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Abstract. Work performed on a system in a microcanonical state by changes
in a control parameter is characterized in terms of its statistics. The transition
probabilities between eigenstates of the system Hamiltonians at the beginning
and the end of the parameter change obey a detailed balance-like relation from
which various forms of the microcanonical fluctuation theorem are obtained.
As an example, sudden deformations of a two-dimensional harmonic oscillator
potential are considered, and the validity of the microcanonical Jarzynski
equality connecting the degrees of degeneracy of energy eigenvalues before and
after the control parameter change is confirmed.
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1. Introduction

The microcanonical ensemble has always played an important role in the foundation of
equilibrium statistical mechanics [1–5]. For practical applications and computational purposes,
however, the canonical and the grandcanonical ensembles have traditionally been regarded as
more relevant because frequently the considered systems are in contact with their environments
acting as heat and particle reservoirs. Often, the choice of the ensemble is merely a matter of
convenience because for the large class of systems with short range interactions, all ensembles
become equivalent provided the number of constituting particles is sufficiently large.

For systems with long range interactions [6] and for small systems with few particles the
different ensembles are no longer equivalent and hence the correct ensemble must be chosen
depending on the physical situation [7]—with gravity being a prominent example [8]. The
enormous recent progress in manipulating cold atoms [9], which are often isolated from their
environment to a very high degree, has given renewed interest and practical relevance to the
microcanonical ensemble.

In experiments, such systems are tested by the change of control parameters such as the
strengths and positioning of laser-fields which generate the effective potentials in which the
atoms are trapped [10]. The work performed on the system turns out to be a random quantity
with a distribution depending both on the protocol and the chosen initial state [11]. In the case
of a microcanonical system, the work distribution depends on the initial energy.

The general form of the microcanonical work distribution was first derived for classical
systems in [12] and later for quantum systems in [11, 13, 14] where a formal representation of
a microcanonical state was used in terms of a Dirac delta-function. In order to obtain a properly
defined density matrix, i.e. a positive operator with unit trace [15], the delta function defining
it must be regularized. This regularization can be done in many different ways and therefore
introduces some arbitrariness. It can be physically understood as the attempt to account for
experimental or theoretical uncertainties of the energy.

In the present work we take a different approach and write the density matrix of a
microcanonical state as the properly normalized projection operator onto all states with
a given energy as discussed in section 2. Based on this form of the density matrix, we
derive the probability density function (pdf) of work and various equivalent forms of the
microcanonical fluctuation theorems in section 3. These fluctuation theorems are a consequence
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of a detailed balance-like relation for the transition probabilities between energy eigenstates
of the Hamiltonians at the end and the beginning of the protocol, a relation that is also
crucial for canonical [16–19] and grandcanonical fluctuation theorems [20]. We illustrate the
obtained results with the example of a two-dimensional harmonic oscillator whose potential
energy is suddenly squeezed or widened along its principal axes. Work statistics for a one-
dimensional (1D) oscillator under the action of time-dependent but otherwise constant forces
was analyzed for different initial conditions, including pure energy eigenstates in [21]. The
squeezing of a 1D oscillator out of canonical states was studied in [22]. Here we consider
rational principal frequency ratios before and after the deformation giving rise to degeneracies
of the energy eigenvalues and compare the quantum work distributions to the corresponding
classical expressions, which are typically approached for large initial energies. The paper closes
with concluding remarks. In the appendix, the work distributions for deformations of classical
one- and two-dimensional oscillators are presented.

2. Microcanonical state

In order to prevent a finite system from eventually escaping to infinity, it has to be confined in
space by a sufficiently steeply increasing potential. As a consequence, the Hamiltonian of such
a system has a pure point-spectrum. Accumulation points and continuous parts of the spectrum
do not occur5.

There are various ways of representing the density matrix of a system in the microcanonical
state. One, formal representation is closest to the classical form of a microcanonical pdf in terms
of a Dirac-delta function concentrated on the respective energy shell. It is given by

ρE = ω−1
E δ(H − E), (1)

where H is the Hamiltonian of the considered system and

ωE = Tr δ(H − E) (2)

denotes the density of states. In order that the density matrix as well as the density of states are
well defined for all values of the continuous energy variable E the delta-function δ(x) must be
replaced by a continuous function which is mainly localized at x = 0, such as a narrow Gaussian
δε(x):

δε(x)= 1/
√

2πε2e−x2/(2ε2). (3)

The width ε has to be chosen small enough. It may be thought of as representing the actual
resolution of the energy being determined by experiment or, within a theoretical model.

With the spectral representation of the Hamiltonian

H =

∑
n

En Pn (4)

expressed in terms of the eigenenergies En and the eigenprojectors Pn the density matrix
becomes a sum over the energy levels n, i.e.

ρE = ω−1
E

∑
δ(En − E)Pn. (5)

5 A mathematically rigorous formulation of conditions leading to many-particle Hamiltonians with discrete spectra
can be found in [23].
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The density of states is then a weighted sum of delta-functions

ωE =

∑
n

dnδ(En − E), (6)

where dn denotes the degeneracy of the nth eigenvalue, expressible as the trace of the respective
projector, dn = TrPn.

Alternatively, the microcanonical density matrix can be written in terms of an
eigenprojector

ρn = d−1
n Pn, (7)

which is a function of the discrete index n rather than the continuous energy E . The Dunford
integral [24] allows one to define an operator P(E) that coincides with Pn for E = En and is
zero otherwise. It is defined in terms of an operator-valued Cauchy-integral reading

P(E)=

∮
Cε(E)

dz

2π i

1

z − H
, (8)

where Cε(E) is a circular path with radius ε encircling E counterclockwise. The radius has to be
sufficiently small such that at most a single eigenenergy En is enclosed by the integration path
Cε(E). The microcanonical density matrix as a function of E can then be represented as

ρ(E)=NE P(E), (9)

where

NE =

∑
n

d−1
n ζ(En − E) (10)

and

ζ(x)=

{
1 for x = 0,

0 else.
(11)

In terms of the latter function, the projection operator P(E) can also be expressed as

P(E)=

∑
n

ζ(E − En)Pn. (12)

This result follows from (8) by means of the spectral resolution of the Hamiltonian H , (4), and of
the identity limε→0

∮
Cε(E)

dz/(z − En)= 2π iζ(E − En). Note that, strictly speaking, the density
matrices for the microcanonical state as given by the regularized delta-function representation
ρE , see (1,3), are different from ρ(E) defined by (9). While ρ(E) is strictly zero for energies not
agreeing with an eigenvalue En, ρE assigns a properly normalized density matrix to any value
of the energy. For values different from an energy eigenvalue, the assigned states are fictitious.
Taking the idea of a microcanonical ensemble in a wider sense, namely that of a collection
of nearly identical systems with almost identical energy spectra within the small energy width
ε, the use of ρE as a microcanonical density operator becomes, however, physically sensible
again.
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3. Work statistics and fluctuation theorems

In order to perform work on a system, parameters λ= (λ1, λ2, . . .) of the system’s Hamiltonian
are changed according to a prescribed protocol 3= {λ(t)|t0 6 t 6 tf} starting at t0 and ending
at time tf. The ensuing dynamics is governed by the Schrödinger equation

ih̄∂Ut,s/∂t = H(λ(t))Ut,s,

Us,s = 1
(13)

for the unitary time evolution operator Ut,s , where H(λ(t)) denotes the Hamiltonian with the
parameters λ(t) at the time t according to the protocol. Applied to the full duration of the
protocol 3, the time evolution operator U (3)≡ Utf,t0 describes the action of the protocol on
pure states of the system.

As a unitary map, U (3) can always be reversed by formally letting time t run backwards.
If the parameters λ(t) have parities ελ = (ελ1, ελ2, . . .) and if the time reversal operator θ
transforms the Hamiltonian H(λ(t)) at each time according to

θH(λ(t))θ−1
= H(ελλ(t)), (14)

then the inverse of the map corresponds to a dynamics in physical time under the action of the
time-reversed protocol 3̄= {ελλ(tf + t0 − t)|t0 6 t 6 tf} [11, 25, 26], i.e.

U−1(3)= U †(3)= θU (3̄)θ−1. (15)

For the sake of simplicity, so far we have neglected a possible dependence of the Hamiltonian
on parameters that are odd under time-reversal but remain unchanged during the protocol, as
for example a constant magnetic field. Such fields couple to system operators that are odd under
time reversal and consequently also must be reversed in the time-reversed map θU (3̄)θ−1.

In order to determine the work applied to the system in each individual run of the protocol,
energy measurements at the beginning and the end of the protocol have to be performed. We
assume here that the time-dependent Hamiltonian is gauged in such a way that it represents the
instantaneous energy of the system at any instant of time [11]. Assuming an initially uniform
distribution of states with the same energy En(t0) the protocol 3 causes a transition to a state
with final energy Em(tf) with the probability P3(m|n) given by

P3(m|n)= d−1
n (t0)Tr Pm(tf)U (3)Pn(t0)U

†(3), (16)

where any Pn(t) projects on the instantaneous eigenspace of the Hamiltonian H(λ(t))
corresponding to the instantaneous eigenenergy En(t), i.e.

H(λ(t))Pn(t)= En(t)Pn(t). (17)

These projection operators are orthogonal (P†
n (t)= Pn(t), Pn(t)Pm(t)= δn,m), and complete

(
∑

n Pn(t)= 1); the degeneracy of the respective eigenvalue is determined by the trace dn(t)=

TrPn(t). As an immediate consequence of the time-reversal relation (15) one finds the detailed
balance-like relation

P3(m|n)dn(t0)= P3̄(n|m)dm(tf), (18)

where P3̄(n|m) denotes the transition for the backward protocol. This generalized detailed
balance relation assumes uniform initial distributions of eigenstates corresponding to the
energies En(t0) and Em(tf) for the forward and the backward protocol, respectively. It is valid
for any kind of protocol and presents a central result of the present work.
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Summing both sides of equation (18) over n, one obtains the relation

dm(tf)=

∑
n

P3(m|n)dn(t0) (19)

expressing the degeneracy indices dm(tf) at the end of the protocol with those at the beginning.
In this way, also the microcanonical entropy at the end of the protocol is related to the entropy at
the beginning. Here, the entropy can be calculated on the basis of Gibbs’ definition in terms of
the total number DE(t)=

∫ E dE ′ωE ′(t)=
∑

n:E>En(t)
dn(t) of states below the energy E , i.e. as

SE(t)= kBln DE(t) [1–3, 7, 27, 28]. As a consequence of (19), the total number DEn(tf) at the
end of the protocol is related to the respective quantity at the beginning in the following way:

DEn(tf)=

∑
n′6n

∑
m

(P3(n
′
|m)− P3(n

′
|m + 1))DEm (t0). (20)

A detailed balance-like relation, (18), also holds for the energy-transition probability

P3(E |E ′)=

∑
n,m

δ(E − En(tf))ζ(E
′
− Em(t0))P3(n|m) (21)

reading

P3(E |E ′)ωE ′(t0)= P3̄(E
′
|E)ωE(tf). (22)

Using (19) and the identity∑
k

ζ(E − En)δ(E − Ek)= δ(E − En) (23)

one proves (22) by inspection.

3.1. Work probability density function and fluctuation theorems

Since the work performed on the system during the protocol is determined as the difference of
the final and initial energies,w = Em(tf)− En(t0), the pdf of work, p3(w|n), conditioned on the
discrete energy En(t0) is given by

p3(w|n)=

∑
m

δ(w− Em(tf)+ En(t0))P3(m|n). (24)

With (18) one obtains a fluctuation theorem of the form

p3(Em(tf)− En(t0)|n) dn(t0)= p3̄(En(t0)− Em(tf)|m) dm(tf). (25)

Alternatively, the work pdf conditioned on the continuous energy E can be written as

p3(w|E)=

∫
dE ′δ(w− E ′ + E)P3(E

′
|E)

= P3(E +w|E). (26)

With (22) we recover the Tasaki–Crooks fluctuation theorem [11, 17–19], generalized here
for the microcanonical quantum case, i.e.

p3(w|E)ωE(t0)= p3̄(−w|E +w)ωE+w(tf). (27)
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This relation identically holds for classical systems [12]. For quantum systems it was derived
in [13] by use of the delta-function representation of the initial microcanonical state6.

In contrast to the classical case, the work for confined quantum systems with a finite
number of degrees of freedom is always discretely distributed. Hence, the work pdf becomes

p3(w|E)=

∑
m

δ(w−wm)q3(wm|E), (28)

where

q3(wm|E)=

∫
dwζ(w−wm)P3(E +w|E). (29)

For the discrete work probabilities q3(w|E) the fluctuation theorem (27) takes the following,
equivalent form:

q3(wm|E)ωE(t0)= q3̄(−wm|E +wm)ωE+wm (tf). (30)

The work pdf p3(w;β) for a canonical initial state can be determined from
the microcanonical pdf by a Laplace transformation weighted by the density of
states, [13], i.e.

p3(w;β)= Z−1
β (t0)

∫
dEωE(t0)e

−βE p3(w|E), (31)

where β = 1/(kBT ) is the inverse temperature of the initial canonical state and where the
partition function Zβ(t) is given by the Laplace transform of the density of states yielding

Zβ(t)=

∫
dEωE(t)e

−βE . (32)

Applying the Laplace transform on both sides of the microcanonical fluctuation theorem (27)
immediately gives the well-known canonical Tasaki–Crooks relation [18, 19]

Zβ(t0)p3(w;β)= eβwZβ(tf)p3̄(−w;β). (33)

3.2. Characteristic function

The characteristic function defined as the Fourier transform of the work pdf [29],

G3(u|E)=

∫
dweiuw p3(w|E) (34)

can be expressed in terms of a correlation function reading [13]

G3(u|E)= Tr eiu HH(tf)e−iu H(t0)ρE , (35)

6 Likewise, a similar quantum fluctuation theorem holds which involves the integrated density of states, relating to
the Gibbs entropy, if the system is prepared with the properly normalized density operator due to Ruelle involving
the step-function 2[E − H(λ(t0))], see relation (26) in [13].
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where

H H(tf)= U †(3)H(tf)U (3) (36)

denotes the Hamiltonian in the Heisenberg picture at the end of the protocol.
In the canonical case, the characteristic functions of the forward and the backward

processes, G3(u;β) and G3̄(u;β), defined in terms of the Fourier transforms of the respective
canonical work pdfs, are related by the fluctuation theorem reading [29]

G3(u;β)= G3̄(−u + iβ;β), (37)

which is equivalent to the canonical Tasaki–Crooks relation (33). An analogous relation for the
characteristic functions does not exist in the case of a microcanonical initial condition. This is
due to the fact that in the microcanonical Tasaki–Crooks relation (27) the initial conditions for
the forward and the backward processes not only differ with respect to the parameter values but
also with respect to the initial energies, E and E +w, in contrast to the canonical case where the
temperatures of the initial and final states are equal.

For the characteristic function

G3(u|n)=

∫
dweiuw p3(w|n), (38)

the fluctuation theorem (25) implies the sum-rule∑
n

G3(u|n)dn(t0)=

∑
n

G3̄(−u|n)dn(tf), (39)

which is meaningful for systems with a finite dimensional Hilbert space; for infinite-dimensional
Hilbert spaces the sums need not converge. Likewise one obtains a relation for the characteristic
function depending on the energy E , (34), reading∫

dEG3(u|E)ωE(t0)=

∫
dEG3̄(−u|E)ωE(tf) (40)

provided the Hilbert space of the system is finite.

4. Quench of a two-dimensional harmonic oscillator

As an illustrative example we consider the work performed on a particle of mass m upon a
sudden change of the principal curvatures of a harmonic potential, described by

Uα(x)=
m

2
[(ω(α)1 )2x2

1 + (ω(α)2 )2x2
2 ], (41)

where α = 0 refers to the potential before and α = f to the potential after the quench.
Accordingly, the Hamiltonians before and after the quench read

Hα =
p2

2m
+ Uα(x), (42)

where p = (p1, p2) denote the momenta and x = (x1, x2) the positions of the particle;
their components relate to the principal components of the Hamiltonian. The eigenvalues

New Journal of Physics 15 (2013) 095001 (http://www.njp.org/)

http://www.njp.org/


9

and the eigenvectors follow from those of the principal components and, hence, can be
expressed as

E (α)
nα = h̄[(nα1 + 1/2)ω(α)1 + (nα2 + 1/2)ω(α)2 ], nαi = 0, 1, 2, . . . (43)

and

9
(α)
nα (x)= ψ

(α)

nα1
(x1)ψ

(α)

nα2
(x2) (44)

with the well-known 1D harmonic oscillator eigenfunctions

ψ
(α)

nαi
(xi)=

√
1

2nαi nαi ! lαi
√
π

Hn

(
x

lαi

)
e−x2

i /(2(l
α
i )

2), i = 1, 2, (45)

where Hn(x) are the Hermite polynomials [30] and lαi =

√
h̄/(mω(α)i ) is the characteristic length

scale of the respective oscillator. There are degenerate eigenvalues if the principal component
frequencies ω(α)1 and ω(α)2 stay in a rational ratio to each other, i.e. if there are integer numbers
N α

i with

ωαi = N α
i ω

α. (46)

For all rational cases, a coprime pair N α
1 , N α

2 , as well as a corresponding fundamental frequency
ωα are uniquely defined. The eigenenergies can then be expressed in terms of an energy quantum
number K and the fundamental frequency reading

Eα
K = K h̄ωα + 1

2 h̄ωα(N α
1 + N α

2 ), K = 0, 1, 2, . . . . (47)

All principal component quantum numbers n1, n2 which are solutions of the linear Diophantine
equation

K = n1 N α
1 + n2 N α

2 (48)

contribute to this energy. The number of different pairs of non-negative integers solving this
equation determines the degeneracy dK of the eigenenergy Eα

K .
For a sudden change of the potential, the time-evolution map connecting the state of the

system before and after the switch is unity, U (3)= 1, and, hence, the transition probability
p(nf

|n0) from the state9(0)
n0 (x) to9( f )

nf (x) is given by the absolute square of the overlap integral
of the two states, i.e. it becomes

p(nf
|n0)=

∣∣∣∣∫ d2x9(f)∗
nf (x)9

(0)
n0 (x)

∣∣∣∣2

=

∣∣∣∣∫ dx1ψ
(f)∗
nf

1
(x1)ψ

(0)
n0

1
(x1)

∣∣∣∣2 ∣∣∣∣∫ dx2ψ
(f)∗
nf

2
(x1)ψ

(0)
n0

2
(x2)

∣∣∣∣2

. (49)

A compact form of the absolute squares of the scalar products of the 1D oscillator
eigenfunctions with different frequencies was obtained in [31] in terms of hypergeometric
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0

1

2

3

4

d
K
(t
f
)

0 10 20 30 40

K

Figure 1. The degeneracy dK of an anisotropic oscillator with frequency ratio
4:3 for different energy quantum numbers K (red circles) is compared to the
result of the fluctuation theorem (19) (blue crosses) for a sudden change of the
potential (41) with ω0

1 = 2ω, ω0
2 = 5ω, ωf

1 = 4ω and ωf
2 = 3ω. The agreement

is perfect. The energies EK = (K + 7/2)h̄ω are eigenvalues of the post-quench
Hamiltonian for all integers K > 0 apart from K = 1, 2, 5. For these integers
the respective equations (48) reading K = 4n1 + 3n2 do not have integer positive
solutions and hence formally give dK = 0.

functions 2 F1(a, b; c; z) [30]

∣∣∣∣∫ dxψ (f)∗
nf (x)ψ

(0)
n0 (x)

∣∣∣∣2

=



2λ

λ2 + 1

(
|λ2

− 1|

λ2 + 1

)(m+n)/2

×

0

(
m + 1

2

)
0

(
n + 1

2

)
π0

(
3 + m

2

)
0

(
3 + n

2

) if m, n even,

× 2 F1

(
−

m

2
,−

n

2
;

1

2
;

4λ2

(λ2 + 1)2

)
25λ3

(λ2 + 1)3

(
|λ2

− 1|

λ2 + 1

)(n+m)/2−1

×

0
(n

2
+ 1

)
0

(m

2
+ 1

)
π0

(
n + 1

2

)
0

(
m + 1

2

) if m, n odd,

× 2 F1

(
−

m − 1

2
,−

n − 1

2
;

3

2
;

4λ2

(λ2 + 1)2

)
0 else.

(50)

Note that these transition probabilities only depend on the ratio of the lengths-scales λ= l f/ l0
=√

ω0/ωf but not on the individual frequencies.
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Figure 2. The scaled work distribution q3(w|E)E/1w is displayed as a function
of w/E for an initially isotropic oscillator, i.e. for N 0

1 = N 0
2 = 1, upon a sudden,

anisotropic contraction of the potential characterized byωf
= ω0, N f

1 = 2, N f
2 = 3

at different initial energies E = h̄ω0(L + 1). The minimal distance between
adjacent work values is 1w = h̄ωf. The panel (a) contains results for the low-
lying initial energies with L = 0 (black circles), L = 5 (blue crosses) and L = 10
(red diamonds); the thin lines are meant as guides for the eye. The panel (b)
illustrates the convergence of the scaled work distribution towards the classical
result (thin red line) given by the scaling function (A.5) with η1 = 3 and η2 = 8,
see equation (55), for L = 40 (black circles) and L = 160 (blue crosses). With
small but finite probabilities also values of the scaled work variable occur which
fall outside of the classically allowed regime determined by the support [0,8] of
the scaling function ρ(z). Since η1 and η2 are both positive the scaling function
is constant from 0 up to η1 where its derivative is singular.

For irrational frequency ratios ωα1/ω
α
2 (49) also yields the transition probability from

energy E0
n0 to E f

nf . In the case of frequency ratios which are rational both before and after the
sudden curvature change, transitions between all states with prescribed initial and final energies
contribute and hence one gets

P(K f
|K 0)= d−1

K 0 (t0)
∑

n0∈K 0

nf∈K f

p(nf
|n0), (51)

where we introduced the short-hand notation n ∈ K for all solutions of (48). In all cases in
which either of the two sets nα ∈ K α is empty, the transition probability vanishes. The forms
of the energy transition probabilities in the remaining cases, in which the frequency ratio in the
initial state is irrational and the final one irrational, or vice versa, are obvious and will not be
considered here.

A sudden potential change starting from energy E = h̄ω0(K 0 + (N 0
1 + N 0

2 )/2) performs the
work

w=h̄(ωf(K f+(N f
1 + N f

2)/2)−ω
0(K 0 + (N 0

1 + N 0
2 )/2)), K f

= 0, 1, 2, . . . (52)

with probability q3(w|E)= P(K f
|K 0). The minimal difference between two possibly

occurring work values is

1w = h̄ωf. (53)
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Figure 3. The scaled work distribution resulting from a uniform contraction of
an isotropic oscillator with ωf

= ω0, N 0
1 = N 0

2 = 1 and N f
1 = N f

2 = 2 for different
values of the initial energy E = h̄ω0(L + 1) with L = 0, 5, 10 is displayed in
the panel (a) and for L = 40 and L = 160 as well as the classical scaling
function (A.6) in the panel (b). Symbols and color codes are the same as for
figure 2. In the present case of equal deformation parameters η ≡ η1 = η2 = 3
the scaling function ρ(w/E) is uniform on the interval [0, η]. Independently of
the initial energy every other work value is forbidden because of strict selection
rules. As a consequence, the scaled work distribution does not strictly converge
to the classical scaling function for large values of the initial energy. Since
the probability of half of the work values vanishes the probabilities of the
allowed ones converge to twice the value given by the classical scaling function.
Convergence to the classical limit is recovered if one restricts the statistics to the
allowed work values and replaces 1w = h̄ωf by 2h̄ωf in the scaling of the work
distribution.

In figure 1 we illustrate the validity of the fluctuation relation (19) for a sudden protocol
switching from a potential with fundamental frequency ω0 and integer coefficients N 0

1 = 2,
N 0

2 = 5 to the same fundamental frequency ωf
= ω0, but with coefficients N f

1 = 4, N f
2 = 3.

In figures 2–5 the scaled probabilities q3(wn|E)E/1w are displayed as functions of the
scaled work w/E for different sudden protocols and different initial energies and compared to
the classical behavior. The probability q3(w|E) is divided by the minimal work difference 1w
to make it comparable to a pdf, and the scaling of the work with the initial energy is motivated
by the behavior of the work pdf pcl

3(w|E) of a suddenly deformed classical two-dimensional
harmonic oscillator. This pdf scales with the initial energy according to

pcl
3(w|E)= ρ(w/E)/E, (54)

where the dependence of the scaling function ρ(x) on the protocol is completely determined by
the dimensionless deformation parameters ηi defined as

ηi = (ωf
i/ω

0
i )

2
− 1. (55)

The deformation parameters are restricted to −1< ηi <∞; positive values correspond to
compressions, and negative values to extensions of the potential. The scaling function behaves
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Figure 4. The scaled work distribution that results from the squeezing of
an isotropic harmonic potential in a single direction (ω0

= ωf, N 0
1 = N 0

2 = 1,
N f

1 = 1, N f
2 = 2) is displayed for different initial energies E = h̄ω0(L + 1) for

L = 1, 5, 10 in (a) and L = 40 and L = 160 together with the classical scaling
function in (b). Symbols and color codes are chosen as in figure 2. For large
values of the initial energy the scaled distribution converges to the classical
scaling function (A.6) for η1 = 0 and η2 = 3 with its square-root singularity at
w = 0.
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(b)

0

0.25

0.5

0.75

1

0 2 4 6 8

w/E

Figure 5. The scaled work distribution for a simultaneous contraction and
expansion of a harmonic potential in two orthogonal directions is maximal for
work values close to zero. The ratio of the fundamental frequencies is ωf/ω0

=√
2; the integers before the deformation are N 0

1 = 1 and N 0
2 = 2 and after the

deformation N f
1 = 2 and N f

2 = 1. Different initial energies E = h̄ω0(L + 3/2) are
displayed for L = 1, 5, 10 in the panel (a) and L = 40 and L = 160 together
with the classical scaling function in the panel (b). Symbols and color codes are
chosen as in figure 2. The classical scaling function with η1 = −1/2 and η2 = 7
is approached for large initial energies. It has a logarithmic singularity at w = 0.
In the classical limit, the probability that the oscillator releases energy in this
process is p+ =

∫ 0
η1

dzρ(z)≈ 0.166.

qualitatively differently depending on whether the product η1η2 is positive or negative, i.e.
whether both principal directions undergo the same types of deformation or opposite ones. For
further details and explicit expressions of the scaling function see the appendix.
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Figure 2 corresponds to contractions of the potential of an initially isotropic oscillator at
different contraction rates and for different initial energies. In this case, an approach toward the
classical behavior is observed for increasing initial energies. The classical scaling function has
a jump discontinuity at w = 0, and its derivative shows a discontinuity at w/E = mini ηi .

When both principal directions are contracted at the same rate, the classical work pdf is
uniform on (0, η1). Because in this case transitions between states with even and odd energy
quantum numbers are forbidden the quantum work pdf does not approach the classical case as
displayed in figure 3.

Figure 4 illustrates the limiting case, in which the potential is suddenly contracted in one
direction while it remains unchanged in the orthogonal direction. With increasing initial energy
E the classical behavior which displays a square-root singularity at w = 0 is approached.

Finally, in figure 5 the potential is expanded in one and contracted in the other direction. In
this case, the oscillator may both perform and absorb work. For large values of the initial energy
the classical behavior is approached with its characteristic logarithmic singularity at w = 0.

In all cases, at finite energies, also scaled work values which lie outside the support of the
classical work pdf and, hence, are forbidden in the classical case occur with finite probability.

5. Conclusions

Starting with a comparison of different formulations of the density matrix of a microcanonical
state, we determined the work statistics of a closed system initially staying in a microcanonical
state upon a change of control parameters according to a prescribed protocol 3= {λ(t)|t0 6
t 6 tf} and presented microcanonical fluctuation theorems in terms of the work pdf and the
work probability, (27) and (30), respectively. These relations follow from a detailed balance-like
relation for the transition probabilities (18), which generalizes the detailed balance symmetry
of autonomous systems to non-autonomous cases, and which also gives rise to a Jarzynski-
type equation (19). This microcanonical Jarzynski relation allows one to express the degrees
of degeneracy of the Hamiltonian reached at the end of the protocol in terms of those of the
initial Hamiltonian and to determine the microcanonical entropy of a system with the final
Hamiltonian.

The different forms of the fluctuation theorems all assume an ideal microcanonical initial
state either described by equations (1) and (3) in the limit of vanishing energy spread ε, or by
the equivalent density matrices (7) or (9). The results obtained are independent of the particular
choice of the representation. However, taking into account a finite regularization, say, by means
of a finite value of the energy spread ε in equation (3), one will find deviations from the
fluctuation theorems which were not discussed here.

Upon averaging both sides of the microcanonical Jarzynski equality with Boltzmann
weights corresponding to the finally reached energies, the standard, canonical Jarzynski equality
is recovered. Similarly, the canonical Tasaki–Crooks relation is obtained from the fluctuation
theorems by means of a canonical average.

In the case of a microcanonical initial state no simple formulation of the Tasaki–Crooks
relation in terms of the characteristic function of work could be obtained apart from an integral
equation connecting the characteristic functions for the forward and the backward protocol in a
complicated way. We refrained from giving this relation here.

As an example we determined the work statistics for sudden deformations of a two-
dimensional oscillator with respect to its principal directions. Since for a 1D oscillator any
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deformation protocol of finite duration can be mapped onto an equivalent sudden potential
curvature change [22] the obtained results apply for all protocols which extend over a finite
time span and describe squeezing and dilatation of a two-dimensional oscillator with respect to
its principal directions. We though did not study more general cases which may contain arbitrary
rotations of the potential.

We found that for transitions between oscillators with rational frequency ratios before
and after the deformation the work distributions typically approach the respective classical
distributions for increasing initial energies. The classical distributions can be described by
scaling functions of the relative workw/E . This scaling function only depends on the frequency
ratios ωf

i/ω
0
i of the two principal axes before and after the deformation. A different distribution

than the classical one was found for uniform deformations of an isotropic oscillator because then
transitions between states with even and odd energy quantum numbers are strictly forbidden.
The approach to the classical limit is only recovered if one restricts the work statistics to those
work values corresponding to allowed transitions.

Appendix. Classical work pdfs

In the framework of classical Hamiltonian mechanics, the work pdf for a sudden change
of the principal frequencies of a two-dimensional harmonic oscillator initially prepared in a
microcanonical state at energy E becomes

pcl
3(w|E)=�−1

E

∫
d2p

∫
d2q δ

(
w−

m

2
(1ω2

1q2
1 +1ω2

2q2
2)

)
× δ

(
E −

p2

2m
−

m

2

(
(ω

(0)
1 )

2q2
1 + (ω(0)2 )

2q2
2

))
, (A.1)

where

�E =

∫
d2p

∫
d2q δ

(
E −

p2

2m
−

m

2

(
(ω

(0)
1 )

2q2
1 + (ω(0)2 )

2
2q2

2

))
= (2π)2

E

ω
(0)
1 ω

(0)
2

(A.2)

denotes the density of states of the initial microcanonical state and 1ω2
i = (ω

(f)
i )

2
− (ω

(0)
i )

2

quantifies the change of the frequency of the i th principal component. Here the integrals are
extended over the phase space. The first delta-function under the integral on the right-hand side
of (A.1) collects those initial phase space points which give the work w and the second delta-
function specifies the microcanonical state at energy E . Carrying out the momentum integration
and introducing the dimensionless coordinates xi = qi/ li one obtains for the classical work pdf
the scaling relation

pcl
3(w|E)= ρ(w/E)/E, (A.3)

where the scaling function ρ(z) becomes

ρ(z)=
1

π

∫
G

d2x δ(z − η1x2
1 − η2x2

2). (A.4)

The integration is extended over the unit disc G = {x|1> x2
1 + x2

2}. The dimensionless
parameters ηi =1ω2

i /(ω
(0)
i )

2
− 1 are measures of the potential deformation. The support of the
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scaling function is determined by those values of the scaled work variable z for which a part of
the conic section z = η1x2

1 + η2x2
2 lies within the unit disc G. Depending on the signs of η1 and

η2 one finds the following explicit results for the scaling function ρ(z):

ρ(z)=
2

π
√

|η1η2|



π

2
2

(
z

η1

)
2

(
1 −

z

η1

)
+2

(
z

η1
− 1

)
2

(
1 −

z

η2

)
× arcsin

√
(η2 − z)η1

(η2 − η1)z
for η1η2>0, |η1|<|η2|,

2(z)2

(
1 −

z

η2

)
Arsinh

√
(z − η2)η1

(η2 − η1)z

+2(−z)2

(
1 −

z

η1

)
Arsinh

√
(η1 − z)η2

(η2 − η1)z
for η1 < 0, η2 > 0 .

(A.5)

The upper form of ρ(z) applies if the oscillator undergoes a compression or an expansion in
both principal directions provided η1 < η2; the opposite case, η1 > η2, follows by exchanging
η1 and η2 with each other. The second form applies for an expansion in the x1-direction and a
compression in the x2-direction. In the remaining limiting cases one obtains

ρ(z)=
1

|η|
2

(
z

η

)
2

(
1 −

z

η

) 
1 for η1 = η2 ≡ η,

2

π

√
η

z
− 1 for η1 = 0, η2 ≡ η or η2 = 0, η1 ≡ η.

(A.6)

Finally, the classical work pdf of a 1D harmonic oscillator with a microcanonical initial state
scales as

pcl,1D
3 (w, E)= ρ1D(w/(ηE))/(ηE), (A.7)

where

ρ1D(z)=
2(z)2(1 − z)

π
√

z − z2
(A.8)

with the deformation measure η = (ωf/ω0)2 − 1. Note that this pdf has square-root singularities
at w = 0 and ηE whereas the two-dimensional case leads only to the singularity at w = 0.
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