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ABSTRACT

Since Poincaré, periodic orbits have been one of the most important objects in dynam-
ical systems. However, searching them is in general quite difficult. A common way to
find them is to construct families of periodic orbits which start at obvious periodic or-
bits. On the other hand, given two periodic orbits one might ask if they are connected
by an orbit cylinder, i.e., by a one-parameter family of periodic orbits.

In this thesis we study this question for the planar circular restricted three-body prob-
lem. More precisely, we first consider periodic orbits γRKP and αEuler in the rotating
Kepler problem resp. in the Euler problem: The rotating Kepler problem is obtained
by letting the mass ratio in the restricted three-body problem go to zero. One gets
the Euler problem from the restricted three-body problem by setting the rotating term
equal to zero. We assume that γRKP and αEuler are connected with periodic orbits γ3BP
and α3BP of the PCR3BP through Stark-Zeeman homotopies, respectively. We then
ask for obstructions to find orbit cylinders in PCR3BP from γ3BP and α3BP.

Our strategy is to compare their Cieliebak-Frauenfelder-van Koert invariants which
are obstructions to the existence of an orbit cylinder. We will prove that if γRKP and
αEuler are contractible, then the invariants of γ3BP and α3BP do not coincide with each
other. Consequently, there exist no orbit cylinders connecting these periodic orbits in
the PCR3BP.
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ZUSAMMENFASSUNG

Seit Poincaré sind periodische Bahnen eines der wichtigsten Objekte in dynamischen
Systemen. Die Suche ist jedoch im Allgemeinen ziemlich schwierig. Ein üblicher Weg,
sie zu finden, besteht darin, Familien periodischer Bahnen zu konstruieren, die mit
offensichtlichen periodischen Bahnen beginnen. Andererseits könnte man bei zwei pe-
riodischen Bahnen fragen, ob sie durch einen Orbitzylinder verbunden sind, d.h. eine
einparametrige Familie von periodischen Bahnen.

In dieser Doktorarbeit untersuchen wir die Frage in dem planaren kreisförmigen re-
stringierten Dreikörperproblem. Genauer betrachten wir zuerst die periodischen Bah-
nen γRKP und αEuler im rotierenden Keplerproblem und im Eulerproblem: Das rotierende
Keplerproblem wird erhalten indemmas das Massenverhältnis im restringierten Dreikör-
perproblem gegen Null gehen lässt. Man bekommt das Eulerproblem aus dem re-
stringierten Dreikörperproblem, wenn mas den Rotationsterm gelich Null setzt. Wir
nehmen an, dass γRKP und αEuler durch Stark-Zeeman Homotopien mit periodischen
Bahnen in dem restringierten Dreikörperproblem γ3BP bzw. α3BP verbunden sind.
Dann suchen wir Obstruktionen Orbitzylinders in dem restringierten Dreikörperprob-
lem von γ3BP nach α3BP zu finden.

Unsere Strategie besteht darin, ihre Cieliebak-Frauenfelder-van Koert Invarianten, die
Obstruktionen für die Existenz eines Orbitzylinders darstellen, zu vergleichen. Wir
werden beweisen, dass, wenn γRKP und αEuler kontrahierbar sind, dann die Invarianten
von γ3BP und α3BP nicht überstimmen. Folglich existieren keine Orbitzylinder, die diese
periodischen Bahnen in dem restringierten Dreikörperproblem.
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1
INTRODUCTION

The three-body problem studies the motion of three bodies in R3 subject to Newton’s
law of gravitation. This problem is so difficult in general that one considers special
cases. One is the restricted three-body problem, in which one sets the mass of one of
the bodies (the satellite) equal to zero. The two “primaries”, which will be referred to
as the Earth and Moon, then move in a plane. If we choose barycentric coordinates in
this plane, then each primary orbits about the center of mass in a conic section.

We now make two further simplifying assumptions. First, we assume that the primaries
move in circular orbits. Scaling their masses to be 1´ µ and µ with µ P (0, 1/2], we
can then choose coordinates in the plane and the time unit in such a way that the
positions of the Earth and Moon are given by

E(t) = ´µ
(
cos(t),´ sin(t)

)
, M(t) = (1´ µ)

(
cos(t),´ sin(t)

)
,

see Figure 1. Second, we assume that the satellite moves in the same plane as the
primaries. Writing q(t) P R2 for its position and p(t) P R2 for its momentum, the
Hamiltonian of the satellite is then

Ht(q, p) =
1
2 |p|

2 ´
1´ µ

|q´E(t)|
´

µ

|q´M(t)|
. (1)

Note that this Hamiltonian depends on time. To put ourself into a more geometric
situation, we follow Jacobi and pass to a rotating coordinate system q Ñ e´itq. In this
new coordinate system, the positions of the Earth and Moon are then fixed,

E = (´µ, 0), M = (1´ µ, 0),

and the Hamiltonian becomes independent of time,

HPCR3BP(q, p) =
1
2 |p|

2 ´
1´ µ
|q´E|

´
µ

|q´M |
+ q1p2 ´ q2p1, (2)

at the cost of the “rotating term” q1p2 ´ q2p1. The Hamiltonian system (2) is called
the planar circular restricted three-body problem, the PCR3BP for short. Note that
stationary points of the PCR3BP correspond to special periodic (in fact, circular)
orbits of (1).

Even though we have made many simplifying assumptions, the dynamics in the PCR3BP
is still extremely complicated, whence it generates still many unexplored questions.
One of them is the existence of periodic orbits, a problem studied by many outstand-

1
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E(t) M(t) µ 1− µ

1
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1
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1
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1

Figure 1: The motion of the two primaries in the PCR3BP before passing to a rotating coordi-
nate system.

ing mathematicians over the last two hundred years. (We refer to [Bru94] for historical
informations.) The search for periodic orbits of the PCR3BP was adverted by Poincaré
in his beautiful book [Poi99]:

“What renders these periodic solutions so precious is that they are, so to
speak, the only breach through which we may try to penetrate a stronghold
previously reputed to be impregnable."

His strategy to find periodic orbits in the PCR3BP is looking at the family of Hamil-
tonians

Hµ(q, p) = 1
2 |p|

2 ´
1´ µ
|q´E|

´
µ

|q´M |
+ q1p2 ´ q2p1 (3)

in which the parameter is the mass ratio of the two primaries. For µ ‰ 0, we have the
PCR3BP, while

HRKP(q, p) := H0(q, p) =
1
2p

2 ´
1

|q´E|
+ q1p2 ´ q2p1 (4)

is the rotating Kepler problem, namely the usual Kepler problem written in our rotating
coordinates. Since periodic orbits in the rotating Kepler problem are easy to find, we
may hope to find an "orbit cylinder" γµ at least for µ in a small interval around 0,
where each γµ is a periodic orbits of Hµ. The implicit function theorem indeed shows
that there is an orbit cylinder γµ, µ P [0, ε), emanating from the (rotating) Kepler
ellipse γ0, so that one finds a periodic orbit of the PCR3BP, provided that µ ą 0 is
small enough, see for example [Are63; Bar65].

Poincaré’s strategy of finding orbit cylinders between different Hamiltonian systems
naturally leads to the question: Given two periodic orbits of the PCR3BP (with possibly
different mass ratio µ), are they connected by an orbit cylinder? In this thesis we will
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answer this question for two classes of periodic orbits in two specializations of the
PCR3BP. The first one is the rotating Kepler problem (4), while the second one is the
so-called Euler problem of two fixed centers, which is obtained from the PCR3BP by
forgetting the rotating term,

HEuler(q, p) =
1
2 |p|

2 ´
1´ µ
|q´E|

´
µ

|q´M |
. (5)

This system describes the dynamics of the satellite attracted by two masses of mass
1´µ and µ that are fixed at E and M . If µ = 1/2 and µ is viewed as a charge instead
of a mass, then this system can also be seen as describing the motion of an electron
attracted by two protons, as in the hydrogen molecule, see [Pau22]. While the periodic
orbits of the rotating Kepler problem are easy to determine, this is still possible for
the Euler problem of two fixed centers, though much harder, see Section 3.3.3.

An obvious obstruction to an orbit cylinder is, of course, the free homotopy class
represented by the two orbits. In our main result, we consider contractible orbits, for
which this obstruction vanishes.

Theorem. Let γRKP and αEuler be contractible (within their energy levels) periodic
orbits of the rotating Kepler problem and of the Euler problem, respectively. Then there
exists no orbit cylinder connecting γRKP and αEuler (by varying Hamiltonian systems).

Discussion. This is a partly negative result for Poincaré’s strategy: Given periodic
orbits γRKP and αEuler as in the theorem, it is not possible to find an orbit cylinder
from γRKP to a periodic orbit β0 of the PCR3BP and an orbit cylinder from αEuler to a
periodic orbit β1 of the PCR3BP such that β0 and β1 are homotopic through periodic
orbits of the PCR3BP. We said “partly” negative result since it is still possible that
such orbit cylinders exist, either for only one of the problems (which is indeed the case
for small µ as mentioned above), or for both problems, but to periodic orbits of the
PCR3BP that cannot be connected through periodic orbits.
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Method of proof. The invariants that we use to exclude orbit cylinders between γRKP

and αEuler are the invariants J1 and J2, which were recently introduced by Cieliebak–
Frauenfelder–van Koert in [CFK17]. These invariants, that are variations of Arnold’s
J+ invariant, agree on periodic orbits connected by orbits cylinders, and we will show
that they do not both agree on γRKP and αEuler.

An open problem. Now assume that γRKP and αEuler are non-contractible, but freely
homotopic. We will then show that J1 and J2 agree on γRKP and αEuler. This leads to
the

Question. Can γRKP and αEuler be connected by an orbit cylinder if γRKP and αEuler

are non-contractible (within their energy levels) and homotopic?

This thesis is organized as follows. Chapter 2 deals with background material in sym-
plectic geometry and Hamiltonian dynamics, which will be needed throughout the
thesis. In particular, Section 2.5 takes a detailed look at the Kepler problem.

Afterwards in Chapter 3 we present all necessary information on the PCR3BP, the
rotating Kepler problem and the Euler problem. Of particular importance are Sections
3.2.3 and 3.3.3, which deal with periodic orbits in the two special problems. With this
information, their knot types, which will be the first obstruction to the existence of an
orbit cylinder, are determined in Sections 3.2.4 and 3.3.4.

In the next chapter we will explain the main tools of this thesis, i.e., the Cieliebak-
Frauenfelder-van Koert invariants. In Section 4.1 we define a certain class of Hamil-
tonian systems in which the three problems are contained. The behavior of periodic
orbits in such Hamiltonian systems will be discussed in Section 4.2. The definition of
the invariants will be recalled in Section 4.3. They are defined based on Arnold’s J+-
invariant. We introduce Viro’s formula for the J+-invariant and also present a formula
for some specific periodic orbits in the Euler problem.

Finally, Chapter 5 contains the calculation of the invariants for periodic orbits in the
rotating Kepler problem and the Euler problem. For the rotating Kepler problem we
make use of Viro’s formula, while for the Euler problem the specific formula given in
the previous chapter will be used. After obtaining the invariants, we prove the main
theorem by comparing them.



2
BACKGROUND

In this chapter, we introduce basic materials which will be used in the subsequent
chapters. Throughout we will always assume that M is a connected smooth manifold
without boundary and all maps are smooth unless stated otherwise.

2.1 Symplectic geometry

2.1.1 Symplectic manifolds and Darboux’s theorem

Definition 2.1. A symplectic form is a two-form ω P Ω2(M) which is closed and
nondegenerate. A pair (M ,ω) is called a symplectic manifold.

In view of nondegeneracy the maximal power of a symplectic form

ωn := ω^ ¨ ¨ ¨ ^ ω
looooomooooon

n-times

defines a volume form, i.e., the 2n-form ωn is nonvanishing. In particular, any symplec-
tic manifold is even-dimensional and orientable.

Example 2.2. (i) Consider the two-form

ω0 =
n
ÿ

j=1
dpj ^ dqj (6)

on (R2n, q1, ¨ ¨ ¨ , qn, p1, ¨ ¨ ¨ , pn). It is straightforward to check that ω0 is a symplectic
form. We call ω0 the standard symplectic form.

(ii) We now discuss the cotangent bundle T ˚N of an n-dimensional smooth manifold
N . Abbreviate by π : T ˚N Ñ N the footpoint projection and consider the differential
at e P T ˚N

dπ(e) : TeT ˚N Ñ Tπ(e)N .

For ξ P TeT ˚N we obtain the vector dπ(e)ξ P Tπ(e)N . We define the one-form λ P

Ω1(T ˚N)

λe(ξ) := eπ(e)(dπ(e)ξ).

This God-given one-form is called the Liouville one-form.

5
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Choose any local coordinates q = (q1, q2, ¨ ¨ ¨ , qn) on an open subset U Ă N . Over U ,
the fiber coordinates p = (p1, p2, ¨ ¨ ¨ , pn) are defined to be the linear coordinates with
respect to the local frame dq1, dq2, ¨ ¨ ¨ , dqn of T ˚U = T ˚N |U Ă T ˚N . Consequently,
we obtain local coordinates (q, p) = (q1, ¨ ¨ ¨ , qn, p1, ¨ ¨ ¨ , pn) on T ˚U . One can easily
see that in these coordinates the Liouville one-form λ is given by

λ(q, p) =
n
ÿ

j=1
pjdqj .

The canonical symplectic form on T ˚N is now defined to be the exterior derivative of
the Liouville one-form

ω := dλ

which is in local coordinates written as

ω =
n
ÿ

j=1
dpj ^ dqj . (7)

Consequently, (T ˚N ,ω) is a symplectic manifold.

We have observed that the canonical symplectic form on the cotangent bundle of any
smooth manifold is locally given by the standard symplectic form on an open subset
of R2n. The following theorem tells us that this is a general phenomenon.

Theorem 2.3. (Darboux) Let (M ,ω) be a 2n-dimensional symplectic manifold. At
every point x PM , there exist an open neighborhood U of x inM and a diffeomorphism
Φ : U Ñ V Ă R2n such that Φ(x) = 0 P V and

Φ˚ω0 = ω,

where ω0 is the standard symplectic form (6).

In conclusion, there are no local invariants in symplectic geometry, while in Riemannian
geometry the curvature serves as an local invariant.

2.1.2 Symplectomorphisms

Definition 2.4. Let (Mj ,ωj), j = 1, 2, be symplectic manifolds. A diffeomorphism
φ : M1 ÑM2 satisfying φ˚ω2 = ω1 is called a symplectomorphism. In this case, we say
that (M1,ω1) and (M2,ω2) are symplectomorphic.

The Darboux theorem says that any 2n-dimensional symplectic manifold is locally
symplectomorphic to (R2n,ω0).

Since the maximal power of a symplectic form defines a volume form, a symplectomor-
phism is a volume-preserving diffeomorphism.

Example 2.5. (Stereographic projection) We consider the two-sphere of radius r

S2
r =

 

x = (x0,x1,x2) P R3 : |x| = r
(

.
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Abbreviate N = (r, 0, 0) P S2
r . The stereographic projection from N is defined to be

πN : S2
r z tNu Ñ R2, (x0,x1,x2) ÞÑ

(
rx1
r´ x0

, rx2
r´ x0

)

whose inverse is given by

π´1
N : R2 Ñ S2

r z tNu , (q1, q2) ÞÑ

(
r
|q|2 ´ r2

|q|2 + r2 , 2r2q1
|q|2 + r2 , 2r2q2

|q|2 + r2

)
.

We compute the cotangent lifts of πN and π´1
N . We first compute the tangent map

dπ´1
N (q) : TqR2 Ñ Tπ´1

N (q)(S
2
r z tNu) at q = (q1, q2) P R2

dπ´1
N (q) =

2r2

(q2
1 + q2

2 + r2)2


2rq1 2rq2

´q2
1 + q2

2 + r2 ´2q1q2

´2q1q2 q2
1 ´ q

2
2 + r2

 .

Its cotangent lift Φ´1 : T ˚R2 Ñ T ˚(S2
r z tNu) is then given by

(x0,x1,x2, y0, y1, y2)

= Φ´1(q, p)
= ((dπ´1

N (q))˚)´1(q, p)

=

(
π´1
N (q),


q1/r q2/r

(´q2
1 + q2

2 + r2)/2r2 ´q1q2/r2

´q1q2/r2 (q2
1 ´ q

2
2 + r2)/2r2


p1

p2

)

=

(
π´1
N (q), q1p1 + q2p2

r
, |q|

2 + r2

2r2 p1 ´
(q1p1 + q2p2)q1

r2 , |q|
2 + r2

2r2 p2 ´
(q1p1 + q2p2)q2

r2

)
.

One can easily see that x ¨ y = 0 and Φ´1 is indeed a symplectomorphism.

The inverse Φ : T ˚(S2
r z tNu)Ñ T ˚R2 is given by

Φ(x, y) =
(

rx1
r´ x0

, rx2
r´ x0

, y1(r´ x0) + x1y0
r

, y2(r´ x0) + x2y0
r

)
. (8)

Note that
|y| =

|q|2 + r2

2r2 |p|,

or equivalently
|p| =

r´ x0
r

|y|.

For later use, we compute here that under πN : S2
r z tNu Ñ R2 the round metric ground

on S2
r is given by

(ground)ij := ((π´1
N )˚ground)ij

=
@

dπ´1
N Bxi , dπ

´1
N Bxi

D
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=
4r4δij

(|q|2 + r2)2 . (9)

2.2 Hamiltonian dynamics

Let (M ,ω) be a symplectic manifold. The nondegeneracy of ω gives rise to a canonical
isomorphism between TM and T ˚M

Φ : TM „
ÝÑ T ˚M , Φ(X) = ω( ¨ ,X).

Let H : M Ñ R be any smooth function which will be called a Hamiltonian. Since
dH P Ω1(M), the isomorphism Φ gives rise to the vector field XH which is defined by
the relation ω( ¨ ,XH) = dH. The vector field XH is called the Hamiltonian vector
field associated to the Hamiltonian H. For the sake of convenience in the following we
assume that Hamiltonian vector field XH is complete. This holds true for example if
M is closed. We call a triple (M ,ω,H) a Hamiltonian system.

Given a Hamiltonian H, we find a one-parameter family of diffeomorphisms φtH : M Ñ

M , t P R, solving the Cauchy problem

d

dt
φtH = XH ˝ φ

t
H , φ0

H = idM .

We call this family the Hamiltonian flow associated to H. The equation ẋ = XH(x)

is called the Hamiltonian equation. A solution x : R Ñ M will be referred to as a
Hamiltonian orbit. Locally the Hamiltonian equation can be written asq̇

ṗ

 = ´J0∇H(q, p),

where

J0 =

 0 ´Idn
Idn 0


is the matrix corresponding to the complex multiplication.

Lemma 2.6. (Preservation of energy) Every Hamiltonian H P C8(M , R) is preserved
along Hamiltonian orbits.

Proof. We differentiate H(φtH(x)) and obtain that

d

dt
H(φtH(x)) = dH(φtH(x))

d

dt
φtH(x)

= dH(φtH(x))XH(φ
t
H(x))

= ω(XH ,XH)(φ
t
H(x))

= 0

from which the lemma is proved.
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Remark 2.7. If H is time-dependent, then it is not necessarily preserved. Indeed, in
view of the proof of the previous lemma we see that

d

dt
Ht(φ

t
H(x)) =

dHt

dt
(φtH(x))

which does not necessarily equal zero.

Lemma 2.8. (No friction) Fix H P C8(M , R). For each t P R, the diffeomorphism
φtH is a symplectomorphism.

Proof. Differentiating we obtain

d

dt
(φtH)

˚ω = (φtH)
˚LXHω

= (φtH)
˚(ιXHdω+ dιXHω)

= (φtH)
˚dιXHω

= (φtH)
˚d(´dH)

= 0.

This proves the lemma.

The next lemma tells us that the Hamiltonian dynamics is preserved under symplecto-
morphisms.

Lemma 2.9. Let φ : (M1,ω1) Ñ (M2,ω2) be a symplectomorphism and let H P

C8(M2, R) be a Hamiltonian. Then φ preserves the Hamiltonian equations, namely
it satisfies XH˝φ = φ˚XH . Consequently, if z(t) is a Hamiltonian orbit of XH˝φ, then
φ ˝ z(t) is a Hamiltonian orbit of XH .

Proof. We observe that

ω1( ¨ ,XH˝φ) = d(H ˝ φ)

= d(φ˚H)

= φ˚dH

= φ˚ω2( ¨ ,XH)

= ω1( ¨ ,φ˚XH)

from which the lemma is proved.

Let H,F P C8(RˆM , R) be two time-dependent Hamiltonians. Abbreviate Ht =

H(t, ¨) and we define its Hamiltonian vector field by the relation ω(¨,XHt) = dHt. The
associated Hamiltonian flow is defined to be the solution of the corresponding Cauchy
problem. We do the same business for F . We now ask if there exists a Hamiltonian
whose Hamiltonian flow equals the composition φtH ˝ φtF .

Lemma 2.10. Let H,F : RˆM Ñ R be two time-dependent Hamiltonians. Then
the composition φtH ˝ φtF is the Hamiltonian flow associated to the Hamiltonian H#F
which is defined by

(H#F )(t,x) := H(t,x) + F (t, (φtH)´1(x)).
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Proof. Fix x PM and v P TyM , where y = φtH(φ
t
F (x)). We compute that

ω

(
v, d
dt
φtH(φ

t
F (x))

)
= ω

(
v,XHt(y) + dφtH(φ

t
F (x))XFt(φ

t
F (x))

)
= dHt(y)v+ ω(v, dφtH((φtH)´1(y))XFt((φ

t
H)
´1(y)))

= dHt(y)v+ ω((dφtH(y))
´1v,XFt((φ

t
H)
´1(y)))

= dHt(y)v+ dFt((φ
t
H)
´1(y))(dφtH(y))

´1v

= dHt(y)v+ d(Ft ˝ (φ
t
H)
´1)(y)v

= d(Ht + Ft ˝ (φ
t
H)
´1)(y)v

= ω(v,XH#F (y))

from which the lemma is proved.

Example 2.11. Consider the Hamiltonian H : Rˆ T ˚R2 Ñ R of the form

H(t, q1, q2, p1, p2) =
1
2 |p|

2 + V (|q1 ´ cos t, q2 + sin t|), V P C8(R, R).

We explain how to transform H into a time-independent Hamiltonian. We consider
angular momentum L = q1p2 ´ q2p1 and claim that L#H is time-independent. It is
straightforward that the Hamiltonian flow φtL is given by the t-degree rotation in both
q- and p-planes

φtL(q, p) = (Rtq,Rtp), (10)

where

Rt =

cos t ´ sin t
sin t cos t


is the rotation matrix. We then observe that

H(t, (φtL)´1(q, p)) = H(t, (R´tq,R´tp))

=
1
2 |p|

2 + V (|(q1 cos t+ q2 sin t´ cos t,´q1 sin t+ q2 cos t+ sin t|)

=
1
2 |p|

2 + V

(
b

(q1 ´ 1)2 + q2
2

)
=

1
2 |p|

2 + V (|(q1, q2)´ (1, 0)|)

from which we obtain that

L#H(q, p) = 1
2 |p|

2 + V (|(q1 ´ 1, q2)|) + q1p2 ´ q2p1

=
1
2 ((p1 ´ q2)

2 + (p2 + q1)
2) + V (|(q1 ´ 1, q2)|)´

1
2 |q|

2.

This proves the claim.
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2.3 Completely integrable systems

Let us fix two Hamiltonians H1, H2 : M Ñ R. We discuss when the commutator
[XH1 ,XH2 ] of the two Hamiltonian vector fields XH1 and XH2 is again a Hamiltonian
vector field.

Suppose that [XH1 ,XH2 ] = XF for some Hamiltonian F : M Ñ R. Locally the
commutator is written as

[XH1 ,XH2 ] =
B

Bpj

(
BH1
Bpi

BH2
Bqi

´
BH2
Bpi

BH1
Bqi

)
B

Bqj
´
B

Bqj

(
BH1
Bpi

BH2
Bqi

´
BH2
Bpi

BH1
Bqi

)
B

Bpj

from which we see that F is locally given by

F =
BH1
Bpi

BH2
Bqi

´
BH2
Bpi

BH1
Bqi

(+ constant)

= (∇H1)
trJ0∇H2 (+ constant)

= dH2(XH1) (+ constant)
= ω0(XH1 ,XH2) (+ constant).

Motivated by this observation we define

Definition 2.12. Given two Hamiltonians H1,H2 P C
8(M , R), we define the Poisson

bracket tH1,H2u as
tH1,H2u = ω(XH1 ,XH2).

By definition, we obtain the following properties of the Poisson bracket: forH1,H2,H3 P

C8(M , R) and a1, a2, a3 P R we have

(i) (Antisymmetry) tH1,H2u = ´tH2,H1u;

(ii) (Bilinearity) ta1H1 + a2H2,H3u = a1 tH1,H3u+ a2 tH2,H3u;

(iii) (Leibniz rule) tH1H2,H3u = H1 tH2,H3u+H2 tH1,H3u.

Moreover, we prove that

Theorem 2.13. (Noether) Let H,F P C8(M , R) be two Hamiltonians. Then the
following statements are equivalent:

(i) H(φtF (x)) is constant for all x PM and t, i.e., φtF is a symmetry of the Hamilto-
nian system (M ,ω,H);

(ii) tH,F u = 0, i.e., H and F Poisson commute;

(iii) F (φtH(x)) is constant for all x PM and t, i.e., F is an integral of the Hamiltonian
system (M ,ω,H).

Moreover, any one of the above implies that their Hamiltonian flows commute: φtH ˝
φsF = φsF ˝ φ

t
H whenever both sides are defined.

Proof. (i) ô (ii) We observe that

H(φtF (x)) ” C ô
d

dt
H(φtF (x)) = 0
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ô dH(φtF (x))
d

dt
φtF (x) = 0

ô ω(XF ,XH)(φ
t
F (x)) = tF ,Hu (φtF (x)) = 0.

(ii) ô (iii) This equivalence can be proved in a similar way.

(i), (ii) or (iii) ñ (iv) Note that [XH ,XF ] = XtH,F u. The assertion now follows from
the general fact that if the commutator of two vector fields vanishes, then their flows
commute. This finishes the proof of the theorem.

In particular, preservation of energy proved in Lemma 2.6 is a special case of Noether’s
theorem since the antisymmetry of the Possion bracket implies tH,Hu = 0 for any
H P C8(M , R).

Remark 2.14. Let H and F be time-independent. Note that H#F is not neces-
sarily time-independent. Indeed, for H#F to be time-independent, it must hold that
F ((φtH)

´1(x)) = F (x), or equivalently F (x) = F (φtH(x)). By Noether’s theorem, we
conclude that H#F is time-independent if and only if tH,F u = 0.

The following lemma says that being an integral, or equivalently being a symmetry of
a given Hamiltonian system is a symplectic property.

Lemma 2.15. Let (Mj ,ωj), j = 1, 2, be symplectic manifolds. Assume that H,F P
C8(M2, R) Poisson commute, i.e., tH,F u = 0. Then for any symplectomorphism
φ : M1 ÑM2, the two smooth functions φ˚H, φ˚F P C8(M1, R) Poisson commute.

Proof. We observe that

tH ˝ φ,F ˝ φu = ω1(XH˝φ,XF˝φ)

= ω1(φ
˚XH ,φ˚XF )

= φ˚ω2(XH ,XF )

= ω2(XH ,XF ) ˝ φ

= tH,F u ˝ φ

from which the lemma is proved.

Let (M ,ω) be a four-dimensional symplectic manifold. We fix a Hamiltonian H : M Ñ

R. Assume that there exists an integral F : M Ñ R having the property that dH(x)

and dF (x) are linearly independent on T ˚xM for almost every x PM . Let c be a regular
value of the moment map (H,F ) : M Ñ R2, (H,F )(q) := (H(q),F (q)). It follows
that the preimage Nc := (H,F )´1(c) Ă M is a two-dimensional submanifold of M
and its tangent space at x P Nc is spanned by XH(x) and XF (x). Indeed, in view of
tH,F u = 0 the Noether theorem shows that dH(XF ) = dF (XH) = 0. Moreover, Nc

is invariant along φtH and φtF .

Theorem 2.16. (Arnold-Liouville) Let (M ,ω), H, F , c and Nc be described as above.
Assume that the preimage Nc is compact and connected. Then the following assertions
hold:

• Nc is an embedded two-dimensional torus T2; and
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• there exists a neighborhood U of Nc inM and a diffeomorphism ψ : U Ñ D2ˆT2

such that

– coordinates (x1,x2) P D
2 and (y1, y2) P T2 satisfy ψ˚(dy^ dx) = ω;

– ψ(Nc) = t0u ˆT2;

– the Hamiltonian H ˝ ψ depends only on the action variables y and not on
the angle variables x.

Consequently, locally the Hamiltonian equation associated to H ˝ψ is given by

ẋ =
B(H ˝ψ)

By
(y), ẏ = 0

from which we obtain solutions

x(t) = x0 + t
B(H ˝ψ)

By
(y0), y(t) = y0.

Remark 2.17. For the Arnold-Liouville theorem for integrable systems defined on
higher dimensional symplectic manifolds, we refer to [HZ11, Appendix B].

In view of Theorem 2.16, we classify periodic orbits of an integrable system (H,F ) as
follows:

Definition 2.18. Let (M ,ω,H) be an integrable Hamiltonian system on a four-
dimensional manifold M and let F be an integral. A torus-type orbit is a Hamiltonian
orbit along which dH and dF are linearly independent. If the two differentials are
linearly dependent, then an orbit is called a critical orbit.

2.4 Regularizations

Consider the Hamiltonian system associated to the Hamiltonian

H : T ˚(R2z t(0, 0)u)Ñ R, H(q, p) = 1
2 |p´A(q)|

2 ´
1
|q|

+ V1(q), (11)

where A = (A1,A2) and A1,A2,V1 : R2 Ñ R are smooth functions. Later the asso-
ciated Hamiltonian system will be called a planar Stark-Zeeman system, see Section
4.1.

Let c1 P R be an energy value of H such that each c ă c1 satisfies the following:

• c is a regular value of V (q) := ´1/|q|+ V1(q); and

• the Hill’s region Kc =
 

q P R2z t(0, 0)u : V (q) ď c
(

contains a unique bounded
component Kb

c whose closure is diffeomorphic to the closed unit disk.

We fix an energy level c ă c1. Abbreviate by Σbc the bounded component of Σc :=
H´1(c) lying over Kb

c. Since ´1/|q| is singular at the origin, Σbc is noncompact. However,
it is well-known that two-body collisions can always be regularized via reparametriza-
tion. In this section, we discuss two ways of regularizations following the exposition
given by [CFK17, Section 3].
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2.4.1 Moser regularization

Let H and c1 be described as above and fix c ă c1. Note that on Σbc we have |p| Ñ 8

as q Ñ 0.

We define the Hamiltonian K : T ˚(R2z t(0, 0)u) Ñ R by K(q, p) = |q|(H(q, p)´ c)
which satisfies K´1(0) = H´1(c). Note that the Hamiltonian flow of H of energy
c corresponds to the Hamiltonian flow of K of energy zero up to reparametrization.
Indeed, one checks that

XK(q, p) = |q|XH(q, p) (q, p) P K´1(0).

We interchange the roles of the positions and momenta via pulling backK by the switch
map σ : T ˚R2 Ñ T ˚R2, (q, p) ÞÑ (´p, q), which is a symplectomorphism under which
K´1(0) is invariant. Using the map Φ´1 from Example 2.5 we embed the hypersurface
K´1(0) into T ˚(S2

r z tNu)

Φ´1(K´1(0)) Ă T ˚(S2
r z tNu).

We now see that the hypersurface Φ´1(K´1(0)) smoothly extends to T ˚NS2
r . We con-

sider the stereographic projection from S = (´r, 0, 0) P S2
r

πS : S2
r z tSu Ñ R2, (x0,x1,x2) ÞÑ

(
rx1
r+ x0

, rx2
r+ x0

)
.

The transition map ψ := πS ˝ π
´1
N : R2z t0, 0u Ñ R2z t(0, 0)u is given by

ψ(q1, q2) =

(
r2q1
|q|2

, r
2q2
|q|2

)

which lifts to a symplectomorphism Ψ of T ˚(R2z t(0, 0)u)

Ψ(q, p) =
(
r2q1
|q|2

, r
2q2
|q|2

, (q
2
1 + q2

2)p1 ´ 2q1(q1p1 + q2p2)

r2 , (q
2
1 + q2

2)p2 ´ 2q2(q1p1 + q2p2)

r2

)
.

We then have

Ψ˚(σ˚K)(q, p) =K ˝ σ ˝Ψ(q, p)

=
r2|q|

2 + |q|(p1A1(Dψ(´p)q) + p2A2(Dψ(´p)q))

+
|p|2|q|

r2

(
|A(Dψ(´p)q)|2

2 + V1(Dψ(´p)q)´ c

)
´ 1.

In this transition, the collision state |p| = 8 becomes |p| = 0 and hence we extend
Ψ˚(σ˚K) by setting

Ψ˚(σ˚K)(q, 0) = r2|q|

2 ´ 1.

This shows that |q| Ñ 2/r2 as |p| Ñ 0. Thus, the hypersurface (Ψ˚(σ˚K))´1(0) Ă
T ˚(R2z t(0, 0)u can be extended smoothly over the collision |p| = 0 by adding the
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circle C :=
 

|q| = 2/r2, |p| = 0
(

. This circle C corresponds to the circle C 1 in T ˚NS2
r

of radius 1/r2 with respect to the dual of the round metric ground. Consequently, the
closure Φ´1 ˝ σ ˝K´1(0) Ă T ˚S2

r is a smooth hypersurface intersecting T ˚NS2
r in the

circle C 1.

The above argument says that under the stereographic projection the bounded com-
ponent Σbc of the regularized energy hypersurface Σc Ă T ˚S2

r is compact and the fiber
over N P S2

r is a circle. We now decrease the regular value c to a sufficiently negative
value and then switch off A and V1 from the Hamiltonian K so that we obtain the
hypersurface

Φ´1
(#

(p, q) :

(
|q|2 +

?
´2c2

2
?
´2c2

)
|p| =

1
?
´2c2

+)
Ă T ˚S2?

´2c (12)

which is the zero energy level set of the Hamiltonian Φ˚F , where F : T ˚R2 Ñ R is
given by

F (p, q) = 1
2

(
|q|2 +

?
´2c2

2
?
´2c2

)2

|p|2 ´
1
2

(
1

?
´2c2

)2

(13)

=
1
2 ||p||

2
ground(q)

´
1
2

(
1

?
´2c2

)2

,

where ground is given as in (9). Thus, the Hamiltonian flow associated to F on the level
set F´1(0) is the geodesic flow of the round metric on S2?

´2c in the chart obtained
by stereographic projection. In particular, the energy hypersurface Φ´1(F´1(0)) Ă
T ˚S2?

´2c is the radius 1/
?
´2c2 circle bundle in T ˚S2?

´2c. Note that it is diffeomorphic
to SO(3) and hence to the real projective space RP 3. Thus, the described homotopy
(through regular hypersurfaces) shows that Σbc is diffeomorphic to RP 3.

2.4.2 Levi-Civita regularization

Consider the complex squaring map

L : Cz t0u Ñ Cz t0u , v ÞÑ v2.

As in Example 2.5 we compute its cotangent lift L := ((dL)˚)´1 : T ˚(Cz t0u) Ñ
T ˚(Cz t0u)

L(v,u) = (v2, u2v ),

which we call the Levi-Civita mapping. One can easily see that L is a two-fold symplectic
covering.

We consider the pulled back Hamiltonian rH := L˚H. We fix a regular level c ă c1 and
introduce the new Hamiltonian

Q(v,u) := 4|v|2( rH(v,u)´ c)

= 4|v|2
(

1
2

ˇ

ˇ

ˇ

ˇ

u

2v ´A(v
2)

ˇ

ˇ

ˇ

ˇ

2
´

1
|v|2

+ V1(v
2)´ c

)
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=
1
2 |u´ 4vA(v2)|2 + 4|v|2V1(v

2)´ 4c|v|2 ´ 4. (14)

Note that we can extend Q smoothly to the smooth function defined on T ˚C by the
same formula. By abuse of notation, we use the same symbol Q for the extension. As
in the Moser regularization, the Hamiltonian flow of H of energy c corresponds to the
Hamiltonian flow of Q of energy zero, up to reparametrization. Note that the collision
|q| = 0 corresponds to |v| = 0 and hence the Levi-Civita mapping regularizes collisions,
after reparametrization. Thus, regularized Hamiltonian orbits pass through the origin.

Consider a unique bounded component Σ Ă Q´1(0) whose projection π(Σ) Ă C,
where π : T ˚C Ñ C is the footpoint projection, is diffeomorphic to the closed unit
disc centered at the origin. Choose v P int(π(Σ)). Then the fiber in Σ lying over v
equals the circle with center point 4vA(v2) and radius

b

8(c|v|2 + 1´ |v|2V (v2)). For
v P B(π(Σ)), this circle becomes the point u = 4vA(v2). Consequently, the regularized
energy hypersurface Σ is diffeomorphic to the three-sphere.

Remark 2.19. The bounded component of the Levi-Civita regularized energy hyper-
surface is a double-cover of the bounded component of the Moser regularized energy
hypersurface.

2.5 The Kepler problem

Let us take A ” 0 and V1 ” 0 from (11) and obtain the Hamiltonian

E : T ˚(R2z t(0, 0)u)Ñ R, (q, p) ÞÑ 1
2 |p|

2 ´
1
|q|

.

The associated Hamiltonian system is called the (planar) Kepler problem.

2.5.1 Regularizations

Moser regularization

Note that for any negative energy level E = c ă 0, the Hill’s region consists of a single
bounded component whose closure is given by the closed disk of radius ´1/c. Let us
fix E = c ă 0. On E´1(c) we have |p| Ñ 8 as q Ñ 0.

As in Section 2.4.1 we define the Hamiltonian K by

K(q, p) = |q|(E(q, p)´ c) (15)

and pull it back by the switch map σ and the stereographic projection Φ. Consequently,
we obtain a smooth hypersurface Φ´1(K´1(0)) Ă T ˚S2?

´2c and the regularized Kepler
flow is equivalent to the geodesic flow of the round metric on S2?

´2c and the regularized
energy hypersurface is given by the radius ´1/2c circle bundle in T ˚S2?

´2c. In partic-
ular, for any negative energy a Kepler orbit corresponds to a great circle and hence
periodic. Moreover, the Kepler problem admits SO(3)-symmetry whose generators are
associated to rotations around the three axes in R3.
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Levi-Civita regularization

Let E = c ă 0 be given. In view of (14), we have

Q(v,u) = 1
2 |u|

2 ´ 4c|v|2 ´ 4.

The regularized (double covered) energy hypersurface is diffeomorphic to S3 as we
already observed in Section 2.4.2.

2.5.2 Integrals

Recall that for negative energies the Kepler problem admits SO(3)-symmetry. By
Noether’s theorem, this shows that the Kepler problem has three integrals (different
from the Kepler energy E).

Angular momentum

We observe that angular momentum L = q1p2 ´ q2p1 is an integral. Indeed, one can
easily check that tE,Lu = 0. By Noether’s theorem, the flow φtL, see (10), is a symmetry
for the system. Indeed, we see that

E(φtL(q, p)) =
1
2

(
(p1 cos t´ p2 sin t)2 + (p1 cos t+ p2 sin t)2

)

´
1

a

(q1 cos t´ q2 sin t)2 + (q1 cos t+ q2 sin t)2

=
1
2 (p

2
1 + p2

2)´
1

a

q2
1 + q2

2

= E(q, p).

By the Leibniz rule, angular momentum L is also an integral of the regularized Kepler
problem with energy E = c. Indeed, abbreviating f(q) = |q|, we have

tK,Lu = tf(E ´ c),Lu
= f tE ´ c,Lu+ (E ´ c) tf ,Lu
= f tE,Lu
= 0.

In view of Lemma 2.15, we then see that Φ˚(σ˚K) and Φ˚(σ˚L) also Poisson commute.
Abbreviating r =

?
´2c, the equation (8) gives rise to

Φ˚(σ˚L) =
rx1
r´ x0

y2(r´ x0) + x2y0
r

´
rx2
r´ x0

y1(r´ x0) + x1y0
r

= x1y2 ´ x2y1.

Therefore, the angular momentum L is associated to rotation around the x0-axis on
S2
r . By abuse of notation, we use the same symbol L for Φ˚(σ˚L).
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The Runge-Lenz vector

We have found one integral, the angular momentum. The other two integrals generate
rotations around the x1- and x2-axes. We define A1 := x0y1 ´ x1y0 and A2 := x0y2 ´

x2y0. One can easily check that tA1,Lu = A2, tA2,A1u = L, and tL,A2u = A1.
Following [Kim14] we compute that

(xˆ y)ˆ x´ r2y

r´ x0
+ (xˆ y)ˆ (1, 0, 0) = (I0, I1, I2),

where

I0 =
(x2

2y0 ´ x0x2y2 ´ x0x1y1 + x2
1y0)´ r2y0

r´ x0

=
(x2

1 + x2
2)y0 ´ x0(x1y1 + x2y2)´ r2y0

r´ x0

=
(x2

0 + x2
1 + x2

2)y0 ´ r
2y0

r´ x0

= 0,

where in the third equality we used the facts that |x| = r and x ¨ y = 0,

I1 =
x2

0y1 ´ x0x1y0 ´ x1x2y2 + x2
2y1 ´ r

2y1
r´ x0

+ x0y1 ´ x1y0

=
´x1x2y2 + x2

2y1 ´ ry1(r´ x0)´ rx1y0
r´ x0

=
x2(x2y1 ´ x1y2)

r´ x0
´ r

y1(r´ x0) + x1y0
r´ x0

and

I2 =
x2

1y2 ´ x1x2y1 ´ x0x2y0 + x2
0y2 ´ r

2y2
r´ x0

+ x0y2 ´ x2y0

=
´x1x2y1 + x2

1y2 ´ ry2(r´ x0)´ rx2y0
r´ x0

=
x1(x1y2 ´ x2y1)

r´ x0
´ r

y2(r´ x0) + x2y0
r´ x0

.

Note that on the regularized c-energy hypersurface, i.e., the radius 1/r2 circle bundle
in T ˚S2

r , where r =
?
´2c, the two vectors (xˆ y)ˆx and r2y are identical. Therefore,

for x ‰ N = (r, 0, 0) we have

(I0, I1, I2) = (xˆ y)ˆ (1, 0, 0) = (0,A1,A2).

Keeping the fact that |y| = 1/r2 in mind we then obtain

(Φ´1)˚σ˚(I1, I2) =
1
r

(
p2(q1p2 ´ q2p1)´

q1
|q|

,´p1(q1p2 ´ q2p1)´
q2
|q|

)
.
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We conclude that the two smooth functions p2(q1p2 ´ q2p1)´ q1/|q| and ´p1(q1p2 ´

q2p1)´ q2/|q| are integrals of the Kepler problem. By abuse of notation, we use the
same symbols A1 and A2 for these functions, respectively.

Regarding ~q = (q1, q2, 0), ~p = (p1, p2, 0) and ~L = (0, 0,L) as spatial vectors, we see
that

(A1,A2, 0) = L(p2,´p1, 0)´ ~q

|~q|
= ~pˆ ~L´

~q

|~q|
.

We call the vector A := (A1,A2) the Runge-Lenz vector.

2.5.3 Conic sections

Recall that a conic section having the origin as a focus is the set of points q P R2

satisfying |q| = e|q ´Λ|, where e is the eccentricity, Λ is a fixed line which is called
the directrix of the conic, and |q ´ Λ| means the distance from q to to the line Λ.
For e P (0, 1), e = 1 or e ą 1, a conic section is given by an ellipse, a parabola or a
hyperbola. By definition, a circle has eccentricity zero.

Let us fix any conic section C and consider the line Λ0 which passes through the
origin and which is parallel to the directrix. Note that C and Λ0 meet at two points.
The half length l of the line segment joining these two points is called the semilatus
rectum of the conic section C. For example, for an ellipse the semilatus rectum equals
l = a(1´ e2), where a is the semimajor axis of the ellipse, where the major axis is
defined to be the longest diameter of the ellipse, see Figure 2. One can easily see that
in polar coordinates a conic section is determined by the equation

r =
l

1 + e cos θ . (16)

Abbreviating by φ the (positive) angle of the position vector q and by θ the (positive)
angle of the Runge-Lenz vector we find

L2 =
〈
~qˆ ~p, ~L

〉
=
〈
~pˆ ~L, ~q

〉
=
〈
~A, ~q

〉
+

〈
~q

|q|
, ~q
〉

, ~A := (A1,A2, 0)

=
〈
~A, ~q

〉
+ |q|

= |q|(|A| cos(φ´ θ) + 1),

where in the first equality we used the fact that 〈aˆ b, c〉 = 〈a, bˆ c〉 for a, b, c P R3,
from which we obtain that

|q| =
L2

1 + |A| cos(φ´ θ) . (17)
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It follows that for a Kepler orbit the eccentricity and semilatus rectum equal the size
of the Runge-Lenz vector and the square of angular momentum, respectively. For this
reason, the Runge-Lenz vector is often called the eccentricity vector. We compute that

|A|2 =

〈
~pˆ ~L´

~q

|q|
, ~pˆ ~L´

~q

|q|

〉
= |~pˆ ~L|2 +

|q|2

|q|2
´ 2

〈
~pˆ ~L, ~q

|q|

〉
= |~p|2|L|2 + 1´ 2

〈
~q

|q|
ˆ ~p, ~L

〉
= |p|2L2 + 1´ 2L

2

|q|

= 1 + 2
(

1
2 |p|

2 ´
1
|q|

)
L2

= 1 + 2EL2. (18)

Recall that for an ellipse the semimajor axis is given by the relation l = a(1´ e2). The
above calculation shows that

a =
l

1´ e2 =
L2

1´ |A|2 = ´
1

2E (19)

which implies that on a fixed energy hypersurface all Kepler orbits have the same
semimajor axis.

In view of (17) we see that the minimum of the radius |q| is attained if θ = φ, i.e., the
Runge-Lenz vector points in the direction of the perigee which is the nearest point to
the origin. On the other hand, the minus Runge-Lenz vector ´A points in the direction
of the apogee, which is the farthest point to the origin, see Figure 2.

Satellite

1

Earth

1

θ

1

a

1

r

1

A

1

A

1

A

1

A

1

Figure 2: A Kepler ellipse

2.5.4 Collision orbits

Via the Moser regularization, collision orbits with energy E = c ă 0 correspond to
great circles on S2?

´2c passing through the point N = (
?
´2c, 0, 0). Recall that the
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symmetry for L is rotation around the x0-axis. Consider the great circle which is
given by the intersection of the sphere and the plane tx2 = 0u. Obviously it satisfies
y2 = 0. It follows that L = x1y2´x2y1 = 0. Consequently, collision orbits have angular
momentum zero. In view of (18) we obtain that their eccentricity equals one. We may
view a collision orbit as a degenerate parabola.

2.5.5 Kepler’s three laws

The first law: Let us fix E = c ă 0. The equation (18) then shows that the eccentricity
e = |A| of a (non-collision) Kepler orbit is smaller than one. We conclude that for
negative energies all (non-collision) Kepler orbits are ellipses with the origin at one of
the foci.

The second law: We introduce the polar coordinates (q1, q2) = (r cos θ, r sin θ). The
momenta pr and pθ are determined by the canonical relation p1dq1 + p2dq2 = prdr +

pθdθ and hence we obtain (pr, pθ) = (p1 cos θ + p2 sin θ,´p1r sin θ + p2r cos θ). Note
that pθ = q1p2 ´ q2p1 = L. In these coordinates the Kepler Hamiltonian becomes

E(r, θ, pr, pθ) =
1
2

(
p2
r +

p2
θ

r2

)
´

1
r

.

Recall that the area of a sector under the curve r = f(θ) between θ = θ1 and θ = θ2
equals

A =

ż θ2

θ1

1
2r

2dθ

from which we obtain
dA

dt
=

1
2r

2θ̇ =
1
2L, (20)

where the last equality follows from the Hamiltonian equation

θ̇ =
BH

Bpθ
=
pθ
r2 =

L

r2 .

The third law: Let γ be a T -periodic Kepler ellipse of energy E ă 0, of eccentricity e
and of semimajor axis a. The area swept by the radius vector q in the period T is given
by

A = πa2
a

1´ e2 = π

(
1

´2E

)2
a

´2EL2 =
|L|π

(´2E)3/2 ,

where in the second equality we used (18) and (19). On the other hand, in view of (20)
the total area is also given by

A =
T

2 |L|.

Consequently, we have
T =

2π
(´2E)3/2 . (21)
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2.5.6 Critical orbits, torus-type orbits and symmetries

Let us fix a negative Kepler energy E = c ă 0 and abbreviate r =
?
´2c. Recall that

for the geodesic flows on (S2
r , ground) there exist three symmetries: rotations around

the x0-, x1- and x2-axes corresponding to L, A2 and A1, respectively. The previous
discussion shows that there exist three classes of orbits: (i) Kepler ellipses (0 ă e ă 1),
(ii) collision orbits (e = 1) and (iii) circular orbits (e = 0). We now discuss which orbits
are critical orbits for each integral.

Note that on S2
r there exist precisely two geodesics tx0 = y0 = 0u (in both orientations)

which are invariant under rotations around the x0-axis. This implies that they are
critical orbits for L. Via stereographic projection we conclude that on E´1(c) the two
circular orbits, where they have the same radius ´1/2c and one rotates clockwise and
the other rotates counterclockwise. All Kepler ellipses and collision orbits are torus-
type orbits for L. The symmetry for L gives rise to an S1-family of Kepler ellipses or
collision orbits by rotating them around the origin. Each S1-family of torus-type orbits
corresponds to an invariant torus whose existence is assured by the Arnold-Liouville
theorem.

In a similar way we have two critical geodesics tx2 = y2 = 0u for A1 and tx1 = y1 = 0u
for A2 on the sphere. On E´1(c) they are given by collision orbits tq2 = p2 = 0u for A1
and tq1 = p1 = 0u for A2. By means of the facts that the Runge-Lenz vector (A1,A2)

points in the direction of the perigee and that collision orbits have eccentricity one, we
see that these orbits have A = (˘1, 0) and A = (0,˘1), respectively.

It is not easy to observe the symmetries for A1 and A2. Instead, we examine a certain
family which will be needed in Section 3.2.3. Consider a circular orbit γ´ which has
radius´1/2c and which rotates in clockwise direction in the q-plane. On the sphere, the
associated geodesic lies in the (x1,x2)-plane and rotates in clockwise direction. Recall
that circular orbits have eccentricity zero, i.e., A1 = A2 = 0. We now illustrate the
one-parameter family which contains γ´ and which is associated to the A2-symmetry.
In particular, along the family the quantity A2 is constant and hence we have A2 = 0
for all family members. Since the Runge-Lenz vector points in the direction of the
perigee, this implies that during the family the perigees are confined to the q1-axis,
or equivalently all foci of ellipses lie on the q1-axis. Moreover, since A2 is an integral,
all members have the same semimajor axis ´1/2c. Recall from Section 2.5.2 that
the A2-symmetry is associated to negative rotation around the x1-axis. Abbreviate
by θ the rotation angle. For ´π/2 ă θ ă 0, the circular orbit γ´ becomes a Kepler
ellipse. Via stereographic projection we see that in the q-plane this Kepler ellipse also
rotates clockwise and the focus different from the origin lies on the positive q1-axis. At
θ = ´π/2, the orbit has extremal eccentricity e = 1 and hence we obtain a collision
orbit tx2 = y2 = 0u which rotates in clockwise direction in the (x0,x1)-plane. In view of
the argument in Section 2.5.2 this shows that the collision orbit has (A1,A2) = (´1, 0)
which implies that the collision orbit lies on the positive q1-axis. For ´π ă θ ă ´π/2,
the orbit becomes less eccentric and we obtain again a Kepler ellipse. We note that
this ellipse has positive angular momentum and hence it rotates in counterclockwise
direction. At θ = ´π, we obtain another circular orbit γ+ which has radius ´1/2c
and which rotates in counterclockwise direction in the q-plane. For ´2π ă θ ă ´π we
obtain a similar picture: Kepler ellipses have foci (other than the origin) on the negative
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Figure 3: A certain family of Kepler orbits associated to the A2-symmetry

q1-axis and rotate in counterclockwise direction, and a collision orbit tq2 = p2 = 0u lies
on the negative q1-axis. The described family is illustrated in Figure 3.





3
THE RESTRICTED THREE -BODY PROBLEM AND ITS
FR IENDS

Since the work of Newton, the three-body problem was a central topic in dynamical
systems and mathematical physics. Suppose that the positions of three primaries are
given by the vectors ~xj P R3, j = 1, 2, 3, and abbreviate by mj P Rą0, j = 1, 2, 3, the
masses. The Newtonian equations are provided by

~̈x1 =
m2(~x2 ´ ~x1)

||~x2 ´ ~x1||3
+
m3(~x3 ´ ~x1)

||~x3 ´ ~x1||3
(22)

~̈x2 =
m1(~x1 ´ ~x2)

||~x1 ´ ~x2||3
+
m3(~x3 ´ ~x2)

||~x3 ´ ~x2||3
(23)

~̈x3 =
m1(~x1 ´ ~x3)

||~x1 ´ ~x3||3
+
m2(~x2 ´ ~x3)

||~x2 ´ ~x3||3
,

where the dot denotes the differentiation with respect to the time.

In this chapter, we restrict ourselves to a special case of the three-body problem, so
called the planar circular restricted three-body problem. In Section 3.1 we discuss this
problem in detail. In the subsequent sections we consider its special cases: in Section
3.2 we study the rotating Kepler problem and in Section 3.3 we consider the Euler
problem of two fixed centers.

3.1 The planar circular restricted three-body problem

We assume that the third primary is infinitesimal, i.e., we take m3 = 0 in (22)-(23).
This problem is called the restricted three-body problem. The two primaries will be
referred to as the Earth and the Moon and the massless body will be referred to as
the satellite. We scale the total mass m1 +m2 to one and abbreviate by µ P (0, 1) the
mass of the Moon and by 1´ µ the mass of the Earth. If µ ą 1/2, i.e., the Moon is
stronger than the Earth, then one may change their names. In the following, without
loss of generality we may assume that the Moon is not stronger than the Earth, i.e.,
µ ď 1/2.

The Newtonian equations of the restricted three-body problem are given by

~̈x1 =
µ(~x2 ´ ~x1)

||~x2 ´ ~x1||3
(24)

~̈x2 =
(1´ µ)(~x1 ´ ~x2)

||~x1 ´ ~x2||3
(25)

25
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~̈x3 =
(1´ µ)(~x1 ´ ~x3)

||~x1 ´ ~x3||3
+
µ(~x2 ´ ~x3)

||~x2 ´ ~x3||3
. (26)

The first two equations show that the Earth and Moon attract each other according to
Newton’s law of gravitation and the satellite does not influence them. In other words,
the two primaries move according to the two-body problem. Since two-body motions
are planar, we may assume that ~x1, ~x2 P R2 ˆ t0u. We then find a special solution of
(24)-(25)

E(t) := ~x1(t) = ´µ(cos t,´ sin t, 0),
M(t) := ~x2(t) = (1´ µ)(cos t,´ sin t, 0).

We assume that the Earth and Moon move along these circular orbits, see Figure 1.
Note that they never collide with each other. The problem is then called the circular
restricted three-body problem. We further assume that the satellite lies in the same
plane as the two primaries. The resultant problem, which is the main problem of this
thesis, is called the planar circular restricted three-body problem (PCR3BP).

In the following we identify R2 ˆ t0u = R2. Abbreviating ~x3 = (q1, q2) P R2 and
denoting by p = (p1, p2) P R2 the momentum, the equation (26) gives rise to the
Hamiltonian for the satellite in an inertial frame

H i
3BP(t, q1, q2, p1, p2) =

1
2 |p|

2 ´
1´ µ

|q´E(t)|
´

µ

|q´M(t)|
, (27)

where E(t) and M(t) are given as above. Note that this Hamiltonian is the sum of the
kinetic energy and the Newtonian potential. Unfortunately, it is not preserved along
the Hamiltonian flow since the Newtonian potential is time-dependent which implies
that the gravitational force acting on the satellite is changing according to the time,
see Remark 2.7.

We now rotate our coordinate system in clockwise direction with the same angular
speed with the two primaries. In this rotating frame the Earth and Moon are placed
at rest and hence the gravitational forces acting on the satellite are constant. However,
since the coordinate system is rotating we obtain an additional term which generates
the rotation. More precisely, as in Example 2.11 we have that

φtL ˝ φ
t
Hi

3BP
= φtH3BP ,

where

H3BP(q1, q2, p1.p2) := L#H i
3BP(t, q1, q2, p1, p2)

= H i
3BP(t, (φtL)´1(q1, q2, p1, p2)) + L(q1, q2, p1, p2)

=
1
2 |p|

2 ´
1´ µ
|q´E|

´
µ

|q´M |
+ q1p2 ´ q2p1,

where E = (´µ, 0) andM = (1´µ, 0). Note that the HamiltonianH3BP is not the sum
of the kinetic energy and the Newtonian potential any more and is time-independent
from which in view of Lemma 2.6 it is preserved along the Hamiltonian flow. As a
result, one can study the dynamics of the satellite on an energy hypersurface.
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By completing squares, we obtain

H3BP(q1, q2, p1, p2) =
1
2 ((p1 ´ q2)

2 + (p2 + q1)
2) + Veff(q1, q2), (28)

where
Veff(q1, q2) = ´

1´ µ
|q´E|

´
µ

|q´M |
´

1
2 |q|

2

is the effective potential. One can interpret the twist in the kinetic energy as the Coriolis
force and the additional term (´1/2)|q|2 in the effective potential as the centrifugal
force.

3.1.1 Critical points

In this section we prove

Lemma 3.1. In the PCR3BP, there exist precisely five critical points Lj , j = 1, 2, 3, 4, 5,
satisfying the following.

• Let π : T ˚R2 Ñ R2 be the footpoint projection. Abbreviate `j = π(Lj). Then
`1, `2, `3 lie on the line segment joining the Earth and Moon and each `4 and `5
forms an equilateral triangle with the two primaries;

• the critical energies are ordered as
$

&

%

H(L1) ă H(L2) ă H(L3) ă H(L4) = H(L5) if µ P (0, 1/2)

H(L1) ă H(L2) = H(L3) ă H(L4) = H(L5) if µ = 1/2;

• the Morse indices are given by ind(L1) = ind(L2) = ind(L3) = 1 and ind(L4) =

ind(L5) = 2.

Five Lagrange points

In view of the form (28) we see that there is a one-to-one correspondence between
critical points of H3BP and critical points of Veff. More precisely, the correspondence
is given by

critVeff ÐÝÝÝÝÑ critH3BP (29)
(q1, q2) ÞÝÝÝÝÝÝÑ (q1, q2, q2,´q1).

In order to find critical points of the effective potential we compute the gradient

∇Veff =

(
(1´ µ)(q1 + µ)

|q´E|3
+
µ(q1 ´ 1 + µ)

|q´M |3
´ q1,

(
1´ µ
|q´E|3

+
µ

|q´M |3
´ 1

)
q2

)
. (30)

Case 1. q2 = 0.
We define the function v : Rz t´µ, 1´ µu Ñ R

v(q1) := Veff(q1, 0) = ´ 1´ µ
|q1 + µ|

´
µ

|q1 ´ 1 + µ|
´

1
2q

2
1.



28 the restricted three-body problem and its friends

Note that v goes to ´8 as q1 tends to ´8, ´µ, 1´ µ, or 8. Therefore, v must have
at least one critical point on each interval I1 = (´µ, 1 ´ µ), I2 = (1 ´ µ,8) and
I3 = (´8,´µ). We now compute that

B2v

Bq2
1
(q1) = ´

2(1´ µ)
|q1 + µ|3

´
2µ

|q1 ´ 1 + µ|3
´ 1 ă 0

and hence for each j = 1, 2, 3 there exists precisely one critical point of v|Ij which
corresponds to its maximum. We denote them by `j P Ij , j = 1, 2, 3. Note that if
µ = 1/2, then l1 = (0, 0). These three collinear points were discovered by Euler.

Case 2. q2 ‰ 0.
Let (q1, q2), q2 ‰ 0, be a critical point of Veff. From the second component of the
gradient (30) we get

1´ µ
|q´E|3

+
µ

|q´M |3
´ 1 = 0. (31)

Plugging this into the first component gives rise to

0 =
(1´ µ)(q1 + µ)

|q´E|3
+
µ(q1 ´ 1 + µ)

|q´M |3
´ q1

=

(
1´ µ
|q´E|3

+
µ

|q´M |3
´ 1

)
q1 +

µ(1´ µ)
|q´E|3

´
µ(1´ µ)
|q´M |3

=
µ(1´ µ)
|q´E|3

´
µ(1´ µ)
|q´M |3

from which we conclude that |q´E| = |q´M |. Plugging this into (31) then yields |q´
E| = |q´M | = 1. Drawing the two unit circles centered at the Earth and the Moon we
obtain precisely two critical points `4 = (1/2´ µ,

?
3/2) and `5 = (1/2´ µ,´

?
3/2)

(recall that we assume µ ď 1/2). These two equilateral points were discovered by
Lagrange.

Consequently, there exist precisely five critical points `1, `2, `3, `4, `5 of the effective
potential. We call them Lagrange points. We denote by L1,L2,L3,L4,L5 the corre-
sponding critical points of H3BP. In view of the one-to-one correspondence, we may
also call Lj Lagrange points. Note that Veff(`j) = H3BP(Lj) for each j = 1, 2, 3, 4, 5.

Morse indices

We now discuss the Morse indices of the critical points. Recall that given a smooth
function f : M Ñ R a critical point is said to be nondegenerate if the Hessian of f at
that point is nonsingular and the Morse index ind(x) of a nondegenerate critical point
x is defined to be the number of negative eigenvalues of the Hessian of f at x. In view
of the form of the Hamiltonian, we see that the Morse index of Lj equals the Morse
index of `j for each j. We compute the second derivatives of the effective potential

B2Veff
Bq2

1
= ´

3(1´ µ)(q1 + µ)2

|q´E|5
+

1´ µ
|q´E|3

´
3µ(q1 ´ 1 + µ)2

|q´M |5
+

µ

|q´M |3
´ 1,

B2Veff
Bq1Bq2

= ´3q2

(
(1´ µ)(q1 + µ)

|q´E|5
+
µ(q1 ´ 1 + µ)

|q´M |5

)
,
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B2Veff
Bq2

2
= ´

3(1´ µ)q2
2

|q´E|5
+

1´ µ
|q´E|3

´
3µq2

2
|q´M |5

+
µ

|q´M |3
´ 1.

For the collinear points, we have

B2Veff
Bq2

1
= ´

2(1´ µ)
|q1 + µ|3

´
2µ

|q1 ´ 1 + µ|3
´ 1 ă 0,

B2Veff
Bq1Bq2

= 0,

B2Veff
Bq2

2
=

1´ µ
|q1 + µ|3

+
µ

|q1 ´ 1 + µ|3
´ 1. (32)

Recall that `1 = (0, 0) for µ = 1/2. For this point, we have

B2Veff
Bq2

2
(`1) = 4 + 4´ 1 = 7 ą 0

which shows that ind(`1) = 1 if µ = 1/2. Consider the case µ ă 1/2 so that the
q1-component of `j is nonzero for any j. From BVeff/Bq1 = 0, we obtain

1 =
1´ µ
|q1 + µ|3

(
1 + µ

q1

)
+

µ

|q1 ´ 1 + µ|3

(
1´ 1´ µ

q1

)
.

Plugging this into (32) gives rise to

B2Veff
Bq2

2
=

1´ µ
|q1 + µ|3

+
µ

|q1 ´ 1 + µ|3
´

1´ µ
|q1 + µ|3

(
1 + µ

q1

)
´

µ

|q1 ´ 1 + µ|3

(
1´ 1´ µ

q1

)

=
µ(1´ µ)

q1

(
1

|q1 ´ 1 + µ|3
´

1
|q1 + µ|3

)
.

Denote by q1(`j) the q1-component of `j , j = 1, 2, 3. It is obvious that q1(`2) ą 0 and
q1(`3) ă 0. Moreover, |`2 ´E| ą |`2 ´M | and |`3 ´E| ă |`3 ´M |. For `1, since

BVeff(1/2´ µ, 0)
Bq1

= 7(1
2 ´ µ) ą 0,

by means of the fact that q1(`1) is the maximum of Veff(q1, 0) on I1, we obtain that
q1(`1) ą 0 and |`1 ´M | ă |`1 ´E|. In conclusion, the derivative B2Veff/Bq2

2 is positive
for all the three collinear points and hence we have ind(L1) = ind(L2) = ind(L3) = 1.

For the equilateral points we plug (1/2´ µ,˘
?

3/2) into the second derivatives and
obtain the (Hessian) matrix ´3

4 ¯3
?

3
4 (1´ 2µ)

¯3
?

3
4 (1´ 2µ) ´9

4


whose characteristic polynomical is given by t2 + 3t+ (27/4)µ(1´ µ) = 0. Since the
sum resp. product of eigenvalues is negative resp. positive, we conclude that both
eigenvalues are negative, i.e., ind(L4) = ind(L5) = 2.



30 the restricted three-body problem and its friends

Critical energies

The above discussion implies that the collinear points are saddle points and the equi-
lateral points are local maxima of Veff. In view of the facts that the concave function
Veff(q1, 0) tends to ´8 as q1 Ñ ˘8, ´µ, or 1´ µ, we obtain that Veff(L4) = Veff(L5)

is the global maximum.

In order to compare H3BP(L1), H3BP(L2), H3BP(L3), we follow the argument given in
[Kim11]. Assume that µ ă 1/2. Abbreviate by `11 the reflection point of `1 with respect
to the Moon. Then we obtain that |`11 ´E| ´ 1 = |`11 ´M | = |`1 ´M | = 1´ |`1 ´E|.
We observe that

Veff(`
1
1)´ Veff(`1)

=

(
´

1´ µ
|`11 ´E|

´
µ

|`11 ´M |
´

1
2q1(`

1
1)

2
)
´

(
´

1´ µ
|`1 ´E|

´
µ

|`1 ´M |
´

1
2q1(`1)

2
)

= ´
1´ µ

1 + |`1 ´M |
+

1´ µ
1´ |`1 ´M |

´
1
2 (1´ µ+ |`1 ´M |)

2 +
1
2 (1´ µ´ |`1 ´M |)

2

=
2(1´ µ)|`1 ´M |3

1´ |`1 ´M |2

ą 0.

Since 1´ µ = q1(M) ă q1(`
1
1) and `2 is the maximum of Veff|(µ,8)ˆt0u, we conclude

that Veff(`1) ă Veff(`
1
1) ă Veff(`2).

Abbreviate by ´`2 the reflection of `2 with respect to the origin. In a similar way we
obtain that | ´ `2 ´M | ´ (1´ µ) = | ´ `2| = | ´ `2 ´E|+ µ and |`2 ´M |+ (1´ µ) =
|`2| = |`2 ´E| ´ µ. We compute that

Veff(´`2)´ Veff(`2)

= ´
1´ µ

| ´ `2 ´E|
´

µ

| ´ `2 ´M |
´

1
2 | ´ `2|

2 +
1´ µ
|`2 ´E|

+
µ

|`2 ´M |
+

1
2 |`2|

2

= (1´ µ)
(
´

1
|`2| ´ µ

+
1

|`2|+ µ

)
+ µ

(
´

1
|`2|+ 1´ µ +

1
|`2| ´ (1´ µ)

)

= 2µ(1´ µ)
(
´

1
|`2|2 ´ µ2 +

1
|`2|2 ´ (1´ µ)2

)

=
2µ(1´ µ)(1´ 2µ)

(|`2|2 ´ µ2)(|`2|2 ´ (1´ µ)2)

ą 0.

Since `3 is the maximum of Veff|(´8,´µ)ˆt0u, this shows that Veff(`2) ă Veff(´`2) ă

Veff(`3). Consequently, we have the order of the critical energy levels

H3BP(L1) ă H3BP(L2) ă H3BP(L3) ă H3BP(L4) = H3BP(L5).

If µ = 1/2, the function Veff(q1, 0) is symmetric with respect to the origin and hence
`3 = ´`2. This implies that

H3BP(L1) ă H3BP(L2) = H3BP(L3) ă H3BP(L4) = H3BP(L5).
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Remark 3.2. If µ ą 1/2, then an argument similar to the case µ P (0, 1/2) shows
that

H3BP(L1) ă H3BP(L3) ă H3BP(L2) ă H3BP(L4) = H3BP(L5).

3.1.2 Hill’s regions

Let π : T ˚(R2z tE,Mu) Ñ R2z tE,Mu be the projection along the fiber. Recall that
the Hill’s region associated to an energy level c is defined by the projection Kc =

π(H´1
3BP(c)). This is the region in the configuration space R2z tE,Mu to which the

satellite of energy c is confined. In view of the form of H3BP, the Hill’s region is
equivalently defined as

Kc =
 

q P R2z tE,Mu | Veff(q) ď c
(

.

We distinguish the following five cases:

• c ă H3BP(L1) : Since Veff(q) Ñ ´8 as |q| Ñ 8 or q Ñ E,M , the Hill’s region
consists of three connected components: two bounded components, denoted by
KE
c and KM

c , and a unbounded component, denoted by Ku
c . Note that the closure

of KE
c resp. KM

c contains the Earth resp. Moon;

• H3BP(L1) ă c ă H3BP(L2) : Recall that the first Lagrange point `1 lies between
the Earth and Moon and it is a saddle point of the effective potential. More
precisely, it is the maximum in the q1-direction and the minimum in the q2-
direction. Therefore, in this range the neck region which contains `1 and which
connects KE

c and KM
c appears. We abbreviate by KE

c #KM
c this unique bounded

components;

• H3BP(L2) ă c ă H3BP(L3) : Similarly, the bridge around `2 appears and it
connects KE

c #KM
c and Ku

c ;

• H3BP(L3) ă c ă H3BP(L4) = H3BP(L5) : We also see the bridge around `3;

• H3BP(H4) = H3BP(L5) ă c : Since `4 and `5 are the maxima of the effective
potential, we have Kc = R2z tE,Mu, see Figure 4.

3.1.3 Topology of an energy hypersurface

Fix any regular value c P R of H3BP. Since the energy hypersurface Σc := H´1
3BP(c) is

the preimage of the Hill’s region Kc under the projection π, the assertions from the
previous section show that

• c ă H3BP(L1) : The energy hypersurface Σc consists of three connected compo-
nents: the Earth component ΣEc , the Moon component ΣMc and the unbounded
component Σuc . Note that the Hamiltonian H3BP has the form (11) and H3BP(L1)

satisfies the properties of c1 from Section 2.4. Via Moser’s regularization, the two
bounded components ΣEc and ΣMc can be compactified to closed three-manifolds
ΣEc and ΣMc which are diffeomorphic to RP 3;
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Figure 4: Hill’s regions for the restricted three-body problem with µ = 1/4

• H3BP(L1) ă c ă H3BP(L2) : The two bounded components become connected to
form a unique bounded component ΣEc #ΣMc . Its compactification is diffeomorphic
to RP 3#RP 3, see [Alb+12];

• H3BP(L2) ă c : The energy hypersurface is unbounded.

3.2 The rotating Kepler problem

Let us switch off the Moon from the PCR3BP, i.e., we take µ = 0 in H3BP. The
resultant problem is called the rotating Kepler problem and its Hamiltonian is given
by

HRKP(q1, q2, p1, p2) =
1
2 |p|

2 ´
1
|q|

+ q1p2 ´ q2p1

=
1
2 ((p1 ´ q2)

2 + (p2 + q1)
2)´

1
|q|
´

1
2 |q|

2.

We denote by
Ueff(q1, q2) = ´

1
|q|
´

1
2 |q|

2

the effective potential of the rotating Kepler problem.
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We introduce the polar coordinates (r, θ): (q1, q2) = (r cos θ, r sin θ). In view of discus-
sion in Section 2.5.5 the Hamiltonian in the polar coordinates is given by

HRKP(r, θ, pr, pθ) =
1
2

(
p2
r +

p2
θ

r2

)
´

1
r
+ pθ. (33)

Recall that pθ = L.

3.2.1 Critical points and Hill’s regions

Since
BUeff(q1, q2)

Bqj
= qj

(
1
|q|3

´ 1
)

, j = 1, 2,

critical points of Ueff forms the unit circle. The corresponding critical energy level
equals HRKP = ´3/2. Then for c ă ´3/2, the Hill’s region consists of a bounded
component KE

c whose closure contains the origin and an unbounded component Ku
c ,

see Figure 5. The bounded component of the energy hypersurface lying over KE
c can

be regularized to form a closed three-manifold diffeomorphic to RP 3, see Section 2.4.1.
If c ą ´3/2, we have Kc = R2z t0, 0u.
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Figure 5: Hill’s region for the rotating Kepler problem with energy less than the critical level

3.2.2 Integral

One can write HRKP = E +L, where E is the (inertial) Kepler energy, see Section 2.5,
and L = q1p2 ´ q2p1 is the angular momentum. Recall that the angular momentum is
an integral of the (inertial) Kepler problem, i.e., tE,Lu = 0. Since the Poisson bracket
is a bilinear form, we conclude that tHRKP,Eu = tHRKP,Lu = 0. One can easily see
that in a rotating frame the Runge-Lenz vector is not constant, namely its components
A1 and A2 are not integrals for the rotating Kepler problem any more. In conclusion,
we have the three integrals: the total energyH3BP, the Kepler energy E and the angular
momentum L.
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3.2.3 Families of periodic orbits and bifurcations

Since tE,Lu = 0, in view of Lemma 2.10 we obtain that

(L#E)(q, p) = L(q, p) +E((φtL)
´1(q, p)) = L(q, p) +E(q, p) = HRKP(q, p).

Noether’s theorem then implies that

φtHRKP = φtE+L = φtL ˝ φ
t
E (34)

from which we see that any orbit γRKP in the rotating Kepler problem has the form
γRKP(t) = exp(it)γ(t), where γ is a (inertial) Kepler orbit. In the following we assume
that the Kepler energy is negative, E ă 0, and hence every Kepler orbit is either an
ellipse with eccentricity e P (0, 1), a collision orbit with e = 1, or a circular orbit with
e = 0. In the following we assume that γ is simple covered.

Since L is an integral, we see that γRKP is a critical orbit in the rotating Kepler
problem if and only if γ is a critical orbit for L in the Kepler problem. Recall from
Section 2.5 that for a given E = c ă 0, there exist precisely two critical orbits for L on
E´1(c): the circular orbits γ˘, where γ+ rotates in counterclockwise direction and γ´ in
clockwise direction. The fact that our coordinates system rotates in clockwise direction
implies that γ+ and γ´ rotate in the opposite direction and in the same direction
as the coordinate system, respectively. For this reason γRKP

+ (t) = exp(it)γ+(t) and
γRKP
´ (t) = exp(it)γ´(t) will be referred to as the retrograde circular orbit and the

direct circular orbit, respectively. Note that γRKP
+ has bigger angular momentum than

γRKP
´ which implies that the period of the retrograde circular orbit is smaller. Since
γ˘ have the same Kepler energy E = c ă 0, this shows that the total energy HRKP of
the retrograde circular orbit is bigger.

Suppose that γ is a T -periodic Kepler ellipse which is a torus-type orbit for L. We
note that even though γ is periodic, γRKP is not necessarily periodic. Indeed, for γRKP

to be periodic, the periods of exp(it) and γ(t) need be commensurable, namely there
exist two positive integers k and l satisfying 2πl = kT . If γRKP satisfies this resonance
condition (and hence it is periodic), then we call it a Tk,l-type orbit. The Liouville torus
on which γRKP satisfying the above resonance condition lies will be referred to as a
Tk,l-torus.

Remark 3.3. Whenever we consider a Tk,l-torus, we assume that k and l are relatively
prime which means that the Tk,l-type orbits are simple-covered.

Let γ be a T -periodic Kepler ellipse with energy E ă 0, which gives rise to a Tk,l-
type orbit in the rotating Kepler problem. Assume that its perigee lies on the positive
q1-axis so that it belongs to the one-parameter family associated to the A2-symmetry
described in Section 2.5.6, see Figure 3. Note that along this family angular momentum
L varies, but the Kepler energy E is constant. Moreover, by (19) and (21) the semimajor
axes and the periods are also constant. Each family member gives rise to a periodic
orbit in the rotating Kepler problem which satisfies the same resonance condition
2πl = kT . Consequently, since L is an integral, this one-parameter family gives rise to
a one-parameter family of Tk,l-tori in the rotating Kepler problem, which we call the
Tk,l-torus family, whose parameter is given by eccentricity.
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The previous discussion shows that along the Tk,l-torus family, the Kepler energy E is
constant. Indeed, the resonance condition of the Tk,l-torus family and Kepler’s third
law (21) show

2πl = kπ
?
´2E3 ô E = ´

1
2

(
k

l

)2
3
. (35)

We abbreviate by E = Ek,l the Kepler energy of the Tk,l-torus family. Note that the
condition k ą l is equivalent to that Ek,l ă ´1/2.

By the relation (18), we have

e2 = 1 + 2EL2 = 1 + 2(HRKP ´L)L
2 = 1 + 2E(HRKP ´E)

2.

Since e P [0, 1], each equality gives rise to the subset of the corresponding plane in
which the satellite takes values, see Figure 6. Note that one can also regard L or HRKP
as the parameter for each torus family.

Figure 6 shows that each torus family starts at a (possibly multiple covered) direct
circular orbit and ends at a (possibly multiple covered) retrograde circular orbit as we
already know. The following proposition determines the precise covering numbers of
the circular orbits.

Proposition 3.4. ([Alb+13, Section 6 and Appendix B]) The Tk,l-torus family bifur-
cates from a |k´ l|-fold covered direct circular orbit and dies at a (k+ l)-fold covered
retrograde circular orbit.

Proof. In view of (33) the Hamiltonian flow is given by

XHRKP = prBr +

(
pθ
r2 + 1

)
Bθ +

p2
θ ´ r

r3 Bpr . (36)

Since r is constant along circular orbits, we obtain pr = 0 in (36) from which it follows
that p2

θ = r. Consequently, the Hamiltonian vector field along circular orbits is given
by

XHRKP =

(
pθ
r2 + 1

)
Bθ.

Without loss of generality we may choose the initial condition to be

r =
1

´2E =

(
l

k

)2/3

, θ = θ0, pr = 0, pθ = ˘
?
r.

and we then find

γ(t) =


r

θ

pr

pθ

 (t) =


(l/k)2/3

((l˘ k)/l)t+ θ0

0
˘(l/k)1/3

 , (37)
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Figure 6: Some torus families for k = 5 (gray lines). The black curves are associated to the
circular orbits. The shaded regions are not allowed.

where the plus sign corresponds to the retrograde circular orbit and the minus sign cor-
responds to the direct circular orbit. In particular, the period of the direct or retrograde
circular orbit is given by

τdirect =
2πl
|k´ l|

or τretro =
2πl
k+ l

, (38)

respectively.

In view of the relation (18) and the fact that circular orbits have eccentricity zero, we
see that angular momenta of the direct and retrograde circular orbits equal´1/

a

´2Ek,l
and 1/

a

´2Ek,l, respectively. Suppose that the Tk,l-torus family bifurcates from the
N -fold covered direct circular orbits. It follows from the resonance condition that

Nτdirect = 2πl.
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This together with (38) imply that

N =
2πl
τdirect

= |k´ l|.

The assertion for the retrograde circular orbit can be proved in a similar way. This
completes the proof of the proposition.

Remark 3.5. That the direct circular orbit has angular momentum ´1/
a

´2Ek,l
implies that for k ą l its energy is less than the critical energy

c = Ek,l ´
1

a

´2Ek,l
ă ´

3
2

from which we see that the direct circular orbit lies on the bounded component of
the Hill’s region. However, the retrograde circular orbit does not necessarily lie on the
bounded component. Indeed, by the same reasoning we obtain that

Ek,l +

d

1
´2Ek,l

ą ´
3
2 ô k ă 8l.

3.2.4 Knot types

In this section we assume that E ă ´1/2 so that any Tk,l-torus family satisfies k ą l.
We will determine knot types of torus-type orbits.

Let γRKP be a Tk,l-type orbit. We first suppose that k ˘ l are even. Proposition 3.4
shows that the Tk,l-torus family bifurcates from an even-fold covered direct circular or-
bit which is contractible, see [Alb+13, Section 7.2]. Consequently, γRKP is contractible.
Since in the Levi-Civita regularization the bounded component is diffeomorphic to S3,
see Section 2.4.2, it follows that the lift rγRKP of γRKP in S3 consists of two components.
It is obvious that they have the same knot type and hence without loss of generality,
we may focus on one of two components. If k˘ l are odd, then by the same reasoning
γRKP is noncontractible. Therefore, by traversing γRKP twice we lift it to rγRKP in S3

which is a single orbit.

Before determining knot types we note that if k + l is even, then gcd((k + l)/2, (k ´
l)/2) = 1, where gcd(a, b) denotes the greatest common divisor of a, b P R. Similarly,
if k+ l is odd, then we have gcd(k+ l, k´ l) = 1.

Case 1. γRKP is contractible.
Recall that the Tk,l-torus family bifurcates from the (k´ l)-fold covered direct circular
orbit and dies at the (k+ l)-fold covered retrograde circular orbit. Since the Tk,l-torus
family is a smooth two-parameter family of Tk,l-type orbits, it is obvious that any two
family members have the same knot type. Therefore, in order to determine the knot
type of the Tk,l-torus family it suffices to consider a suitable representative. We choose
two Tk,l-type orbits rγ1 and rγ2 which are sufficiently close to the lifts of the (k ´ l)-
fold covered direct circular orbit and the (k+ l)-fold covered retrograde circular orbit,
respectively. To explain them in more details, we abbreviate by (cd, cr) the interval
of energies in which the Tk,l-torus family takes values, where at HRKP = cd and at
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HRKP = cr, the Tk,l-torus family bifurcates and dies, respectively. The two orbits
rγ1 and rγ2 are then given by Tk,l-type orbits having HRKP = cd + ε and HRKP =

cr ´ ε, respectively, for ε ą 0 small enough. Consider the energy interval [cd, cd + ε]

representing the solid torus in S3 whose boundary is a Tk,l-torus containing rγ1 and
whose core is the lift of the (k ´ l)-fold covered direct circular orbit. Since ε ą 0 is
small enough, it follows that rγ1 is a (k ´ l,n)-torus knot for some n ą 0 satisfying
gcd(k´ l,n) = 1 . In a similar way, we see that rγ2 is a (k+ l,m)-torus knot for some
m ą 0 satisfying gcd(k+ l,m) = 1. Since rγ1 and rγ2 have the same knot type, it follows
that n = k + l and m = k ´ l. We conclude that the lift of any Tk,l-type orbit a
((k+ l)/2, (k´ l)/2)-torus knot.

Case 2. γ is noncontractible.
In this case k ˘ l are odd. An argument similar with the one given in Case 1 shows
that the lift of a Tk,l-type orbit is a (k+ l, k´ l)-torus knot.

We have proven

Proposition 3.6. Any Tk,l-type orbit in the rotating Kepler problem lifts to a (k +

l, k ´ l)-torus knot or a ((k + l)/2, (k ´ l)/2)-torus knot if k + l is odd or if k + l is
even, respectively, in the Levi-Civita regularization.

3.3 The Euler problem of two fixed centers

Forgetting the rotating term q1p2 ´ q2p1 from H3BP so that the Earth and Moon are
forced to be at rest in an inertial system, we obtain the Euler problem of two fixed
centers whose Hamiltonian equals

HEuler(q1, q2, p1, p2) =
1
2 |p|

2 ´
1´ µ
|q´E|

´
µ

|q´M |
,

where E = (0, 0) and M = (1, 0). We abbreviate by

V (q) = ´
1´ µ
|q´E|

´
µ

|q´M |

the potential.

The Euler problem is also integrable with an integral

B(q, p) = ´(q1p2 ´ q2p1)
2 + (q1p2 ´ q2p1)p2 ´

(1´ µ)q1
|q|

´
µ(1´ q1)

|q´M |
. (39)

Remark 3.7. Note that as µ Ñ 0, the integral B converges to ´L2 +A1, where A1
is the first component of the Runge-Lenz vector, see Section 2.5.2.
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3.3.1 Critical points and Hill’s regions

The Hamiltonian admits a unique critical point

L =

$

&

%

(
1´µ´

?
µ(1´µ)

1´2µ , 0, 0, 0) if µ ‰ 1
2

( 1
2 , 0, 0, 0) if µ = 1

2

of Morse index 1 or equivalently its projection to the configuration space is a sad-
dle point of the potential. The corresponding critical energy level is given by cJ :=

HEuler(L) = ´1´ 2
b

µ(1´ µ). For c ă cJ , the Hill’s region consists of two bounded
components: the Earth component KE

c and the Moon component KM
c . Note that there

exists no unbounded component because of the absence of the rotating term. For
cJ ă c ă 0, the two bounded components become connected, see Figure 7. For c ą 0,
we have Kc = R2z t(0, 0)u. In particular, for negative energies the satellite is confined
to bounded regions.
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Figure 7: Hill’s regions for the Euler problem with µ = 1/4

3.3.2 Elliptic coordinates

Since the two primaries are fixed, they can be regarded as foci of a set of ellipses
and hyperbolas. In order to introduce the (double covered) elliptic coordinates, we
apply the translation (q1, q2, p1, p2) ÞÑ (q1 ´ 1/2, q2, p1, p2) so that E = (´1/2, 0)
and M = (1/2, 0). Note that the dynamics does not change. The elliptic coordinates
(λ, ν) P Rˆ S1[´π,π] are then defined by the relation

coshλ = |q´E|+ |q´M | and cos ν = |q´E| ´ |q´M |.

In the q-plane, the lines λ = constant resp. ν = constant form ellipses resp. hyperbolas
with the two foci at E,M . We observe that

(λ, ν) ÞÑ (q1, q2) =

(
1
2 coshλ cos ν, 1

2 sinhλ sin ν
)

(40)
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is a two-fold covering with two branch points E and M . The two sheets are related by
the involution

(λ, ν) ÞÑ (´λ,´ν). (41)

The corresponding momenta pλ and pν are determined by the canonical relation p1dq1 +

p2dq2 = pλdλ+ pνdν. The involution (41) extends to the phase space by

(λ, ν, pλ, pν) ÞÑ (´λ,´ν,´pλ,´pν).

In these coordinates the Hamiltonian becomes

HEuler =
Hλ +Hν

cosh2 λ´ cos2 ν
,

where Hλ = 2p2
λ ´ 2 coshλ and Hν = 2p2

ν + 2(1´ 2µ) cos ν. Following the convention
in [SR79], we choose an integral by G = ´HEuler + 2B which is given by

G = ´
Hλ cos2 ν +Hν cosh2 λ

cosh2 λ´ cos2 ν
.

Given (G,HEuler) = (g, c), the momenta pλ and pν are expressed by

p2
λ =

c cosh2 λ+ 2 coshλ+ g

2 and p2
ν =

´c cos2 ν ´ 2(1´ 2µ) cos ν ´ g
2 . (42)

It follows that in the elliptic coordinates the Euler problem is separable.

3.3.3 Families of periodic orbits and bifurcations

Fix a regular value HEuler = c ă 0. Due to collisions, bounded components of the
energy hypersurface are noncompact. In order to regularize the dynamics, we define
the new Hamiltonian

K := (HEuler ´ c)(cosh2 λ´ cos2 ν) = Kλ +Kν ,

where Kλ = 2p2
λ ´ 2 coshλ´ c cosh2 λ and Kν = 2p2

ν + 2(1´ 2µ) cos ν + c cos2 ν. Note
that with the time scaling

dt = (ξ2 ´ η2)dτ ,

orbits of H with energy c and time parameter t correspond to orbits of K with energy
0 and time parameter τ . As a result, the bounded components are compactified as
done via the Moser regularization or via the Levi-Civita regularization in the previ-
ous chapter. Since we are working on the double covering, the compactified bounded
components are diffeomorphic to S3.

In the following, we consider the regularized system and hence the satellite is allowed
to pass through the primaries. Since Kλ and Kν Possion commute, i.e., tKλ,Kνu = 0,
we obtain

φtHEuler = φtKλ ˝ φ
t
Kν ,

cf. (34). As in the rotating Kepler problem, for an orbit to be periodic we need a
suitable resonance condition between the λ-period Tλ and the ν-period Tν : an orbit is
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periodic if and only if the rotation number R = Tν/Tλ is rational. The Hamiltonian
equations together with (42) give rise to

λ̇ = 4pλ = ˘2
?

2
b

c cosh2 λ+ 2 coshλ+ g (43)

ν̇ = 4pν = ˘2
?

2
b

´c cos2 ν ´ 2(1´ 2µ) cos ν ´ g, (44)

where the dots denote the differentiation with respect to τ . Given (G,HEuler) = (g, c),
abbreviate by λmin ă λmax and by νmin ă νmax the two roots of the functions in the
square roots in (43) and (44), respectively. The periods Tλ and Tν are then given by
the integrals

Tλ =
1
?

2

ż λmax

λmin

dλ
a

c cosh2 λ+ 2 coshλ+ g

and
Tν =

1
?

2

ż νmax

νmin

dν
a

´c cos2 ν ´ 2(1´ 2µ) cos ν ´ g
,

respectively. Both periods Tλ and Tν can be expressed in terms of complete elliptic
integrals of the first kind, for example see [DM16; Kim17]. In particular, they only
depend on (g, c) from which we see that every periodic orbit on a given Liouville torus
has the same rotation number. A Liouville torus with rotation number R = k/l for
some relatively prime k, l is then called a Tk,l-torus and a periodic orbit lying on a Tk,l-
torus is referred to as a Tk,l-type orbit. Fixing R = k/l and varying (G,HEuler) = (g, c)
gives rise to a smooth family of Tk,l-tori of rotation number R = k/l, which will be
referred to as the Tk,l-torus family, cf. Section 3.2.3. In Figure 8 we illustrate some
Tk,l-type orbits.

(a) A T7,5-type orbit (b) A T8,5-type orbit

Figure 8: Some torus-type orbtis

As in Section 3.2.3 we discuss regular regions (or classically allowed region) in the
lower-half (g, c)-plane. These regions are the set of regular values (g, c) of the energy-
momentum map (G,HEuler) : T ˚R2 Ñ R2. We now define the function

fµ(x) = cx2 + 2(1´ 2µ)x+ g
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Region Ranges of the Roots Ranges of the Variables

P
coshλ : ´1 ă 1 ă x0

1 ă x0
2

cos ν :

#

´1 ă 1 ă xµ
1 ă xµ

2 , (1´ 2µ)2
ě gc

complex roots, (1´ 2µ)2
ă gc

coshλ P [x0
1,x0

2]

cos ν P [´1, 1]

L
coshλ : ´1 ă x0

1 ă 1 ă x0
2

cos ν :

#

´1 ă 1 ă xµ
1 ă xµ

2 , (1´ 2µ)2
ě gc

complex roots, (1´ 2µ)2
ă gc

coshλ P [1,x0
2]

cos ν P [´1, 1]

S coshλ : ´1 ă x0
1 ă 1 ă x0

2
cos ν : ´1 ă xµ

1 ă xµ
2 ă 1

coshλ P [1,x0
2]

cos ν P [´1,xµ
1 ]Y [xµ

2 , 1]

S1 coshλ : ´1 ă x0
1 ă 1 ă x0

2
cos ν : ´1 ă xµ

1 ă 1 ă xµ
2

coshλ P [1,x0
2]

cos ν P [´1,xµ
1 ]

Table 1: The ranges of the roots and the variables in the four regular regions. The S1-region
does not appear if µ = 1/2.

so that we have in view of (42) that pλ = ˘
b

f0(coshλ)/2 and pν = ˘
b

´fµ(cos ν)/2.
Abbreviate by xµ1 and xµ2 two roots of fµ. Note that for the momenta to be real we
need f0 ą 0 for x P [1,8) and fµ ă 0 for µ ‰ 0 and x P [´1, 1]. We have four types
of regular regions according to the ranges of the roots as described in Table 1. For
more details, see [SR79; WDR04; Kim18a]. Note that ´1 ă xµ1 ă 1 ă xµ2 is equivalent
to ´2(1´ 2µ) ă c+ g ă 2(1´ 2µ) which is not the case if µ = 1/2. This implies
that the S1-region does not appear when the Earth and Moon have equal masses. The
boundaries of the four regions are given by the following five critical curves:

`1,2 : c = ´g˘ 2(1´ 2µ), `3 : c = ´g´ 2
`4 : gc = (1´ 2µ)2, cJ ă c ă ´(1´ 2µ) `5 : gc = 1, c ą ´1,

see Figure 9. Recall that each point on the critical curves is a critical value of the
energy-momentum map. Note that if µ = 1/2, the two curves `1 and `2 are identical. If
µ ‰ 1/2, they are the boundaries of the S1-region. In the following we only consider the
case µ ‰ 1/2. One can understand the symmetric case µ = 1/2 with the same argument
by ignoring the S1-region. We observe that `3 and `4 intersect at (g, c) = (´cJ ´ 2, cJ ).
Thus, for c ă cJ only the two regions S and S1 appear. In [Con90, Appendix B]
Contopoulos proved by a direct calculation that for any point in S- and S1-regions the
corresponding rotation number is greater than one. In other words, any Tk,l-torus in
these regions satisfies k ą l. In the following we only consider energies c ă cJ . For the
case c ą cJ , for example see [SR79; WDR04; DM16; Kim17; Kim18a; Ver14].

We next discuss the phase portraits. Since the regularized system is separable, we can
consider the λ-phase portrait and the ν-phase portrait separately. Let us first consider
the λ-phase portrait. Fix any point (g, c) either in the S-region or in the S1-region.
The first equation of (42) shows that the phase portrait corresponding to the point
(g, c) is a simple closed curve which is symmetric under the reflections λ ÞÑ ´λ and
pλ ÞÑ ´pλ. For the variable ν, the second equation of (42) gives rise to a similar picture:
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Figure 9: Four regular regions and five critical curves

if (g, c) P S, then the ν-phase portrait consists of two simple closed curves: one, which
is centered at (ν, pν) = (´π, 0) and symmetric under the reflections ν ÞÑ ´ν ´ 2π and
pν ÞÑ ´pν , is associated to the Earth component and the other, which is centered at
(0, 0) and symmetric under the reflections ν ÞÑ ´ν and pν ÞÑ ´pν , is associated to the
Moon component. If (g, c) P S1, then the phase portrait consists of only one simple
closed curve associated to the Earth component, see Figure 10. This implies that for
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Figure 10: Phase portraits for µ = 1/4

points in the S-region, the corresponding motions of the satellite take place in either
near the Earth or near the Moon. The satellite is confined to a neighborhood of the
Earth if (g, c) P S1. Therefore, each point in the S-region or in the S1-region corresponds
to a disjoint union of two two-dimensional tori or a single torus, respectively, as we
already know by means of the Arnold-Liouville theorem. We illustrate typical orbits
in the two regions in Figure 11.
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(a) Orbits in the S-region (b) An orbit in the S1-region

Figure 11: Typical orbits in the S- and S1-regions.

We discuss critical orbits corresponding to points on the boundary curves of the S-
and S1-regions, i.e., points on the lines `1, `2 and `3. Each point on `1 corresponds to
the collision orbit ν = ´π in KE

c . This orbit is called the exterior collision orbit in the
Earth component. If (g, c) P `2, it represents an orbit either in KE

c or in KM
c . An orbit

near the Earth is regular and an orbit near the Moon represents the exterior collision
orbit in the Moon component ν = 0. For a point on `3, we have λ = 0 which is the
line segment joining the Earth and Moon. Since c ă cJ , this gives rise to two collision
orbits, which will be referred to as the interior collision orbits, where each of them lies
either in KE

c or in KM
c , see Figure 12.
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Figure 12: Exterior and interior collision orbits

We see that each compact component of the regularized energy hypersurface is given
by the union of two solid tori along their boundaries: the cores of the solid tori are
an (possibly multiple covered) exterior collision orbit and an (possibly multiple cov-
ered) interior collision orbit. Each Tk,l-torus family gives rise to a smooth curve in the
lower-half (g, c)-plane which converges to the boundary critical curves at both ends,
for example see [Kim17, Section 3]: the Tk,l-torus family bifurcates from an (possibly
multiple covered) interior collision orbit and dies at an (possibly multiple covered)
exterior collision orbit.
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Remark 3.8. Note that the exterior and interior collision orbits play roles as the
retrograde and direct circular orbits in the rotating Kepler problem, respectively.

In order to determine precise covering numbers of the collision orbits, we need the
following observation. Fix (g, c) which lies in the S- or in the S1-region and consider
motions in the Earth component. For motions in the Moon component, the same
argument gives rise to the same result. Assume that the satellite collides with the
Earth, i.e., we have (λ, ν) = (0,´π). Plugging this into the equations of (42) gives rise
to

pλ = ˘

c

c+ g+ 2
2 and pν = ˘

c

´c´ g+ 2(1´ 2µ)
2 . (45)

Since ´2 ă g + c ă ´2(1´ 2µ) for (g, c) P S and ´2(1´ 2µ) ă g + c ă 2(1´ 2µ) for
(g, c) P S1, we see from (45) that a collision orbit exists on any Tk,l-torus in the S- or
S1-region. Moreover, we observe that pλ and pν vanish only if (g, c) P `3 and (g, c) P `1,
respectively. Thus, both momenta never vanish at collisions along torus-type orbits.
Instead, λ and ν change signs before and after collisions. The reflection symmetries of
the phase portraits then imply that the satellite retraces its former journey after the
collision. In a similar way, we see that every Tk,l-torus corresponding to (g, c) P S or
(g, c) P S1 contains a periodic orbit which admits the condition (pλ, pν) = (0, 0) at
which the satellite hits the boundary of the Earth component. Moreover, the momenta
pλ and pν change signs before and after (pλ, pν) = (0, 0). Again by the symmetries of
the phase portraits the satellite retraces its former journey after touching the boundary
BKE

c . This observation gives rise to the following definition.

Definition 3.9. A periodic orbit in the Euler problem is called

• a brake-brake orbit if the satellite touches the boundary of the Hill’s region at
two (distinct) points;

• a collision-collision orbit if the satellite collides with one of the primaries twice
(with distinct momenta); and

• a brake-collision orbit if the satellite touches the boundary of the Hill’s region
and also collides with the one of the primaries, see Figure 13.

Figure 13: A brake-brake orbit (left), a collision-collision orbit (middle), and a brake-collision
orbit (right)

The equations (42) show that any intersection point along the above three orbits is
either double or quadruple. Other periodic orbits only have double intersection points.
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Proposition 3.10. Fix any Tk,l-torus associated to (g, c) P S or (g, c) P S1.

(i) it contains precisely two collision orbits which can be obtained from each other
by the q1-axis reflection. If k + l is even, they are brake-collision orbits and if
k+ l is odd, they are collision-collision orbits;

(ii) if k + l is odd, then it contains a unique brake-brake orbit which is symmetric
with respect to the q1-axis. If k+ l is even, there exist no brake-brake orbits.

Proof. We make of use the argument given by Verhaar [Ver14, Section 5].

(i) Note that R = Tν/Tλ = k/l implies that the satellite has k cycles in λ and l cycles
in ν. Abbreviate T = kTλ = lTν . Suppose that γ(t) = (λ(t), ν(t)) admits a collision.
We choose the initial condition to be the collision: γ(0) = (0,´π). Without loss of
generality, we may assume that (pλ(0), pν(0)) = (pmax

λ , pmax
ν ), where pmax

λ , pmax
ν ą 0.

Assume that the second collision happens at t = T/2 from which we obtain that
(pλ(T/2), pν(T/2)) = (pmax

λ , pmax
ν ), (pmax

λ ,´pmax
ν ), (´pmax

λ , pmax
ν ) or (´pmax

λ ,´pmax
ν ),

see Figure 14. Note that for each σ = λ, ν that pσ ÞÑ pσ and pσ ÞÑ ´pσ at t = T/2
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Figure 14: Four possibilities for the collision at t = T/2. The first case is excluded since
gcd(k, l) = 1. The second and the third cases imply that the orbit under considera-
tion is a (simple covered) collision-collision orbit. The last case means that the orbit
is a (double covered) brake-collision orbit.

imply that T/2 is an even multiple and an odd multiple of Tσ/2, respectively. It follows
immediately that the first case (pλ(T/2), pν(T/2)) = (pmax

λ , pmax
ν ) contradicts the fact

that k and l are relatively prime.
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Assume that the second case (pλ(T/2), pν(T/2)) = (pmax
λ ,´pmax

ν ) which implies that k
is even and l is odd. In this case γ is a simple covered T -periodic collision-collision orbit.
Observe that the Hamiltonian K admits the following anti-symplectic involutions:

I1 : (λ, ν, pλ, pν) ÞÑ (λ, ν,´pλ,´pν)

and
I2 : (λ, ν, pλ, pν) ÞÑ (´λ, ν, pλ,´pν).

The first involution correspond to the time reversal under which the image of γ does
not change. In view of (40) the second involution corresponds to the q1-axis reflection.
The equations (45) then show that there exist precisely two collision-collision orbits
which are obtained from each other by the q1-axis reflection. For the third case, we
obtain the same result.

For the remaining case (pλ(T/2), pν(T/2)) = (´pmax
λ ,´pmax

ν ) both k and l are odd.
In this case the satellite comes back to the collision at t = T/2 by retracing its former
journey. Since t = T/2 is the time at which the second collision happens, this shows
that there exists a unique t0 P (0,T/2) at which the satellite touches the boundary of
the Hill’s region. Therefore, as a T -periodic orbit γ is a double covered brake-collision
orbit. By the same reasoning as in the previous case, there exist precisely two brake-
collision orbits and one is obtained from the other by the reflection with respect to the
q1-axis. This first assertion is proved.

(ii) Assume that γ is a T -periodic orbit which has a braking point at t = 0, i.e.,
(pλ(0), pν(0)) = (0, 0). Without loss of generality, we may assume that (λ(0), ν(0)) =
(λmax, νmax), λmax, νmax ą 0. As in the proof of the first assertion, we have four
possibilities for the second braking at t = T/2: (λ(T/2), ν(T/2)) = (λmax, νmax),
(λmax,´νmax), (´λmax, νmax), or (´λmax,´νmax). In a similar way, we see that the
first case is impossible and the last case gives rise to a doubly-covered T -periodic brake-
collision orbit. From the second and third cases we obtain a unique simple covered T -
periodic brake-brake orbit which is symmetric with respect to the q1-axis. This proves
the second assertion and completes the proof of the proposition.

Remark 3.11. That any Tk,l-torus in the S-region contains precisely two collision
orbits was already proved by Dullin and Montgomery by means of symbolic dynamics,
see [DM16, Corollary 8]. They also observed the existence of brake-brake orbits, see
[DM16, Section 9].

The following proposition determines the desired covering numbers of the exterior and
interior collision orbits.

Proposition 3.12. Fix any Tk,l-torus family. If k+ l is even, then it bifurcates from
the l-fold covered interior collision orbit and dies at the k-fold covered exterior collision
orbit. If k+ l is odd, then it bifurcates from the 2l-fold covered interior collision orbit
and ends at 2k-fold covered exterior collision orbit.

Proof. It suffices to determine the intersection numbers of Tk,l-type orbits with the
negative and positive q1-axis. By [DM16, Theorem 1] these numbers only depend on k
and l. Therefore, we just need to choose suitable representatives. In view of the previous
proposition, we choose a brake-collision orbit if k + l is even and a collision-collision
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orbit if k+ l is odd. Recall that along a Tk,l-type orbit γ the variable λ makes k cycles
and the variable ν makes l cycles. Since (λ, ν) is a 2-1 (branched) covering, this shows
that γ intersects the positive q1-axis precisely 2k-times at which we have λ = 0 and the
negative q1-axis precisely 2l-times at which we have ν = ´π. The proof of Proposition
3.10 shows that we see that γ is double covered and single covered if k+ l is even and
if k+ l is odd, respectively. This finishes the proof of the proposition.

3.3.4 Knot types

In Section 3.2.4, we determined knot types of torus-type orbits in the rotating Kepler
problem (in the Levi-Civita regularization). We do a similar business for torus-type
orbits in the S- and the S1-regions. Recall from Proposition 3.12 and [Alb+13, Section
7.2] that Tk,l-type orbits are contractible if k + l is odd and noncontractible if k + l

is even. An argument similar with the one given in Section 3.2.4 with two Tk,l-type
orbits, which are sufficiently close to (multiple covered) exterior and interior collision
orbits, gives rise to the following:

Proposition 3.13. Any Tk,l-type orbit in the Euler problem lifts to a (k, l)-torus knot
in the Levi-Civita regularization.



4
PLANAR PERIODIC ORBITS AND J + - L IKE INVARIANTS

In this chapter, we discuss homotopic invariants for periodic orbits in certain Hamil-
tonian systems. The chapter is organized as follows. In Section 4.1 we define a class
of Hamiltonian systems, which are called Stark-Zeeman systems and which have the
PCR3BP, the rotating Kepler problem, and the Euler problem as examples. Properties
of periodic orbits in Stark-Zeeman systems will be discussed in Section 4.2. Finally, in
Section 4.3, following [CFK17], we define two invariants for families of periodic orbits
in Stark-Zeeman systems, which are modifications of Arnold’s J+-invariant. Through-
out this chapter, an immersion means an immersed curve γ : S1 Ñ C from the circle to
the complex plane which is considered up to orientation preserving reparametrization.

4.1 Planar Stark-Zeeman systems

Let U Ă (R2, q1, q2) be an open neighborhood of the origin whose closure is diffeo-
morphic to the unit closed disk centered at the origin. The standard symplectic form
ω0 on (T ˚U , q1, q2, p1, p2) is defined to be dp1 ^ dq1 + dp2 ^ dq2. Fix a 2-form σB :=
B(q)dq1 ^ dq2 P Ω2(U ) which is called a magnetic form. Since the second de Rham
cohomology group of U is trivial, we see that σB is exact and hence there exists a
1-form αA = A1(q)dq1 +A2(q)dq2 P Ω1(U) satisfying dαA = σB. Note that

B =
BA2
Bq1

´
BA1
Bq2

.

The twisted symplectic form on T ˚U is then defined by

ωB := ω0 + π˚σB,

where π : T ˚U Ñ U is the footpoint projection. Notice that if the smooth function
B = B(q) is identically zero, then the twisted symplectic form and the standard
symplectic form coincide with each other.
Let V1 : U Ñ R be a smooth function. Consider the Hamiltonian

H : T ˚(Uz t(0, 0)u)Ñ R, H(q, p) = 1
2 |p|

2 ´
1
|q|

+ V1(q)

and the diffeomorphism ΦA : (T ˚(Uz t(0, 0)u),ω0)Ñ (T ˚(Uz t(0, 0)u),ωB)

ΦA(q, p) := (q, p´A(q)), A(q) = (A1(q),A2(q)).

49
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We observe that ΦA is a symplectomorphism. Indeed, we compute that

Φ˚AωB = Φ˚A(ω0 + π˚σB)

= Φ˚Aω0 + (π ˝Φ)˚σB

= d(p1 ´A1(q))^ dq1 + d(p2 ´A2(q))^ dq2 + σB

= ω0 ´ σB + σB

= ω0.

In particular, ΦA transforms the Hamiltonian equations of H with respect to ωB into
the Hamiltonian equations of

HA(q, p) := Φ˚AH(q, p) = 1
2 |p´A(q)|

2 ´
1
|q|

+ V1(q) (46)

with respect to ω0. Note that the Hamiltonian HA has the form (11) in Section 2.4. As
already mentioned in that section, we define Stark-Zeeman systems as follows:

Definition 4.1. (Cieliebak-Frauenfelder-van Koert, [CFK17]) A planar Stark-Zeeman
system is a Hamiltonian system associated to a Hamiltonian of the form (46) defined
on (T ˚(Uz t(0, 0)u),ω0). A planar Stark-Zeeman system with A ” 0 is often called a
planar Stark system.

Namely, a planar Stark-Zeeman system describes the dynamics of the satellite which
moves along integral curves of the Hamiltonian flow XHA . Notice that the PCR3BP
and the rotating Kepler problem are planar Stark-Zeeman systems with A = (´q2, q1)

and the Euler problem is a planar Stark system.

4.2 Periodic orbits in Stark-Zeeman systems

Let c1 P R be the energy value described in Section 2.4 such that for any c ă c1 the
following are satisfied:

• c is a regular value of V := ´1/|q|+ V1; and

• the Hill’s region Kc = tq P U : V (q) ď cu contains a unique bounded component
Kb
c whose closure is diffeomorphic to the unit closed disk centered at the origin.

We remark that the first critical level of the PCR3BP and the critical energies of its
two friends satisfy these conditions.

Let qs : S1 Ñ Kb
c, s P (´ε, ε), be a family of periodic orbits in a planar Stark-Zeeman

system of energies less than c1. We assume that the system is regularized so that the
satellite is allowed to pass through the origin. Consider a point q0(t0). We distinguish
the following three cases:

Case 1. q0(t0) P BKb
c.

In this case the velocity vanishes at t = t0, i.e., q̇0(t0) = 0. We assume that the
component of q̇s(t0) which is normal to ∇V (qs(t0)) changes sign through the point
q0(t0).

Lemma 4.2. ([CFK17, Lemma 1] and [Kim18b, Lemma 2.3]) Given the data as above,
the following hold true:
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(i) if B(q0) ‰ 0, then the orbit q0 has a cusp at t = t0 and a birth or death of an
exterior loop happens through the cusp, see Figure 15a;

(ii) if B(q0) = 0, then the orbit q0 bounces back from the boundary, see Figure 15b.
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(b) Passing through touching the boundary of the Hill’s region for the case B ” 0

Figure 15: Disasters which happen at the point q0(t0) P BKb
c

Proof. Without loss of generality we may assume that t0 = 0. In view of the Hamilto-
nian equations of HA and that B = BA2/Bq1 ´ BA1/Bq2 we compute that

q̈s1 = B(qs)q̇s2 ´
BV
Bq1

(qs)

q̈s2 = ´B(qs)q̇s1 ´
BV
Bq2

(qs)

and

;qs1 = B(qs)q̈s2 ´
BV 2

Bq2
1
(qs)q̇s1 ´

BV 2

Bq1Bq2
(qs)q̇s2

= ´B(qs)2q̇s1 +B(qs) BV
Bq2

(qs)´ BV 2

Bq2
1
(qs)q̇s1 ´

BV 2

Bq1Bq2
(qs)q̇s2

;qs2 = ´B(qs)q̈s1 ´
BV 2

Bq1Bq2
(qs)q̇s1 ´

BV 2

Bq2
2
(qs)q̇s2

= ´B(qs)2q̇s2 +B(qs) BV
Bq1

(qs)´ BV 2

Bq1Bq2
(qs)q̇s1 ´

BV 2

Bq2
2
(qs)q̇s2.

(i) Assume that B(q0) ‰ 0. Since q̇0(0) vanishes, we see that the vectors q̈s(0) and ;qs(0)
are roughly equal to the vectors ´∇V (qs(0)) and ´B(qs(0))J0∇V (qs(0)), respectively,
where

J0 =

0 ´1
1 0

 ,
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for s small enough. In particular, they are almost orthogonal. Fix s sufficiently close
to 0. Choosing complex coordinates in which qs(0) = 0, q̇s(0) = a+ ib, q̈s(0) = 2 and
;qs(0) = 6i, the Taylor expansion of qs is given by

qs(t) = (at+ t2) + i(bt+ t3) +O(t4).

Ignoring the terms whose orders are greater than or equal to four, we obtain the curve
(q1(t), q2(t)) = (at+ t2, bt+ t3). Note that q1 Ñ8 and q2 Ñ ˘8 as tÑ ˘8. Assume
that there exist t ‰ s P R such that (q1(t), q2(t)) = (q1(s), q2(s)). Comparing both
sides we obtain that

t2 + at = s2 + as

ñ (t´ s)(t+ s+ a) = 0
ñ s = ´a´ t (47)

and

t3 + bt = s3 + bs

ñ (t´ s)(t2 + ts+ s2 + b) = 0
ñ t2 + ts+ s2 + b = 0. (48)

Plugging (47) into (48) gives rise to the polynomial

0 = t2 + t(´a´ t) + (´a´ t)2 + b = t2 + at+ (a2 + b)

whose determinant is given by ´3a2 ´ 4b. Therefore, if 3a2 + 4b ą 0, the curve q =

(q1, q2) does not have double points. If 3a2 + 4b ă 0, then the curve has a unique
double point q(t) = q(s), t ‰ s, and this implies that it has a loop. Moreover, this loop
vanishes as the parameters a, b cross the discriminant curve 3a2 + 4b = 0 at which the
curve q has a cusp. Recall that the family qs is defined in such a way that the component
of q̇s(0) normal to the gradient ∇V (qs(0)) changes sign. Since q̇s(0) = (a, b) and b is
normal to the gradient, changing sign of b corresponds to a crossing of the discriminant
curve. Therefore, a birth or death of a loop through the cusp happens for the family
qs. Since this picture persists under small perturbations, this proves the first assertion.

(ii) Suppose that B(q0) = 0. In this case we have

q̈s(0) = ´BV
Bq

(qs(0)) and ;qs(0) = ´D2V (qs(0))q̇s(0).

Fix s sufficiently close to 0. Since c is a regular value of V , we obtain q̈s(0) ‰ 0.
Moreover, ;qs(0) is very small. Choose complex coordinates in which qs(0) = 0, q̇s(0) =
a+ ib and q̈s(0) = 2. The Taylor expansion of qs in these coordinates then equals

qs(t) = qs(0) + q̇s(0)t+ 1
2 q̈

s(0)t2 +O(t3) = (at+ t2) + ibt+O(t3).

Ignoring the terms whose orders are higher than two, we see that the curve qs = (x, y)
satisfies
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x =
1
b2

(
y+

ab

2

)2

´
a2

4

for b ‰ 0 and qs(t) = (at+ t2, 0) for b = 0. This shows that for b ‰ 0, the orbit qs is
a parabola which converges to the ray θ = 0 as b tends to zero. Since b changes sign
along the family qs, the orientation of the orbit changes. This phenomenon persists
under higher order perturbations. This proves the second assertion and completes the
proof of the lemma.

Case 2. q0(t0) = (0, 0).
The orbit q0 collides with the origin at time t = t0.

Lemma 4.3. ([CFK17, Lemma 2]) Let qs be the family of periodic orbits described
as before. Suppose that q0(t0) = (0, 0). Then

(i) if B(q0(t0)) = 0, then the orbit q0 bounces back from the origin;

(ii) if B(q0(t0)) ‰ 0, then the orbit q0 has a cusp at t = t0 and a birth or death of a
loop around the origin happens through the cusp.
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(b) B(q0(t0)) ‰ 0

Figure 16: Passing through the origin

Proof. Without loss of generality, we may assume that t0 = 0. Notice that near the
origin the Newtonian force is prominent and hence the satellite behaves as in the Kepler
problem. In particular, the following does not happen.
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If B(q0(0)) = 0, then as in the Kepler problem we have Figure 16a which proves the
first assertion.

We now switch on the magnetic field B(q0(0)) ‰ 0 and hence the Newtonian equation
is given by

q̈ = ´J0Bq̇´∇V (q).

Note that besides the gravitational force ∇V (q), the additional force J0Bq̇ are at work,
which is perpendicular to the velocity, see Figure 17. Therefore, if we switch a nonzero

Gradient Force

1

Magnetic Force

1

Resulting Orbit

1

Figure 17: The magnetic force acts to the left of the motion of the satellite

term B, at the collision the orbit has a cusp. For s ą 0 sufficiently small, away from
the origin the orbit qs is close to the collision orbit q0 and near the origin it is close to
a Kepler orbit. This gives rise to Figure 16b. This completes the proof.

Case 3. q0(t0) ‰ 0 lies in the interior of Kb
c.

In both cases that B(q0) ‰ 0 and B(q0) = 0, the orbit q0 is an immersion near t = t0.

We now discuss the case B ” 0 in more details. Let qs be a family of periodic orbits in
Stark systems. Lemmas 4.2 and 4.3 show that an additional loop will not be attached
to qs. Moreover, we see that the absolute value of winding number of periodic orbits
around the origin does not change during the family, but sign might change.

Lemma 4.4. Let q : S1 Ñ C be a periodic orbit in a Stark system. Assume that
q(t0) = q(t1) is an inverse self-tangency for some t0 ‰ t1 P S

1. Every point on the
orbit q is then an inverse self-tangency. Moreover, q touches the boundary of the Hill’s
region or it collides with the origin.

Proof. Without loss of generality we may assume that t0 = 0 and t1 = 1. The fact
that q̇(0) = ´q̇(1) together with the Hamiltonian equations give rise to

q(2n)(0) = q(2n)(1) and q(2n+1)(0) = ´q(2n+1)(1), n P NY t0u . (49)

We choose any complex coordinates centered at q(0) = q(1) in which the Taylor
expansion of q is given by

q(t) =
8
ÿ

n=1

q(n)(0)
n!

tn
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for t P (´ε, ε)Y (1´ ε, 1+ ε) for ε ą 0 sufficiently small. In view of (49) we see that the
restriction q|(1´ε,1+ε) is a time reverse reparametrization of the restriction q|(´ε,ε). This
implies that every point in this chart is an inverse self-tangency. By compactness of the
image of a periodic orbit, we conclude that all points on q are inverse self-tangencies
except for two points at which the orbit q bounces back. In view of Lemmas 4.2 and
4.3 this completes the proof of the lemma.

Consequently, in a planar Stark system a periodic orbit which admits an inverse self-
tangency is either a brake-brake orbit, a collision-collision orbit, or a brake-collision
orbit, see Definition 3.9.

4.3 Invariants for planar periodic orbits

In the previous section we defined the notion of generic families of periodic orbits in
Stark-Zeeman systems. We now introduce invariants for such families.

4.3.1 The Whitney-Graustein theorem

Let γ : S1 Ñ C be an immersion. By abuse of notation, the image K = imγ of an
immersion is also called an immersion. The rotation number rot(γ) of γ is defined to
be the degree of the map

S1 ÝÝÝÝÑ S1

t ÞÝÝÝÝÑ
γ1(t)

|γ1(t)|
.

A one-parameter family of immersions is called a regular homotopy. Note that the
rotation number is invariant under regular homotopies. The following theorem is proved
in [Whi37].

Theorem 4.5. (Whitney-Graustein) There exists a bijection between regular homo-
topy classes of immersions from S1 to C and the set of integers, where the correspon-
dence is given by [γ] ÞÑ rot(γ).

4.3.2 Arnold’s J+-invariant

By a generic immersion, we mean an immersion only with transverse double points.
Note that generically a homotopy through generic immersions admits three disasters:
triple intersections and direct and inverse self-tangencies. Recall that a self-tangency
is said to be direct and inverse if the two tangent vectors at the intersection point
have the same direction and the opposite directions, respectively. A regular homotopy
(Ks)sP[0,1] is called a generic homotopy if each Ks is a generic immersion except at
finitely many s P (0, 1) at which Ks admits crossings through either a triple point or
a self-tangency.
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In [Arn94], Arnold introduce three invariants for generic homotopies without the three
disasters. Among them, we are interested in the J+-invariant which does not change
under

(II+) crossing through an inverse self-tangency, see Figure 19c; and

(III) crossing through a triple point, see Figure 19d.

However, it behaves sensitively to direct self-tangencies: under a positive (or a negative)
crossing through a direct self-tangency, which increases (or decreases) the number
of double points, J+ is increased (or decreased) by two. Different from the rotation
number, the J+-invariant does not depend on the orientation. We normalize it by

J+(Kj) =

$

&

%

2´ 2j j ‰ 0,

0 j = 0,

where Kj , j P N Y t0u, are the standard curves: K0 is the figure eight, K1 is the
circle, and for each j ě 2 the curve Kj is given as in the following figure. Let K be

j − 1

1

a generic immersion. We assume that it is generically homotoped to Kj having N1
positive crossings and N2 negative crossings through a direct self-tangency. Then the
abovementioned rules imply

J+(K) = J+(Kj)´ 2N1 + 2N2.

We introduce Viro’s formula for calculating the J+-invariant. This formula will be
used in Section 5.1. Let K be a generic immersion. We abbreviate by ΣK the set of all
connected components of the complement CzK and by DK the set of all double points
of K. For any C P ΣK , the winding number, denoted by wC(K), is defined to be the
winding number of K around an interior point in C. Note that wC(K) is independent
of the choice of an interior point. Pick a double point p P DK . We observe that it
is adjacent to four connected components (one component may be counted twice) of
the complement, see Figure 18. The index of p, denoted by indp(K), is then defined
to be the arithmetic mean of the winding numbers of the four adjacent connected
components.

Proposition 4.6. ([Vir96, Corollary 3.1.B and Lemma 3.2.A]) Given a generic immer-
sion K, the J+-invariant is given by

J+(K) = 1 + #DK ´
ÿ

CPΣK

wC(K)2 +
ÿ

pPDK

indp(K)2.
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1
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1

Figure 18: The black point is adjacent to the connected components C0, C1, C2 and C3, while
the gray point is adjacent to C0 which is counted twice, C4 and C5.

Note that the complement of any generic immersion has a unique unbounded compo-
nent which has winding number zero.

Example 4.7. We compute the J+-invariant for the knot given in Figure 18 in two
ways: (i) by Viro’s formula and (ii) by definition.

(i) Given the orientation in the following figure, we write the winding numbers of
connected components of CzK in the interiors. The bold numbers are the indices of
the double points. Then the Viro formula says

J+(K) = 1 + 4´ (02 + (´1)2 + 12 + 12 + 12 + 22) + (02 + 12 + 12 + 12) = 0.

0

2

-1

1

1
1

(ii) In the following we homotope K to a circle. During the homotopy, we meet one
negative crossing and one positive crossing through a direct self-tangency. Since the
J+-invariant of a circle equals zero, this shows that J+(K) = 0.

Corollary 4.8. ([CFK17, Lemma 4]) Let K be a generic immersion and pick any
connected component C of the complement CzK. Abbreviate by K 1 the generic im-
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mersion obtained by adding a small loop in C to K. We orient K in such a way that
the attached loop has the counterclockwise orientation. Then we have

J+(K 1) = J+(K)´ 2wC(K).

Proof. We make use of Viro’s formula. Let us denote by C 1 the component of CzK

which shares the arc to which a small loop is attached with C and by C2 the region
surrounded by the loop. Then we have the two cases illustrated in the following figure.

C

1

C

1

C ′

1

C ′

1

C ′′

1

C ′′

1

In any case we have wC1(K) = wC(K) ´ 1 and wC2(K) = wC(K) + 1. We then
compute that

J+(K 1) = 1 + #DK1 ´
ÿ

APΣK1

wA(K
1)2 +

ÿ

pPDK1
indp(K 1)2

= 1 + (#DK + 1)´ (
ÿ

APΣK

wA(K
1)2 +wC2(K)2)

+

(
ÿ

pPDK

indp(K 1)2 +

(
wC(K) +wC(K) +wC1(K) +wC2(K)

4

)2)
= J+(K) + 1´wC2(K)2 +wC(K)2

= J+(K) + 1´ (wC(K) + 1)2 +wC(K)2

= J+(K)´ 2wC(K)

from which the corollary is proved.

In particular, in view of J+(K1) = 0 we see that the J+-invariant does not change
under being attached by additional loops in the unbounded component of CzK, which
was already observed by Arnold [Arn94, Chapter 1].
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4.3.3 The Cieliebak-Frauenfelder-van Koert invariants

Recall from Section 4.2 that during a family of periodic orbits in a Stark-Zeeman
system (with B ‰ 0) the following disasters can happen:

(I8) birth or death of exterior loops through cusps at the boundary of (the bounded
component of) the Hill’s region, see Figure 19a; and

(I0) birth or death of loops around the origin through cusps at the origin, see Figure
19b.

Meanwhile in a Stark system these two disasters never happen and the event (II+)

is equivalent to the appearance of one of the three distinguished periodic orbits in
Definition 3.9.

These observations show that families of periodic orbits in Stark-Zeeman systems are
not generic homotopies. This led Cieliebak, Frauenfelder and van Koert to introduce
the notion of Stark-Zeeman homotopies which represent generic 1-parameter families
of (simple covered) periodic orbits in (varying) planar Stark-Zeeman systems.

Definition 4.9. ([CFK17, Definition 1]) A 1-parameter family (Ks)sP[0,1] of closed
curves in C is called a Stark-Zeeman homotopy if each member is a generic immersion
in Cz t(0, 0)u except for the disasters (I8), (I0), (II+), and (III) at finitely many
s P (0, 1), see Figure 19.

Remark 4.10. Since periodic orbits in planar Stark-Zeeman systems are solutions of
the Hamiltonian equations associated to the Hamiltonian (46), by the existence and
uniqueness theorem of O.D.E. no direct self-tangencies happen along them.

As a special case of a Stark-Zeeman homotopy with B ” 0, we define a Stark homotopy.

Definition 4.11. A 1-parameter family (Ks)sP[0,1] of closed curves in C is called a
Stark homotopy if each member is a generic immersion in Cz t(0, 0)u except for the
disasters (II+) and (III) at finitely many s P (0, 1), where in this case the disaster
(II+) means the appearance of the distinguished periodic orbits in Definition 3.9.

Recall that Arnold’s J+-invariant does not change under (I8), (II+) and (III). How-
ever, it in general changes under (I0).

We are now in position to define invariants which also do not change under the disaster
(I0). Let K be a generic immersion in Cz t(0, 0)u. Abbreviate by w0(K) P Z the
winding number of K around the origin. The J1-invariant of K is defined to be

J1(K) := J+(K) +
w0(K)2

2 .

Recall that the Levi-Civita mapping L is defined as the cotangent lift of the complex
squaring map

L : Cz t(0, 0)u Ñ Cz t(0, 0)u , z ÞÑ z2,

see Section 2.4.2. Note that the preimage L´1(K) is also a generic immersion in
Cz t(0, 0)u. By definition, the restriction of the map L to the preimage L´1(K) is
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(d) A crossing through a triple point

Figure 19: Disasters during a Stark-Zeeman homotopy

a 2-1 covering. According to the parity of the winding number w0(K), the second in-
variant J2 is defined as follows: if w0(K) is even, then the preimage L´1(K) consists
of two connected components. We then choose one component rK and define

J2(K) := J+( rK).

This definition is well-defined since the definition of L implies that the two connected
components of L´1(K) are related by a π-rotation in Cz t(0, 0)u. Therefore, J2 does
not depend on the choice of components. If w0(K) is odd, then L´1(K) consists of a
single component and we define

J2(K) := J+(L´1(K)).
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Proposition 4.12. ([CFK17, Propositions 4 and 5]) J1 and J2 are invariant under
Stark-Zeeman homotopies (with B ‰ 0).

Proof. Let K be a generic immersion. Recall that J+ does not change under the disas-
ters (I8), (II+), and (III). Note that w0(K)2 is also invariant under these disasters.
Thus, it suffices to check the invariance under (I0). Abbreviate by K 1 the generic im-
mersion which is obtained from K by attaching a loop around the origin. Since the
quantity J+(K) + w0(K)2/2 is invariant under orientation reversion, without loss of
generality we may assume that K 1 is oriented in such a way that the attached loop has
the counterclockwise orientation. Then near the origin K and K 1 look like the first and
the last figures in Figure 16b, respectively, and hence we have w0(K

1) = w0(K) + 2.
On the other hand, since the J+-invariant does not take into account the origin, we
can think of K 1 as K added by a loop in the right-hand side of K and then we have
wc(K) = w0(K) + 1 by Corollary 4.8. We now observe

J1(K
1) = J+(K 1) +

w0(K 1)2

2

= J+(K)´ 2(w0(K) + 1) + (w0(K) + 2)2

2

= J+(K) +
w0(K)2

2
= J1(K)

from which we conclude that J1 is an invariant.

Since in the Levi-Civita regularization we have no collisions, the disaster (I0) does not
happen. Then the assertion for J2 follows from the fact that the J+-invariant does not
change under the other three disasters. This finishes the proof of the proposition.

If w0(K) is even, J1 and J2 are in general completely independent, see [CFK17, Propo-
sition 7]. However, if w0(K) is odd, then they have the following relationship:

Proposition 4.13. ([CFK17, Proposition 6]) If the winding number of K around the
origin is odd, then J2(K) = 2J1(K)´ 1.

Our next task is to show that J1 and J2 are also invariants for Stark homotopies.
By definition of a Stark homotopy, it suffices to prove that the two quantities do not
change before and after the appearance of the three distinguished periodic orbits in
Definition 3.9.

Let K be one of the three distinguished orbits. We perturb K slightly so that the
perturbed orbit rK is a generic immersion as follows: Near a braking point one can take
any perturbation. However for a collision, since a Stark system is close to the Kepler
problem near the origin, we perturb K in such a way that the perturbed orbit encircles
the origin, see Figure 20. We then define the J+-invariant K by the one of rK, i.e.,

J+(K) := J+( rK).

We claim that this definition is well-defined. Indeed, any two perturbed curves only
differ from each other by orientation and the number of exterior loops and crossings
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through a triple point, see Figure 21. By definition, these two perturbations have the
same J+. This proves the claim.

(O)

1

(X)

1

Figure 20: Two perturbations of the brake-collision orbit (gray). Since a Stark system is close
to the Kepler problem when the particle moves near the origin, the particle moves
as in the left figure. Thus, the J+-invariant of this brake-collision orbit equals 0.

= =

=

Figure 21: Two perturbations of the brake-brake orbit K in Figure 13. The above perturbation
homotopes K to the standard curve K1 with four negative crossings through a
direct self-tangency and the below one with four negative crossings through a direct
self-tangency, two crossings through a triple point, and four deaths of an exterior
loop. Consequently, they have the same invariant and hence the J+-invariant of the
brake-brake orbit is given by 8.

Proposition 4.14. The two quantities J1 and J2 are invariants for Stark homotopies.

Proof. Let (Ks)sP[0,1] be a Stark homotopy. Suppose that Ks0 is one of the distin-
guished orbits for some s0 P (0, 1). Since Ks0˘ε are generic immersions and small
perturbations of Ks0 , provided that ε ą 0 is small enough, by the previous claim we
have J+(Ks0´ε) = J+(Ks0+ε). This together with the fact that w0(K)2 does not
change during Stark homotopies imply that J1 and J2 are invariants for (Ks)sP[0,1].
This completes the proof of the proposition.
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We conclude this section by providing formulas for the J1 and J2 invariants of brake-
brake orbits and brake-collision orbits which will be used to prove the main result in
Section 5.2.

Proposition 4.15. Let γ be a brake-brake orbit or a brake-collision orbit. Assume
that all intersection points of γ are quadruple and the number of quadruple points
equals N . Then we have

J1(γ) =

$

&

%

2N if γ is a brake-brake orbit

2N + 1/2 if γ is a brake-collision orbit

and

J2(γ) =

$

&

%

2N if γ is a brake-brake orbit

4N if γ is a brake-collision orbit.

Proof. Let γ be as in the assertion. By the previous argument, one can generically
homotope a brake-brake orbit to a circle which does not encircle the origin and a
brake-collision orbit can be generically homotoped to a circle which encircles the origin.
Therefore, the winding number of a brake-brake orbit around origin is given by zero
and that of a brake-collision orbit equals either plus one or minus one. Note that
after a small perturbation, each quadruple point gives rise to four double points of
a generic immersion. During a homotopy, it leads to one crossing through a direct
self-tangency and one crossing through an inverse self-tangency (possibly with a finite
number of crossings through a triple point). Since a perturbation of γ is generically
homotoped to a circle, we conclude that J+(γ) = 2N . This proves the assertion for
the J1 invariants.

Assume that γ is a brake-brake orbit whose winding number equals zero. Let γ1 be
one of the two components of the preimage L´1(γ). It is obvious that γ1 also consists
of inverse self-tangencies. Since J2(γ) = J+(γ1), by the previous argument it suffices
to determine the number of quadruple points of γ1. Recall that the two components
of L´1(γ) are related by π-rotation in Cz t(0, 0)u. It follows that they have the same
number of quadruple points. Since L is a 2-1 covering, it follows that the number of
quadruple points along γ1 equals that of γ. If γ is a brake-collision orbit, then the
preimage consists of a single orbit consisting of inverse self-tangencies. By definition of
the map L, the number of quadruple points along L´1(γ) is given by 2N . This proves
the formulas for the J2 invariants and completes the proof of the proposition.

Remark 4.16. Since the winding number w0 of a brake-collision orbit is odd, one can
obtain its J2 invariants by means of Proposition 4.13. Indeed, we compute that

J2 = 2J1 ´ 1 = 2(2N +
1
2 )´ 1 = 4N .





5
APPL ICAT ION TO THE RESTRICTED THREE -BODY
PROBLEM

In this chapter, we apply the results from Chapter 4 to the PCR3BP to study its
families of periodic orbits. Throughout the chapter, we fix k ą l with gcd(k, l) = 1.

5.1 Invariants for the rotating Kepler problem

Recall that there exist two types of periodic orbits: the Tk,l-torus families and the
retrograde and direct circular orbits which are torus-type orbits resp. critical orbits for
L. Our tasks are to show that each torus family is a Stark-Zeeman homotopy and to
compute its J1 and J2 invariants. As before, we abbreviate by γRKP a Tk,l-type orbit
obtained by a T -periodic Kepler ellipse γ.

Recall from Section 3.2.3 that the Tk,l-torus family can be described by varying the
eccentricity: the family starts from e = 0 corresponding to the (k ´ l)-fold covered
direct circular orbit from which the Tk,l-torus family bifurcates. As e increases, Tk,l-
type orbits become more and more eccentric and precisely at e = 1, they become
collision orbits. Note that during this transition, Tk,l-type orbits have winding number
l´ k (recall that in our convention a Tk,l-type orbit is a k-fold covered Kepler ellipse
in an l-fold covered coordinate system and the direct circular orbit rotates in the same
direction as the coordinate system which rotates clockwise). We call these Tk,l-type
orbits direct Tk,l-type orbits. Abbreviate by Id the interval in which eccentricities of
the direct Tk,l-type orbits take values. After collisions, eccentricity starts decreasing
and hence torus-type orbits become less eccentric. At e = 0, the Tk,l-family dies at
the (k + l)-fold covered retrograde circular orbit. The Tk,l-type orbits lying between
collisions and death will be referred to as retrograde Tk,l-type orbits whose winding
number equals k+ l. We denote by Ir the eccentricity interval for retrograde Tk,l-type
orbits. In the following the two intervals Id and Ir will be either open, closed, or half
open intervals depending on the situation. Note that this does not affect our argument.

5.1.1 Disasters

We examine disasters which happen during the Tk,l-torus family.

65
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Collisions

We have shown that collisions happen precisely at e = 0. By Lemma 4.3 we conclude
that along the Tk,l-family the disaster (I0) happens only at e = 1.

Hitting the boundary of the Hill’s region

Recall that the direct circular orbit always lies on the bounded component KE
c and

if k ă 8l, then the retrograde circular orbit does not lie on KE
c , see Remark 3.5. In

particular, in this case retrograde Tk,l-type orbits with sufficiently small eccentricities
never touch the boundary of the Hill’s region.

We now claim that the above phenomenon holds true for any retrograde Tk,l-type
orbits, i.e., regardless of eccentricities and the values of k and l, they always do not
touch the boundary of the Hill’s region. To this end, we recall from Section 2.5.3 that
in the polar coordinates a Kepler ellipse of energy E is described by the equation

r =
1´ e2

´2E(1 + e cos θ) . (50)

from which we see that Tk,l-type orbits have the radius maximum

rmax = ´
1 + e

2Ek,l
. (51)

In particular, at e = 1 we have
rmax = ´

1
Ek,l

. (52)

On the other hand, we abbreviate by Rc the radius of BKE
c which is a solution of

´
1
Rc
´

1
2R

2
c = c = Ek,l + L.

Note that Rc is increasing on c ă cJ . Since we are only considering retrograde torus-
type orbits, the smallest Rc is attained at e = 1, i.e., it is a solution of

´
1
Rc
´

1
2R

2
c = Ek,l

(recall that collision orbits have angular momentum zero, see Section 2.5.4). This to-
gether with (52) give rise to

´
1
Rc
´

1
2R

2
c = ´

1
rmax

ô
1

rmax
´

1
Rc

=
1
2R

2
c

ñ Rc ´ rmax =
1
2R

3
crmax ą 0

from which we conclude that retrograde Tk,l-type orbits cannot touch BKE
c . This proves

the claim.
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The direct Tk,l-type orbits touch BKE
c if and only if r = rmax solves the equation

´
1
r
´

1
2r

2 = Ek,l ´

d

1´ e2

´2Ek,l
.

We then observe that

´
1

rmax
´

1
2r

2
max = Ek,l ´

d

1´ e2

´2Ek,l
ô

2Ek,l
1 + e

´
(1 + e)2

8E2
k,l

´Ek,l = ´

d

1´ e2

´2Ek,l

ô
(1´ e)Ek,l

1 + e
´

(1 + e)2

8E2
k,l

= ´

d

1´ e2

´2Ek,l

ô
(1´ e)2E2

k,l
(1 + e)2 +

(1 + e)4

64E4
k,l

´
1´ e2

4Ek,l
=

1´ e2

´2Ek,l

ô
(1´ e)2E2

k,l
(1 + e)2 +

(1 + e)4

64E4
k,l

+
1´ e2

4Ek,l
= 0

ô

(
(1´ e)Ek,l
(1 + e)

+
(1 + e)2

8E2
k,l

)2

= 0

ô 8(1´ e)E3
k,l + (1 + e)3 = 0.

Since Ek,l is negative, the last polynomial has a unique solution e = ek,l P (0, 1), and
hence during the Tk,l-torus family the satellite touches BKE

c only if e = ek,l P Id. In
view of

∇V (q) =

(
1
|q|3

´ 1
)
(q1, q2),

in order to check whether the component of q̇ which is normal to ∇V (q) changes before
and after the touch, we only need to show that the coefficient function pθ/r2 + 1
of Bθ of XHRKP changes sign, see (36). Since the orbit has a cusp at BKE

c , we see
that θ̇ = 0 at that point. Indeed, by means of pθ = L = ´

b

´(1´ e2)/2Ek,l and
rmax = ´(1 + e)/2Ek,l, we observe that

pθ
r2

max
+ 1 = 0 ô pθ = ´r

2
max

ô
1´ e2

´2Ek,l
=

(1 + e)4

(´2Ek,l)4

ô (´2Ek,l)
3(1´ e) = (1 + e)3

ô 8(1´ e)E3
k,l + (1 + e)3 = 0.

Since pθ/r2
max is an increasing function of e, we conclude that the component of the

velocity which is normal to the gradient changes sign through the touch. This together
with Lemma 4.2 show that the disaster (I8) happens precisely once at e = ek,l P Id.
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Triple points

Suppose that q is an intersection point on a Tk,l-type orbit of energy c. Then by (33)
and (36) we obtain

XH(z) = ˘

d

2
(
c+

1
|q|
´L

)
´
L2

|q|2
Br +

(
L

|q|2
+ 1

)
Bθ +

L2 ´ |q|

|q|3
Bpr . (53)

Since the angular momentum L is constant along orbits, this shows that the intersection
point q is double. We conclude that the disaster (III) does not happen in the rotating
Kepler problem.

Self-tangencies

Suppose that q(t0) = q(t1) for t0 ‰ t1, is a self-tangency point. Since the tangent
vectors are parallel, in view of (53) we need to impose

L = ´|q|2. (54)

From this we obtain the following two necessary conditions for the existence of self-
tangencies:

(i) the angular momentum is negative and hence the orbit is direct from which we
see that along retrograde torus-type orbits, no inverse self-tangencies happen;

(ii)
?
´L ď rmax, where rmax is defined as in (51).

Assume that q(t0) = q(t1), t0 ‰ t1, is an inverse self-tangency along a direct Tk,l-type
orbit. Since the orbit is direct, we have L = ´

b

(1´ e2)/´ 2Ek,l from which in view

of (54) we obtain rinv := |q(t0)| = 4
b

(1´ e2)/´ 2Ek,l. We then observe that

4

d

1´ e2

´2Ek,l
ă rmax ô

4
?

1´ e ă 4

d

1 + e

´2Ek,l

3

ô 1´ e ă
(

1 + e

´2Ek,l

)3

ô 8(1´ e)E3
k,l + (1 + e)3 ą 0.

Since e = ek,l is a unique solution of 8(1´ e)E3
k,l + (1 + e)3 = 0, this implies that if

the disaster (II+) occurs at e = e0, then we have ek,l ă e0.

Remark 5.1. Numerical experiments show that the disaster (II+) happens precisely
once for the case l ě 2, but if l = 1, there exist no inverse self-tangencies.

Recall that the Tk,l-torus family is a two-parameter family of torus-type orbits, where
one of two parameters is associated to rotation around the origin, i.e., the L-symmetry.
Since the three invariants J+, J1, and J2 do not change under rotations, in terms of
calculating the invariants without loss of generality we may view the Tk,l-torus family
as a one-parameter family whose parameter is given by the eccentricity. The above
discussion then shows
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Proposition 5.2. Assume that k ą l. The Tk,l-torus family is a Stark-Zeeman homo-
topy.

5.1.2 Symmetries

We discuss symmetries of trajectories of torus-type orbits. Recall that a Tk,l-type orbit
γRKP has the form γRKP(t) = exp(it)γ(t), where γ is a T -periodic Kepler ellipse.

The first lemma is more or less obvious since L is an integral of the system.

Lemma 5.3. ([FK18, Section 8.2.1]) The trajectory of any Tk,l-type orbit is invariant
under 2πjl/k degree rotation around the origin, j = 1, 2, ¨ ¨ ¨ , k´ 1.

Proof. In view of kT = 2πl we observe that

γRKP(t+ T ) = exp(it+ iT )γ(t+ T )

= exp(2πil/k) exp(it)γ(t)
= exp(2πil/k)γRKP(t)

from which the lemma is proved.

Besides the rotational symmetry, trajectories of torus type orbits admit the following
additional symmetry.

Lemma 5.4. Assume that the perigee, i.e., the nearest point to the Earth, of the
Kepler ellipse γ has argument θ = θ0. Then the trajectory of a Tk,l-type orbit γRKP

is invariant under the reflection with respect to the line y = tan(jπ/k + θ0)x, j =

1, 2, ¨ ¨ ¨ , k´ 1. By convention, we regard the line y = tan(π/2)x as the y-axis.

Proof. Without loss of generality, we may assume that θ0 = 0. We further assume
that the initial point γ(0) is given by the perigee. We first claim that the trajectory is
symmetric under the reflection with respect to the x-axis. Indeed, we observe that

γRKP(t) = exp(it)γ(t) = exp(´it)γ(t) = exp(´it)γ(´t) = γRKP(´t).

In other words, the reflected orbit γRKP is the time reverse reparametrization of the
original orbit γRKP. This proves the claim.

Recall that the reflection matrix Ref(θ) with respect to the line y = tan(θ)x is given
by

Ref(θ) =

cos 2θ sin 2θ
sin 2θ ´ cos 2θ

 .

One can easily check that the reflection and rotation matrices satisfy the relation

Rot(θ1)Ref(θ2) = Ref
(

1
2θ1 + θ2

)
. (55)

Then the assertion follows from Lemma 5.3 and the claim by setting θ1 = ´2jπ/k and
θ2 = jπ/k. This completes the proof of the lemma.
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5.1.3 Trajectories of torus-type orbits

Assume that the perigee of γ lies on the positive q1-axis and we parametrize it so that
the perigee is the initial point. Since γRKP is a k-fold covered Kepler ellipse (in an
l-fold coordinate system), it has precisely k perigees whose arguments are, in view of
by Lemma 5.3, given by

"

0, 2π
k

, 4π
k

, ¨ ¨ ¨ , 2(k´ 1)π
k

*

. (56)

Moreover, by the proof of the same lemma the set of times at which the satellite is
located at one of the perigees of γRKP is given by

"

0, 2πl
k

, 4πl
k

, ¨ ¨ ¨ , 2(k´ 1)πl
k

*

. (57)

Recall that γ is T -periodic. Since we have assumed that γ(0) is the perigee, the apogee
equals γ(T/2). In particular, we have arg(γ(t)) = arg(γ(t + T/2)) + π. We then
observe that

γRKP(t+ T/2) = exp(it+ iT/2)γ(t+ T/2) = exp(πil/k) exp(it)γ(t+ T/2)

from which we obtain

arg(γRKP(t+ T/2)) = arg(exp(πil/k) exp(it)γ(t+ T/2))
= πl/k+ arg(γRKP(t)) + π

= π(k+ l)/k+ arg(γRKP(t)).

Therefore, the set of arguments of the apogees equals the set (56) if k+ l is even and
equals

"

π

k
, 3π
k

, 5π
k

, ¨ ¨ ¨ , (2k´ 1)π
k

*

(58)

if k+ l is odd. Moreover, the set of times of the apogees equals
"

πl

k
, 3πl
k

, 5πl
k

, ¨ ¨ ¨ , (2k´ 1)πl
k

*

. (59)

We summarize the assertions in the following.

Lemma 5.5. Assume that the perigee of γ has the argument θ = θ0 and is the initial
point. Then the following hold true:

(i) the sets of the perigees and apogees of γRKP are given by
"

γRKP(t) : t =
2jπl
k

, j = 0, 1, 2, ¨ ¨ ¨ , k´ 1
*

and
"

γRKP(t) : t =
(2j + 1)πl

k
, j = 0, 1, 2, ¨ ¨ ¨ , k´ 1

*

,

respectively;
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(ii) assume that k˘ l are even. Then the sets of arguments of the perigees and apogees
of γRKP are equal and given by

"

θ = θ0 +
2jπ
k

: j = 0, 1, 2, ¨ ¨ ¨ , k´ 1
*

. (60)

If k˘ l are odd, then the set of arguments of the perigees or apogees is given by
(60) or by

"

θ = θ0 +
(2j + 1)π

k
: j = 0, 1, 2, ¨ ¨ ¨ , k´ 1

*

, (61)

respectively.

In what follows, without loss of generality we assume that the perigee of γ is the initial
point and has argument θ = 0. In view of the rotational and reflection symmetries,
to draw the trajectory of a Tk,l-type orbit γRKP it suffices to consider the part of the
trajectory which is contained in the sector tq P C : arg(q) P [0,π/k]u.

Note that the radius of points on γ varies in [rmin, rmax], where rmin = ´(1´ e)/2Ek,l
and rmax = ´(1+ e)/2Ek,l, see (50). Since we have assumed that the perigee γ(0) lies
on the positive q1-axis, for each r P (rmin, rmax), there exist precisely two points γ(˘tr)
such that |γ(tr)| = |γ(´tr)| = r, see the following figure. Since γRKP is obtained from

rmax

rmin

r
γ(tr)
γ(−tr)
γ(0)

1

rmax

rmin

r
γ(tr)
γ(−tr)
γ(0)

1

rmax

rmin

r
γ(tr)
γ(−tr)
γ(0)

1

rmax

rmin

r
γ(tr)
γ(−tr)
γ(0)

1

rmax

rmin

r
γ(tr)
γ(−tr)
γ(0)

1

rmax

rmin

r
γ(tr)
γ(−tr)
γ(0)

1

the k-fold covering of γ, for each r P (rmin, rmax), there exist precisely 2k (possibly
with intersections) points of radius r on γRKP

"

γRKP(tr +
2πjl
k

) : 0 ď j ď k´ 1
*

Y

"

γRKP(´tr +
2πjl
k

) : 0 ď j ď k´ 1
*

. (62)

Note that each set in (62) consists of k points. If there exists an intersection between
the two sets, i.e., γRKP(tr + 2πml/k) = γRKP(´tr + 2πnl/k) for some n,m, then by
the rotational symmetry the two sets are identical, namely there exist k double points
of radius r on γRKP.

We have fixed the radius r and seen how many points of γRKP lies on the circle of
radius r. In the following lemma we fix the angle θ = θ0 and examine points on γRKP

which lie on the ray θ = θ0.

Lemma 5.6. Let γRKP be a direct Tk,l-type orbit of eccentricity e ă ek,l. For each
θ0 P [0, 2π), there exist precisely (k´ l) points (counted with multiplicity) of γRKP on
the ray θ = θ0. If γRKP is retrograde, then there exist (k + l) points (counted with
multiplicity) having the same property.
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Proof. Since e ă ek,l, in view of the argument in Section 5.1.1, the angular velocity
does not change the sign. Then the assertions follow from the fact that the winding
number of direct or retrograde Tk,l-type orbits equals l´ k and k+ l, respectively.

We now determine on which rays double points lie.

Lemma 5.7. Any double point of a direct Tk,l-type orbit γRKP has argument jπ/k
for some 0 ď j ď 2k´ 1, provided that e ă ek,l. If γRKP is retrograde, then the same
assertion holds for any eccentricity.

Proof. Arguing indirectly we find a double point γRKP(t0) = γRKP(t1) for some t0 ‰ t1
which lies on the ray θ = θ0 with θ0 ‰ jπ/k for any j. Choose j0 satisfying

j0π

k
ă θ0 ă

(j0 + 1)π
k

.

By means of the rotational symmetry, without loss of generality we may assume that
j0 = 0. Then the reflection symmetry implies that a double point also exists on the
ray θ = ´θ0. Again by the rotational symmetry we find 2k rays

θ = ˘θ0, ˘θ0 +
2π
k

, ˘θ0 +
4π
k

, ¨ ¨ ¨ , ˘θ0 +
2(k´ 1)π

k

on which double points lie. By the argument before Lemma 5.6, the only possible case
for θ0 is

2θ0 = θ0 ´ (´θ0) =
π

k
ñ θ0 =

π

2k .

Consider the part of the trajectory which lies in the region
#

q P R2 : arg(q) P
[
´

π

2k , π2k

]
, rmin ď |q| ď rmax

+

. (63)

Suppose that we are considering a direct Tk,l-type orbit with e ă ek,l. One can prove the
assertion for retrograde orbits in a similar way. Recall that we have assumed that one
of the perigees, say a0, has argument θ = 0, i.e., a0 = (rmin, 0). Points on the rays θ =
´π/2k and θ = π/2k have the form a´j = rj exp(´iπ/2k) and a+j = rj exp(iπ/2k),
respectively, where 1 ď j ď n for some n ă |k ´ l| and r1 ă r2 ă ¨ ¨ ¨ ă rn. Since
e ă ek,l, we see that θ̇ is nonvanishing. Consequently, a+j ’s (or a

´
j ’s) cannot be joined

with each other by curves in the region (63), see Figure 22a.

Claim 1. a˘1 are connected with the perigee a0 = (rmin, 0).
Assume that there exists j ě 2 such that a´j is connected with the perigee a0. If
a´1 is joined with the perigee, this makes a0 a double point, which is not the case.
Suppose that a´1 is joined with another point other than a0 by a curve Γ. Then the
curve Γ should intersect the curve joining a´j and a0. This gives rise to a new double
point which does not lie on the ray of the form θ = jπ/2k, j P N, see Figure 22b.
This contradiction impiles that such a j ě 2 does not exist and hence a´1 should be
connected with a0 to obtain a closed trajectory. By the reflection symmetry, a+1 is also
joined with a0.

Claim 2. a˘1 are double points.
Assume by contradiction that they are single points. By the rotational symmetry, there
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r = rmin

1

(a) The angular velocity θ̇ vanishes at the red
points

r = rmin

1

Γ

1

(b) The red point is a new double point which
does not lie on the ray of the form θ =
jπ/2k

Figure 22: Impossible cases

exist n points b´j , j = 1, 2, ¨ ¨ ¨ ,n, such that |b´j | = |a´j | on the ray θ = 3π/2k. Note
that b´1 is connected with another perigee rmin exp(2π/k). Consider the part of the
orbit in π/k ď θ ď 3π/k. Since the radius is decreasing at a+1 (since the underlying
torus-type orbit is direct) and we have |a+1 | = |b´1 |, the point a+1 should be joined
with b´j for some j ě 2. As in the previous case, if j ą 2, then this gives rise to an
additional double point which does not lie on the rays θ = jπ/2k, j P N. Therefore,
a+1 is joined with b´2 . By the reflection symmetry, b´1 is joined with a+2 . We proceed
similarly with a+2 and obtain that it is connected with a´3 . By the reflection symmetry,
a´2 is joined with a+3 . Inductively, we join every point as in Figure 23. Regardless of

r = rmin

1

(a) The case k´ l = 6

r = rmin

1

(b) The case k´ l = 5

Figure 23: Every marked point is a single point

the parity of k´ l, we see that all points on the rays θ = ˘π/2k are single points. This
contradiction proves the claim.

Since a˘1 are double points, they need to be connected with points other than the
perigee a0. By the argument in the proof of the second claim, we see that they are
joined with a¯2 , respectively. Proceeding inductively, we join all the points as in Figure
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24. Consider the curve joining a+1 and a´2 . Note that along this curve the radius is
increasing. Following that curve in the reverse direction, we see that there must exist
a point c with |c| ă |b´1 | = |a+1 | on the ray θ = 3π/2k such that a+1 is connected with
c, see Figure 24. This contradicts the fact that b´1 has the smallest radius among the

r = rmin

1

Figure 24: The red point c has the smallest radius among points on the ray θ = 3π/2k

points on θ = 3π/2k. This completes the proof of the lemma.

Remark 5.8. The previous lemma also holds true for e ą ek,l for direct Tk,l-orbits.
To see this, we first recall that the angular velocity vanishes only along attached loops.
Then the proof of the previous lemma implies that every double point which does
not lie on attached loops has argument jπ/k. If there exist no intersections between
attached loops, then we have nothing to prove. Suppose that such an intersection exists
at γRKP(tinv). Then the assertion follows from the fact that |arg(γRKP(jT + tinv))´

arg(γRKP((j + 1)T ´ tinv))| is constant for all j = 0, 1, 2, ¨ ¨ ¨ , k´ 1.

The next lemma can be easily proved by an argument similar as in the proof of the
previous lemma.

Lemma 5.9. Every point on each ray θ = jπ/k, j = 0, 1, 2, ¨ ¨ ¨ , 2k ´ 1, is either a
perigee, an apogee or a double point.

We now give an algorithm to draw a piecewise smooth curve, which after smoothing is
homotopic without any disasters to Tk,l-type orbits with eccentricity smaller than e˘8k,l .
We only consider direct orbits. For retrograde orbits, one can show with k+ l instead
of k´ l in a similar way. In view of the rotational and reflection symmetries, it suffices
to consider the part of the curve in the region

!

q P C : arg(q) P [0, π
k
], rmin ď |q| ď rmax

)

.

Case 1. k´ l is odd.
Abbreviate N = (k ´ l ´ 1)/2. By Lemma 5.5 on the ray θ = 0 there exist the
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(a) k´ l is odd

r = rmin

1

r = rmax

1

(b) k´ l is even

Figure 25: Connect the marked points

perigee a0 = (rmin, 0) and N double points a1, a2, ¨ ¨ ¨ , aN . On the other hand, on
θ = π/k , there exist another N double points b1, b2, ¨ ¨ ¨ , bN and the apogee bN+1 =

rmax exp(iπ/k). Taking into account of the radial velocity ṙ, we obtain that

rmin = |a0| ă |b1| ă |a1| ă |b2| ă |a2| ă ¨ ¨ ¨ ă |aN´1| ă |bN | ă |aN | ă |bN+1| = rmax.

Moreover, the point bj is connected with aj´1 and aj for j = 1, 2, ¨ ¨ ¨ ,N and bN+1 is
connected only with aN . For convenience, we connected those points by straight lines,
see Figure 25a.

Case 2. k´ l is even.
Abbreviate N = (k´ l)/2. Then on the ray θ = 0 there exist the perigee a0 = (rmin, 0),
the apogee aN = (rmax, 0) and (N ´ 1) double points a1, a2, ¨ ¨ ¨ , aN´1. On the ray
θ = π/k, there exist N double points b1, b2, ¨ ¨ ¨ , bN . Those points satisfy

rmin = |a0| ă |b1| ă |a1| ă |b2| ă |a2| ă ¨ ¨ ¨ ă |aN´1| ă |bN | ă |aN | = rmax.

In this case, bj is connected with aj´1 and aj for j = 1, 2, ¨ ¨ ¨ ,N . Also, we connect
them by straight lines, see Figure 25b.

Using the symmetries, we then obtain the trajectory of a direct Tk,l-type orbit up
to homotopy without any disaster. We denote the points on each ray θ = 2jπ/k or
θ = (2j+ 1)π/k by the same letters a’s or b’s, respectively. Recall that we parametrize
the orbit so that the perigee a0 = (rmin, 0) is the starting point. Then in view of the
proof of Lemma 5.3 we see that each time interval [jT , (j+ 1)T ] for j = 0, 1, 2, ¨ ¨ ¨ , l´1
is associated to a finite sequence of points

a0, b1, a1, b2, a3, ¨ ¨ ¨ , aN , bN+1, aN , bN´1, ¨ ¨ ¨ , b2, a1, b1, a0 (64)

for the case k´ l is odd or

a0, b1, a1, b2, a3, ¨ ¨ ¨ , bN , aN , bN , aN´1, ¨ ¨ ¨ , b2, a1, b1, a0 (65)

for the case k´ l is even, which corresponds to the period T of the underlying Kepler
ellipse γ, see Figure 26.
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Figure 26: A direct T5,1-type orbit (before smoothing). The jth figure corresponds to a j-fold
coverd Kepler ellipse, j = 1, 2, 3, 4, 5.

Since we connect the marked points a’s and b’s on each ray θ = jπ/k by straight lines,
the obtained trajectory is not smooth. More precisely, the trajectory has a corner at
each marked point. However, following the sequence (64) or (65) one can smoothen
(with a small perturbation) the corners and then obtain a unique smooth trajectory
which is a generic immersion up to homotopy without any disaster.

In Figure 27 we compare an original orbit in the rotating Kepler problem and an orbit
obtained by the algorithms (before smoothing).

Figure 27: Comparison of an orbit obtained by the algorithm (left) and an original orbit in the
rotating Kepler problem with a small eccentricity (right) with (k, l) = (5, 2)

5.1.4 Computations

In this section we prove
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Theorem 5.10. Fix k ą l. Let γRKP be a Tk,l-type orbit. Its J1 and J2 invariants are
given by

J1(γ
RKP) = 1´ k+ k2

2 ´
l2

2 ,

J2(γ
RKP) =

$

’

&

’

%

(k´ 1)2 ´ l2 if k ą l and w0 is odd,

1´ k+ k2

4 ´
l2

4 if k ą l and w0 is even,

where w0 denotes the winding number of γRKP around the origin.

Let k and l be as in the theorem and consider the e-homotopy of the Tk,l-torus family.
By Proposition 5.2 it suffices to choose any preferable torus-type orbit. We will choose
a direct Tk,l-type orbit with e ă ek,l, say γRKP

k,l .

After obtaining the trajectory of γRKP
k,l by following the algorithms given in Section

5.1.3, we first compute the J+-invariant using Viro’s formula given in Proposition 4.6.
By abuse of notation we use the symbol γRKP

k,l for its trajectory. We observe that the
complement of γRKP

k,l in R2 consists of k(k ´ l ´ 1) + 2 connected components. The
center component contains the origin and the most outside one is the unbounded
component. The remaining k(k´ l´ 1) components form (k´ l´ 1) layers of bounded
components, where each layer consists of k bounded components. Choose θ0 ‰ jπ/k
for any j and rotate the curve by the angle ´θ0 so that the ray θ = θ0 becomes the
positive q1-axis. Then the positive q1-axis can be written as the union

(0, d0]Y [d0, d1]Y [d1, d2]Y ¨ ¨ ¨ Y [dk´l´2, dk´l´1]Y [dk´l´1,8)

according to intersections with the layers. We label each layer in such a way that ith-
layer is the one which corresponds to the interval [di´1, di] for i = 1, 2, ¨ ¨ ¨ , k ´ l´ 1.
The center and unbounded components are referred to as the zeroth and (k ´ l)th-
layers, respectively.

The winding number of each component is given as follows. Recall that the winding
number of a component is defined to be the winding number of the orbit around
any interior point in that component. We first note that all components in the same
layer have the same winding number. Choose θ0 ‰ jπ/k as above. Since direct Tk,l-
type orbits always rotate in clockwise direction, we see that the absolute value of the
winding number of a component C equals the number of intersections between the
trajectory and the ray θ = θ0 starting at any point in C Xtθ = θ0u. We then conclude
that each component in the ith layer has winding number l´ k+ i, i = 0, 1, ¨ ¨ ¨ , k´ l.
Note that as we traverse from the jth layer to the (j + 1)th-layer, the winding number
decreases by one.

We also label double points as follows. Recall that the double points can be divided into
(k´ l´ 1) subsets according to the associated radii. We order such radii in increasing
order: r1 ă r2 ă ¨ ¨ ¨ ă rk´l´1, and the double points on the circle r = rj are then called
the jth double points, j = 1, 2, ¨ ¨ ¨ , k ´ l´ 1. Recall that the index of a double point
is defined by the arithmetic mean of the winding numbers of the adjacent components.
Note that each jth double point is surrounded by the four components: one in the (j´
1)th layer, two in the jth layer and one in the (j + 1)th layer. Since every component
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Figure 28: A direct T5,2-type orbit with e ă e5,2. The complement has 5(5´ 2´ 1) + 2 = 12
components. The first and second layers have 5 connected components each. A
component in the jth layer has winding number 2´ 5 + j = ´3 + j. There exist
5ˆ (5´ 2´ 1) = 10 double points and they are divided into the two sets according
to the radius. The jth double points have index 2´ 5 + j = ´3 + j.

in the jth layer has winding number l ´ k + j, we conclude that all the jth double
points have index

1
4

(
(l´ k+ j + 1) + (l´ k+ j) + (l´ k+ j) + (l´ k+ j ´ 1)

)
= l´ k+ j,

see Figure 28.

By Viro’s formula the J+-invariant of the direct Tk,l-type orbits is given by

J+ = 1 + k(k´ l´ 1)´
(

1 ¨ (l´ k)2 + k ¨ (l´ k+ 1)2 + k ¨ (l´ k+ 2)2 + ¨ ¨ ¨+ k ¨ 12
)

+

(
k ¨ (l´ k+ 1)2 + k ¨ (l´ k+ 2)2 + ¨ ¨ ¨+ k ¨ 12

)
= 1 + k(k´ l´ 1)´ (l´ k)2

= 1´ k+ kl´ l2.

Since w0(γ
RKP
k,l ) = l´ k, we then compute that

J1(γ
RKP
k,l ) = 1´ k+ kl´ l2 +

(l´ k)2

2 = 1´ k+ k2

2 ´
l2

2

from which the first assertion of Theorem 5.10 is proved.

In order to obtain the J2 invariant, by definition, one considers the complex squared
mapping L : C˚ Ñ C˚, z ÞÑ z2. We again assume that one of the perigees of γk,l

RKP is
the initial point and has argument θ = 0. We then observe that since L is a squaring
map, the results in the previous section give rise to the following:
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(a) A pulled back orbit of a direct T4,1-type
orbit (b) An orbit obtained by the algorithm

Figure 29: A L´1(T4,1)-type orbit. There exist (2ˆ 4)ˆ (4´ 1´ 1) = 16 double points and
4 ´ 1 ´ 1 + 2 = 4 layers. Each layer has 2 ˆ 4 = 8 connected components. The
winding number is 1´ 4 = ´3.

(i) the preimage L´1(γRKP
k,l ) is invariant under the rotation by the angle jπ/k and

is symmetric with respect to the line y = (jπ/2k)x, j = 0, 1, 2, ¨ ¨ ¨ , 2k ´ 1, cf.
Lemmas 5.3 and 5.4;

(ii) if k ˘ l are odd, then the sets of the arguments of the perigees and apogees of
L´1(γRKP

k,l ) are given by
"

0, π
k

, 2π
k

, ¨ ¨ ¨ , (2k´ 1)π
k

*

(66)

and
"

π

2k , 3π
2k , ¨ ¨ ¨ , (4k´ 1)π

2k

*

,

respectively. If k ˘ l are even, then the two sets are equal and given by (66), cf.
Lemma 5.5;

(iii) for each θ0 P [0, 2π), there exist precisely 2(k´ l) points (counted with multiplic-
ity) of L´1(γRKP

k,l ) on the ray θ = θ0, cf. Lemma 5.6;

(iv) every double point has argument jπ/2k for some j = 0, 1, 2, ¨ ¨ ¨ , 4k ´ 1, cf.
Lemma 5.7;

(v) given r P (
?
rmin,

?
rmax), the number of points on L´1(γRKP

k,l ) with radius r
equals either 4k if the points are single points or 2k if the points are double
points, where rmin and rmax is minimal respectively maximal radius.

Case 1. k´ l is odd.
The preimage L´1(γRKP

k,l ) consists of a single curve and its winding number equals the
winding number of γRKP

k,l , i.e., w0(L
´1(γRKP

k,l )) = l ´ k. Bearing the facts (i)-(v) in
mind, one can draw L´1(γRKP

k,l ) by an algorithm similar to the one given in Section
5.1.3 with 2k(k´ l´ 1) double points and (k´ l´ 1) + 2 layers. see Figure 29. It then
follows from Viro’s formula that
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J2(γ
RKP
k,l )

= J+(L´1(γRKP
k,l ))

= 1 + 2k(l´ k´ 1)´
(

1 ¨ (l´ k)2 + k ¨ (l´ k´ 1)2 + k ¨ (l´ k´ 2)2 + ¨ ¨ ¨+ k ¨ 12
)

+

(
k ¨ (l´ k´ 1)2 + k ¨ (l´ k´ 2)2 + ¨ ¨ ¨+ k ¨ 12

)
= 1 + 2k(l´ k´ 1)´ (l´ k)2

= (k´ 1)2 ´ l2.

Remark 5.11. Note that the above formula can be obtained by Proposition 4.13.
Indeed, we compute that

J2(γ
RKP
k,l ) = 2J1(γ

RKP
k,l )´ 1

= 2
(

1´ k+ k2

2 ´
l2

2

)
´ 1

= 1´ 2k+ k2 ´ l2

= (k´ 1)2 ´ l2.

Case 2. k´ l is even.
In this case L : L´1(γRKP

k,l )Ñ K is also a 2´1 covering, but L´1(γRKP
k,l ) consists of two

generic immersions. Fact (ii) shows that the two curves are related by a π/k-rotation.
Since the definition of the J2 invariant is independent of the choice of a representative
curve, we may choose a component L´1

0 (γRKP
k,l ) whose one of the perigees lies on the

positive q1-axis. We then draw L´1
0 (γRKP

k,l ) by following γRKP
k,l from θ = 0 to π with

double angular velocity. Consequently, we have w0(L
´1
0 (γRKP

k,l )) = (l´ k)/2. Moreover,
there exist ((k ´ l)/2´ 1) + 2 layers and hence there exist k((k ´ l)/2´ 1) double
points, see Figure 30. By Viro’s formula the J2 invariant is given by

J2(γ
RKP
k,l ) = J+(L´1

0 (γRKP
k,l ))

= 1 + k

(
l´ k

2 ´ 1
)
´

(
1 ¨
(
l´ k

2

)2

+ k ¨

(
l´ k

2 ´ 1
)2

+ ¨ ¨ ¨+ k ¨ 12
)

+

(
k ¨

(
l´ k

2 ´ 1
)2

+ k ¨

(
l´ k

2 ´ 2
)2

+ ¨ ¨ ¨+ k ¨ 12
)

= 1 + k

(
l´ k

2 ´ 1
)
´

(
l´ k

2

)2

= 1´ k+ 1
4 (k

2 ´ l2).

This gives the formula for the J2-invariant and completes the proof of the theorem.

Remark 5.12. One can derive the same formula by considering retrograde Tk,l-type
orbits. Recall that for retrograde orbits, no disaster happens. The complement consists
of k(k+ l´ 1) + 2 components and they consist of (k+ l+ 1)-layers: The zeroth layer
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(a) A pulled back orbit of a direct T5,1-type
orbit (b) An orbit obtained by the algorithm

Figure 30: A L´1(T5,1)-type orbit. There exist 5 ˆ ((5 ´ 1)/2 ´ 1) = 5 double points and
(5´ 1)/2´ 1 + 2 = 3 layers. Each layer has 5 connected components. The winding
number is (1´ 5)/2 = ´2.

(the center component), the (k+ l)th layer (the unbounded component) and (k+ l´ 1)
layers, where each "middle" layer consists of k bounded components. The components
in the ith layer have winding number k+ l´ i and then jth double points have index
k+ l´ j. We then compute that

J+ = 1 + k(k+ l´ 1)´
(

1 ¨ (k+ l)2 + k ¨ (k+ l´ 1)2 + k ¨ (k+ l´ 2)2 + ¨ ¨ ¨+ k ¨ 12
)

+

(
k ¨ (k+ l´ 1)2 + k ¨ (k+ l´ 2)2 + ¨ ¨ ¨+ k ¨ 12

)
= 1 + k(k+ l´ 1)´ (k+ l)2

= 1´ k´ kl´ l2

from which we obtain that

J1 = 1´ k´ kl´ l2 + (k+ l)2

2 = 1´ k+ k2

2 ´
l2

2 .

In order to compute the J2 invariant, we see that the pulled back trajectory has
2k(k + l´ 1) double points and (k + l´ 1) + 2 layers. If the winding number is odd,
then since the pulled back trajectory is a single closed curve, we compute that

J2 = 1 + 2k(k+ l´ 1)´
(

1 ¨ (k+ l)2 + k ¨ (k+ l´ 1)2 + k ¨ (k+ l´ 2)2 + ¨ ¨ ¨+ k ¨ 12
)

+

(
k ¨ (k+ l´ 1)2 + k ¨ (k+ l´ 2)2 + ¨ ¨ ¨+ k ¨ 12

)
= 1 + 2k(k+ l´ 1)´ (k+ l)2

= (k´ 1)2 ´ l2.
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If the winding number is even, then the trajectory consists of two closed curves which
have the same shape and hence we obtain

J2 = 1 + k

(
k+ l

2 ´ 1
)
´

(
1 ¨
(
k+ l

2

)2

+ k ¨

(
k+ l

2 ´ 1
)2

+ ¨ ¨ ¨+ k ¨ 12
)

+

(
k ¨

(
k+ l

2 ´ 1
)2

+ k ¨

(
k+ l

2 ´ 2
)2

+ ¨ ¨ ¨+ k ¨ 12
)

= 1 + k

(
k+ l

2 ´ 1
)
´

(
k+ l

2

)2

= 1´ k+ 1
4 (k

2 ´ l2).

Remark 5.13. (Alternative proof of Theorem 5.10) We give an elementry proof of
Theorem 5.10 using the ideas of Ptolemy and Copernicus which they used to confirm
the geometric and heliocentric theories. For more details, we refer to [Hoy74].

Let k and l be as before and a direct Tk,l- type orbit γRKP with sufficiently small
eccentricity. Recall from (16) that the associated T -periodic Kepler ellipse γ satisfies
the equation

r =
a(1´ e2)

1 + e cos θ . (67)

By Kepler’s second and third laws (20), (21) we obtain

r2θ̇ =
b

a(1´ e2). (68)

For the k-fold covered γ, we also have

k

l
=

2π
T

=
1

a3/2 . (69)

Using (67) and (69) we rewrite (68) as

θ̇ =

a

a(1´ e2)

r2 =
k(1 + e cos θ)2

l(1´ e2)3/2 .(ζ(t) +O(e2)s) (70)

The Taylor expansion for the right hand side of (70) at e = 0 gives rise to

θ̇ =
k

l
+

2k
l
e cos θ+O(e2)

and hence
θ =

k

l
t+ 2e sin k

l
t+O(e2). (71)

A similar business for (67) yields

r

a
= 1´ e cos k

l
t+O(e2). (72)
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In view of (71) and (72), we now obtain a complex number expressions for the Kepler
orbit

γ(t) = r(t) exp(iθ(t)) = a(1´ e cos k
l
tO(e2)) exp(i(k

l
t+ 2e sin k

l
t+O(e2))). (73)

The linear approximation to (73) in e then gives rise to

ζ(t)

a
= ´2e+ (1 + e cos k

l
t) exp(ik

l
t).

Note that the image of the curve

ζ(t) = a(´2e+ (1 + e cos k
l
t) exp(ik

l
t)), (74)

which is an approximation to γ with a sufficiently small eccentricity, is approximately
the circle of radius a whose center lies at (´ae, 0), see Figure 31.

kt

1

(−ae, 0)

1

(−2ae, 0)

1

Earth

1

(0, 0)

1

a(1 + e cos kt)

1

Satellite

1

ζ = ζ(t)

1

a

1

Figure 31: An approximated Kepler orbit with a sufficiently small eccentricity

If the eccentricity is sufficiently small, or equivalently energy is sufficiently close to the
extremal energy, then (74) gives rise to the approximated orbit rγRKP(t) = R´tζ(t),
where Rθ is the rotation matrix. Note that the condition being a generic immersion
persists under a sufficiently small perturbation. This implies that the map

Φ : [0, 1]ˆ S1 Ñ C, Φ(s, t) = R´t(ζ(t) +O(e2)s)

gives rise to a Stark-Zeeman homotopy between rγRKP and γRKP, provided that the
eccentricity e is sufficiently small. Consequently, it suffices to compute the invariants
for the approximated orbit rγRKP.
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Recall that in the proof of Theorem 5.10, we used an algorithm to determine the
trajectory of γRKP which is completely obtained by the assertions of the lemmas given
in Sections 5.1.2 and 5.1.3. Note that once we prove the first four lemmas in these
sections, then the last two lemmas 5.7 and 5.9 can be proved in the completely same way.
Thus, it remains to prove the assertions of the first four lemmas for the approximated
orbit rγRKP.

Without loss of generality, we may assume that a = 1. Since R´t and ζ(t) have periods
2π and 2πl/k, respectively, in view of gcd(k, l) = 1 we see that the period of rγRKP

equals 2π. In the following we identify S1 = R/2πZ.

The following lemma describes symmetries of the trajectory of rγRKP. Note that the
perigee of ζ(t) lies on the positive x-axis.

Lemma 5.14. (cf. Lemmas 5.3 and 5.4) The trajectory is invariant under rotation by
the angle 2jπ/k. Moreover, it is symmetric with respect to the line y = tan(jπ/k)x,
j = 0, 1, 2, ¨ ¨ ¨ , k´ 1.

Proof. We first observe that

rγRKP(t+
2π
k
) = R´(t+2π/k)ζ(t) = R´2π/krγ

RKP(t)

and
rγRKP(t) = R´tζ(t) = Rtζ(t) = Rtζ(´t) = rγRKP(´t).

The remaining proof is completely the same as those of Lemmas 5.3 and 5.4. This
completes the proof of the lemma.

Consequently, in order to draw the trajectory it suffices to consider the part of the
curve which is contained in the sector

tz P C : arg(z) P [0,π/k]u .

The next lemma we need is the following.

Lemma 5.15. (cf. Lemma 5.5)

(i) The minimum 1´ e of the radius r is achieved at t = 2jπ/k and the maximum
1 + e at t = (2j + 1)π/k, j = 0, 1, 2, ¨ ¨ ¨ , k´ 1;

(ii) Suppose that the winding number l´ k is odd. Then the sets of the arguments
of the minimum and maximum points of the radius are given by

"

0, 2π
k

, 4π
k

, ¨ ¨ ¨ , 2(k´ 1)π
k

*

(75)

and
"

π

k
, 3π
k

, ¨ ¨ ¨ , (2k´ 1)π
k

*

,

respectively. If the winding number is even, then the two sets are equal and given
by (75).
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Proof. The first assertion follows immediately from (74) and Figure 31 and the proof
of the second assertion is the same as that of Lemma 5.5.

We have one more lemma about the radius.

Lemma 5.16. For t0, t1 P S1, it holds that r(t0) = r(t1) if and only if either

t0 + t1 =
2π
k
j

or
t0 ´ t1 =

2π
k
j

for some j P t0, 1, 2, ¨ ¨ ¨ , k´ 1u, provided that e ă 1/3.

Proof. One can easily check that the radius of rγRKP at time t equals

5
2e

2 + 1´ 2e cos(k
l
t)´

3
2e

2 cos(2k
l
t).

Then that r(t0) = r(t1) implies

(cos(k
l
t0)´ cos(k

l
t1))(2 + 3e(cos(k

l
t1) + cos(k

l
t0))) = 0.

For e ă 1/3, we observe that the second factor in the left-hand side does not vanish
and hence t0, t1 should satisfy the relation

0 = cos(k
l
t0)´ cos(k

l
t1) = ´2 sin

(
k(t0 + t1)

2l

)
sin
(
k(t0 ´ t1)

2l

)
.

This completes the proof of the lemma.

We conclude that given t0 P S1, the set of intersection points of rγRKP and the circle
r = r(t0) is given by Σ´(t0)Y Σ+(t0), where

Σ+(t0) =

"

z(t+j ) : t+j = t0 +
2π
k
j, j = 0, 1, 2, ¨ ¨ ¨ , k´ 1

*

and
Σ´(t0) =

"

z(t´j ) : t´j = ´t0 +
2π
k
j, j = 0, 1, 2, ¨ ¨ ¨ , k´ 1

*

.

In view of the rotational symmetry, we obtain that for any t0 P S1, |Σ+(t0)| =

|Σ´(t0)| = k. In other words, the elements in each set are mutually distinct. This
implies that every intersection point is a double point.

The proof of Lemma 5.6 also holds for rγRKP:

Lemma 5.17. (cf. Lemma 5.6) For each θ0 P [0, 2π), there exist precisely k´ l points
tj = tj(θ) P S

1, j = 1, ¨ ¨ ¨ , k ´ l such that each rγRKP(tj) lies on the ray θ = θ0,
provided that the eccentricity is small enough.

The remaining steps are exactly the same as given in Section 5.1. This completes an
elementary proof of Theorem 5.10.
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5.2 Invariants for the Euler problem of two fixed centers

The assertion in this section will not depend on µ. Hence, without loss of generality, we
may focus on the Earth component. Note that on each Tk,l-torus, periodic orbits form
an S1-family. Recall from Section 3.3 that between the family members there exist
at most three distinguished orbits described in Definition 3.9. The other members are
generic immersions. Consequently, we conclude that the S1-family is a Stark homotopy.
Thus, in view of calculating the invariants, as for the rotating Kepler problem, we may
view each Tk,l-torus family, which is in fact a two-parameter family, as a one-parameter
family of immersions. By the same reasoning, we then prove

Proposition 5.18. Each Tk,l-torus family in the S- or S1-region is a Stark homotopy.

Thus, in order to calculate the invariants for the Tk,l-torus families in the Euler problem
it suffices to compute for a suitable periodic orbit in that familiy. We choose a brake-
brake orbit for k+ l odd and a brake-collision orbit for k+ l even. In view of Proposition
4.15 it remains to determine the number of quadruple points.

Proposition 5.19. Fix a Tk,l-torus. The following are true:

(i) if k+ l is odd, then the brake-brake orbit has precisely (k´ 1)(l´ 1) + (k+ l´

1)/2 quadruple points;

(ii) if k+ l is even, then the two brake-collision orbits have precisely (k´ 1)(l´ 1)/4
quadruple points.

Proof. (i) We only consider the case that k is even and l is odd. The other case can
be proved in a similar way. Recall that all intersection points along the brake-brake
orbit γ are quadruple points. Let T ą 0 be the minimal period of γ. Note that the
restriction γ|[0,T/2] has the same image with γ and a quadruple point of γ is a double
point of γ|[0,T/2]. In the following we study the restriction γ|[0,T/2] instead of γ. By
abuse of notation, we use the same symbol γ for the restriction and we identify the
orbit γ with its image.

Recall that γ intersects the q1-axis if and only if we have λ = 0 or ν = ´π. Since λ
and ν make k/2 cycles and l/2 cycles along γ, respectively, we obtain that λ = 0 and
ν = ´π are attained precisely k times and l times, respectively. Since γ is a brake-
brake orbit which is symmetric with respect to the q1-axis, those points give rise to
(k+ l´ 1)/2 double points and a single point of γ on the q1-axis.

Let γ˘ = γ X t˘q1 ě 0u be the positive and negative parts of γ, respectively, so that
γ = γ+ + γ´. Since γ is symmetric with respect to the q1-axis, γ+ and γ´ have the
same number of double points and they do not have any double points on the q1-axis.
Therefore, it suffices to count double points on γ+. Note that the period of γ+ is given
by T/4.

Choose the initial point of γ+ by the braking point (λ, ν) = (λmax, νmax), i.e., the point
at which the satellite touches the boundary BKE

c . Note that along γ+ the variables λ
and ν make k and l quarter-cycles, respectively. Each quarter-cycle for λ (or for ν)
corresponds to increase or decrease of λ (or of ν) between λ = 0 and λ = λmax (or
between ν = ´π and ν = νmax).
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By abuse of notation and for the sake of convenience, we use the symbol ν for ν + π

so that the collision with the Earth corresponds to (λ, ν) = (0, 0). We now view the
variables λ and ν as functions of time. More precisely, in the graphs the horizontal axis
represents the time duration t P [0,T/4] and the vertical axis represents the values
of λ or ν. Since we are considering the positive part of γ, we reflect the negative part
of the graphs with respect to the horizontal axis, see Figure 32a. Since k is even and
l is odd, at the rightmost points of the graphs, i.e., the points at t = T/4, we have
λ = λmax and ν = 0. Note that the point γ(T/4) is the single point of γ which lies on
the q1-axis.

Claim 1. Assume that t = t0 P (0,T/4) represents a double point of the positive part
γ+. Then we have t0 P (T/4kl)Z.
Abbreviate λ0 = λ(t0) and ν0 = ν(t0). We find

t = t1, 2lT
4kl ˘ t1, 4lT

4kl ˘ t1, ¨ ¨ ¨ , (k´ 2)lT
4kl ˘ t1, klT4kl ´ t1

at which λ = λ0, where 0 ă t1 ă T/4k, and

t = t2, 2kT
4kl ˘ t2, 4kT

4kl ˘ t2, ¨ ¨ ¨ , (l´ 1)kT
4kl ˘ t2,

at which we have ν = ν0, where 0 ă t2 ă T/4l. We only consider the case that

t0 =
2ilT
4kl + t1 =

2jkT
4kl + t2, (76)

for some 0 ď i ď k/2´ 1 and 0 ď j ď (l´ 1)/2 from which we obtain

t1 =
2(jk´ il)T

4kl + t2. (77)

The other cases can be proved in a similar way. Since (λ0, ν0) is a double point, there
must exist m ‰ i and n ‰ j satisfying either (i) 2mlT/4kl + t1 = 2nkT/4kl + t2,
(ii) 2mlT/4kl + t1 = 2nkT/4kl ´ t2, (iii) 2mlT/4kl ´ t1 = 2nkT/4kl + t2, or (iv)

2mlT/4kl´ t1 = 2nkT/4kl´ t2.

Assume the first case from which it follows that

t1 =
2(nk´ml)T

4kl + t2.

This together with (77) give rise to

2(nk´ml)T
4kl + t2 =

2(jk´ il)T
4kl + t2 ñ (n´ j)k = (m´ i)l.

Since k and l are relatively prime, this implies that k and l divide m´ i and n´ j,
respectively. However, this is not the case since |m´ i| ă k and |n´ j| ă l. Thus, the
first case is impossible. A similar result holds for the last case. We now assume the
second case. The third case can be proved in a similar way. Proceeding as the first case
we obtain that

t1 =
((n+ j)k´ (i+m)l)T

4kl and t2 =
((n´ j)k+ (i´m)l)T

4kl
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and hence in view of (76) it follows that

t0 =
((n+ j)k+ (i´m)l)T

4kl .

This proves the claim.

We divide the time interval [0,T/4] by kl subintervals such that each subinterval has
length T/4kl, see Figure 32a. Consider the kl+ 1 points t = jT/4kl, j = 0, 1, 2, ¨ ¨ ¨ , kl.
By Claim 1, each double point of γ+ must correspond to one of these points. The (k+ 1)
points t = iT/4k, 0 ď i ď k, correspond to the maximum or minimum of λ and the
(l + 1) points t = iT/4l, 0 ď i ď l, correspond to the maximum or minimum of ν.
Since k and l are relatively prime, we have

"

iT

4k : i = 0, 1, 2, ¨ ¨ ¨ , k
*

X

"

iT

4l : i = 0, 1, 2, ¨ ¨ ¨ , l
*

=

"

0, T4

*

. (78)

It is obvious that the points corresponding to the maximum of λ or ν do not represent
double points of γ+. For the points which correspond to the minimum and which
represent points of γ+ on the q1-axis, we already showed that except for one point,
they are double points. The following claim shows that the remaining (k ´ 1)(l ´ 1)
points correspond to double points. Once this is proved, the first assertion of the
proposition follows.

Claim 2. Among the (kl+ 1) points described as above, (k´ 1)(l´ 1) points, which do
not represent the maximum or minimum of λ or ν, correspond to double points of γ+.
We fix t0 = NT/4kl for some 0 ă N ă kl which is not contained in the two sets in the
left-hand side of (78). Abbreviate (λ0, ν0) = (λ(t0), ν(t0)). As in the previous claim,
we find

A =

"

mT

4kl , 2lT ˘mT
4kl , 4lT ˘mT

4kl , ¨ ¨ ¨ , (k´ 2)lT ˘mT
4kl , klT ´mT4kl

*

at which λ = λ0, where 1 ď m ď l´ 1, and

B =

"

nT

4kl ,
2kT ˘ nT

4kl , 4kT ˘ nT
4kl , ¨ ¨ ¨ , (l´ 1)kT ˘ nT

4kl

*

at which we have ν = ν0, where 1 ď n ď k ´ 1. We need to show that #AXB = 2.
Since every intersection point of γ+ is double, it suffices to show that A and B have
an intersection point other than t0.

As in Claim 1, we only consider the case N = 2al+m = 2bk + n for some 0 ď a ď

k/2´ 1 and 0 ď b ď (l´ 1)/2 from which we obtain

2(al´ bk) = n´m. (79)

The other cases can be proved in a similar way. We observe that there exist no r ‰ a

and s ‰ b satisfying 2rl +m = 2sk + n or 2rl ´m = 2sk ´ n since k and l are
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relatively prime. On the other hand, since 1 ď m ď l´ 1, there exist P ,Q P Z such
that m = kP ´ lQ. We then define i, j to be

i =

$

’

’

’

&

’

’

’

%

P ´ b if P ą b

b´ P if P ă b

0 if P = b

and j =

$

’

’

’

&

’

’

’

%

Q´ a if Q ą a

a´Q if Q ă a

0 if Q = a.

Consider the case (i, j) = (P ´ b,Q´ a). We then have m = k(i+ b)´ l(j + a) and
n = k(i´ b)´ l(j ´ a) from which we obtain 2jl+m = 2ik´ n. Therefore, we have

λ0 = λ

(
2alT +mT

4kl

)
= λ

(
2jlT +mT

4kl

)

and
ν0 = ν

(
2alT +mT

4kl

)
= ν

(
2jlT +mT

4kl

)
.

It remains to show that a ‰ j. Assume by contradiction that a = j. We then have
n = k(i´ b). Since 1 ď n ď k ´ 1, this is not the case. This shows that (λ0, ν0) is
a double point. For the cases (i, j) = (P ´ b, 0), (b ´ P , a ´Q), or (0, a ´Q), the
assertion can be proved in a similar way. The other five cases never happen. This
proves the claim and hence the first assertion.

(ii) Since the two brake-collision orbits are related by the q1-axis reflection, without
loss of generality we may choose one of them, say γ. Since k and l are relatively prime,
both k and l are odd. As in the proof of the previous case, by abuse of notation we
use the symbol γ for the restriction γ|[0,T/2] which has the same image as γ. Different
from the previous case the points of γ on the q1-axis are not necessarily double points
since γ is not symmetric with respect to the q1-axis. As before, we consider λ and ν as
functions of time. Since we are not considering the positive part of γ, but γ itself, we
do not need to reflect the negative part of the graphs. Then a similar argument as in
the proof of the first case proves the second assertion. This completes the proof of the
proposition.

Remark 5.20. The assertions of the previous proposition hold for all brake-brake
orbits or brake-collision orbits in any separable Stark systems, provided that the phase
portrait of each variable is given by a simple closed curve which is symmetric with
respect to both horizontal and vertical axes.

Remark 5.21. The proof of the previous proposition carries over to symmetric (with
respect to the q1-axis) periodic orbits for the case k + l is even: The corresponding
symmetric periodic orbit on a Tk,l-torus has precisely (k ´ 1)(l ´ 1) + (k + l ´ 2)/2
double points.

Example 5.22. In this example, following the proof of Proposition 5.19 we study
double points on a T -periodic brake-brake orbit γ for (k, l) = (4, 3). Again by abuse
of notation, we use the symbol γ for the restriction γ|[0,T/2].
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Figure 32: The case (k, l) = (4, 3); (a) the blue curve is the graph of λ = λ(t) and the red one
is the graph of ν = ν(t). The gray vertical lines divide the time interval [0,T/4]
by 12 subintervals of length T/48. The white dots represent the maximum or the
minimum of the variables. The six gray dots make three pairs according to brightness
which correspond to double points of the positive part; (b) a brake-brake orbit on a
T4,3-torus. Three gray dots on the positive part of the orbit correspond to the pairs
described in (a).

Abbreviate by γ+ the positive part of γ. We mark 13 points t = jT/48, 0 ď j ď 12,
on the interval [0,T/4], see Figure 32a. Note that

"

jT

48

ˇ

ˇ

ˇ

ˇ

j = 0, 3, 4, 6, 8, 9, 12
*

correspond to the maximum or minimum of the variable λ or ν. The first point is the
braking point of γ+ and the last point is the single point of γ which lies on the q1-axis.
Among the other five points, (4 + 3´ 1)/2 = 3 points represent double points on the
q1-axis and the remaining two points are single point of γ, see Figure 32b.

In view of the proof of Proposition 5.19, the six points t = jT/48, j = 1, 2, 5, 7, 10, 11,
make the three pairs

(1, 7), (2, 10), (5, 11)

which correspond to three double points of γ+. Indeed, for example if we take N = 1
in the proof of Claim 2 of the same proposition, then we have m = n = P = Q = i =

j = 1 and a = b = 0. It follows that 2jl+m = 2 ¨ 1 ¨ 3+ 1 = 7 = 2 ¨ 1 ¨ 4 ¨ ´1 = 2ik´n
frow which we conclude that t = T/48 and t = 7T/48 represent a double point.
Consequently, the brake-brake orbit for (k, l) = (4, 3) has precisely nine quadruple
points, see Figure 32b.

We have proven
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Theorem 5.23. For the Tk,l-torus family in the S- or S1-region in the Euler problem,
we have

J1(Tk,l) =

$

&

%

2kl´ k´ l+ 1 if k+ l is odd

(kl´ k´ l+ 2)/2 if k+ l is even
(80)

and

J2(Tk,l) =

$

&

%

2kl´ k´ l+ 1 if k+ l is odd

kl´ k´ l+ 1 if k+ l is even.

5.3 Families of periodic orbits in the restricted three-body problem

Recall that in the Levi-Civita regularization each bounded component of energy hy-
persurfaces in the rotating Kepler problem and the Euler problem lifts to a closed
three-manifold diffeomorphic to S3. Hence, an even cover of any periodic orbit can be
regarded as a knot in S3. Note that if two knots K1 and K2 in S3 are isotopic, then the
projections π(K1) and π(K2) are also isotopic, where π : S3 Ñ RP 3. In other words,
two periodic orbits are never isotopic if their lifts in S3 have different knot types.
Case 1. k + l is even.
In view of Propositions 3.6 and 3.13 the lifts of Tk,l-type orbits in the rotating Kepler
problem and of T(k+l)/2,(k´l)/2-type orbits in the Euler problem have the same knot
type and their projections on RP 3 are contractible. Recall from Theorems 5.10 and
5.23 that

J1(T
RKP
k,l ) = 1´ k+ k2

2 ´
l2

2
and

J1(T
Euler
r,s ) = 2rs´ r´ s+ 1 if r+ s is odd. (81)

Plugging r = (k+ l)/2 and s = (k´ l)/2 into (81) gives rise to

J1(T
Euler
(k+l)/2,(k´l)/2) =

k2 ´ l2

2 ´ k+ 1 = J1(T
RKP
k,l )

from which we further obtain that

J2(T
Euler
(k+l)/2,(k´l)/2) = J1(T

Euler
(k+l)/2,(k´l)/2) = J1(T

RKP
k,l ) ‰ J2(T

RKP
k,l ).

Case 2. k + l is odd.
In this case, Tk,l-type orbits in the rotating Kepler problem and Tk+l,k´l-type orbits in
the Euler problem have the same knot type and their projections are noncontractible.
Plugging (k+ l, k´ l) instead of (k, l) into the second equation of (80) gives rise to

J1(T
Euler
k+l,k´l) =

k2 ´ l2

2 ´ k+ 1 = J1(T
RKP
k,l ).

Since the J2 invariant is determined by the J1 invariant, see Proposition 4.13, we also
obtain that

J2(T
Euler
k+l,k´l) = (k´ 1)2 ´ l2 = J2(T

RKP
k,l ).
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We have proven

Theorem 5.24. Let γRKP and αEuler be torus-type orbits in the rotating Kepler
problem and in the Euler problem, respectively. Assume that they have the same knot
type. Then their J1 invariants coincide with each other. Moreover, they have the same
J2 invariant if they are noncontractible within their energy levels. However, if they are
contractible within their energy levels, then their J2 invariants are different.
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