, the charge ordered phase can
be thought of as a finite-q modulation with ad,:_,> form factor describing the intra-unit cell charge transfer, and
with relatively little transfer of charge between neighbouring unit cells. For this reason, the phase is sometimes
called a ‘dCDW’. Alternatively, because the charge order is a generalization ofaq = (0, 0) nematic phase that
breaks rotational but not translational symmetry, it has been labelled a ‘modulated nematic’.

It is natural to ask whether the dCDW charge order identified in YBCO and BSCCO is related to stripe order
(see [44,45] for further discussion). Stripe order is well established in La,_Ba,CuO, and dynamical stripes are
inferred in La,_Sr,CuQ, [46]. Stripes in La;—xBa,CuQ, are characterized by a static or quasistatic spin
modulation whose period is double that of a concomitant charge modulation [47]. The doping dependence of
the modulation wavevector is opposite to what one would expect for a Fermi surface instability, and suggests
instead a strong coupling picture in which holes and spins segregate into one-dimensional stripes [47]. The
dCDW described above has some similarities to this stripe order: both compete with superconductivity, and
both have maximal intensity near a hole doping p = 1/8 in all cuprates for which the doping dependence has
been measured [48—50]. On the other hand, there are also significant differences. First, the local spins in YBCO
are dynamic, rather than (quasi)static. Models of fluctuating stripes have been proposed to describe this
[46,51, 52]; however, recent NMR experiments clearly show that the charge order is static in YBCO up to high
temperatures [53]. This suggests that the intertwining of charge and spin textures that is key to stripe formation
in the La-cuprates is not a factor in YBCO. Consistent with this we note that, while the doping dependences of
the spin and charge modulation wavevectors are closely connected in La;_,Ba,CuQOy, they appear unconnected
in YBCO [29]. Finally, recent x-ray experiments have shown that the structure factor for charge orderin La,
Ba,CuO, has an extended-s symmetry [45], consistent with multiorbital models of a magnetically driven stripe
instability [54], and in contrast to YBCO and BSCCO.

Whether these differences are due to small differences in the band structure that tip the balance towards
particular phases, or point to larger differences between the cuprate families is not yet established. Here, we
adopt the point of view that the mechanism driving charge order in YBa,Cu3O¢+ is distinct from that in the La-
cuprates. The majority of previous theoretical work along these lines is based on one-band effective models of a
single CuO, plane; in such models, the analogue of intra-unit cell charge redistribution is bond order, namely,
an anisotropic renormalization of the electronic effective mass along the x and y axes. Several theories have
argued that bond order follows from AF exchange interactions; a vital role for the charge instabilities is thereby
ascribed to ‘hot spot’ regions of the Fermi surface where scattering from AF spin fluctuations is especially strong
[42,43,55-60]. Alternative one-band [61-63] and three-band [64] model calculations with generic interactions
have found similar charge instabilities. With the exception of [59], which additionally found current-carrying
stripes, these models universally obtained a charge density with ad,:_, form factor and an ordering wavevector

q* along the BZ diagonal. While the form factor is compatible with experiments [23, 28, 33], the magnitude of g*

is typically too small by a factor of 2, and the direction of g* is rotated by 45° relative to the experiments. The
robustness of these discrepancies suggests that the underlying models lack an essential ingredient.
In this work, we show that the Fermi surface topology affects the emergent charge order in a fundamental

way, and can explain the discrepancy between the observed and predicted values of g*. Starting from a simplified
model of the Fermi surface in the pseudogap phase, we obtain a charge instability that quantitatively agrees with
that found experimentally. The implication of this work is that charge order emerges from the pseudogap phase,
rather than contributing to it directly.

Experimentally, the pseudogap is characterized by a partial depletion of the density of states around the
Fermi level. Photoemission experiments have revealed that this depletion occurs near the BZ boundary at
(£m, 0) and (0, +x), and that spectral weight near these points is pushed away from the Fermi energy [65]. Early
proposals ascribed this to nearly AF spin fluctuations that partially nest these regions of the Fermi surface and
shift spectral weight to higher energy [2, 3]. This picture remains physically appealing because the underdoped
regime lies near the AF insulating phase of the parent compounds, and it is supported by quantum Monte Carlo
(QMC) [66] and cluster dynamical mean-field theory [16] (cDMFT) calculations that draw a link between spin
fluctuations and the pseudogap.
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With this in mind, we adopt a model that we believe contains the essential ingredients to understand charge
order in the cuprates. The basic element of this model is a two dimensional CuO, plane, and we retain both Cu
and O orbitals, as well as the short-range Coulomb interactions between them. While it is likely that similar
ordering instabilities to the ones described here may be found in one-band models, by choosing a multiorbital
model we are able to obtain details of the intra-unit cell charge redistribution, which can be directly probed by
STM, NMR and x-ray experiments. We examine specifically the charge instabilities generated by the short-range
Coulomb forces, which have been shown to be attractive in the relevant charge ordering channel [64, 67]. We
note that spin fluctuations are also attractive in this channel, at least in one-band models; these will modify T,

but should not alter the relationship between g* and the Fermi surface structure. For simplicity, then, we focus
on the charge fluctuations only and omit spin dynamics.

Pseudogap physics in the three-orbital model derives from the large local Coulomb interaction, U; ~ 10 eV,
on the Cussites, which is the source of strong correlation physics in the cuprates. Despite the achievements of
state-of-the-art computational methods, there is still a paucity of tools available that can capture both the short-
range strong correlation physics and the long-range physics of incommensurate charge order. Numerical
methods like QMC and cDMFT, which have proved capable of verifying the pseudogap structures in the density
of states, suffer from finite-size effects that render the charge instability inaccessible, and cluster methods further
face the difficulty of treating the nonlocal Coulomb interactions that drive the charge order [68]. On the other
hand, weak-coupling methods, which capture long-range physics, find that spin fluctuations introduce only
weak pseudogap-like spectral features [3—6].

For these reasons, we follow a partially phenomenological approach. To leading order, the effect of U is to
suppress double occupancy of the Cu d,2_ 2-orbital and thereby create local moments; as a consequence, the
itinerant electrons reside primarily on the oxygen sites, although the Fermi surface does nevertheless have some
Cu character due to the hybridization of Cuand O orbitals. Above the superconducting transition, the spin
spectrum measured by neutron scattering [69] is centred at (z, ), indicating dynamical AF correlations. Our
subsequent diagrammatic analysis is based on two strong simplifying assumptions: first, the moments are
assumed quasistatic on electronic timescales, and second, the AF correlation length £,5 is larger than the charge
order correlation length &, which is estimated from experiments to be ~50 A [49]. In essence, this implies that
the local moments can be treated, as if they are ordered antiferromagnetically. (A similar ansatz was made in
[70], where static spin textures of classical magnetic moments on the copper sites were shown to induce charge
order.) Both of these assumptions are not satisfied throughout most of the doping range where charge order is
observed experimentally (é4¢ ~ 20 A in YBa,Cu3Os 5 [71]); however, by making these assumptions we are able
to explore a different physical regime than previous weak coupling calculations. We also note that there is
evidence in YBa,Cu3O¢.+x that charge order survives inside a static magnetic phase that exists at very low doping.
Reference [49] ultimately, however, one should think of the above approximations as a simple phenomenology
for strong correlation physics on the copper sites, which is justified after the fact by the surprising accuracy with
which we predict certain properties of the charge ordered phase.

The effect of the ordered local moments is to create a pseudogap-like shift of spectral weight away from the
Fermilevel at(+7, 0) and (0, +7) and to reconstruct the Fermi surface to form hole and electron pockets. In this
pseudogapped state we find that residual Coulomb interactions between the quasiparticles can drive ad,,>_ -like
charge redistribution between Op, and Op, orbitals, accompanied by a weaker periodic modulation of the Cu

charge density. The obtained charge pattern with an ordering wavevector g* along the BZ axis is indeed
consistent with what has been observed experimentally. This charge order induces a second Fermi surface
reconstruction which generates diamond-shaped electron pockets. The existence of such pockets was earlier
inferred from quantum-oscillation experiments.

We introduce the model in section 2 and describe briefly the calculations for the charge susceptibility, with
details left for the appendices. The results of our calculations are discussed in section 3, with an emphasis on
comparisons to experiments. The main implication is that the proposed model calculation, while still not a
complete description of the microscopic physics underlying charge order, provides a route to understand the
experiments, and suggests that charge order and pseudogap features are in fact distinct phenomena. A short
summary is contained in section 4.

2.Model and calculations

The goal is to model charge order in YBa,Cu3O¢.4, and to this end we employ a multiband description of the
CuO, planes due to Andersen et al (ALJP) that was derived specifically for YBa,Cu3O; [72]. In an extension to
the Emery model [73], which is based on the Cu3d,:_,2 and two o-bonded oxygen orbitals, Op,.and Op,, ALJP
included also the Cud4s orbital. The latter resides well above the Fermi energy, approximately 6.5 eV above the
Cud orbital, and has a large overlap with the Op orbitals. Downfolding this orbital leads to an effective

3
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three-band model (see appendix A), H = Y, l//kTH(k)l/Ik, where
€4 2tpaSx  — 2tpasy
H(k) = | 2tpasx  &x(k)  4fypsisy (1)
—2tpqsy 4Eppsycs, €, (k)

and w, = d ,I , pjk , p;k |is an array of electron creation operators for the d, p,, and p, orbitals. Parameters ., and

tpp denote hopping amplitudes, s, , = sin (ky,/2), €, (k) = €, + 4t1§p5xz,y,

The tilde denotes renormalization by hopping through the Cu4s orbital. In particular, f,, = t}fp + t;;p, where the

and ez and e, are orbital energies.

superscripts indicate direct (d) and indirect (3; through the Cu4s orbital) hopping between Op orbitals.

For the reasons outlined above we introduce AF moments on the Cud orbitals by adding a staggered spin-
dependent potential M (r;) to the Hamiltonian and thereby obtain a pseudogap-like reconstruction of the Fermi
surface. Itis natural to think of this potential as the auxilliary field that appears when the Coulomb interaction
U, ;a1 11jq, on the Cud orbitals is removed by a Hubbard-Stratonovich transformation. In this transformation,
the quartic interaction term is replaced by an interaction between the electrons and a spin-polarizing time-
dependent auxiliary field M (r;, t). As mentioned in section 1, we make two assumptions in order to isolate the
physics of interest: first, that the field is static, and second that M (r;) has long range AF order. Under these
assumptions, an additional term,—M Y, i elQ7i(5 it — #j,)withQ = (x, 7),is added to the Hamiltonian. On
physical grounds, we expect this potential to be quite large: within a saddle-point approximation, M = U;m,
where m is the static AF moment on the Cu sites. Given thatU; ~ 10 eV in the cuprates, even a modest value of m
leads to M ~ 1eV. The Fermi surface reconstruction generated by M is illustrated in figure 1, where the local Cud
moments open a gap along Fermi surface segments near the AF hot spots, i.e. those points where the Fermi
surface intersects the magnetic BZ boundary.

Charge order is driven by interactions between quasiparticles in the reconstructed bands. It has been shown
that, in one band models at least, the exchange of spin fluctuations may drive a charge ordering transition; here,
we consider only short range Coulomb interactions. Electrons interact at short distances through intra-orbital
U, and U, and nearest-neighbour V,,;and V,,, Coulomb repulsions. The corresponding interaction part of the
Hamiltonian is

V=3 Uahvjariijar + Up (gt + Aigrii,) + Voa D 0 Aiafijesa
j 5 a=xy

+ Vip D hisiijpsy (2)
5

where 3’ implies summation over unit cells, and § is summed over nearest-neighbour orbitals of type Op, , (for
Vpa) or Op,, (for V). In our model, the charge instability is driven by V.

To study charge ordering tendencies, we calculate the charge susceptibility y,; (q) = —(dn4/dep)(q), where
n, denotes electron densities and a and f are orbital labels. The onset of charge order is signalled by a diverging

susceptibility at a specific q* upon lowering the temperature. The interactions are treated in a generalized
random-phase approximation (see [64] and appendix B), which allows one to find the leading charge instability

without any bias towards a particular ordering wavevector q* or orbital type.

3. Results

The main results of this calculation are summarized in figure 1. The Fermi surface for the ALJP bands is shown in
figure 1(a), along with the wavevectors g, and g, at which the charge susceptibility first diverges upon cooling in
the absence of staggered Cu moments. As in previous calculations [42, 43,5658, 61, 62, 64], these wavevectors
lie along the BZ diagonals and the charge instability primarily involves an intra-unit cell charge transfer between
Op,and Op, orbitals. q, and q, connect points close to nearby hot-spot regions of the Fermi surface. When M is
finite but small, as in figure 1(b), the Fermi surface breaks up into hole pockets around (+7/2, +7/2) and
electron pockets centred at the ‘antinodal’ points on the BZ boundary; the modulation wavevectors remain
diagonal and connect these pockets.

While the directions of ¢, and g, are consistent with previous calculations, they conflict with experiments
[20,21,29-31, 34], which clearly indicate that the charge densities are modulated along the axial Cu-O bond
directions. This discrepancy is resolved when the electron pockets are fully eliminated (figure 1(c)) bya
sufficiently large staggered potential M and the modulation wavevectors rotate to the axial direction.

4
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Figure 1. Leading charge instabilities. (a) ALJP Fermi surface and the calculated modulation wavevectors g, and g, at which the charge
susceptibility first diverges. Fermi surfaces and concomitant charge ordering wavevectors are also shown for (b) M= 0.5eV and (c)

M= 1.5eV. All three figures are at a hole density of p = 0.10 where p = 5 — n and nis the total electron density. (d) Magnitude of the
modulation wavevector|q,’| for M= 1.5V as a function of hole density together with experimental results from [29] for YBa;Cu3O6 +
along a and b axial directions. Error bars indicate the g-resolution of our calculations. The results are for the temperature 7= 110K (see
figure 4 for corresponding critical V},, values). (e) Orbitally resolved charge modulations for unidirectional charge orderand p=0.10. The
sizes of the Cud, Op,, and Op,, orbitals indicate the relative sizes of the positive (red) and negative (blue) charge modulations on those
orbitals. We have taken g* = 1/3 for presentation purposes. (f) Modulation of the total charge per unit cell 57, nematic modulation (see
text) 61nem, and Cu charge density n1¢,. Note that relative amplitudes are shown. The horizontal axes in (e) and (f) are the same.

Furthermore, the magnitude of ', agrees quantitatively with the experimental data of Blackburn et al [29] as
shown in figure 1(d) for the doping dependence of|q,", |. We emphasize that no fine tuning of the model

parameters was done to obtain these results: the band parameters were taken from [72], and q;" and q, depend
only weakly on the size of M once it is large enough to remove the electron pockets.

The fact that the Fermi surface forms well defined pockets is an artefact of the assumption that the AF
correlation length £, is infinite [74], and indeed there is no experimental evidence for hole pockets of the type
shown in figure 1(c). When the £, is finite, however, the pockets become arcs, which is consistent with
experiments. For our purposes, it is important to note that the portions of the Fermi surface connected by q," and

q, remain well defined when £, is finite [74], while the back sides of the pockets are wiped out. For this reason,
we believe that the leading charge instability described here will also be the leading instability in models with
short range AF correlations.

The charge modulation amplitudes on the different orbitals are determined from the eigenvector v/ of the

divergent eigenvalue of the 3 X 3 susceptibility matrix y,, (q].* ) (j=1, 2) at the transition. The three components

ofv f give the relative (but not absolute) modulation amplitudes 61c, (9), 61, (), and 6n,, (q). A purely nematic
mode, with d-wave charge transfer between Op, and Op, orbitals only and no modulation on the Cud orbitals,
would have an eigenvector v¥ = (0, —1, 1)/ J2 . For comparison, the calculated eigenvectors are

v{ = (0.21, —0.39, 0.89) and v{ = (0.21, 0.89, —0.39) when p=0.10and M =1.5¢eV. Thus, for q,'> the charge
modulation amplitudes on the Cuand Op,sites are about 25% and 43% respectively of the amplitude on the Op,
site. This distinction between Op, and Op, sites is consistent with the observation of anisotropic NMR

5
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Figure 2. Spectral functions Ac, (k, &) at the Fermi energy, projected onto Cu orbitals. Results are for (a) the Emery model and (b)

the ALJP model. In both models, 7, = t"nip + t;m =-1.0eV;in(a)t% = —1.0eV andt}‘jp = 0;in(b) tgp =0 andt}’w = —1.0eV. Other

parametersaret,; = 1.6 eVande; — €, = 0.9eV.

pp = T

linewidths in YBa,Cu30Os 5 [53]: the linewidths of O(2) oxygen sites, which lie perpendicular to g* [29] are

roughly 50% greater than for O(3) sites, which lie parallel to g*. As pointed out in [75], the ratio of the Op, to
Op, modulation grows (shrinks) rapidly with increasing (decreasing) U,.

Figure 1(e) illustrates the unidirectional charge modulations derived from v{. As v{ directly tells, the charge
modulations on the Op,.and Op, orbitals are out of phase, so there is a significant intra-unit cell nematic-like
charge transfer between them. The charge ordered phase is not purely nematic, however, as there are also
modulations of the total charge per unit cell and of the Cu charge. This structure is consistent with the
observation of nematic-like modulations of the oxygen orbitals by STM [23, 32, 33] and elastic RXS [28], and the
observation of Cu charge modulations by NMR [19]. For a unit cell centred on a Cud orbital atr, the total charge
modulation is no (r) = Sncy (r) + %E 5 Onp(r + 6), wherer + 4 are the locations of the four neighbouring

oxygen atoms; the nematic modulation is defined by 6n e, (1) = %Z s(—1)%én p(r + 8). Figure 1(f) clearly
shows that all three types of modulation are present. These different symmetries must in fact mix because y,,; ()
is not invariant under fourfold rotations when g # 0.

To understand the role of the Cu4s orbital, we compare our results to those for the Emery model, which does
notinclude it. fpp = —1eVischosen for both models, so that the only difference between them is that the
diagonal matrix elements of H (k) are unrenormalized in the Emery model. As shown in figure 2, this changes the
Fermi-surface shape and the underlying band structure only quantitatively, with a noticeable increase of the
Fermi-surface curvature. Indeed, the incommensurate peak positions q].* in the charge susceptibility shift only by
about 5% between the two models for M = 1.5 eV. Surprising and important, however, is that the leading
instability in the Emery modelis to aq = 0 nematic phase, and that the incommensurate phase is subleading.
We have traced this difference to the oxygen spectral weight distribution along the Fermi surface, which is
strongly anisotropic in the Emery model, but nearly isotropic in the ALJP model (see appendix A). Thus, the
Cuds orbital stabilizes the ALJP model againstq = 0 nematic order.

To discuss the Fermi surface reconstruction from charge order we show in figure 3(a) the four original Fermi
surface hole pockets centred at (+7/2, +7/2), which we label (+1, +1); these are the ‘nodal’ pockets. Charge
order alonga direction qj* scatters quasiparticles through iq].* and generates replica Fermi-surface pockets. Red

contours mark those first-order replicas, generated by shifting the (—1, 1) pocketby+4," and the(1, —1) pocket
by+q,, that touch the(1, 1) nodal pocket. Where original and replica pockets touch, the bands hybridize and a
gap opens. Importantly, atany doping q*, are such that replica and original pockets precisely touch without

crossing. We include also a second-order replica (blue dotted) by shifting the (—1, —1) pocketbyq* + q,. This
replica appears only when the order is bi-directional, and it hybridizes with two of the first order replicas and the
original (1, 1) nodal hole pocket to form a diamond-shaped electron pocket shown as the grey region on the
frontside of the (1, 1) pocket (closest to the origin) in figure 3(a).

It was argued empirically [36] that electron pockets of this diamond type could explain observed magneto-
oscillations in YBa,Cu;Os 5. Yet, the interpretation is complicated because, in addition to a central frequency of
Fiype ~ 530 T [76-78], a pair of side frequencies is observed [79]. The latter have been attributed to bilayer
splitting into bonding and antibonding bands [36, 79]. For the ALJP model, we find that the electron pocket has
anarea A, = 0.50/ay (a, is the lattice constant) which gives an oscillation frequency § = (/2/2me) A, = 340 T,
slightly less than E.,;. However, since A represents only ~1% of the BZ area, it is far more sensitive to the Fermi

surface shape than is ¢*. We obtain, for example, § = 1000 T using the Emery model with M = 1.5 eV and the
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Figure 3. Fermi surface and spectral function in the charge ordered state at p = 0.10. (a) Nodal Fermi pockets of the AL]JP model with
M =1.5eV (black) along with some of the first- (red) and second-order (dotted) replica Fermi surfaces that are involved in the
reconstruction of the (1, 1) nodal pocket by charge order. The first-order replicas shown are obtained by shifting nodal pockets by
+q, or+q, . Second-order replicas result from shifting the (—1, —1) pocketbyq," + q, (blue dotted) or —q," + g, (black dotted).
These replicas bound electron pockets (shaded grey and pink regions) with areas A; = 0.50/ aland A, = 0.10/al. (b)—(d) Spectral
functions at the Fermi energy for bi-directional charge order with modulation potential (b) e = 0, (c) de = 0.25¢eV, and (d) de = 0.5
eV. The spectral function is broadened by 0.04 eV.

parameters in the caption of figure 2; this is a factor of 3 larger than the ALJP result, even though the
incommensurate g differs by only ~10% between the two models. Obviously, fine tuning of the ALJP model,
which is based on band structure calculations for YBa,Cu;05, is needed to quantitatively match quantum
oscillation experiments performed on YBa,CuzOs 5.

One difference to the proposal in [36] is that we find four electron pockets attached to each nodal pocket,
rather than one. In addition to the electron pocket discussed above, there is a second electron pocket with
identical area (not shown) on the back side of the nodal pocket (closest to (r, 7)). Two further diamond-shaped
electron pockets form at opposite ends of the each nodal pocket. One of these, with an areaarea A, = 0.10/a;
and corresponding oscillation frequency b = 65T, is shown as a shaded pink region in figure 3(a). These
additional electron pockets are an artefact of the assumed infinite AF correlation length. As we said previously,
when &,p is finite, the spectral function is characterized by Fermi arcs that resemble the front side of the nodal
pockets; the back and side electron pockets only emerge as &4 diverges [74].

To see the effect of charge order on the spectral function, we model bi-directional charge order as a
perturbation of the Cud, Op., and Op, site energies by Se[v{ cos (g, - r) + v} cos (q, - r)]. Adding the
corresponding potential term to the Hamiltonian, we calculate the spectral function
Ak, @) = Y, X, ¢h,(k)|?8 (w — E,x)atthe Fermienergyw = &g, where ¢),,, (k) are the energy eigenvectors
indicating the projection of band n onto orbital @, and E, are the energy eigenvalues. Figure 3(b) shows
A (k, ep) without charge order (6e = 0). In figures 3(c) and (d) the modulation potential is increased to
de = 0.25eVand de = 0.5 eV, respectively. These selected values are exaggerated for presentation purposes. The
main effect of charge order is to erode spectral weight along segments of the Fermi surface that touch replicas as
in figure 3(a). In contrast, the spectral weight is almost unaffected by charge order along short arcs on the insides
of the nodal pockets. Also, the diamond-shaped electron pockets shown in figure 3(a) are unobservable, even for
the unphysically large value of §¢ used in figure 3(d).

In our model calculations, the charge instability is driven by the Coulomb repulsion V), between electrons
on neighbouring oxygen atoms. In the doping window0.1 < p < 0.14 the ordering wavevector qa; continuously
decreases with p as in the x-ray diffraction experiments by Blackburn et al [29] (figure 1(d)). In the same doping
regime the calculated charge ordering temperature T, rises with increasing p. Because the calculation of T, is
numerically intensive, we show instead in figure 4 the inverse of the critical interaction strength, namely Vo l
required to drive the charge ordering transition at fixed T'= 110 K. This quantity is a useful proxy for T;,: a large
value of VI;} indicates that the system is very susceptible for charge ordering, and should therefore have a large
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Figure 4. Doping dependence of the critical value of VP_P1 inunitsof (eV)"'at T=110K forM=1.5eV.

T¢o- In our calculations, the susceptibility towards charge order with growing hole density p concomitantly
increases with the increasing size of the nodal hole-Fermi pockets.

Experimentally, the variation of T;,, with hole doping remains inconclusive. RXS data indicate that T,
decreases with increasing p [24], but this trend is at variance with earlier x-ray data and with the field-tuned
T, (H) observed by NMR [19, 34]. From the latter data a maximum T, around p = 0.12 was inferred [34], and a
similar dome-shaped p-dependence was determined for the Fermi-surface reconstruction from Hall
measurements [19]. Recent x-ray experiments on YBa,Cu3O¢.+x [49] also find a dome-shaped dependence of T,
on p, peakedatp ~ 0.10.

The evolution of T;,, in model calculations likely depends on the detailed doping dependence of both the
effective interaction strength in the charge ordering channel, which has not been considered here, and the Fermi
surface, which is the central topic of this work. A further complication is the role of disorder, which is
unavoidable in doped cuprates and should influence the spatial lock-in of any charge-density wave. The issue of
how T, evolves with doping is an open question that needs to be resolved.

4, Conclusions

In this work, we have described a model calculation that provides a route to understand the doping dependence

of the charge-ordering wavevectors g™ in cuprate superconductors. The essential model ingredients are a
realistic multiorbital description of the CuQO, planes, the assumption and the ansatz that strong correlation
effects on the Cud,_,2 orbitals can be modeled by antiferromagnetically correlated moments, and the inclusion
of short range Coulomb forces that drive the charge-ordering instability. While the model analysis is still
incomplete, e.g. inelastic spin-scattering processes and the spin dynamics are neglected, it nonetheless provides

an important result: quantitatively correct charge-ordering wavevectors g* are obtained, if the charge order is
presumed to emerge from the pseudogap phase, rather than to generate the pseudogap itself.

Also a subtle but important role played by multiorbital physics is highlighted. While the three-orbital Emery
model and the four-orbital ALJP model have similar Fermi surfaces, the leading instability in the Emery model is
toaq = 0 nematic phase, while the ALJP model correctly reproduces the structure seen experimentally. This
distinction is traced to subtle differences in the orbital composition of the conduction band.

A number of questions necessarily remains open, in particular the relationship between the charge order and
the pseudogap and also the possible connection to the emergence of spontaneous loop currents await further
clarification. Notably, the dependence of T;,, on p is a challenging question that demands an improved treatment
of the pseudogap phase beyond the initial steps presented in this work.
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Appendix A. Model and band structure

A.1. Effective three-band model

We start with a realistic four-band model that is tailored specifically to YBa,Cu305, due to Andersen et al [ 72]
(ALJP). Inaddition to the copper 3d,2_,2 and oxygen p, and p, orbitals included in the usual three-band Emery
model [73], the ALJP model includes the Cu4s orbital. The 4s orbital lies~6.5 eV above thed,>_,2 orbital and is
often ignored; however, band structure calculations[72] showed that indirect hopping through the 4s orbital
between neighbouring Op,.and Op, orbitals is actually larger than the direct hopping. The four-band
Hamiltonian is

€4 2tpasy  —2tpasy 0
2t,48 € 4t,,5xSy  2tpsS
A - pdox x pp3xy psox | ~
Hio = D 2pas, 4t 2tys, | @)
X Tabpasy  SlppSxSy € psSy
0 2t psSx 2t psSy €s
where s, = sin (k,/2)ands, = sin (k,/2),and where
dx
F=| P |, (A2)
pyk
Sk

is an array of electron annihilation operators for the Cu3d,>_ 42 Opy, Op,, and Cuds orbitals, respectively. The
spin index is suppressed in equations (A.1) and (A.2).

We can integrate out the 4s orbital in the usual downfolding procedure [72, 80]. Writing the four-band
Hamiltonian matrix in a block structure,

Ho(k)SXS Hl(k)SXI

, (A.3)
HL (k)IX3 €s
where the subscript notation i X j denotes the size of each block, we solve the equations-of-motion for the
Green’s function in the subspace of d 2 42 Pxo and p,, orbitals:
-1
1
Gk, w) = [a)l — H(k) — H*(k) Hl(k)T] . (A.4)
w — €
3%3
From the structure of G (k, @) atw = &, an effective three-band Hamiltonian matrix is generated
1
H(k)=H°(k) + H (k) ——H?* (k)"
W — €
€4 2tpasy  —2tpaSy
=| 2tpasy  Ex(k)  Alppsisy (A.5)
—2tpgsy Appsys,  E,(k)
with
& (k) = €, + 41557, (A.6)
éy(k) =€, + 4tépsf, (A.7)
Fpp =t + thy (A.8)
where tgp is the direct hopping between p, and p, orbitals, and
4 t2
thy= —"2— A9
i (A9)

is the indirect hopping amplitude, through the 4s orbital, between p orbitals. Importantly, we note thatep < ¢,
so that

ti

o < 0. (A.10)
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Table A1. Model parameters used in this work.

Parameter Value (eV)
tpa 1.6

tj_fp 0

thp -1.0

€4 — €p 0.9

M 0.0-1.5
Uy 6.0

U, 3.0
Vo 1.0
V;, variable

Figure A1. Spectral functions (a), (b) Acy (k, €r) and (c), (d) A, (k, ef) at the Fermi energy, projected onto Cu and Op, orbitals
respectively. Results are for (a), (c) the Emery model and (b), (d) the ALJP model. As in the main text, 7, = t;lp + t;p =—1.0eVin
both models.

Based on the signs of the orbital lobes, we would expect t}‘fp > 0; however, Andersen et al proposed that tf,lp is
negligible compared to the indirect contribution, and that,, ~ —1¢eV. Throughout this work, we adopt the
values of t,,, tl‘fp, tliyp, ande; — € » given by ALJP [72] and listed in table A1 . Figure A1 shows the spectral
functions at the Fermi energies projected onto both Cuand Op, orbitals. For comparison, results are also shown
for the Emery model.

A.2. Slater antiferromagnetism
We add a staggered magnetic field at the copper sites to the Hamiltonian to generate local moments on the Cud
orbitals. Then, with the spin index included, the Hamiltonian is

o —+ | H(k) —-ocM -
Hg, = ;v/k,,[_aM Hk + Q) | B (A11)
whereQ = (x, n),
g, = | (A.12)
ko = lHc+Qa ’ '
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p N
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>

N ;

Figure A2. Reduced AF BZ. The black square shows the original BZ for the nonmagnetic lattice. The areas labelled I and Il are the first
and second AF BZs.

and
M 00
M=|0 00| (A.13)
0 00

In the state with staggered copper moments, the wavevector k is restricted to the first AF BZ, labelled I in
figure A2 . Hence, k + Q belongs to the second AF BZ, labelled IT in figure A2.

Appendix B. Generalized RPA

B.1. Diagrammatic perturbation theory
We calculate the nematic susceptibility by summing the ladder and bubble diagrams shown in figure B1 . This is
analogous to what was done in [64], and we describe here how that calculation has been extended to the AF case.
In figure B1, the wavevectorsk and k + Q are constrained to the first and second AF BZs, respectively,
pictured in figure A2, while q is unconstrained. In this notation k is conserved along each propagator and the
indices 4, &, ... = 0, 1label the AF BZ to which the creation or annihilation operators at the ends of the lines
belong. For example, the line end labeled k; 07 in figure B1 has a corresponding annihilation operator cok,+4qs>
where o is the electron spin.
Figure B1(a) shows the bare interaction vertex V * (k, k', q) between charges, which includes both direct
(first term) and exchange (second term) diagrams, which is

[Vp:l::’;’,(klﬁ’ ka6, q) = 00,00y,y'0¢,0' Voo,00 (@ + £Q)

= 8,080,080, 80 Vanyo (K1 + 4Q — k2 = £Q), (B.1)

where the first and second terms are the direct and exchange terms, respectively.
In q-space, the Coulomb interaction for the three-band model is

Uy, a=p=d, 6 =-0,
Ups a=pf=xy, 6=—-0,

2Vpg cos (qx/Z), a=x,pf=dora=d, p=x,

‘/(m,/fo' (q) =9 (BZ)

2Vp4 cos (qy/z), a=y,f=dora=4d, =y,

4V, cos (qx/Z) cos (qy/Z), a=x,f=yora=y, f=x

Asin [64], the sum in figure B1(b) is most easily done by expressing the exchange and direct interactions in
terms of a set of basis functions g/ 5 (k):
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Ooly + ¢ ‘oly + 1! Ooly + ¢ oly + ¢
oty v 2 ki +q K +q (4251 Y otz
ki+dq ks +q ki+dq ks +q

ol + 1 yo'ly + €
(a) ve = A Y + ki t6Q -k —6Q
0oty ~yo'ly
k k k
1 2 K q+Q ha 1
9’0[1 70’42 9’0(’1 ’)’(71/,2

(b) + Ve > + < Ve Ve + o

Figure B1. Diagrams evaluated in the calculation of the charge susceptibility. (a) Effective interaction in the charge channel, including
both Hartree (first term) and exchange (second term) contributions. The wavevector k is restricted to the first AF BZ, and the greek
labels, denote the orbital type (d, p,, p,). The labels #;, etc indicate the AF BZ of the corresponding electron creation or annihilation
operator, which has momentumk + £ Q. (b) Diagrams summed in the calculation of the charge susceptibility y,; (q).

19
[Vf’]f::a (ks kot @) = 62,0 Y 8o (K + 4Q) VI (q + £Q)g), (k2 + £2Q), (B.3)

i,j=1

where

g{iﬂ(k) = g12 (k) = 84,46 p,x cos (kx/Z)

g2 (k) = gﬂa(k) = Suabp sin (ky/2)
g2 )= g it (k) = 64,48, cos (ky/2)
g:,,(k) gﬂa(k) = 0q,d0p,y sin (ky/z)
825 (k) = g1 (k) = 84,055,y cos (k/2) cos (k,/2)
855 (k) = g} (k) = 84,8,y cos (k/2) sin (k,/2)
8.5 (k) = gJ (k) = 84,08, sin (ko/2) cos (k,/2)
g5, = g 12 (k) = 8,5, sin (ke/2) sin (k,/2)
agﬂ(k)= Oa,d0p,d
8L5(K) = 80,46 .
8oy (K) = 82y,

In this basis, the sum of the diagrams in figure B1(b) is

~ 1. ito,jt's’
= @-3 Y Y xe@{[1+vor@] Vel T X @, e

i,j=1¢,0'=00,6'=%1

. 1 .
Xif7 (q) = _EZZZG%MZ(MG;M are (k+ @)ghy (K + 4Q), (B.5)
k 0,0'4,6

anN ZZZ Zgﬂﬂ(k-i_ﬁ ) /4&”1+f,ufz+f’(k+¢1)i0)n+il/)

n 4,6 k up'w'

X Glpua (Ko i0n)g], (k + £Q), (B.6)

Xufo,]af’zr (q 11/)

wherew, = (2n + 1) Tx are Matsubara frequencies and][...]™ denotes a matrix inverse, and the k-sums are over
the first AF BZ, which contains N k-points. As pointed outin [75], in addition to the charge response at q there
isaspinresponseatq + Q; this additional term vanishes when spins are summed over.

B.2. Origin of the g = 0 instability in the emery model
A comparison between the ALJP and Emery models is made in figure A 1. In both models, the Cu spectral weight
is large and uniformly distributed along the Fermi surface. The Op, spectral weight is comparatively weak, but
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because the charge instability involves primarily oxygen atoms, the details of the Op, spectral weight distribution
are important.

Notably, the Op, spectral weight is highly anisotropic in the Emery model and more isotropic in the ALJP
model. (The Op, spectral function A 5 (k, ep)is obtained by rotating A ». (k, €r) by 90°.) Asa consequence, the

matrix element of the bare susceptibility

x,?y(q =0) ~ ZApx(k) EF)Apy(k, EF) (B.7)
k

is strongly reduced in the Emery model (the superscript 0 indicates the susceptibility in the noninteracting limit).
As we show below, this matrix element tends to stabilize the system against nematic order.

We focus on the nonmagnetic case where approximate analytic expressions are easily obtained. Within a
simplified random phase approximation in which all interactions except V,, are ignored, we have atq = 0

-1

0 0 0
X3l§<P3A =41 +X30><3 0 0 8‘/pp )(30><3> (BS)
0 8V, 0

which has a diverging eigenvalue when

1+ 8Vpp[)(£y - U()gc)(fy] =0. (B.9)

(The factor of 8 arises because of a sum over spin and over the four neighbouring oxygen sites for each Op
orbital.) From this equation, it is clear that )(fx and ;()2, drive the nematic transition while ;{)g, opposes it. Thus, it
appears that the strong anisotropy of oxygen spectral weight in the Emery model is the principal difference
between the Emery and ALJP models which makes the former unstable toag = 0 nematic instability.
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