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Abstract. New quantum fluctuation relations are presented. In contrast with the
standard approach, where the initial state of the driven system is described by the
(micro) canonical density matrix, here we assume that it is described by a (micro)
canonical distribution of wave functions, as originally proposed by Schrödinger.
While the standard fluctuation relations are based on von Neumann measurement
postulate, these new fluctuation relations do not involve any quantum collapse,
but involve instead a notion of work as the change in expectation of the
Hamiltonian.
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1. Introduction

In the last two decades the field of non-equilibrium thermodynamics has undergone a
tremendous advancement due to the discovery of exact non-equilibrium relations (named
fluctuation relations) which characterize non-equilibrium processes well beyond the regime
of linear response, and provide a deep insight into statistical nature and microscopic origin
of the second law of thermodynamics. The most prominent example of such exact relations
is the Jarzynski equality [1] which allows for obtaining the free energy landscape of small
systems, like a single DNA molecule, from very many measurements of work done on the
system as it is driven out of equilibrium, e.g. by stretching the molecule [2]. A related result,
known as Crooks work fluctuation theorem [3], relates the free energy to the probability of
performing work W during the process and the probability of performing work −W during the
time-reversed process. These results, which have been first obtained within the framework of
classical mechanics were later derived also within the quantum mechanical framework [4–7].

The crucial ingredient needed for obtaining the fluctuation relations in the quantum case is
the so called two measurements scheme [8, 9]. In this scheme the system energy is measured at
the beginning and end of the driving protocol and the work is defined as the difference of the
outcomes of these measurements:

W = E τ
m − E0

n, (1)

where E t
k denotes an eigenvalue of the (time-dependent) Hamilton operator Ĥ(λt) at time t . As

usual, here it is assumed the Hamilton operator changes in time due to the time dependence
of an external parameter λt . This scheme relies on the von Neumann measurement postulate
according to which the measurement process induces the collapse of the wave function on one
of the eigenstates of the measured observable, i.e. Ĥ(λ0) and Ĥ(λτ ) in the present case. Notably,
experimental verification and application of the quantum fluctuation relations based on the
two-measurement scheme have not been accomplished yet, while alternative strategies aimed
at avoiding the two projective measurements have been proposed. Two prominent examples
propose to replace them with many weak measurements during the driving protocol [10],
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or with state tomography of one or two qubit ancillae appropriately coupled to the driven
system [11–14].

With this work we establish new quantum fluctuation relations, which look exactly like
the standard quantum fluctuation relations but substantially differ from them due to a different
underlying definition of quantum work, and a different ensemble specifying the initial condition.
As in the standard case [8, 9] we assume an initial statistical ensemble, but at variance with the
ordinary quantum statistical mechanics, we assume that the statistical ensemble is described
by a distribution of wave functions as originally suggested by Schrödinger [15], later pursued
by Khinchin [16] and recently advocated by an increasing number of authors [17–29]. We will
establish fluctuation relations for the microcanonical [19, 23, 25–28] and canonical [17, 30]
wave function ensembles. Most remarkably these new fluctuation relations naturally involve a
notion of work as the change in the expectation of the Hamiltonian operator

w = 〈ψ(τ)|Ĥ(λτ )|ψ(τ)〉 − 〈ψ(0)|Ĥ(λ0)|ψ(0)〉 . (2)

Accordingly they do not involve von Neumann measurement postulate. In equation (2) |ψ(0)〉
is a wave function randomly chosen from the distribution, and |ψ(τ)〉 is its time evolution. Just
as with the classical fluctuation theorems, the stochastic nature ofw comes from the fact that the
initial state |ψ(0)〉 is randomly drawn from a distribution, while its evolution is deterministic.

So, the interpretation framework that is adopted here is that experimentally observed
quantities correspond to their quantum mechanical expectation, an approach that is at least as
common in the scientific literature and effective as that involving wave function collapses. To
give one example, Kubo’s linear response theory [31], is a theory of quantum expectations which
mentions no collapses. This same philosophy has been advocated by Jona-Lasinio and Presilla
[30], who pointed out that the wave function ensembles could be good candidates for the study
of mesoscopic systems, where robust coherence phenomena are involved.

2. Wave function ensembles

We consider a quantum system with a finite dimensional Hilbert space of dimension N . Each
wave function |ψ〉 can be represented by an N dimensional complex vector c, and the system
Hamilton operator Ĥ(λ) can be represented by a N × N Hermitean matrix H(λ). Following [32]
we introduce the suggestive notation

c = x + ip, (3)

h(x,p; λt)= (x − ip)TH(λt)(x + ip), (4)

where x and p are the real and imaginary parts of c, h(x,p, λt) denotes the expectation of the
Hamilton operator on the state x + ip, zT denotes transpose of z, and matrix multiplication is
implied. We stress that x and p should not be confused with positions and momenta.

Below we shall consider statistical ensembles ρ(x,p) defined on the wave function ‘phase
space’ (x,p). Given an observable B̂, with matrix representation B, its ensemble average is
its wave function expectation b(x,p)= (x − ip)TB(x + ip), averaged over the wave function
distribution, namely

〈B̂〉 =

∫
dx dp ρ(x,p)b(x,p) . (5)
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2.1. Microcanonical wave function ensemble

In the microcanonical wave function ensemble [19, 23, 25–28] all wave functions (x,p) with
a given expectation of energy E = h(x,p; λ) have same probability, whereas all other wave
functions have probability zero. For a fixed λ it reads

ρµ(x,p; E, λ)=
δ(E − h(x,p; λ))δ(1 − |x + ip|

2)

�(E, λ)
, (6)

where δ denotes Dirac’s delta function, and

�(E, λ)=

∫
dx dp δ(E − h(x,p; λ))δ(1 − |x + ip|

2) (7)

is the density of states. Note the formal similarity with the classical microcanonical ensemble.
The main difference is the presence of the extra factor δ(1 − |x + ip|

2) which restricts the
integration to the ‘physical Hilbert space’, namely the subspace of normalized wave functions,
also known as the projective Hilbert space. Note that at variance with the textbook quantum
microcanonical ensemble [33, 34], in which only those eigenstates of the Hamiltonian in a
narrow interval around the energy E contribute, here all eigenstates participate to the ensemble1.
For this reason various authors claim that the ensemble in equation (7) provides a more
realistic description of the thermodynamics of isolated systems [25–28]. Another pleasing
property of this ensemble is that, at variance with the standard microcanonical ensemble,
it does not require a dense energy spectrum, and can therefore be well applied to small
quantum systems with well separated energy levels. Indeed, the ensemble depends continuously
on the real parameters E, λ, which makes the derivation of the associated thermodynamics
straightforward also in case of small systems [24]. Ji and Fine [28] show that this ensemble
well describes the statistics of a small thermally isolated system after repeated non-adiabatic
perturbations.

2.2. Canonical wave function ensemble

In the canonical wave function ensemble [17, 30], wave functions are weighted with the Gibbs
factor e−βh(x,p;λ)

ρc(x,p;β, λ)=
e−βh(x,p;λ)δ(1 − |x + ip|

2)

Z(β, λ)
, (8)

where

Z(β, λ)=

∫
dx dp e−βh(x,p;λ)δ(1 − |x + ip|

2). (9)

Note again the formal similarity with the classical canonical ensemble. In [30] this ensemble
is called the Schrödinger–Gibbs ensemble. According to Jona-Lasinio [18] this ensemble can
give realistic predictions in case of mesoscopic systems where robust coherence phenomena are
involved.
1 To see this, consider for example a spin-1 particle in a (possibly large) magnetic field, Ĥ(λ)= λ Ĵ z , and consider
the microcanonical ensemble of states with expectation E = 0. Besides the state with null angular momentum (the
only state contributing to the standard microcanonical ensemble), superposition containing both the up and down
states now contribute to the ensemble as well.
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3. Rationale for wave function ensembles

A criterion for establishing the goodness of a statistical ensembles as a candidate model of
equilibrium thermodynamics is whether the ensemble is invariant under the time evolution.
As will become clearer in the next section this is indeed the case for the canonical and
microcanonical wave function ensemble.

Another criterion, which traces back to Boltzmann [35], is whether the ensemble endows
the parameter space with a ‘thermodynamic structure’. To be more explicit, given a statistical
ensemble ρ(0, X i), (defined on a phase space 0 and on a parameter space X i ), one checks
whether there exist an integrating factor γ (X i), such that

γ δQ = exact differential, (10)

where δQ is the heat differential as calculated in the ensemble. This equation is known as the
heat theorem, and is the most fundamental equation of thermodynamics. Prominent examples
of textbooks that take this viewpoint in establishing the foundations of quantum statistics are
those of Schrödingier [15], and Khinchin [16]2.

To calculate δQ use the standard formula

δQ = dE + Fdλ, (11)

where

E = 〈Ĥ〉, (12)

F = −

〈
∂ Ĥ

∂λ

〉
(13)

denote the ensemble averages of energy and of the generalized force conjugated to the external
parameter. Note that in case of a single parameter λ, mathematics ensures that an integrating
factor always exists. A differential form in two dimensions (i.e. E and λ, in equation (11)),
always admits an integrating factor. However, the system Hamiltonian may depend on many
external parameters λi , hence δQ = dE +

∑
i Fi dλi , which makes the question of the existence

of an integrating factor non-trivial.

3.1. Canonical case

In the canonical case we have

E = E(β, λ)=

∫
dx dp ρc(x,p;β, λ)h(x,p; λ), (14)

F = F(β, λ)= −

∫
dx dp ρc(x,p;β, λ)

∂h(x,p; λ)

∂λ
. (15)

In this case β is an integrating factor for δQ and Sc(β, λ)= βE(β, λ)+ ln Z(β, λ) is the
associated generating function. The argument follows step by step the classical derivation [36],
which can be repeated without modifications. The partial derivatives of Sc(β, λ) are

∂Sc

∂β
= E +β

∂E

∂β
+

1

Z

∂Z

∂β
= β

∂E

∂β
, (16)

2 Interestingly both books also advocate the use of wave function ensembles.
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∂Sc

∂λ
= β

∂E

∂λ
+

1

Z

∂Z

∂λ
= β

∂E

∂λ
+βF, (17)

therefore

dSc = β

(
∂E

∂β
dβ +

∂E

∂λ
dλ+ F dλ

)
= β(dE + Fdλ)= βδQ. (18)

The derivation can be straightforwardly repeated in the case of many parameters. We remark
that there are however infinitely many integrating factors for δQ. So having found one does not
ensure by itself that it can be interpreted as inverse temperature, and that the associated generator
of the exact differential can be interpreted as entropy. Take for example g(β, λ)= f (Sc(β, λ))

with any monotonic function f . Then dg = f ′(Sc(β, λ)) dSC = f ′(Sc(β, λ))βδQ, where f ′

is the derivative of f . This says that f ′(Sc(β, λ))β, is also an integrating factor for δQ. In
order to pick the ‘thermodynamic’ integrating factor, we need an extra ingredient. We thus
further require that the entropy be additive. Namely, if two non-interacting and non-entangled
systems have separately the entropies S1 and S2, the entropy of the total system should be
S1 + S2. The requirement of non-entanglement is very crucial here. It restricts the Hilbert space
of the compound system, from a tensor product of dimension N1 N2 to the direct product of
dimension N1 + N2. In this ‘classical’ phase space the canonical wave function distribution of
the compound system reduces to the product of the canonical wave function distributions for
each subsystem, so does the partition function Z . Noting that the energy is additive, it follows
that Sc(β, λ) is additive as well, which singles it out as a good candidate for thermodynamic
entropy. Accordingly β is the inverse temperature.

3.2. Microcanonical case

In the microcanonical case

E =

∫
dx dp ρµ(x,p; E, λ)h(x,p; λ), (19)

F = F(E, λ)= −

∫
dx dp ρµ(x,p; E, λ)

∂h(x,p; λ)

∂λ
. (20)

An integrating factor for δQ is in this case the function �(E, λ)/8(E, λ), where, in analogy
with classical mechanics

8(E, λ)=

∫
dx dp θ(E − h(x,p; λ))δ(1 − |x + ip|

2) (21)

denotes the volume of physical Hilbert space with energy expectation below E . As in classical
mechanics, we have 8(E, λ)=

∫ E
E0
�(E ′, λ) dE ′, where E0 is the ground state energy. The

symbol θ denotes the Heaviside step function. The proof follows, mutatis mutandis, the classical
argument (the generalized Helmholtz theorem) [37], which can be repeated also with many
external parameters. The generating function associated with the integrating factor �/8 is
Sµ(E, λ)= ln8(E, λ). In this case the requirement of additivity does not seem to single
Sµ(E, λ) so straightforwardly as in the canonical case. The reason is that, unlike the exponential,
the theta function does not factorize in the product of two theta functions. Classically this
problem can be easily circumvented upon noticing that the integrating factor �/8 equals the
average kinetic energy per degree of freedom (equipartition theorem [38]), which singles it out
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as the thermodynamic temperature. In quantum mechanics however there is no equipartition
theorem to help us. We leave the resolution of this question to future studies.

It should be remarked that our present analysis contrasts with [24], where thermodynamics
was derived from the logarithm of the density of states, namely ln�(E, λ). We remark that this
choice does not comply with the heat theorem, equation (24), namely, there does not exist, in
general a function γ (E, λ), such that γ (E, λ)δQ would equal the differential of ln�(E, λ).
This very same question appears also at the classical level, where it has been long ignored
due to the fact that in most cases of interest the ‘surface entropy’ (logarithm of the density of
states) and the ‘volume entropy’ (logarithm of the integrated density of states), give practically
undistinguishable results for sufficiently large systems [37, 39].

4. Fluctuation relations

Fluctuation relations for the wave function ensembles follow straightforwardly upon noticing
that in the (x,p) representation, the Schrödinger equation

ih̄ċ = H(λt)c (22)

assumes the form of classical Hamilton’s equation

h̄ẋ =
∂

∂p
h(x,p; λt), (23)

h̄ṗ = −
∂

∂x
h(x,p; λt) (24)

with the function h(x,p; λt) being the generator of the dynamics [32]. In analogy with the
classical case, we introduce the following notion of quantum work:

w = h(xτ ,pτ ; λτ )− h(x,p; λ0), (25)

where (xτ ,pτ ) denotes the evolved of (x,p), according to Hamilton’s equations (24). Physically,
w is the change in the expectation of the Hamilton operator Ĥ , due to the evolution of the wave
function |ψ〉, see equation (2). Note that w can be expressed as an integrated power

w =

∫ τ

0
dt λ̇t

∂h(xt ,pt , λt)

∂λt
. (26)

In equilibrium, namely for a constant λ, energy conservation and Liouville theorem
ensure that surfaces of constant energy expectation in the physical Hilbert space will be
mapped onto themselves by the time evolution, implying that, as anticipated, the canonical and
microcanonical wave function ensembles are stationary [18].

The probability that the work w be performed on a system prepared in a wave function
ensemble ρ(x,p) can be written as

p(w)=

∫
dx dp ρ(x,p)δ(w− h(xτ ,pτ , λτ )+ h(x,p, λ0)). (27)

Noticing that the evolution (24) conserves the normalization, |xτ + ipτ |2 = |x + ip|
2
= 1

(unitarity of quantum evolution) and is volume preserving, dxτ dpτ = dx dp (classical Liouville
theorem), one can repeat step by step the derivations of classical microcanonical [40] and
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Figure 1. (a) Free energy of a two-level-system described by the Hamiltonian
(30) with a fixed λ, as computed in the canonical (Schrödinger–Gibbs)
wave function ensemble, equation (8), and in the standard Gibbs canonical
ensemble. (b) Probability histograms of work w, equation (25), and standard
work W , equation (1), as computed in the canonical (Schrödinger–Gibbs)
wave function ensemble, equation (8), and in the standard Gibbs canonical
ensemble, respectively. The standard work probability pst(W ) is rescaled by
a factor 10 for better visualization. Inset: sketch of the driving protocol, i.e.
a half Landau–Zener sweep. The parameters used are: β =1−1, v =12/h̄,
T = 5h̄/1.

canonical [2] fluctuation relations, upon requiring that the Hamilton operator is time reversal
invariant3.

In the microcanonical case one obtains
pE(w)

p̃E+w(−w)
=
�(E +w, λτ )

�(E, λ0)
, (28)

where pE(w) is the probability of doing work w when the initial state is randomly drawn from
the distribution ρµ(x,p; E, λ0) under the driving protocol λt t ∈ [0, τ ], and p̃E+w(−w) is the
probability of doing work −w when the initial state is randomly drawn from ρµ(x,p; E +w, λτ )
under the protocol λτ−t , t ∈ [0, τ ].

In the canonical case one obtains
p(w)

p̃(−w)
=

Z(β, λτ )

Z(β, λ0)
eβw = e−β(1F−w), (29)

where p(w) is the probability of doing workw when the initial state is randomly drawn from the
distribution ρc(x,p;β, λ0) under the driving protocol λt , t ∈ [0, τ ], and p̃(−w) is the probability
of doing work −w when the initial state is randomly drawn from ρc(x,p;β, λτ ) under the
protocol λτ−t , t ∈ [0, τ ]. In analogy with the classical case we have introduced the notation
1F = F(β, λτ )− F(β, λ0), with F(β, λ)= −β−1 ln Z(β, λ). We stress that this free energy
F(β, λ)may considerably differ from the usual free energy Fst(β, λ)= −β−1 ln Tr e−β Ĥ(λ), see
figure 1(a).

3 Formally that means that at each time t , the Hamilton operator Ĥ(λt ) commutes with time-reversal operator 2,
which changes the sign of momenta and leaves spatial coordinates unchanged [41].
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5. Illustrative example

To better clarify the differences and similarities between the standard quantum fluctuation
relations and the quantum fluctuation relations for wave function ensembles, we consider the
Landau–Zener(–Stückelberg–Majorana) [42–45] problem

Ĥ(λt)= λtσz +1σx , λt = vt/2 . (30)

It governs the dynamics of a two-level quantum system whose energy separation, vt , varies
linearly in time, and whose states are coupled via the interaction energy1. For example, a spin-
1/2 particle with magnetic moment µ in a magnetic field EBt = −(1/µ, 0, vt/2µ). Here, σx and
σz denote Pauli matrices.

Let us assume the two-level system is in a state described by the canonical wave function
ensemble, equation (8). Let c = (a, b)T, with a, b ∈ C, denote a point in the Hilbert space
(a wave function). The energy expectation h(a, b, λ) over the state c reads h(a, b; λ)= λ(|a|

2
−

|b|
2)+1(a∗b + ab∗), where ∗ denotes complex conjugation. Accordingly, the partition function

reads

Z(β, λ)=

∫
da db e−β[λ(|a|

2
−|b|

2)+1(a∗b+ab∗)]δ(1 − |a|
2
− |b|

2). (31)

As is well known, the projective Hilbert space of a two-level system can be mapped onto a
sphere of unit radius in R3, the Bloch sphere. Accordingly, the partition function Z(β, λ) can be
expressed as an integral over the Bloch sphere. This is accomplished by the following change
of variables, a = eiφr cos γ /2, b = eiφreiδ sin γ /2, where r ∈ [0,∞), φ ∈ [0, 2π ], γ ∈ [0, π],
δ ∈ [0, 2π ], leading to

Z(β, λ)=
1

8

∫
dr 2 dφ dδ dγ sin γ r 2e−βr2[λ cos γ+1 sin δ sin γ ]δ(1 − r 2)

=
π

4

∫
dδ dγ sin γ e−β[λ cos γ+1 sin δ sin γ ], (32)

where γ, δ are the Bloch angles. To perform the integration we first consider the case 1= 0.
Physically this corresponds to a spin-1/2 particle in a magnetic field pointing in the negative
z direction with intensity λ/µ. By the change of variable y = cos γ we obtain, for 1= 0,
Z = π 2 sinh (βλ)/(βλ). When 1 6= 0, this corresponds to a magnetic field oriented along some
direction n̂ and an intensity

√
λ2 +12/µ. Because of spatial isotropy, the partition function can

only depend on the intensity of the field and not on its orientation, hence we obtain

Z(β, λ)= π2 sinh(β
√
λ2 +12)

β
√
λ2 +12

. (33)

This expression should be contrasted with the standard expression Zst(β, λ)= Tr e−β Ĥ(λ)
=

2 cosh(β
√
λ2 +12). Figure 1(a) shows a comparison of the resulting free energies, F =

−β−1 ln Z , Fst = −β−1 ln Zst. As already highlighted in [17] they give rise to distinct
thermodynamics.

It is worth stressing that, just like the standard ensemble, the wave function ensemble
is a mixed state which can, accordingly, be represented by a density matrix [30]: ρ̂(β, λ)=∫

dx dpρ(x,p, β, λ)(x − ip)(x + ip)T. In the present case it reads, in the σz basis

ρ̂(β, λ)=
π

4

∫
dδ dγ sin γ

e−β[λ cos γ+1 sin δ sin γ ]

Z(β, λ)

(
cos2(γ /2) sin γ e−iδ/2
sin γ eiδ/2 sin2(γ /2)

)
. (34)
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In the case 1= 0 we get [17]

ρ̂(β, λ)=
1

2

(
1 + 1/(βλ)− coth(βλ) 0

0 1 − 1/(βλ)+ coth(βλ))

)
, 1= 0 . (35)

This density matrix should be contrasted with the standard canonical density matrix ρ̂st(β, λ)=

diag(e−βλ, eβλ)/Zst(β, λ). By replacing λ with
√
λ2 +12, one gets the density matrix for the

case 1 6= 0, in the corresponding energy eigenbasis.
In figure 1(b) we report results concerning the work statistics. We considered here a

‘half’ Landau–Zener sweep, i.e. equation (30) from time t = −T , to time t = 0, see the inset
of figure 1(b). The unitary quantum evolution operator can be expressed in terms of special
functions [46, 47]. The figure shows both the statistics p(w) originating from the expression of
work in equation (25) in the canonical wave function ensemble, equation (8), and the standard
work statistics pst(W ) originating from the two-measurement expression of work in equation (1)
in the standard canonical ensemble e−β Ĥ(λ)/Zst(β, λ).4 Note the prominent difference that the
wave function work pdf p(w) is a smooth function whereas the standard work pdf pst(W ) is
a discrete sum of four Dirac deltas [9] (the two most left peaks of pst(W ) are barely visible
in figure 1(b)). Note also that the support of p(w) is smaller than the support of pst(W ).
Stronger driving (i.e. larger v’s) result in broader distributions p(w). The support of p(w)
cannot however become wider than that of pst(W ), which, independent of v, is given by
[−

√
(vT/2)2 +12 −1,

√
(vT/2)2 +12 +1].

Notwithstanding their differences both distributions satisfy formally equivalent fluctuation
relations. To better clarify this, let us focus on the average exponentiated work. As predicted by
the theory and confirmed by our numerical calculation, we have

〈e−βw
〉 =

∫
dwp(w) e−βw

= e−β1F , (36)

〈e−βW
〉st =

∫
dW pst(W ) e−βW

= e−β1Fst . (37)

That is, both work pdf’s satisfy the Jarzynski equality, each with the free energy calculated in
the respective ensemble. Likewise for the Tasaki–Crooks fluctuation theorem.

6. Concluding remarks

We have obtained fluctuation relations for microcanonical and canonical wave function
ensembles. They look exactly as the standard relations, but substantially differ from them
because they involve a notion of work as the change in the expectation of the energy, rather
than the difference of two eigenvalues emerging from quantum collapses. These ensembles in
fact have been proposed in a framework where one is interested in the expectation of quantum
observables [30]. As highlighted with the illustrative example, this notion of work gives rise
to smooth work probability densities, in stark contrast with the discrete standard probability
densities. Also it gives information about the equilibrium ‘free energy’ (‘entropy’) as calculated

4 To be more precise, figure 1(b) shows the quantities
∫ w+d/2
w−d/2 p(w′)dw′, and

∫ W +d/2
W−d/2 pst(W ′) dW ′, (with d the

width of the bars), i.e. discrete versions of p(w) and pst(W ). pst(W ) is rescaled by a factor 10 in figure 1(b), for a
better visualization.
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in the canonical (microcanonical) wave function ensemble. These substantially differ from their
standard counterpart, see figure 1.

Other authors are currently developing alternative formulations of quantum fluctuation
relations which do not rely on quantum collapses. Among them is the work of Deffner [48]
which presents a study of entropy production based on the Wigner representation of quantum
states.

We have expressed some considerations regarding the rational foundations of the wave
function ensembles. Further investigation is certainly necessary in order to reach a more
satisfactory understanding of the physical basis for these ensembles. One question to be pursued
regards the lack of ergodicity of the Hamiltonian flow on the surface of constant energy
expectation in the physical Hilbert space, which marks a stark distinction with the classical case.
Another important question that deserves further study is whether these ensembles converge
to the usual statistical ensembles in some limit, e.g. classical, and/or thermodynamic limit.
Experiments will have the final word in regard to their scope of applicability. Certainly they
have proved very important in recent advancements in the foundations of quantum statistics
[21, 22].
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