
Environmental Health Perspectives  •  volume 122 | number 8 | August 2014	 843

ResearchAll EHP content is accessible to individuals with disabilities. A fully accessible (Section 508–compliant) 
HTML version of this article is available at http://dx.doi.org/10.1289/ehp.1307271. 

Introduction
Many studies have documented adverse 
health effects associated with long-term expo-
sure to air pollutants (e.g., Brunekreef and 
Holgate 2002). With the improvement of the 
accuracy of geographical data, air pollution 

models incorporating data from geographical 
information systems (GIS) are of increasing 
interest in exposure assessment (Hoek et al. 
2008; Jerrett et al. 2005). Land use regres-
sion (LUR) modeling is a popular method 
used for exposure assessment in health 

studies (Cesaroni et al. 2013; Estarlich et al. 
2011; Gehring et al. 2011). LUR modeling 
is a GIS- and statistics-based method that 
exploits land use, geographic, and traffic char-
acteristics (e.g., traffic intensity, road length, 
population density) to explain spatial concen-
tration variations at monitoring sites.

Land use regression models were con-
structed and used mostly to predict concen-
trations within metropolitan areas (Hoek 
et al. 2011; Madsen et al. 2007; Marshall 
et al. 2008) or small regions (Brauer et al. 
2003; Henderson et al. 2007). Often, models 
have been based on measurements made at 
a relatively small number of sampling sites 
(20 to ~ 80 sites). Our recent study showed 

Address correspondence to M. Wang, Institute for 
Risk Assessment Sciences, Division Environmental 
Epidemiology, Utrecht University, PO Box 80178, 
3508 TD Utrecht, the Netherlands. Telephone: 
31 (0)6 16697117. E-mail: M.Wang@uu.nl

Supplemental Material is available online (http://
dx.doi.org/10.1289/ehp.1307271).

We thank all those who participated and were 
responsible for air pollution measurements, data 
management, model building, and project supervision 
in all the ESCAPE study areas. 

The research leading to these results has received 
funding from the European Community’s Seventh 
Framework Program (FP7/2007–2011) under grant 
agreement 211250. 

The funding source had no role in the study design; 
in the collection, analysis, and interpretation of data; 
in the writing of the report; or in the decision to 
submit the manuscript for publication.

The authors declare they have no actual or potential 
competing financial interests.

Received: 24 June 2013; Accepted: 30 April 2014; 
Advance Publication: 2 May 2014; Final Publication: 
1 August 2014.

Performance of Multi-City Land Use Regression Models for Nitrogen Dioxide 
and Fine Particles
Meng Wang,1 Rob Beelen,1 Tom Bellander,2 Matthias Birk,3 Giulia Cesaroni,4 Marta Cirach,5 Josef Cyrys,6,7 
Kees de Hoogh,8 Christophe Declercq,9 Konstantina Dimakopoulou,10 Marloes Eeftens,1 Kirsten T. Eriksen,11 
Francesco Forastiere,4 Claudia Galassi,12 Georgios Grivas,13 Joachim Heinrich,3 Barbara Hoffmann,14 Alex Ineichen,15 
Michal Korek,2 Timo Lanki,16 Sarah Lindley,17 Lars Modig,18 Anna Mölter,19 Per Nafstad,20,21 Mark J. Nieuwenhuijsen,5 
Wenche Nystad,21 David Olsson,18 Ole Raaschou-Nielsen,11 Martina Ragettli,15 Andrea Ranzi,12 Morgane Stempfelet,9 
Dorothea Sugiri,14 Ming-Yi Tsai,15,22,23 Orsolya Udvardy,24 Mihaly J. Varró,24 Danielle Vienneau,8,15,22 
Gudrun Weinmayr,25 Kathrin Wolf,6 Tarja Yli-Tuomi,16 Gerard Hoek,1 and Bert Brunekreef1,26

1Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; 2Institute of Environmental Medicine, Karolinska Institutet, 
Stockholm, Sweden; 3Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 
Germany; 4Epidemiology Department, Lazio Regional Health Service, Rome, Italy; 5Center for Research in Environmental Epidemiology (CREAL), 
Barcelona, Spain; 6Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 
Germany; 7University of Augsburg, Environmental Science Center, Augsburg, Germany; 8MRC-PHE Centre for Environment and Health, Department 
of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom; 9French Institute for Public Health Surveillance, Saint-
Maurice, France; 10Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, 
Athens, Greece; 11Danish Cancer Society Research Center, Copenhagen, Denmark; 12AOU Città della Salute e della Scienza–Center for Cancer 
Prevention (CPO Piedmont), Turin, Italy; 13School of Chemical Engineering, National Technical University of Athens, Athens, Greece; 14IUF Leibniz 
Research Institute for Environmental Medicine, University of Düsseldorf, Düsseldorf, Germany; 15Department of Epidemiology and Public Health, 
Swiss Tropical and Public Health Institute, Basel, Switzerland; 16Department of Environmental Health, National Institute for Health and Welfare, 
Kuopio, Finland; 17School of Environment and Development (Geography), University of Manchester, Manchester, United Kingdom; 18Department 
of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; 19Centre for Occupational and Environmental Health, University of 
Manchester, Manchester, United Kingdom; 20Institute of Health and Society, University of Oslo, Oslo, Norway; 21Norwegian Institute of Public 
Health, Oslo, Norway; 22University of Basel, Basel, Switzerland; 23Department of Environmental and Occupational Health Sciences, University of 
Washington, Seattle, USA; 24Department of Air Hygiene, National Institute of Environmental Health, Budapest, Hungary; 25Institute of Epidemiology 
and Medical Biometry, Ulm University, Ulm, Germany; 26Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 
Utrecht, the Netherlands

Background: Land use regression (LUR) models have been developed mostly to explain 
intraurban variations in air pollution based on often small local monitoring campaigns. 
Transferability of LUR models from city to city has been investigated, but little is known about the 
performance of models based on large numbers of monitoring sites covering a large area.

Objectives: We aimed to develop European and regional LUR models and to examine their 
transferability to areas not used for model development.

Methods: We evaluated LUR models for nitrogen dioxide (NO2) and particulate matter (PM; 
PM2.5, PM2.5 absorbance) by combining standardized measurement data from 17 (PM) and 
23 (NO2) ESCAPE (European Study of Cohorts for Air Pollution Effects) study areas across 
14 European countries for PM and NO2. Models were evaluated with cross-validation (CV) and 
hold-out validation (HV). We investigated the transferability of the models by successively excluding 
each study area from model building.

Results: The European model explained 56% of the concentration variability across all sites for 
NO2, 86% for PM2.5, and 70% for PM2.5 absorbance. The HV R2s were only slightly lower than 
the model R2 (NO2, 54%; PM2.5, 80%; PM2.5 absorbance, 70%). The European NO2, PM2.5, 
and PM2.5 absorbance models explained a median of 59%, 48%, and 70% of within-area vari-
ability in individual areas. The transferred models predicted a modest-to-large fraction of variability 
in areas that were excluded from model building (median R2: NO2, 59%; PM2.5, 42%; PM2.5 
absorbance, 67%).

Conclusions: Using a large data set from 23 European study areas, we were able to develop LUR 
models for NO2 and PM metrics that predicted measurements made at independent sites and areas 
reasonably well. This finding is useful for assessing exposure in health studies conducted in areas 
where no measurements were conducted.
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a positive association between the number of 
sampling sites and the prediction capability 
of models for NO2 based on 144 sites in the 
Netherlands (Wang et al. 2012), in agreement 
with observations for Girona, Spain (Basagaña 
et al. 2012). At least for some of the reported 
studies, there is still room to improve the 
model performances if more sampling sites 
were selected (Hoek et  al. 2008). Several 
studies have reported the possibilities of build-
ing models in large areas in Europe, United 
States, and Canada (Beelen et al. 2009; Hart 
et  al. 2009; Hystad et  al. 2011; Vienneau 
et al. 2009, 2013). With a large number of 
sites, these models explained large fractions of 
NO2 variability (61% to ~ 90%) and a mod-
est fraction of the variability of PM (40% to 
~ 50%) across all sites. The large-area studies 
were all based on routine monitoring data. 
National routine monitoring networks may 
include only a small number of sites within 
individual cities. Therefore it may be diffi-
cult to evaluate how well a large-area model 
explains within-city variability. This is relevant 
for epidemiological studies based in individual 
cities. A study in Switzerland based on study-
specific monitoring suggested that a country-
wide model did not perform well within six 
of the eight geographically diverse study areas 
(Liu et al. 2012).

The applicability of LUR models can be 
increased by transferring them to adjacent 
areas with similar geography and GIS data-
bases where no or few measurements were 
conducted. The transferability of models has 
been investigated for local and national mod-
els (Allen et al. 2011; Poplawski et al. 2009; 
Vienneau et  al. 2010). Most of the earlier 
studies recommended using the locally built 
models, even though transferred models 
explained variations in concentrations fairly 
well. This was recommended because all the 
transferred models were city–city or country–
country transfers for which local specific 
variables were not available, and there was no 
advantage in the number of sampling sites 
compared with the locally developed models.

So far, few studies have attempted to 
explore the performance of LUR models with 
combined geographical areas in terms of pre-
diction ability and transferability at indepen-
dent sites and areas—mainly because sufficient, 
comparable measurement data are lacking. In 
the context of the European Study of Cohorts 
for Air Pollution Effects (ESCAPE 2013), we 
applied a standardized approach for measure-
ments, GIS variable collection, and model 
development for nitrogen dioxide (NO2) and 
particulate matter (PM) in 36 study areas in 
Europe (Beelen et al. 2013; Cyrys et al. 2012; 
Eeftens et al. 2012a, 2012b). We recently pub-
lished LUR models developed within indi-
vidual study areas for NO2 and PM (Beelen 
et al. 2013; Eeftens et al. 2012a). The ESCAPE 

database provides a unique opportunity to 
address important questions regarding applica-
tion of LUR models developed for even larger 
areas. Therefore, the aims of this study are a) to 
develop LUR models for NO2, PM2.5 (PM 
with diameter ≤ 2.5 μm), and PM2.5 absor-
bance based on combining the ESCAPE study 
areas across Europe and across four regions 
of Europe; b) to evaluate the model perfor-
mances systematically in terms of model fitting 
and prediction ability; and c) to investigate the 
transferability of the regional and European 
models to monitoring sites and areas not 
included in the model building.

Methods
Study areas and air pollution measurements. 
Details of the ESCAPE study design and the 
measurement campaign have been described 
previously (Cyrys et al. 2012; Eeftens et al. 
2012b). Briefly, an intensive monitoring cam-
paign was conducted in 36 European study 
areas between October 2008 and May 2011. 
ESCAPE included 20 areas with simultane-
ous measurements of both PM and NO2 at 
20 sites per area, and at 20 sites where only 
NO2 was measured. In an additional 16 areas, 
where PM measurements were not available, 
only NO2 measurements were conducted at 
40 sites per area. The number of measurement 
sites was doubled in the large study area of 
the Netherlands and Belgium. In each area, 
we chose sampling sites at street, urban back-
ground, and regional background locations. 
Sites were also selected to cover locally impor-
tant variation—for example, presence of a port 

or altitude. These sites were selected to repre-
sent the spatial distribution of air pollution and 
residential addresses of participants of cohort 
studies in these areas. The background sites 
have been carefully selected to the locations 
not influenced by local traffic and other local 
emissions (e.g., industry and port) (Beelen 
et al. 2013; Eeftens et al. 2012a). Annual aver-
age concentrations were calculated from three 
2-week samples in the cold, warm, and inter-
mediate seasons. Because the number of sam-
plers was limited, five sites and the references 
site were measured simultaneously. The mea-
sured values were adjusted for temporal trends 
with data from the continuous reference site 
in each area by calculating absolute differences 
between concentrations at monitoring sites and 
reference sites and using that as adjustment 
factor (Cyrys et al. 2012; Eeftens et al. 2012b). 

For this paper, we selected the 23 areas 
(Figure 1) in which traffic intensity variables 
were available for LUR model building in 
line with the importance of traffic intensity 
variables in model development (Beelen et al. 
2013). This included 17 of the 20 PM/NO2 
areas and 6 of the 16 NO2-only areas. We allo-
cated the areas to four regions according to the 
geographic location, the characteristics of the 
climate, the traffic intensity levels, and the con-
figuration of the cities/country. These regions 
included five areas in north Europe (Oslo, 
Norway; Stockholm and Umeå, Sweden; 
Copenhagen, Denmark; Helsinki/Turku, 
Finland), seven in the west (Netherlands and 
Belgium; London, Manchester, and Bradford, 
UK; Ruhr area and Erfurt, Germany; Paris, 

Figure 1. Map of study areas including region indication. Symbols: black, West Europe; +, North Europe; 
×, Central Europe; open, South Europe.
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France), six in the center (Munich and 
Vorarlberg, Germany; Györ, Hungary; 
Lugano, Switzerland; Grenoble and Lyon, 
France), and five in the south (Turin and 
Rome, Italy; Athens, Greece; Barcelona, Spain; 
Marseille, France) (Figure 1, Table 1).

For this study we selected NO2 and PM2.5 
absorbance to represent traffic-related air pol-
lution, and PM2.5 for a more complex mixture 
of sources. NO2 was measured using Ogawa 
badges following the Ogawa analysis protocol 
(V 3.98; Ogawa & Co., Pompano Beach, FL 
USA). PM2.5 samples were collected on pre-
weighted filters using Harvard impactors, and 
were then used to measure absorbance (Cyrys 
et al. 2012; Eeftens et al. 2012b).

Predictor variables. We extracted values for 
the GIS predictor variables at the locations of 
sampling sites using ArcGIS (ESRI, Redlands, 
CA, USA). Details of the predictor variables 
have been described in previous papers (Beelen 
et al. 2013; Eeftens et al. 2012a). Briefly, the 
predictor variables were derived from both cen-
trally available Europe-wide GIS databases and 
GIS data collected by the local centers using 
standard definitions.

Central GIS predictor variables included 
road network, land use, population density, 
and altitude data. The digital road network 
was obtained from EuroStreets version 3.1 
(EuroStreets 2013) for the year 2008. The 
total lengths of all roads and major roads were 
calculated within a buffer size of 25, 50, 100, 
300, 500, or 1,000 m. Traffic intensity data 
were not available for this road network. Land 
use variables were derived from the European 
Corine Land Cover (European Environment 
Agency 2000) database for the year 2000 for 
the buffer sizes of 100, 300, 500, 1,000 and 
5,000 m. Digital elevation data were obtained 

through the Shuttle Radar Topographic 
Mission (SRTM) (CGIAR Consortium for 
Spatial Information 2013). Detailed road net-
work with linked traffic intensity for all road 
links were obtained from local sources for all 
23 areas. Local land use, population density, 
altitude, and other local variables were also 
locally extracted for modeling.

For the regional and European models, 
we pooled the data by including all the cen-
tral GIS predictors and the local traffic vari-
ables with traffic intensity. We combined the 
centrally available land use variables high and 
low residence density, and the natural and 
urban green variables because not all the areas 
contained them separately. We made efforts 
to incorporate more local common vari-
ables for specific regions to capture regional 
variations. We included regional background 
concentrations of NO2, PM absorbance, and 
PM2.5 as the mean of the measured concen-
trations at ESCAPE regional background sites 
(1–20) in each local study area to characterize 
the spatial differences between study areas. In 
the Netherlands, regional background con-
centrations were interpolated from regional 
background sites throughout the country 
because background concentrations may vary 
at such a large scale. In total, 49 variables 
were evaluated at the European level and 54, 
53, 54, and 64 variables in the north, west, 
middle, and south regions, respectively (see 
Supplemental Material, Table S1).

Model development. A total of 960 NO2 
sites and 356 PM sites (four sites were miss-
ing due to failed campaign) were available 
for modeling from 23 and 17 study areas, 
respectively. Detailed procedures of the NO2 
and PM model development have been pub-
lished elsewhere (Beelen et al. 2013; Eeftens 
et  al. 2012a). The regional and European 
models were developed using the same strictly 
standardized approaches. Briefly, a supervised 
stepwise regression was used to develop the 
LUR model. We first evaluated univariate 
regression of the annual concentrations by 
entering all potential predictor variables. We 
forced the regional background concentration 
variable in the first step (for the European 
and regional models). Then the variable that 
produced the highest adjusted R2 and which 
had the a priori–defined direction of effect 
(e.g., positive for traffic intensity) was selected 
as the second predictor. Second, the remain-
ing variables were added separately, and we 
assessed whether the variable with the highest 
increase in adjusted R2 improved the model 
by at least 1%. This process continued until 
no more variables with the a priori–specified 
sign could increase the model-adjusted R2 
by at least 1%. In the final step, we excluded 
variables that had a p-value >  0.1. We 
checked whether the variance inflation factor 
was < 3 to avoid multicollinearity.

Model evaluations .  We used three 
approaches for model evaluation:
•	We investigated the model fit at individual 

study areas by applying the European/
regional model to the sites of each area that 
were used for modeling. The Modelintra R2 
shows the within-area variations explained 
by the European/regional models, which 
are directly comparable with the R2 of 
city-specific models. The Modelintra R2 is 
important for studies conducted within indi-
vidual cities that use the European/regional 
model. The overall R2 is relevant for multi-
city studies that exploit both within- and 
between-city variability of air pollution con-
trasts. The Modelintra R2 is important for 
European studies such as ESCAPE because 
cohorts were located within a city or small 
area, and cohort-specific epidemiological 
analyses were conducted.

•	Cross-validation (CV) is an internal valida-
tion for testing the stability of model fit. We 
conducted leave-one-area-out-cross-validation 
(LOAOCV) by leaving out all observations 
from a complete area of n study areas (n = 23 
for NO2 and 17 for PM), refitting the model 
based on the remaining M‑1 areas, and inves-
tigating the agreement between predicted and 
observed concentrations for each area that 
was left out. This was iterated M times, and 
the LOAOCV reflects the heterogeneity of 
model fit due to regional variations between 
study areas. We do not report LOAOCV that 
was almost identical to the model R2 probably 
because of the large training data set.

•	The hold-out validation (HV) is an evalua-
tion of model predictive power to indepen-
dent sites not used for model building. In 
contrast with CV, HV reflects the predic-
tion ability of models to the cohort addresses 
within the areas on which the models had 
been established. As a test, we divided the 
full set into two parts; the training sets were 
used for modeling and the remaining test sets 
were used for external evaluation. For NO2, 
we developed models using the PM/NO2 
sites with 20–40 sites per area (480 sites in 
total) as training sets and the remaining 480 
NO2-only sites as test sets. For PM2.5 and 
PM2.5 absorbance, a randomly selected 25% 
of the PM sites stratified by study area were 
used for validation purpose because we had 
fewer sites available for PM model building 
than for NO2 model building. The HV R2 
is the squared Pearson correlation between 
predictions and observations at the indepen-
dent sites throughout the whole study area. 
We calculated the HV R2 by truncating the 
values of predictors in the test data sets that 
were outside the range of the values observed 
in the data set for model development, to 
prevent unrealistic predictions based on 
model extrapolations (Wang et al. 2012). 
Prediction errors were estimated by root 

Table 1. Study areas.

Code Type Region Study area
NOS PM/NO2 North Oslo, Norway
SST PM/NO2 North Stockholm, Sweden
FIH PM/NO2 North Helsinki/Turku, Finland
DCO PM/NO2 North Copenhagen, Denmark
SUM NO2 North Umeå, Sweden
UKM PM/NO2 West Manchester, UK
UKO PM/NO2 West London, Oxford, UK
BNL PM/NO2 West Netherlands and Belgium
GRU PM/NO2 West Ruhr area, Germany
GRE NO2 West Erfurt, Germany
UKB NO2 West Bradford, UK
FPA PM/NO2 West Paris, France
GMU PM/NO2 Central Munich, Germany
AUV PM/NO2 Central Vorarlberg, Austria
FLY NO2 Central Lyon, France
HUG PM/NO2 Central Györ, Hungary
SWL PM/NO2 Central Lugano, Switzerland
FGR NO2 Central Grenoble, France
ITU PM/NO2 South Turin, Italy
IRO PM/NO2 South Rome, Italy
SPB PM/NO2 South Barcelona, Spain
FMA NO2 South Marseille, France
GRA PM/NO2 South Athens, Greece
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mean squared error (RMSE). In our previ-
ous study, the same NO2 training and test 
sets were used for the ESCAPE city-specific 
model evaluations individually in each study 
area (Wang et al. 2013). Therefore, a fair 
comparison of prediction ability (HV R2) 
between the European model and the city-
specific models can be conducted using the 
same test sets for HV. The comparison was 
available only for NO2 due to relatively large 
number of sampling sites.

Transferability of LUR models. To evalu-
ate the prediction abilities of the regional/ 
European models to independent individual 
study areas, we developed the regional and 
European models by excluding one area at 
a time and applied the transferred models 
directly to the sites of the area that was left 
out. Therefore, 23 NO2 models and 17 PM 
models were built until each of the study areas 
had been excluded once from model building.

The TRANSintra R2 is the squared Pearson 
correlation between observed and predicted 
values in each of the remaining areas that was 
excluded from modeling. The TRANSintra 
R2 is different from the Modelintra and the 
LOAOCV R2 because the measurements con-
ducted in the respective validation areas were 
completely left out from model development.

Results
NO2 and PM concentrations. Table 2 shows 
the concentration distributions of NO2 and 
PM metrics across the study areas by site 
types. Substantial spatial variations were found 
for all the pollutants across Europe. The vari-
ability was larger for NO2 than for PM2.5. 
The spatial variability for PM2.5 absorbance 
was intermediate between PM2.5 and NO2. 
Concentration contrasts were larger at the 
street sites for NO2 and PM2.5 absorbance 
than at the urban and regional background 
sites. Concentration contrasts for PM2.5 were 
more similar at all the site types, suggesting 
an influence of multiple sources in addition 
to traffic.

Models in combined areas. Table 2 shows 
the model details of NO2, PM, and PM2.5 
absorbance combining all the European study 
areas. The NO2, PM2.5, and PM2.5 absor-
bance models explained 56%, 86%, and 70%, 
respectively, of the variation across all sites, 
which includes both within and between area 
variations (overall model R2). The LOAOCV 
R2 was 5% and 6% lower than the model R2 
for NO2 and PM2.5, respectively, and was 
identical to the model R2 for PM2.5 absor-
bance. The HV R2s (50% training vs. 50% 
test sites for NO2, 75% training vs. 25% test 
sites for PM metrics) were slightly smaller than 
or nearly identical to the model R2s, explain-
ing 54%, 80%, and 70% for NO2, PM2.5, 
and PM2.5 absorbance at the independent 
validation sites respectively (see Supplemental 

Material, Table  S2). The HV R2 did not 
change if the predictor range was not truncated 
because only one site for NO2 model was trun-
cated. The HV RMSE values were close to the 
values of LOAOCV RMSE for NO2 and PM 
metrics. The RMSE values were relatively small 
compared with the range of measurements as 
shown in Supplemental Material, Table S2. 
The median HV R2 of the European NO2 
model at individual study areas was identical 
to those of the city-specific models reported 
by Wang et  al. (2013) (see Supplemental 
Material, Figure S1). In the Turin and Paris 
areas with a low hold-out evaluation R2, for 
example, the HV R2s of the European model 
were considerably larger than those of the city-
specific models.

All the models in Table 3 included traffic 
intensity variables. The regional background 
concentration explained a large fraction (71%) 
of variation in PM2.5 documenting the impor-
tance of between-area differences for PM2.5 
compared with that for the more traffic-related 
pollutants NO2 and PM2.5 absorbance.

The regional models performed equally 
well as the European models in all regions 
except Southern Europe, where none of 
the models performed well in terms of the 
predictions to the independent sites (HV 
R2: 0–0.23) (see Supplemental Material, 
Table  S3). Reassigning Turin from south 
Europe to the central Europe region only 
slightly changed the results.

As shown in Table 3, the median within-
area variability (Modelintra R2) explained by the 
European model for NO2 and PM2.5 absor-
bance at individual study areas was similar to 
the overall model R2, suggesting predominant 
sources of local emissions. For PM2.5, the 
median Modelintra R2 was much lower than 
the overall model R2 (0.48 vs. 0.86). Figure 2 
(see also Supplemental Material, Figure S2) 
presents the correlation between predicted and 
measured PM2.5, PM2.5 absorbance, and NO2 
by study areas. As the figures show, the varia-
tion of PM2.5 between areas was substantial 
compared to the within areas variation (e.g., 
low PM2.5 values in northern European cities 

Table 2. Distributions of measured annual average NO2 and PM concentrations across Europe.

Pollutant and site type na Minimum 25th Median 75th Maximum
NO2 (μg/m3)

Street sites 454 11.80 25.48 33.98 49.90 109.00
Urban background 414 3.03 15.38 22.88 30.67 57.63
Regional background 92 1.53 9.56 15.48 17.98 32.87

PM2.5 (μg/m3)
Street sites 166 7.87 12.03 17.18 21.17 36.30
Urban background 144 5.62 10.97 15.87 18.62 32.59
Regional background 47 4.42 11.20 13.86 16.64 23.24

PM2.5 absorbance (10–5/m)
Street sites 166 0.78 1.63 2.16 2.81 5.09
Urban background 144 0.53 1.23 1.67 2.01 3.03
Regional background 47 0.33 0.92 1.16 1.45 2.37

25th and 75th are percentiles.
aTotal number of sites in the study areas.

Table 3. European models for NO2, PM2.5, and PM2.5 absorbance.

Predictors Partial R 2 βa
Modelintra

b 

R 2/ IQR
LOAOCV 

R 2/ RMSE
NO2 (nc = 960, final model R2 = 0.56) 0.59/0.19 0.50/8.49 (μg/m3)

Regional background concentration 0.08 2.63E-01
Traffic load in 50 m 0.35 2.44E-06
Road length in 1,000 m 0.50 2.74E-04
Natural and green in 5,000 m 0.55 –2.84E-07
Traffic intensity on the nearest road 0.56 2.21E-04
Intercept 1.38E+01

PM2.5 (nc = 356, final model R2 = 0.86) 0.48/0.16 0.81/2.38 (μg/m3)
Regional background concentration 0.71 9.73E-01
Traffic load between 50 m and 1,000 m 0.81 4.75E-09
Traffic load in 50 m 0.84 5.28E-07
Road length in 100 m 0.86 2.12E-03
Intercept 3.06E-01

PM2.5 absorbance (nc = 356, final model R2 = 0.70) 0.70/0.19 0.70/0.45 (10–5/m)
Regional background concentration 0.28 9.06E-01
Traffic load in 50 m 0.58 2.07E-07
Road length in 500 m 0.67 2.90E-05
Natural and green in 5,000 m 0.69 –9.63E-09
Traffic load between 50 m and 1,000 m 0.70 4.20E-10
Intercept 2.95E-01

aCoefficients of predictor variables in the models. bThe Modelintra R2s show the median and interquartile range (IQR) of 
the within-area variability explained by the European model in individual areas. cNumber of monitored sites available for 
model building.
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such as Stockholm and high PM2.5 values in 
southern European cities such as Rome). On 
the contrary, for NO2 and PM2.5 absorbance, 
variation within areas was substantial com-
pared with the variation between areas (see 
Supplemental Material, Figure S2). The obser-
vations are more underpredicted within indi-
vidual areas for PM metrics (median regression 
slope: PM2.5, 0.47; PM2.5 absorbance, 0.57; 
NO2, 0.56) than across the whole European 
study areas (regression slope: PM2.5, 0.85; 
PM2.5 absorbance, 0.70; NO2, 0.57).

Transferability. Table 4 shows the perfor-
mance of the models that used all monitor-
ing data excluding one area at the time. These 
models explained on average 57%, 84%, and 
69% variability of NO2, PM2.5, and PM2.5 
absorbance respectively. The model structures 
and R2s were similar to the models in Table 3, 
which were based on all study areas. They 
included the same variable categories but with, 
to some extent, different buffer sizes. The mod-
els predicted the spatial variations of NO2 and 
PM2.5 absorbance well in the areas not used 
for model building, with median TRANSintra 
R2s of 0.59 for NO2 and 0.67 for PM2.5 absor-
bance. Transferability was less for PM2.5 with 
a median R2 of 0.42. The same pattern was 

found for the model R2 focusing on within-
area variability only (Modelintra). The varia-
tion in prediction R2s was relatively small for 
NO2, with an interquartile range (IQR) of 
0.09, but larger for PM2.5 (IQR, 0.17) and 
PM2.5 absorbance (IQR, 0.21), showing that 
predictions were less comparable for the two 
PM metrics. The variation is shown in Figure 3 
(see also Supplemental Material, Figure S3). 
Interestingly, this did not depend so much 
on area as on the specific combination of area 
and component. For example, the areas in 
Hungary (GyÖr), Germany (Munich), and 
Austria (Vorarlberg) showed decent model fit 
and predictability for NO2 and PM2.5 absor-
bance, but almost no model fit and predict-
ability for PM2.5. The transferred regional 
models showed similar characteristics as 
those of the European models, whereas the 
median TRANSintra R2 was slightly lower (see 
Supplemental Material, Table S4).

Discussion
In this study we developed LUR models for 
NO2, PM2.5, and PM2.5 absorbance, with 
combined measurement data from 23 study 
areas across Europe. For NO2 and PM2.5 
absorbance, these models predicted spatial 

variations in areas not commonly used for 
model building. For PM2.5, prediction R2s 
were moderate for intraurban variation, 
though in some areas in central Europe pre-
diction R2s were low. The overall R2 including 
both between- and within-study area variabil-
ity was high for PM2.5 and PM2.5 absorbance 
and more moderate for NO2.

Comparisons with other large area studies. 
Our European models performed comparable 
or even better in predictions of NO2 and PM2.5 
than other large area studies (see Supplemental 
Material, Table S5) (Beckerman et al. 2013; 
Beelen et al. 2009; Bergen et al. 2013; Hystad 
et al. 2011; Novotny et al. 2011; Sampson et al. 
2013; Vienneau et al. 2013). For PM2.5 absor-
bance, this is the first report of LUR models in 
such a large geographical area. Model R2s are 
difficult to compare because studies differed 
in study area, model development strategies, 
scale of prediction, offered predictor variables, 
and number of sites. Consistent across stud-
ies, the regional background predicted a small 
fraction of variability for NO2 and a large frac-
tion for PM2.5. For intracity model R2, our 
NO2 European model exhibited performance 
(Modelintra R2 = 0.59) comparable with that of 
the Canadian national model in seven specific 
areas (Edmonton, Montreal, Sarnia, Toronto, 
Victoria, Vancouver, and Winnipeg), with 
Modelintra R2 of 0.43 (Hystad et al. 2011). We 
observed no heterogeneity of model fit across 
study areas in the European model (LOAOCV 
R2s were close to the model R2).

Our European and regional models have 
several strengths compared with previous 
European models that modeled concentra-
tion in 1 × 1 km grids (Beelen et al. 2009; 
Vienneau et  al. 2009) or more recently 
100 × 100 m (Vienneau et al. 2013): a) We 
modeled small-scale variation using sampling 
sites that were selected according to a standard 
method to cover intraurban concentration 
contrasts. b) We included multiple pollut-
ants (PM2.5, PM absorbance), which were 
much less available or measured with different 
methods from routine monitoring networks in 
Europe. c) We incorporated local traffic inten-
sity data not available in Europe-wide data-
bases (land use and road length data only). All 
the models included traffic intensity variables, 
improving prediction ability (HV R2) over 
models not having local traffic intensity data 
(but potentially road length)—for example, 
from 0.46 to 0.54 for NO2.

The poor performance of the south 
European model may be attributed to the large 
heterogeneity of model fit (low LOAOCV R2) 
across south European study areas in which the 
concentrations in Athens were overestimated 
more than those of the other study areas. More 
formal methods, such as hierarchical cluster 
analysis to define regions, could be explored to 
improve comparability of regions.

Figure 2. Scatter plots of predicted and measured PM2.5 with study areas color and symbol coded and two 
city-specific examples, Stockholm (SST) and Rome (IRO). See Table 1 for study area codes.
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Table 4. Transferability of European models to areas that were not used for model building [median (IQR)].

Pollutant Model R2 Modelintra
a R2

TRANSintra
b

R2 RMSE
NO2 0.57 (0.01) 0.59 (0.19) 0.59 (0.09) 5.58 (2.28)
PM2.5 0.84 (0.01) 0.48 (0.16) 0.42 (0.17) 1.14 (0.58)
PM2.5 absorbance 0.69 (0.01) 0.70 (0.19) 0.67 (0.21) 0.23 (0.07)

IQR, interquartile range.
aModelintra R2: R2 of within-area variation explained by European model, with the same data as in Table 2. bTRANSintra: 
squared correlations and RMSE between the predictions and observations at independent areas.
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Our PM2.5 European model explained 
a median of 48% within-area variations 
compared with the overall model R2 of 
86%, which was largely explained by sub-
stantial differences in regional background 
concentrations. This was consistent with the 
R2s of the Canadian and American PM2.5 
model (46% and 63%), of which the satel-
lite data alone explained 41% and 52% of 
the variability, respectively (Beckerman et al. 
2013; Hystad et al. 2011) (see Supplemental 
Material, Table S5). PM2.5 is well known to 
be a regional pollutant with a large fraction 
of secondary aerosol, not explained well by 
the local GIS and traffic variables typically 
available for LUR model building. This sug-
gested that for pollutants (e.g., PM2.5) with 
much larger overall than within-city R2, joint 
analyses of cohorts including between-city 
exposure components might be advisable. 
This does require the assumption of sufficient 
comparability of cohorts across Europe. Other 
methods such as partial least squares regression 
may help to increase the prediction ability of 
models (Sampson et al. 2013).

Comparison with ESCAPE city-specific 
models. NO2 and PM models based on small 
training sets and a large number of predic-
tor variables overestimate predictive ability 
in independent test sets, though still explain-
ing fairly large fractions (50% to ~ 60%) of 
spatial variability (Wang et al. 2012, 2013). 
HV R2s of the European models developed 
on a large number of sites were very similar to 
the model R2. The average differences of the 
model R2s and HV R2s were just 2%, 6%, and 
0% for NO2, PM2.5, and PM2.5 absorbance. 
The slightly larger drop for PM2.5 could be 
attributable to more sources affecting PM2.5 
compared with NO2 and PM2.5 absorbance.

The ESCAPE city-specific models that 
have been published previously using local 
specific variables explained a median of 82%, 
71%, and 89% of the concentration varia-
tions for NO2, PM2.5, and PM2.5 absorbance 

(Beelen et al. 2013; Eeftens et al. 2012a). This 
is higher than the R2 of within-area variability 
explained by the European models in Table 2 
(Modelintra R2: 59%, 48%, 70% respectively). 
The average differences between the individual 
city-specific model R2 (Beelen et al. 2013; 
Eeftens et al. 2012a) and the intraurban R2 
(see Supplemental Material, Figure S3) are 
24%, 24%, and 17% for NO2, PM2.5, and 
PM2.5 absorbance respectively. Because model 
R2 overestimates predictive ability, especially 
when developed for a relatively small number 
of sites (Wang et al. 2012, 2013), the com-
parison between local and European models 
should not be based on model R2 but HV R2 
at independent sites. Comparison of the pre-
diction ability between the European and city-
specific models is feasible only for NO2, which 
suggested that the European and city-specific 
model had similar median prediction ability 
to the external sites not used for modeling. 
The HV R2 in some cities [e.g., Turin (ITU) 
and Paris (FPA)] that had poor predictions by 
the city-specific model may be improved sub-
stantially by the European model. We cannot 
draw a firm conclusion about one or the other 
approach being more reliable because com-
parisons for PM models were infeasible. The 
European model may reduce bias in health 
estimates because of relatively large number 
of sampling sites and small number of vari-
ables compared with the city-specific models 
(Basagaña et al. 2013).

Most of the combined models included 
traffic variables in both large (≥ 500 m) and 
small buffers (≤ 50 m), representing general area 
characteristics as well as localized influences. 
In contrast to the study-area specific ESCAPE 
models (Beelen et  al. 2013; Eeftens et  al. 
2012a), none of our European models included 
population/residence density, but instead 
selected road length in large buffers, which 
likely also represents urban–rural difference in 
terms of population distributions (de Hoogh 
et al. 2013). In our GIS data set, the squared 

correlation R2 between road length and popula-
tion density is 0.46 within a 1,000‑m buffer but 
is only 0.13 within a 100‑m buffer. Road length 
variables in large buffers therefore represent 
various aspects of “total human activity” such as 
traffic, heating, population density.

Transferability of combined models. 
Previous studies on the transferability of LUR 
models were mainly focusing on city-to-city 
or country-to-country transferability. Briggs 
et  al. (2000) concluded that the SAVIAH 
(Small-Area Variations In Air Quality and 
Health) models could be applied to other UK 
cities after calibrating with data from a few 
monitoring sites. Poplawski et al. (2009) and 
Allen et al. (2011) observed that local cali-
bration may improve the predictions of the 
Canadian city-specific models to a few other 
comparable cities in Canada and the United 
States. Vienneau et al. (2010) found reason-
able transferability of British and the Dutch 
models between these two countries. All the 
previous studies concluded that the perfor-
mances of the transferred models were worse 
than those of the local source models. 

Our results show prediction capabilities 
for the traffic-related pollutants NO2 and 
PM2.5 absorbance that are on par with those 
documented, in terms of HV R2s, with pre-
vious local exercises (Basagaña et al. 2012; 
Wang et al. 2012). This might be attribut-
able to the fact that the ESCAPE study used 
highly standardized monitoring and GIS data 
for measurement, data collection, and model 
building across all areas. This suggests that 
our combined models can be carefully applied 
to other areas in Europe with common pre-
dictors, similar geographies, and availability of 
consistent regional background concentration 
within the region. Because the locations are 
well characterized, any candidate background 
location in a new area can be judged against 
the same criteria. Obviously, this will only 
work when the pollution characteristics or 
components are actually measured in the new 

Figure 3. Transferability (TRANSintra R2) of the European models for NO2 and PM in the 23 study areas. See Table 1 for study area codes.
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area. In practice, this means that modeling 
of new areas will in most cases be restricted 
to NO2/nitrogen oxides and PM10 (PM 
≤ 10 μm) and, in fewer areas (in Europe), 
to PM2.5 and PM absorbance. Satellite data 
have large spatial coverage and have improved 
NO2 and PM10 European models based 
upon routine monitor data by 5% and 11% 
(Vienneau et al. 2013). Satellite data could 
be used in the future to estimate background 
concentrations in new locations.

In some individual areas of central 
Europe, the European model performed 
poorly for PM2.5, however, probably due 
to lack of an important local predictor vari-
able (e.g., residential density in Munich and 
Vorarlberg, industry in Hungary, or altitude 
in Vorarlberg). Therefore, caution is needed 
when transferring the European models to 
cities for which the European model lacks 
predictor variables that are known to be 
important sources of variation locally. The 
poor performance in a few areas suggests that 
the value of the European model is especially 
in multicenter analyses such as ESCAPE 
compared with studies of individual areas.

Applications in epidemiological studies. 
The overall R2 of the European model was 
highest for PM2.5 and lowest for NO2. In 
contrast, for within-city variation, the model 
had the lowest predictive ability for PM2.5, 
though it was still fairly high (median 
R2  = 0.48). The PM2.5 absorbance model 
explained both large fractions of variability 
overall and within-city. The high overall R2 
suggests that the model can be used in pooled 
analyses of health data, exploiting exposure 
contrasts between study areas. Using between-
city comparisons would be especially useful 
to increase PM2.5 contrasts. For ESCAPE, 
where the health findings based on these local 
exposure models are currently being pub-
lished (Beelen et al. 2014; Raaschou-Nielsen 
et al. 2013), the model offers the possibility 
for pooled analyses. Pooled analyses have not 
been conducted so far, partly because of con-
cerns of comparability of the diverse cohorts 
across Europe. There is also the possibility 
to include new study populations from areas 
where local measurements were never con-
ducted but relevant predictor variables are 
available. For exposure assessment with LUR 
models, efforts are mainly in the sampling 
campaign and GIS data collection.

Conclusions
European LUR models for NO2, PM2.5, and 
PM2.5 absorbance were found to have rea-
sonable power to predict spatial variations 
of these components in areas not used for 
model building.
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Erratum

Erratum: “Performance of Multi-City Land Use Regression Models for Nitrogen Dioxide and Fine Particles”
Wang et al. discovered an error in their article “Performance of Multi-City Land Use Regression Models for Nitrogen Dioxide and Fine 
Particles” [Environ Health Perspect 122:843–849 (2014);  http://dx.doi.org/10.1289/ehp.1307271]. In Table 3, beta values for the NO2 
model were incorrect. The corrected table appears below.

The authors regret the error.

A Section 508–conformant HTML version of this article  
is available at http://dx.doi.org/10.1289/ehp.122-A322.  

Table 3. European models for NO2, PM2.5, and PM2.5 absorbance.

Predictors Partial R 2 βa
Modelintra

b 

R 2/ IQR
LOAOCV  

R 2/ RMSE

NO2 (nc = 960, final model R2 = 0.56) 0.59/0.19 0.50/8.49 (μg/m3)
Regional background concentration 0.08 2.63E-01
Traffic load in 50 m 0.35 2.44E-06
Road length in 1,000 m 0.50 2.74E-04
Natural and green in 5,000 m 0.55 –2.84E-07
Traffic intensity on the nearest road 0.56 2.21E-04
Intercept 1.38E+01

PM2.5 (nc = 356, final model R2 = 0.86) 0.48/0.16 0.81/2.38 (μg/m3)
Regional background concentration 0.71 9.73E-01
Traffic load between 50 m and 1,000 m 0.81 4.75E-09
Traffic load in 50 m 0.84 5.28E-07
Road length in 100 m 0.86 2.12E-03
Intercept 3.06E-01

PM2.5 absorbance (nc = 356, final model R2 = 0.70) 0.70/0.19 0.70/0.45 (10–5/m)
Regional background concentration 0.28 9.06E-01
Traffic load in 50 m 0.58 2.07E-07
Road length in 500 m 0.67 2.90E-05
Natural and green in 5,000 m 0.69 –9.63E-09
Traffic load between 50 m and 1,000 m 0.70 4.20E-10
Intercept 2.95E-01

aCoefficients of predictor variables in the models. bThe Modelintra R2s show the median and interquartile range (IQR) of 
the within-area variability explained by the European model in individual areas. cNumber of monitored sites available for 
model building.




