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Abstract
Charge ordering instabilities are studied in amultiorbitalmodel of cuprate superconductors. A
known, key feature of thismodel is that the large local Coulomb interaction in theCu −dx y2 2 orbitals

generates localmoments with short range antiferromagnetic (AF) correlations. The strong simplifying
ansatz that thesemoments are static and ordered allows us to explore a regime not generally accessible
toweak-coupling approaches. TheAF correlations lead to a pseudogap-like reconstruction of the
Fermi surface.Wefind that the leading charge instability within this pseudogap-like state is to a phase
with a spatiallymodulated transfer of charge between neighbouring oxygen px and py orbitals accom-
panied byweakmodulations of the charge density on theCu −dx y2 2 orbitals. As a prime result of theAF

Fermi-surface reconstruction, thewavevectors of the chargemodulations are oriented along the crys-
talline axes with a periodicity that agrees quantitatively with experiments. This suggests a resolution to
a discrepancy between experiments, whichfind axial order, and previous theoretical calculations,
whichfindmodulationwavevectors along the Brillouin zone diagonal. The axial order is stabilized by
hopping processes via the Cu4s orbital, which is commonly not included inmodel analyses of cuprate
superconductors. Themain implication of our results is that charge order emerges from the pseudo-
gap state, and is not the primary source of the pseudogap.

1. Introduction

Cuprate high-temperature superconductors are, over a broad range of doping, characterized by anomalous
thermal, transport, and spectral properties [1]. These are due to a ‘pseudogap’ phase, which has been attributed
variously to incoherent fluctuations of incipient antiferromagnetic (AF) [2–6], stripe [7], superconducting
order [8–11], or combinations thereof [12–15]; to strong correlation physics [16] and to exoticmicroscopic
nonsuperconducting phases, including ‘loop currents’ [17] and ‘d-density waves’ [18]. Experimentally, the
physics underlying the pseudogap has proven difficult to isolate, in part because unambiguous signatures for the
different pseudogap scenarios are lacking.

Renewed efforts to understand possible connections between the pseudogap, superconductivity, and non-
superconducting phases have been spurred by evidence for charge order in various underdoped cuprates,
including YBa2Cu3O +x6 (YBCO) [19–21], Bi2Sr2CaCuO δ+8 [22, 23], Bi2Sr −x2 LaxCuO δ+6 (BSCCO) [24], and
HgBa2CuO δ+4 (HBCO) [25, 26]. Notably, charge order is observed at similar doping levels towhere the
pseudogap is observed. Incommensurate chargemodulations oriented along the crystalline axes, with

wavevectors near =q* 0.3 reciprocal lattice units, were seen by resonant x-ray scattering (RXS) [20, 24, 27, 28],
x-ray diffraction [21, 29–31], and scanning tunnelingmicroscopy (STM) [23, 24, 27, 32, 33] in zeromagnetic
field. NMR [19, 34] and ultrasound experiments [35] found that the charge correlations are long-range only in
finitemagnetic fields. Consistent with the onset of some kind of electronic order, a Fermi surface reconstruction
was revealed by quantumoscillation experiments [36, 37], and by transportmeasurements ofHall, Seebeck, and
Nernst coefficients [25, 38, 39]. Ultrasound data suggest that the chargemodulations form a biaxial
‘checkerboard’ pattern [35], while STMdata have been interpreted either in terms of checkerboard [32] or
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uniaxial [23, 33, 40] order. A direct causal connection between charge order and the onset of pseudogap features
at a temperatureT* appears unlikely: first, the charge ordering temperatureTco typically lies belowT* [21, 41];
second, the orderingwavevector q* does not connect Fermi surface sections at the Brillouin zone (BZ) boundary
fromwhich the pseudogap emerges [24, 27]. Nonetheless, it has been proposed that charge ordering
fluctuations aboveTco may contribute essentially to the pseudogap [42, 43].

An intriguing feature of charge order in YBCOandBSCCO is that there appears to be a strong intra-unit cell
transfer of charge between oxygen atoms in eachCuO2 plaquette, rather than the inter-unit cell charge transfer
normally associatedwith charge-density waves. Themost direct evidence for this comes fromSTMexperiments
[23, 33, 40], and further support is provided by x-ray scattering [28]. Roughly then, the charge ordered phase can
be thought of as afinite-q modulationwith a −dx y2 2 form factor describing the intra-unit cell charge transfer, and
with relatively little transfer of charge between neighbouring unit cells. For this reason, the phase is sometimes
called a ‘dCDW’. Alternatively, because the charge order is a generalization of a =q (0, 0)nematic phase that
breaks rotational but not translational symmetry, it has been labelled a ‘modulated nematic’.

It is natural to askwhether the dCDWcharge order identified in YBCOandBSCCO is related to stripe order
(see [44, 45] for further discussion). Stripe order is well established in La −x2 BaxCuO4 and dynamical stripes are
inferred in La −x2 SrxCuO4 [46]. Stripes in La −x2 BaxCuO4 are characterized by a static or quasistatic spin
modulationwhose period is double that of a concomitant chargemodulation [47]. The doping dependence of
themodulationwavevector is opposite towhat onewould expect for a Fermi surface instability, and suggests
instead a strong coupling picture inwhich holes and spins segregate into one-dimensional stripes [47]. The
dCDWdescribed above has some similarities to this stripe order: both compete with superconductivity, and
both havemaximal intensity near a hole doping =p 1 8 in all cuprates for which the doping dependence has
beenmeasured [48–50]. On the other hand, there are also significant differences. First, the local spins in YBCO
are dynamic, rather than (quasi)static.Models offluctuating stripes have been proposed to describe this
[46, 51, 52]; however, recentNMR experiments clearly show that the charge order is static in YBCOup to high
temperatures [53]. This suggests that the intertwining of charge and spin textures that is key to stripe formation
in the La-cuprates is not a factor in YBCO.Consistent with this we note that, while the doping dependences of
the spin and chargemodulationwavevectors are closely connected in La −x2 BaxCuO4, they appear unconnected
in YBCO [29]. Finally, recent x-ray experiments have shown that the structure factor for charge order in La −x2

BaxCuO4 has an extended-s symmetry [45], consistent withmultiorbitalmodels of amagnetically driven stripe
instability [54], and in contrast to YBCOandBSCCO.

Whether these differences are due to small differences in the band structure that tip the balance towards
particular phases, or point to larger differences between the cuprate families is not yet established.Here, we
adopt the point of view that themechanism driving charge order in YBa2Cu3O +x6 is distinct from that in the La-
cuprates. Themajority of previous theoretical work along these lines is based on one-band effectivemodels of a
single CuO2 plane; in suchmodels, the analogue of intra-unit cell charge redistribution is bond order, namely,
an anisotropic renormalization of the electronic effectivemass along the x and y axes. Several theories have
argued that bond order follows fromAF exchange interactions; a vital role for the charge instabilities is thereby
ascribed to ‘hot spot’ regions of the Fermi surfacewhere scattering fromAF spin fluctuations is especially strong
[42, 43, 55–60]. Alternative one-band [61–63] and three-band [64]model calculations with generic interactions
have found similar charge instabilities.With the exception of [59], which additionally found current-carrying
stripes, thesemodels universally obtained a charge density with a −dx y2 2 form factor and an ordering wavevector

q* along the BZ diagonal.While the form factor is compatible with experiments [23, 28, 33], themagnitude ofq*

is typically too small by a factor of 2, and the direction ofq* is rotated by °45 relative to the experiments. The
robustness of these discrepancies suggests that the underlyingmodels lack an essential ingredient.

In this work, we show that the Fermi surface topology affects the emergent charge order in a fundamental

way, and can explain the discrepancy between the observed and predicted values ofq*. Starting from a simplified
model of the Fermi surface in the pseudogap phase, we obtain a charge instability that quantitatively agrees with
that found experimentally. The implication of this work is that charge order emerges from the pseudogap phase,
rather than contributing to it directly.

Experimentally, the pseudogap is characterized by a partial depletion of the density of states around the
Fermi level. Photoemission experiments have revealed that this depletion occurs near the BZ boundary at

π±( , 0) and π±(0, ), and that spectral weight near these points is pushed away from the Fermi energy [65]. Early
proposals ascribed this to nearly AF spin fluctuations that partially nest these regions of the Fermi surface and
shift spectral weight to higher energy [2, 3]. This picture remains physically appealing because the underdoped
regime lies near the AF insulating phase of the parent compounds, and it is supported by quantumMonteCarlo
(QMC) [66] and cluster dynamicalmean-field theory [16] (cDMFT) calculations that draw a link between spin
fluctuations and the pseudogap.
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With this inmind, we adopt amodel that we believe contains the essential ingredients to understand charge
order in the cuprates. The basic element of thismodel is a two dimensional CuO2 plane, andwe retain bothCu
andOorbitals, as well as the short-range Coulomb interactions between them.While it is likely that similar
ordering instabilities to the ones described heremay be found in one-bandmodels, by choosing amultiorbital
model we are able to obtain details of the intra-unit cell charge redistribution, which can be directly probed by
STM,NMRand x-ray experiments.We examine specifically the charge instabilities generated by the short-range
Coulomb forces, which have been shown to be attractive in the relevant charge ordering channel [64, 67].We
note that spin fluctuations are also attractive in this channel, at least in one-bandmodels; thesewillmodifyTco,

but should not alter the relationship betweenq* and the Fermi surface structure. For simplicity, then, we focus
on the chargefluctuations only and omit spin dynamics.

Pseudogap physics in the three-orbitalmodel derives from the large local Coulomb interaction, ∼U 10d eV,
on theCu sites, which is the source of strong correlation physics in the cuprates. Despite the achievements of
state-of-the-art computationalmethods, there is still a paucity of tools available that can capture both the short-
range strong correlation physics and the long-range physics of incommensurate charge order. Numerical
methods likeQMCand cDMFT,which have proved capable of verifying the pseudogap structures in the density
of states, suffer from finite-size effects that render the charge instability inaccessible, and clustermethods further
face the difficulty of treating the nonlocal Coulomb interactions that drive the charge order [68]. On the other
hand, weak-couplingmethods, which capture long-range physics, find that spin fluctuations introduce only
weak pseudogap-like spectral features [3–6].

For these reasons, we follow a partially phenomenological approach. To leading order, the effect ofUd is to
suppress double occupancy of theCu d −x y2 2-orbital and thereby create localmoments; as a consequence, the
itinerant electrons reside primarily on the oxygen sites, although the Fermi surface does nevertheless have some
Cu character due to the hybridization of Cu andOorbitals. Above the superconducting transition, the spin
spectrummeasured by neutron scattering [69] is centred at π π( , ), indicating dynamical AF correlations. Our
subsequent diagrammatic analysis is based on two strong simplifying assumptions: first, themoments are
assumed quasistatic on electronic timescales, and second, the AF correlation lengthξAF is larger than the charge
order correlation lengthξco, which is estimated from experiments to be∼50 Å [49]. In essence, this implies that
the localmoments can be treated, as if they are ordered antiferromagnetically. (A similar ansatz wasmade in
[70], where static spin textures of classicalmagneticmoments on the copper sites were shown to induce charge
order.) Both of these assumptions are not satisfied throughoutmost of the doping rangewhere charge order is
observed experimentally (ξ ∼ 20AF Å inYBa2Cu3O6.5 [71]); however, bymaking these assumptionswe are able
to explore a different physical regime than previous weak coupling calculations.We also note that there is
evidence in YBa2Cu3O +x6 that charge order survives inside a staticmagnetic phase that exists at very low doping.
Reference [49] ultimately, however, one should think of the above approximations as a simple phenomenology
for strong correlation physics on the copper sites, which is justified after the fact by the surprising accuracy with
whichwe predict certain properties of the charge ordered phase.

The effect of the ordered localmoments is to create a pseudogap-like shift of spectral weight away from the
Fermi level at π±( , 0) and π±(0, ) and to reconstruct the Fermi surface to formhole and electron pockets. In this
pseudogapped state wefind that residual Coulomb interactions between the quasiparticles can drive a −dx y2 2-like
charge redistribution betweenOpx andOpy orbitals, accompanied by aweaker periodicmodulation of theCu

charge density. The obtained charge patternwith an orderingwavevectorq* along the BZ axis is indeed
consistent withwhat has been observed experimentally. This charge order induces a second Fermi surface
reconstructionwhich generates diamond-shaped electron pockets. The existence of such pockets was earlier
inferred fromquantum-oscillation experiments.

We introduce themodel in section 2 and describe briefly the calculations for the charge susceptibility, with
details left for the appendices. The results of our calculations are discussed in section 3, with an emphasis on
comparisons to experiments. Themain implication is that the proposedmodel calculation, while still not a
complete description of themicroscopic physics underlying charge order, provides a route to understand the
experiments, and suggests that charge order and pseudogap features are in fact distinct phenomena. A short
summary is contained in section 4.

2.Model and calculations

The goal is tomodel charge order in YBa2Cu3O +x6 , and to this endwe employ amultiband description of the
CuO2 planes due toAndersen et al (ALJP) thatwas derived specifically for YBa2Cu3O7 [72]. In an extension to
the Emerymodel [73], which is based on theCu −d3 x y2 2 and two σ-bonded oxygen orbitals, Opx andOpy, ALJP
included also theCu s4 orbital. The latter resides well above the Fermi energy, approximately 6.5 eV above the
Cud orbital, and has a large overlapwith theOp orbitals. Downfolding this orbital leads to an effective
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three-bandmodel (see appendix A), ψ ψ= ∑ kH( )k k k
† , where

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

ϵ
ϵ

ϵ
=

−

−
k k

k

t s t s

t s t s s

t s t s s

H( )

2 2

2 ˜ ( ) 4˜

2 4˜ ˜ ( )

(1)

d pd x pd y

pd x x pp x y

pd y pp x y y

andψ = d p p[ , , ]k k k kx y
† † † † is an array of electron creation operators for the d, px, and py orbitals. Parameters tpd and

tpp denote hopping amplitudes, =s ksin ( 2)x y x y, , , ϵ ϵ= +k t s˜ ( ) 4x y p pp
i

x y, ,
2 , andϵd andϵp are orbital energies.

The tilde denotes renormalization by hopping through theCu4s orbital. In particular, = +t t tp̃p pp
d

pp
i , where the

superscripts indicate direct (d) and indirect (i; through theCu s4 orbital) hopping betweenOp orbitals.
For the reasons outlined abovewe introduce AFmoments on theCud orbitals by adding a staggered spin-

dependent potential rM ( )j to theHamiltonian and thereby obtain a pseudogap-like reconstruction of the Fermi
surface. It is natural to think of this potential as the auxilliaryfield that appears when theCoulomb interaction

↑ ↓U n nˆ ˆd jd jd on theCud orbitals is removed by aHubbard–Stratonovich transformation. In this transformation,
the quartic interaction term is replaced by an interaction between the electrons and a spin-polarizing time-
dependent auxiliaryfield rM t( , )j . Asmentioned in section 1, wemake two assumptions in order to isolate the
physics of interest: first, that thefield is static, and second that rM ( )j has long rangeAF order. Under these

assumptions, an additional term,− ∑ −↑ ↓M n ne ( ˆ ˆ )Q r
j j j

i · j with π π=Q ( , ), is added to theHamiltonian.On

physical grounds, we expect this potential to be quite large: within a saddle-point approximation, =M U md ,
wherem is the static AFmoment on theCu sites. Given that ∼U 10d eV in the cuprates, even amodest value ofm
leads to ∼M 1eV. The Fermi surface reconstruction generated byM is illustrated infigure 1, where the local Cud
moments open a gap along Fermi surface segments near the AF hot spots, i.e. those points where the Fermi
surface intersects themagnetic BZ boundary.

Charge order is driven by interactions between quasiparticles in the reconstructed bands. It has been shown
that, in one bandmodels at least, the exchange of spin fluctuationsmay drive a charge ordering transition; here,
we consider only short range Coulomb interactions. Electrons interact at short distances through intra-orbital
Ud andUp and nearest-neighbourVpd andVppCoulomb repulsions. The corresponding interaction part of the
Hamiltonian is

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑ ∑ ∑

∑

= + + +

+

δ α
δ α

δ
δ

↑ ↓ ↑ ↓ ↑ ↓
=

+

+

( )V U n n U n n n n V n n

V n n

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ , (2)

j

d jd jd p jx jx jy jy pd

x y

jd j

pp jx j y

,

where∑ j implies summation over unit cells, and δ is summed over nearest-neighbour orbitals of typeOpx y, (for

Vpd) orOpy (forVpp). In ourmodel, the charge instability is driven byVpp.
To study charge ordering tendencies, we calculate the charge susceptibility χ ϵ= − ∂ ∂αβ α βq qn( ) ( )( ), where

αn denotes electron densities andα and β are orbital labels. The onset of charge order is signalled by a diverging

susceptibility at a specificq* upon lowering the temperature. The interactions are treated in a generalized
random-phase approximation (see [64] and appendix B), which allows one tofind the leading charge instability

without any bias towards a particular ordering wavevectorq* or orbital type.

3. Results

Themain results of this calculation are summarized infigure 1. The Fermi surface for the ALJP bands is shown in
figure 1(a), alongwith thewavevectorsq1 andq2 at which the charge susceptibility first diverges upon cooling in
the absence of staggeredCumoments. As in previous calculations [42, 43, 56–58, 61, 62, 64], thesewavevectors
lie along the BZ diagonals and the charge instability primarily involves an intra-unit cell charge transfer between
Opx andOpy orbitals.q1 andq2 connect points close to nearby hot-spot regions of the Fermi surface.WhenM is
finite but small, as infigure 1(b), the Fermi surface breaks up into hole pockets around π π± ±( 2, 2) and
electron pockets centred at the ‘antinodal’ points on the BZ boundary; themodulationwavevectors remain
diagonal and connect these pockets.

While the directions ofq1 andq2 are consistent with previous calculations, they conflict with experiments
[20, 21, 29–31, 34], which clearly indicate that the charge densities aremodulated along the axialCu-Obond
directions. This discrepancy is resolvedwhen the electron pockets are fully eliminated (figure 1(c)) by a
sufficiently large staggered potentialM and themodulationwavevectors rotate to the axial direction.

4

New J. Phys. 17 (2015) 013025 WAAtkinson et al



Furthermore, themagnitude ofq1,2
* agrees quantitatively with the experimental data of Blackburn et al [29] as

shown infigure 1(d) for the doping dependence of q| |1,2
* .We emphasize that nofine tuning of themodel

parameters was done to obtain these results: the band parameters were taken from [72], andq1
* andq2

* depend
onlyweakly on the size ofM once it is large enough to remove the electron pockets.

The fact that the Fermi surface formswell defined pockets is an artefact of the assumption that theAF
correlation lengthξAF is infinite [74], and indeed there is no experimental evidence for hole pockets of the type
shown infigure 1(c).When theξAF isfinite, however, the pockets become arcs, which is consistent with

experiments. For our purposes, it is important to note that the portions of the Fermi surface connected byq1
* and

q2
* remainwell definedwhenξAF isfinite [74], while the back sides of the pockets arewiped out. For this reason,

we believe that the leading charge instability described herewill also be the leading instability inmodels with
short range AF correlations.

The chargemodulation amplitudes on the different orbitals are determined from the eigenvector χv j of the

divergent eigenvalue of the 3× 3 susceptibilitymatrix χαβ q( )j
* (j=1, 2) at the transition. The three components

of χv j give the relative (but not absolute)modulation amplitudesδ qn ( )Cu , δ qn ( )x , and δ qn ( )y . A purely nematic
mode, with d-wave charge transfer betweenOpx andOpy orbitals only and nomodulation on theCud orbitals,
would have an eigenvector = −χv (0, 1, 1) 2 . For comparison, the calculated eigenvectors are

= −χv (0.21, 0.39, 0.89)1 and = −χv (0.21, 0.89, 0.39)2 when p=0.10 andM=1.5 eV. Thus, forq1
*, the charge

modulation amplitudes on theCu andOpx sites are about 25% and 43% respectively of the amplitude on theOpy
site. This distinction betweenOpx andOpy sites is consistent with the observation of anisotropicNMR

Figure 1. Leading charge instabilities. (a)ALJPFermi surface and the calculatedmodulationwavevectorsq1 andq2 atwhich the charge
susceptibilityfirst diverges. Fermi surfaces and concomitant chargeorderingwavevectors are also shown for (b)M=0.5 eVand (c)
M=1.5 eV.All threefigures are at a holedensity of p=0.10where ≡ −p n5 andn is the total electrondensity. (d)Magnitude of the
modulationwavevector q| |1

* forM=1.5 eVas a function of hole density togetherwith experimental results from[29] forYBa2Cu3O +x6

along a and b axial directions. Errorbars indicate the q-resolution of our calculations. The results are for the temperatureT=110K (see
figure 4 for corresponding criticalVpp values). (e)Orbitally resolved chargemodulations forunidirectional charge order and p=0.10. The
sizes of theCud,Opx, andOpyorbitals indicate the relative sizes of thepositive (red) andnegative (blue) chargemodulations on those
orbitals.Wehave taken =q* 1/3 for presentationpurposes. (f)Modulationof the total chargeperunit cellδntot, nematicmodulation (see
text)δnnem, andCuchargedensityδnCu.Note that relative amplitudes are shown.Thehorizontal axes in (e) and (f) are the same.
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linewidths in YBa2Cu3O6.5 [53]: the linewidths ofO(2) oxygen sites, which lie perpendicular toq* [29] are

roughly 50%greater than forO(3) sites, which lie parallel toq*. As pointed out in [75], the ratio of theOpy to
Opxmodulation grows (shrinks) rapidly with increasing (decreasing)Ud.

Figure 1(e) illustrates the unidirectional chargemodulations derived from χv1 . As
χv1 directly tells, the charge

modulations on theOpx andOpy orbitals are out of phase, so there is a significant intra-unit cell nematic-like
charge transfer between them. The charge ordered phase is not purely nematic, however, as there are also
modulations of the total charge per unit cell and of theCu charge. This structure is consistent with the
observation of nematic-likemodulations of the oxygen orbitals by STM[23, 32, 33] and elastic RXS [28], and the
observation of Cu chargemodulations byNMR [19]. For a unit cell centred on aCud orbital at r , the total charge
modulation is δδ δ δ= + ∑ +δr r rn n n( ) ( ) ( )ptot Cu

1

2
, where δ+r are the locations of the four neighbouring

oxygen atoms; the nematicmodulation is defined by δδ δ= ∑ − +δ
δr rn n( ) ( 1) ( )pnem

1

2
y . Figure 1(f) clearly

shows that all three types ofmodulation are present. These different symmetriesmust in factmix because χαβ q( )

is not invariant under fourfold rotationswhen ≠q 0.
To understand the role of the Cu4s orbital, we compare our results to those for the Emerymodel, which does

not include it. = −t̃ 1pp eV is chosen for bothmodels, so that the only difference between them is that the

diagonalmatrix elements of kH( ) are unrenormalized in the Emerymodel. As shown infigure 2, this changes the
Fermi-surface shape and the underlying band structure only quantitatively, with a noticeable increase of the
Fermi-surface curvature. Indeed, the incommensurate peak positionsq j

* in the charge susceptibility shift only by

about 5%between the twomodels forM=1.5 eV. Surprising and important, however, is that the leading
instability in the Emerymodel is to a =q 0 nematic phase, and that the incommensurate phase is subleading.
We have traced this difference to the oxygen spectral weight distribution along the Fermi surface, which is
strongly anisotropic in the Emerymodel, but nearly isotropic in the ALJPmodel (see appendix A). Thus, the
Cu4s orbital stabilizes theALJPmodel against =q 0 nematic order.

To discuss the Fermi surface reconstruction from charge order we show infigure 3(a) the four original Fermi
surface hole pockets centred at π π± ±( 2, 2), whichwe label ± ±( 1, 1); these are the ‘nodal’ pockets. Charge
order along a directionq j

* scatters quasiparticles through±q j
* and generates replica Fermi-surface pockets. Red

contoursmark those first-order replicas, generated by shifting the −( 1, 1)pocket by±q1
* and the −(1, 1)pocket

by±q2
*, that touch the(1, 1)nodal pocket.Where original and replica pockets touch, the bands hybridize and a

gap opens. Importantly, at any dopingq1,2
* are such that replica and original pockets precisely touchwithout

crossing.We include also a second-order replica (blue dotted) by shifting the − −( 1, 1)pocket by +q q1
*

2
*. This

replica appears only when the order is bi-directional, and it hybridizes with two of the first order replicas and the
original(1, 1)nodal hole pocket to form a diamond-shaped electron pocket shown as the grey region on the
front side of the(1, 1)pocket (closest to the origin) infigure 3(a).

It was argued empirically [36] that electron pockets of this diamond type could explain observedmagneto-
oscillations in YBa2Cu3O6.5. Yet, the interpretation is complicated because, in addition to a central frequency of

∼F 530expt T [76–78], a pair of side frequencies is observed [79]. The latter have been attributed to bilayer
splitting into bonding and antibonding bands [36, 79]. For the ALJPmodel, wefind that the electron pocket has
an area =A a0.501 0

2 (a0 is the lattice constant) which gives an oscillation frequency π= =F e A( 2 ) 3401 1 T,
slightly less thanFexpt. However, sinceA1 represents only∼1% of the BZ area, it is farmore sensitive to the Fermi

surface shape than isq*.We obtain, for example, =F 10001 Tusing the Emerymodel withM=1.5 eV and the

Figure 2. Spectral functions εkA ( , )Cu F at the Fermi energy, projected ontoCu orbitals. Results are for (a) the Emerymodel and (b)
the ALJPmodel. In bothmodels, = + = −t t t˜ 1.0pp pp

d
pp
i eV; in (a) = −t 1.0pp

d eV and =t 0pp
i ; in (b) =t 0pp

d and = −t 1.0pp
i eV.Other

parameters are =t 1.6pd eV andϵ ϵ− = 0.9d p eV.
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parameters in the caption of figure 2; this is a factor of 3 larger than the ALJP result, even though the
incommensurate q* differs by only ∼10% between the twomodels. Obviously,fine tuning of the ALJPmodel,
which is based on band structure calculations for YBa2Cu3O7, is needed to quantitativelymatch quantum
oscillation experiments performed onYBa2Cu3O6.5.

One difference to the proposal in [36] is that wefind four electron pockets attached to each nodal pocket,
rather than one. In addition to the electron pocket discussed above, there is a second electron pocket with
identical area (not shown) on the back side of the nodal pocket (closest to π π( , )). Two further diamond-shaped
electron pockets form at opposite ends of the each nodal pocket. One of these, with an area area =A a0.102 0

2

and corresponding oscillation frequency =F 652 T, is shown as a shaded pink region infigure 3(a). These
additional electron pockets are an artefact of the assumed infinite AF correlation length. Aswe said previously,
whenξAF isfinite, the spectral function is characterized by Fermi arcs that resemble the front side of the nodal
pockets; the back and side electron pockets only emerge asξAF diverges [74].

To see the effect of charge order on the spectral function, wemodel bi-directional charge order as a
perturbation of theCud, Opx, andOpy site energies by δϵ +χ χq r q rv v[ cos ( · ) cos ( · )]1 1

*
2 2

* . Adding the
corresponding potential term to theHamiltonian, we calculate the spectral function

ω ϕ δ ω= ∑ ∑ −α αk kA E( , ) | ( )| ( )kn n n
2 at the Fermi energyω ε= F, whereϕα k( )n are the energy eigenvectors

indicating the projection of band n onto orbital α, andE kn are the energy eigenvalues. Figure 3(b) shows
εkA ( , )F without charge order (δϵ = 0). Infigures 3(c) and (d) themodulation potential is increased to

δϵ = 0.25 eV and δϵ = 0.5 eV, respectively. These selected values are exaggerated for presentation purposes. The
main effect of charge order is to erode spectral weight along segments of the Fermi surface that touch replicas as
infigure 3(a). In contrast, the spectral weight is almost unaffected by charge order along short arcs on the insides
of the nodal pockets. Also, the diamond-shaped electron pockets shown infigure 3(a) are unobservable, even for
the unphysically large value ofδϵ used infigure 3(d).

In ourmodel calculations, the charge instability is driven by theCoulomb repulsionVpp between electrons
on neighbouring oxygen atoms. In the dopingwindow < <p0.1 0.14 the orderingwavevectorq j

* continuously

decreases with p as in the x-ray diffraction experiments by Blackburn et al [29] (figure 1(d)). In the same doping
regime the calculated charge ordering temperatureTco rises with increasing p. Because the calculation ofTco is

numerically intensive, we show instead infigure 4 the inverse of the critical interaction strength, namely −Vpp
1,

required to drive the charge ordering transition atfixedT=110K. This quantity is a useful proxy forTco: a large

value of −Vpp
1 indicates that the system is very susceptible for charge ordering, and should therefore have a large

Figure 3. Fermi surface and spectral function in the charge ordered state at p=0.10. (a)Nodal Fermi pockets of the ALJPmodel with
M=1.5 eV (black) alongwith some of the first- (red) and second-order (dotted) replica Fermi surfaces that are involved in the
reconstruction of the(1, 1)nodal pocket by charge order. Thefirst-order replicas shown are obtained by shifting nodal pockets by
±q1

* or±q2
*. Second-order replicas result from shifting the − −( 1, 1)pocket by +q q1

*
2
* (blue dotted) or − +q q1

*
2
* (black dotted).

These replicas bound electron pockets (shaded grey and pink regions) with areas =A a0.501 0
2 and =A a0.102 0

2. (b)–(d) Spectral
functions at the Fermi energy for bi-directional charge orderwithmodulation potential (b) δϵ = 0, (c) δϵ = 0.25 eV, and (d) δϵ = 0.5
eV. The spectral function is broadened by 0.04 eV.
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T .co In our calculations, the susceptibility towards charge order with growing hole density p concomitantly
increases with the increasing size of the nodal hole-Fermi pockets.

Experimentally, the variation ofTco with hole doping remains inconclusive. RXS data indicate thatTco

decreases with increasing p [24], but this trend is at variance with earlier x-ray data andwith the field-tuned

T H( )co observed byNMR [19, 34]. From the latter data amaximumTco around p=0.12was inferred [34], and a
similar dome-shaped p-dependencewas determined for the Fermi-surface reconstruction fromHall
measurements [19]. Recent x-ray experiments onYBa2Cu3O +x6 [49] alsofind a dome-shaped dependence ofTco

on p, peaked at ∼p 0.10.
The evolution ofTco inmodel calculations likely depends on the detailed doping dependence of both the

effective interaction strength in the charge ordering channel, which has not been considered here, and the Fermi
surface, which is the central topic of this work. A further complication is the role of disorder, which is
unavoidable in doped cuprates and should influence the spatial lock-in of any charge-density wave. The issue of
howTco evolves with doping is an open question that needs to be resolved.

4. Conclusions

In this work, we have described amodel calculation that provides a route to understand the doping dependence

of the charge-ordering wavevectorsq* in cuprate superconductors. The essentialmodel ingredients are a
realisticmultiorbital description of theCuO2 planes, the assumption and the ansatz that strong correlation
effects on theCu −dx y2 2 orbitals can bemodeled by antiferromagnetically correlatedmoments, and the inclusion

of short range Coulomb forces that drive the charge-ordering instability.While themodel analysis is still
incomplete, e.g. inelastic spin-scattering processes and the spin dynamics are neglected, it nonetheless provides

an important result: quantitatively correct charge-ordering wavevectorsq* are obtained, if the charge order is
presumed to emerge from the pseudogap phase, rather than to generate the pseudogap itself.

Also a subtle but important role played bymultiorbital physics is highlighted.While the three-orbital Emery
model and the four-orbital ALJPmodel have similar Fermi surfaces, the leading instability in the Emerymodel is
to a =q 0 nematic phase, while the ALJPmodel correctly reproduces the structure seen experimentally. This
distinction is traced to subtle differences in the orbital composition of the conduction band.

A number of questions necessarily remains open, in particular the relationship between the charge order and
the pseudogap and also the possible connection to the emergence of spontaneous loop currents await further
clarification.Notably, the dependence ofTco on p is a challenging question that demands an improved treatment
of the pseudogap phase beyond the initial steps presented in this work.
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Figure 4.Doping dependence of the critical value of −Vpp
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AppendixA.Model and band structure

A.1. Effective three-bandmodel
We start with a realistic four-bandmodel that is tailored specifically to YBa2Cu3O7, due toAndersen et al [72]
(ALJP). In addition to the copper −d3 x y2 2 and oxygen px and py orbitals included in the usual three-band Emery
model [73], theALJPmodel includes the sCu4 orbital. The s4 orbital lies∼6.5 eV above the −dx y2 2 orbital and is
often ignored; however, band structure calculations[72] showed that indirect hopping through the s4 orbital
between neighbouringOpx andOpy orbitals is actually larger than the direct hopping. The four-band
Hamiltonian is

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
∑Ψ

ϵ
ϵ

ϵ
ϵ

Ψ=

−

−

t s t s

t s t s s t s

t s t s s t s

t s t s

Ĥ ˜

2 2 0

2 4 2

2 4 2

0 2 2

˜ , (A.1)
k

k k

d pd x pd y

pd x x pp x y ps x

pd y pp x y y ps y

ps x ps y s

4b
†

where =s ksin ( 2)x x and =s ksin ( 2)y y , andwhere

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
Ψ =

d
p

p

s

˜ , (A.2)k

k

k

k

k

x

y

is an array of electron annihilation operators for theCu −d3 x y2 2, Opx, Opy, and sCu4 orbitals, respectively. The
spin index is suppressed in equations (A.1) and (A.2).

We can integrate out the s4 orbital in the usual downfolding procedure [72, 80].Writing the four-band
Hamiltonianmatrix in a block structure,

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ϵ

×
⊥

×

⊥
×(

k k

k

H H

H

( ) ( )

)
, (A.3)

s

0
3 3 3 1

1 3
†

where the subscript notation i× j denotes the size of each block, we solve the equations-of-motion for the
Greenʼs function in the subspace of −dx y2 2, px, and py orbitals:

⎡
⎣⎢

⎤
⎦⎥ω ω

ω ϵ
= − −

−
⊥ ⊥

×

−

k k k kG 1 H H H( , ) ( ) ( )
1

( ) . (A.4)
s

0 †

3 3

1

From the structure of ωkG( , ) atω ε= F, an effective three-bandHamiltonianmatrix is generated

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

ω ϵ
ϵ

ϵ
ϵ

= +
−

=

−

−

⊥ ⊥k k k k

k

k

t s t s

t s t s s

t s t s s

H H H H( ) ( ) ( )
1

( )

2 2

2 ˜ ( ) 4˜

2 4˜ ˜ ( )

(A.5)

s

d pd x pd y

pd x x pp x y

pd y pp x y y

0 †

with

ϵ ϵ= +k t s˜ ( ) 4 , (A.6)x p pp
i

x
2

ϵ ϵ= +k t s˜ ( ) 4 , (A.7)y p pp
i

y
2

= +t t t˜ , (A.8)pp pp
d

pp
i

where tpp
d is the direct hopping between px and py orbitals, and

ε ϵ
=

−
t

t
(A.9)pp

i ps

s

2

F

is the indirect hopping amplitude, through the s4 orbital, between p orbitals. Importantly, we note thatε ϵ< sF ,
so that

<t 0. (A.10)pp
i
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Based on the signs of the orbital lobes, wewould expect >t 0pp
d ; however, Andersen et al proposed that tpp

d is

negligible compared to the indirect contribution, and that ∼ −t̃ 1pp eV. Throughout this work, we adopt the
values of tpd, t

d
pp, t

i
pp, andϵ ϵ−d p given byALJP [72] and listed in table A1 . Figure A1 shows the spectral

functions at the Fermi energies projected onto bothCu andOpx orbitals. For comparison, results are also shown
for the Emerymodel.

A.2. Slater antiferromagnetism
Weadd a staggeredmagnetic field at the copper sites to theHamiltonian to generate localmoments on theCud
orbitals. Then, with the spin index included, theHamiltonian is

⎡
⎣⎢

⎤
⎦⎥∑Ψ

σ
σ

Ψ=
−

− +
σ

σ σ
k

k Q
H

H M

M H
ˆ ˜ ( )

( )
˜ , (A.11)

k

k k6b

,

†

where π π=Q ( , ),

⎡
⎣⎢

⎤
⎦⎥Ψ

Ψ
Ψ=σ

σ

σ+
˜ , (A.12)k

k

k Q

TableA1.Model parameters used in this work.

Parameter Value (eV)

tpd 1.6

tpp
d 0

tpp
i

−1.0

ϵ ϵ−d p 0.9

M 0.0–1.5

Ud 6.0

Up 3.0

Vpd 1.0

Vpp variable

Figure A1. Spectral functions (a), (b) εkA ( , )Cu F and (c), (d) εkA ( , )p Fx
at the Fermi energy, projected ontoCu andOpx orbitals

respectively. Results are for (a), (c) the Emerymodel and (b), (d) theALJPmodel. As in themain text, = + = −t t t˜ 1.0pp pp
d

pp
i eV in

bothmodels.
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and

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥=

M
M

0 0
0 0 0
0 0 0

. (A.13)

In the state with staggered coppermoments, thewavevectork is restricted to the firstAFBZ, labelled I in
figure A2 .Hence, +k Q belongs to the secondAFBZ, labelled II infigure A2.

Appendix B.Generalized RPA

B.1.Diagrammatic perturbation theory
Wecalculate the nematic susceptibility by summing the ladder and bubble diagrams shown infigure B1 . This is
analogous towhatwas done in [64], andwe describe here how that calculation has been extended to the AF case.

Infigure B1, thewavevectorsk and +k Q are constrained to thefirst and secondAFBZs, respectively,
pictured infigure A2, whileq is unconstrained. In this notationk is conserved along each propagator and the
indicesℓ ℓ … =, , 0, 11 2 label the AFBZ towhich the creation or annihilation operators at the ends of the lines
belong. For example, the line end labeled θ ℓ′k1 1 infigure B1 has a corresponding annihilation operator θ ℓ σ′ +c k Q1 1 ,
where σ is the electron spin.

Figure B1(a) shows the bare interaction vertex ′ρ k k qV ( , , )between charges, which includes both direct
(first term) and exchange (second term) diagrams, which is

⎡⎣ ⎤⎦ ℓ ℓ δ δ δ ℓ

δ δ δ δ ℓ ℓ

= +

− + − −

ρ
θγ γθ

ℓσ ℓ σ
θ θ γ γ ℓ ℓ θσ γσ

ℓ ℓ σ σ θ γ θ γ θσ γσ

′ ′

′ ′
′ ′ ′ ′

′ ′ ′ ′

( )

( )

k k q q Q

k Q k Q

V V

V

, , ( )

, (B.1)

,

1 1 2 2 , , , ,

, , , , , 1 1 2 2

where thefirst and second terms are the direct and exchange terms, respectively.
Inq-space, the Coulomb interaction for the three-bandmodel is

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

α β σ σ
α β σ σ

α β α β

α β α β

α β α β

=

= = = − ′
= = = − ′

= = = =

= = = =

= = = =

ασ βσ′

( )
( )

( )

( )

qV

U d

U x y

V q x d d x

V q y d d y

V q q x y y x

( )

, , ,

, , , ,

2 cos 2 , , or , ,

2 cos 2 , , or , ,

4 cos 2 cos 2 , , or , .

(B.2)

d

p

pd x

pd y

pp x y

,

As in [64], the sum infigure B1(b) ismost easily done by expressing the exchange and direct interactions in
terms of a set of basis functions αβ kg ( )i :

Figure A2.ReducedAFBZ. The black square shows the original BZ for the nonmagnetic lattice. The areas labelled I and II are the first
and secondAFBZs.
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⎡⎣ ⎤⎦ ∑ℓ ℓ δ ℓ ℓ ℓ= + + +ρ
θγ γθ

ℓσ ℓ σ
ℓ ℓ θθ

ℓσ ℓσ
γ γ′ ′

′ ′
′

=
′

′
′( ) ( ) ( )k k q k Q q Q k QV g V g, , ˜ ( ) , (B.3)

i j

i i j j,
1 1 2 2 ,

, 1

19

1 1
,

2 2

where

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

= =

= =

= =

= =

= =

= =

= =

= =

=

=

=

αβ βα α β

αβ βα α β

αβ βα α β

αβ βα α β

αβ βα α β

αβ βα α β

αβ βα α β

αβ βα α β

αβ α β

αβ α β

αβ α β

( )
( )
( )
( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

k k

k k

k k

k k

k k

k k

k k

k k

k

k

k

g g k

g g k

g g k

g g k

g g k k

g g k k

g g k k

g g k k

g

g

g

( ) ( ) cos 2

( ) ( ) sin 2

( ) ( ) cos 2

( ) ( ) sin 2

( ) ( ) cos 2 cos 2

( ) ( ) cos 2 sin 2

( ) ( ) sin 2 cos 2

( ) ( ) sin 2 sin 2
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( )
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d x x

d x x

d y y

d y y

x y x y
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d d

x x
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1 12
, ,
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3 14
, ,

4 15
, ,

5 16
, ,

6 17
, ,

7 18
, ,
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, ,

9
, ,
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, ,

11
, ,

In this basis, the sumof the diagrams infigure B1(b) is

⎡⎣ ⎤⎦∑ ∑ ∑χ χ χ= − +αβ αβ
ℓ ℓ σ σ

α
ℓσ ρ

ρ
ℓσ ℓ σ

β
ℓ σ

= ′= ′=±

− ′ ′
′ ′{ }q q q q q q qX X1 V V( ) ( ) ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( ), (B.4)

i j

i
i j

j0

, 1

19

, 0

1

, 1
0

1 ,

∑∑∑ ℓ= − + +α
ℓσ

θ θ ℓ ℓ
θ ℓ αℓ
σ

α ℓ θ ℓ ℓ
σ

θθ
′

′ ′ + ′( )q k k q k QX
N

G G g( )
1

2
( ) ( ) , (B.5)

k

i i

, ,

, , 1

1 2

1 2 2 1

∑∑∑ ∑χ ν δ ℓ ω ν

ω ℓ

= − + + +

× +

ℓσ ℓ σ
σ σ

ℓ ℓ μμ νν
μ μ μ ℓ ℓ νℓ ℓ

σ

ν ℓ μℓ
σ

νν

′ ′
′

′ ′
′ ′ + + ′

′ ′

( ) ( )

( ) ( )

q k Q k q

k k Q

T

N
g G

G g

˜ ( , i )
2

, i i

, i , (B.6)

k

i j

n

i
n

n
j

,
,

,

1 ,

, 2

1 2

1 2

2 1

whereω π= +n T(2 1)n areMatsubara frequencies and … −[ ] 1denotes amatrix inverse, and thek-sums are over
thefirst AF BZ,which containsN k-points. As pointed out in [75], in addition to the charge response atq there
is a spin response at +q Q; this additional term vanishes when spins are summed over.

B.2.Origin of theq =0 instability in the emerymodel
A comparison between the ALJP and Emerymodels ismade infigure A1. In bothmodels, the Cu spectral weight
is large and uniformly distributed along the Fermi surface. TheOpx spectral weight is comparatively weak, but

Figure B1.Diagrams evaluated in the calculation of the charge susceptibility. (a) Effective interaction in the charge channel, including
bothHartree (first term) and exchange (second term) contributions. Thewavevectork is restricted to the first AFBZ, and the greek
labels, denote the orbital type (d, px, py). The labelsℓ1, etc indicate the AFBZof the corresponding electron creation or annihilation
operator, which hasmomentum ℓ+k Q1 . (b)Diagrams summed in the calculation of the charge susceptibility χαβ q( ).
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because the charge instability involves primarily oxygen atoms, the details of theOpx spectral weight distribution
are important.

Notably, theOpx spectral weight is highly anisotropic in the Emerymodel andmore isotropic in the ALJP
model. (TheOpy spectral function εkA ( , )p Fy

is obtained by rotating εkA ( , )p Fx
by °90 .) As a consequence, the

matrix element of the bare susceptibility

∑χ ε ε= ∼ ( ) ( )q k kA A( 0) , , (B.7)
k

xy p p
0

F Fx y

is strongly reduced in the Emerymodel (the superscript 0 indicates the susceptibility in the noninteracting limit).
Aswe showbelow, thismatrix element tends to stabilize the system against nematic order.

We focus on the nonmagnetic case where approximate analytic expressions are easily obtained.Within a
simplified randomphase approximation inwhich all interactions exceptVpp are ignored, we have at =q 0

⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎫
⎬⎪
⎭⎪

χ χ χ= +× ×

−

×
V

V
1

0 0 0
0 0 8

0 8 0
, (B.8)pp

pp

3 3
RPA

3 3
0

1

3 3
0

which has a diverging eigenvalue when

⎡⎣ ⎤⎦χ χ χ+ − =V1 8 0. (B.9)pp xy xx yy
0 0 0

(The factor of 8 arises because of a sumover spin and over the four neighbouring oxygen sites for eachOp
orbital.) From this equation, it is clear that χxx

0 and χyy
0 drive the nematic transitionwhile χxy

0 opposes it. Thus, it

appears that the strong anisotropy of oxygen spectral weight in the Emerymodel is the principal difference
between the Emery andALJPmodels whichmakes the former unstable to a =q 0 nematic instability.
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