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ABSTRACT: Several statistical downscaling techniques are intercompared and evaluated with respect to daily station-based
precipitation in the eastern Mediterranean/Middle East region. The study introduces unconditioned and precipitation-
conditioned SANDRA (Simulated ANnealing and Diversified RAndomization) cluster analysis (SCA) as new downscaling
approaches and additionally uses the two widely used techniques of canonical correlation analysis (CCA) and multiple
linear regression analysis (MR). For the precipitation-conditioned SANDRA cluster analysis different weights (percentages
of contribution to the clustering) are evaluated. Furthermore, two different predictor combinations are used, a simple one
only including mean sea level pressure (SLP), and a more complex one additionally including 500 hPa-geopotential heights,
500 hPa-vorticity and 1000 hPa-moisture flux. Analyses are carried out on a daily basis for the main rainy season from
November to March for the period 1961–1990. It is shown that SLP, as single predictor, does not perform sufficiently
well, but adding further predictors considerably improves model performance in terms of increased explained variance
and model stability as well as reduced root mean square error (RMSE). From all selected techniques MR and CCA
show the best performance for the SLP-based models, with comparable results for both techniques, whereas precipitation-
conditioned SANDRA cluster analysis performs best when further predictors are included. Performance differences between
all techniques are generally smaller than those for a particular technique using different predictor sets.               
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1. Introduction

Sufficient freshwater availability is a central prerequi-
site for agricultural and industrial development in the
water-scarce environment of the eastern Mediterranean
and Middle East (EM/ME) regions (Suppan et al., 2008).
Especially in the semiarid to arid ME region, water
availability may be seriously affected by climate change-
induced small changes of the prevailing seasonal precip-
itation patterns. Water scarcity has often caused conflicts
between the adjacent countries of Israel, Palestine, Jor-
dan, Syria, and Lebanon. The need for reliably predicting
the future water availability is obvious. This requires a
better understanding of recent precipitation characteris-
tics and the development of methods to project future
precipitation on regional scales.

However, the performance of general circulation mod-
els (GCMs) applied for impact studies at local scales
is poor due to their coarse resolutions (e.g. Giorgi
et al., 2001). To obtain high-resolution climate change
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scenarios, two main approaches have been developed:
(1) dynamical downscaling based on regional climate
models (e.g. Giorgi et al., 2001), a very CPU expen-
sive approach, and (2) statistical downscaling based on
empirical relationships between appropriate large-scale
meteorological variables (predictors) and the variable of
interest (predictand) on a regional or local scale.

The focus of this study is on the comparison of the
performance of different statistical downscaling tech-
niques. Statistical relationships are established based on a
training set (calibration period), verified during an inde-
pendent verification period, and are applied for projec-
tions if necessary assumptions are fulfilled (IPCC, 2007).
The various statistical downscaling methods can be clas-
sified into three main categories (Wilby et al., 2004):
(1) Weather Classification schemes (or Synoptic Down-
scaling), (2) Regression-based models, and (3) Weather
Generators. The Weather Classifications can generally
be grouped into subjective, semi-objective and objective
approaches (Huth et al., 2008; Jacobeit, 2010). Prominent
examples for Weather Classification schemes are clus-
ter analysis combined with the analogue method (Zorita
and von Storch, 1999), Lamb Weather Type classification
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combined with Markov Chains (Goodess and Palutikof,
1998), objective fuzzy rule-based classification (Bárdossy
et al., 2002), simulated annealing classification (Philipp
et al., 2007) or hidden Markov models (Kioutsioukis
et al., 2008). Regression-based models include simple or
multiple regressions (Jacobeit, 1996; Huth, 2004; Her-
tig and Jacobeit, 2008) and canonical correlation anal-
ysis (Barnett and Preisendorfer, 1987; Busuioc et al.,
2008; Hertig and Jacobeit, 2008). Weather Generators
use stochastic models based on either Markov chains
or series-based approaches (Huth et al., 2001; Buishand
et al., 2004). As each of these statistical downscaling
techniques has its advantages and disadvantages (Wilby
et al., 2004) and their performance depends on the sea-
son and region of interest, several, but still few com-
prehensive studies for comparing statistical downscaling
methods have been performed. Wilby et al. (1998) used
weather generators, resampling methods and artifical neu-
ral networks (ANN) for downscaling daily precipiation at
six US regions. Zorita and Storch (1999) compared the
analogue method to several other statistical downscaling
techniques including linear models, classification meth-
ods and neural networks. Haylock et al. (2006) applied
CCA, four techniques employing ANNs and a resam-
pling method for downscaling seasonal indices of heavy
precipitation for two station networks in the northeast
and southeast of England. However, none of the studies
clearly favours a specific methodology.

1.1. Downscaling studies for the Middle East region

Most of the existing research works on climate variabil-
ity and change over Europe include only partially the
Mediterranean basin and the ME region as the south-
ernmost part of the research domain (Li et al., 2006).
Only few dynamical downscaling studies were con-
ducted, which were centred on the Mediterranean basin
(e.g. Giorgi et al., 2004a, 2004b). Regional climate simu-
lation results for the ME region are expected to be biased
due to marginal effects. Suppan et al. (2008) and Kunst-
mann et al. (2007) performed one-way nested dynamical
downscaling in 18 km spatial resolution to estimate the
expected climate change impact on water availability in
the ME using the regional climate model MM5 and the
A2 and B2 scenario-based ECHAM4 data.

Hertig and Jacobeit (2008) used two statistical down-
scaling methods, namely canonical correlation analysis
(CCA) and multiple regression analysis (MR) to assess
the expected Mediterranean precipitation changes for the
period 1990–2100 under increased greenhouse gas con-
ditions. For the ME region, they found mainly negative
precipitation changes for the rainy season ranging from
October to May.

Several weather classifications were developed and
applied for the ME. The first classification for the
ME region was performed by Koplowitz (1973) using
synoptic pressure field patterns. Ronberg (1984) used
radiosonde and surface data for his classification over
the southeastern ME coastal plain (Israel) for the Octo-
ber–April period and identified 18 weather patterns,

which were grouped into 4 types: Red Sea Trough types,
Transitional types, Sharav-like types, and Stormy types.
Most of the classification results were linked to hydrom-
eteorological features, such as wind energy regimes (e.g.
Alpert et al., 1987; Shafir et al., 1994), floods (Kahana
et al., 2002) and rainfall (e.g. Kutiel and Paz, 1998;
Ribera et al., 2000; Maheras et al., 2001; Zangvil et al.,
2003; Alpert et al., 2004; Ziv et al., 2006). Zangvil et al.
(2003) identified typical SLP distributions for 4 GHP500
prototype patterns, occurring predominantly on major
rainy days. Ziv et al. (2006) found an upper level trough
extending from eastern Europe towards the ME region
which is linked to December–February rainfall in the
northern part of Israel. Alpert et al. (2004) identified the
Red Sea Trough to be responsible for a decreasing rainfall
trend in the ME region. In an earlier study, Alpert et al.
(1990) referred rainfall occurrence in the ME mainly to
the passages of extratropical cyclones, the Cyprus lows.
On the basis of the semi-objective classification of Alpert
et al. (2004), Saaroni et al. (2010) analysed the inter-
annual variation and spatial distribution of rainfall with
respect to variations in the occurrence of typical synop-
tic systems. The occurrence of rainfall events during the
months November–March was found to be highly cor-
related with the occurrence of Cyprus lows. They also
point out that intensity and spatial distribution of rainfall
is highly sensitive to location and gradient of the Cyprus
lows.

Comparisons of different ciculation pattern classifica-
tions have been conducted by several authors, however,
mostly constrained for western-central Europe (e.g. Jones
et al., 1993; Buishand and Brandsma, 1997; Stehlı́k and
Bárdossy, 2003; Anagnostopoulou et al., 2004).

Laux et al. (2008a) compared the performance of
two objective and one semi-objective weather pattern
classifications for precipitation simulation in the ME
region dependent on the season. They concluded that
the applied semi-objective classification, partly based on
expert knowledge performs slightly better than the objec-
tive ones with no a priori knowledge required. Depen-
dencies in the occurrence of distinct weather patterns
between the different classifications were identified. In
another study, Laux et al. (2008b) performed frequency
analysis of weather patterns causing extreme wet and
droughty conditions for the past (1961–1990) and future
time slice (2011–2040) based on the A1B scenario and
ECHAM5 data. They concluded that no remarkable dif-
ferences in the frequencies of extremes are expected for
the period 2011–2040.

1.2. Aims of this study

The aims of this study are:

i) To compare the performance of three different statisti-
cal downscaling techniques in terms of rainfall simu-
lation for the ME region. The techniques include two
widely used regression-based, MR and CCA (Section
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3.1), as well as two variants of a novel synoptic down-
scaling technique, unconditioned and precipitation-
conditioned Simulated ANnealing and Diversified
RAndomization clustering (SANDRA) cluster anal-
ysis (SCA) (Section 3.2). Precipitation-conditioned
cluster analysis includes the predictand precipitation
in the clustering whereas unconditioned cluster anal-
ysis only includes the predictor variables.

ii) To evaluate the effect of the selected predictor vari-
ables on the modelling results. In a first step, only
sea level pressure (SLP) is used as predictor for mod-
els whose performance is evaluated in Section 4.2.
In a second step, further atmospheric predictors, such
as geopotential heights, relative vorticity and moisture
flux of different levels, are included in the models and
the improvement of the prediction skills is analysed
(Section 4.3).

2. Data

Different datasets extracted from the National Center
for Environmental Prediction (NCEP) - National Center
for Atmospheric Research (NCAR) reanalysis project
(Kalnay et al., 1996; Kistler et al., 2001) are used in this
study. These include SLP, geopotential heights (HGT )
of the 500 hPa level as well as specific humidity (SF )
and the u-wind component (u) of the 1000 hPa level.
Vorticity (VORT ) and moisture flux (MF u) are calculated
as follows:

V ORT = (
HGTi−1,j + HGTi+1,j + HGTi,j−1

+HGTi,j+1
) − 4HGTi,j (1)

MFu = SF · u (2)

where indices i and j indicate east-west and north-south
labelling of gridpoints. The six-hourly data are available
back to 1948 on a global 2.5° × 2.5° grid. The period of
1961–1990 is selected and daily means are calculated.
The selected grid spans between 22,5°N and 42,5°N, and
between 15 °E and 50 °E, comprising 135 grid points
(Figure 1).

Sea level pressure, HGT and VORT of the 500 hPa
level and moisture flux of the 1000 hPa level are chosen
as large-scale atmospheric predictors for the downscaling

Figure 1. Location and extension of the predictor domain.

Figure 2. Location of stations used in this study. For details see
Table I. This figure is available in colour online at wileyonlinelibrary.

com/journal/joc

models. Selection is based on previous experiments with
various variables and different atmospheric levels.

Daily precipitation station data with different time
series length is supplied by the GLOWA Jordan River
project (http://www.glowa-jordan-river.de). These in-
clude various meteorological observation stations in
Israel and Jordan. Owing to large gaps in most of the
precipitation time series, only 26 stations in Israel and
western Jordan that cover the period of 1961–1990 could
be used as predictands (Figure 2 and Table I).

The study focuses on the main rainy season between
November and March, when the monthly rainfall exceeds
10% of the long-term annual precipitation sum (given in
Table I. All analyses for the study period 1961–1990
are carried out on a daily basis, separately for each
month, as pre-analyses have shown considerable month-
to-month variations in precipitation statistics that can
only be captured in separate analyses.

3. Statistical downscaling techniques

3.1. Regression models

As a first step, orthogonally (Varimax) rotated principal
component analysis (PCA, e.g. Preisendorfer, 1988; von
Storch and Zwiers, 1999) was applied to station-based
precipitation and to all predictor fields in order to reduce
dimensions and to remove linear dependencies between
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Table I. List of stations used in this study with latitudes
and longitudes (in degrees), PC number (for PCA of station
data see Section 3.1) and mean annual precipitation (mm/a).

Representative stations (see section 3.1) are greyed out.

Station Name Lat. Lon. PC mm/a

1 Amman airport 31.97 35.60 1 264
2 Deirabisaid 32.50 35.68 1 423
3 Deirallaagr station 32.20 35.60 1 277
4 Ennueiyime 32.42 35.92 1 313
5 Hartha 32.70 35.85 1 427
6 Irbidagr station 32.53 35.85 1 467
7 Naur 31.87 35.83 1 472
8 Ramtha boys school 32.57 36.02 1 264
9 Rihab 32.32 36.10 1 214
10 Qiryant-Anav 31.80 35.12 1 704
11 Jerusalem 31.76 35.21 1 550
12 Ramat-David 32.67 35.18 2 539
13 Kebutzat 32.75 35.55 2 419
14 Kefar Blum 33.18 35.60 2 532
15 Kefar Gilad 33.23 35.56 2 811
16 Yiron 33.06 35.45 2 794
17 Eilon 33.05 35.21 2 795
18 Har Kenaan 32.96 35.50 2 699
19 Ainbisas 31.20 35.67 3 305
20 Hemud 31.30 35.80 3 291
21 Ta le 30.83 35.60 3 267
22 Beer-Sheva 31.23 34.78 3 207
23 Sede 30.86 34.78 3 114
24 Dorot 31.33 34.66 3 356
25 Qiryant-Shaut 32.11 34.82 4 569
26 Tel Aviv 32.09 34.77 4 518

variables. S-mode PCAs were carried out separately for
each of the selected months (Nov–Mar) and the five
different calibration periods (Section 3.3) within the
study period 1961–1990, to receive spatial centres of
variation and associated time coefficients (PCs) for each
input predictor field, each month and each calibration
period. Independent PC time series for the corresponding
verification periods (Section 3.3) are calculated using
calibration PC loadings (defining spatial patterns based
on weighted eigenvector components) being independent
from verification data. For the station data, S-mode PCA
of daily precipitation anomalies is used to divide the
26 stations into 4 groups. According to the highest PC
loadings, one station of each group is then selected as
representative of its group. These are Jerusalem, Kefar
Gilad, Beer-Sheva, and Tel Aviv (greyed out in Table I).

All PCAs are based on the correlation matrix of
the input variables. The so-called dominance criterion
(Jacobeit, 1993) determines the number of PCs to be
extracted. Thus, for each extracted PC there has to
exist one dominant loading being greater than all other
PC’s loadings, reflecting both the PC’s relevance and
its prominence compared to other PCs. To strengthen
this constraint, for this study, the difference between the
highest and the second highest value has to be three
standard deviations of the loading pattern.

Depending on the analysed months, SLP fields are
reduced to 5–6 PCs with cumulative explained variances

(EVs) of 89–92%, HGT data to 5 PCs (EVs of 91–92%),
VORT to 13–19 PCs (EVs of 84–92%) and MF u to
10–14 PCs (EVs of 84–89%).

Subsequently, two classical downscaling techniques
based on transfer functions, i.e. (1) CCA, (e.g. Barnett
and Preisendorfer, 1987), and (2) MR, (e.g. Easterling,
1999; for a detailed description of both techniques, read
von Storch and Zwiers, 1999, and Wilks, 2005) are used
to link precipitation time series to the large-scale atmo-
spheric circulation represented by their corresponding PC
time series and establish predictor–predictand relation-
ships for different calibration periods (Section 3.3).

CCA is carried out for each month and calibration
period, processing all station time series in one analysis
(Section 3.3). When using MR, a stepwise regression
procedure (von Storch and Zwiers, 1999) that combines
forward selection with backward elimination is applied
to each rainfall station. To verify a significant influence
of a predictor variable on the predictand, an F -test is
applied on its corresponding regression coefficient, with
significance levels of 0.05 for the intake and 0.10 for an
elimination of a variable from the regression equation.

The results of CCA and MR are then used to assess
the response of station-based precipitation to changes
in large-scale circulation. Precipitation time series are
modelled using output PCs and CCAs or regression
coefficients, respectively. In addition, time series of each
station modelled from CCA output need to be re-scaled
and centred using mean and standard deviation from the
corresponding calibration time series. For both methods,
two kinds of predictor sets were used: one set consisting
of SLP as a single predictor variable, the other set
consisting of multiple variables, i.e. SLP, HGT, relative
VORT and MF u of selected levels.

Instead of calibrating and verifying just one model for
each application, this is done – slightly modified com-
pared to Hertig and Jacobeit (2008) – for an ensemble
of several models with different calibration periods (Sec-
tion 3.3) in order to verify the statistical relationships and
to consider possible non-stationarities. Cross-validation
allows to produce more reliable results and to apply those
to an independent dataset.

3.2. Synoptic downscaling

Synoptic downscaling is based on the assumption that
a certain circulation or weather pattern accounts for
a particular weather condition. For the classification
of large-scale circulation, a variety of methods exist.
Evaluation and comparison of different circulation type
classifications is, for example, performed within the
COST Action 733 ‘Harmonisation and Applications of
Weather Types Classifications for European Regions’
(Beck and Philipp, 2010). The simplest way to use
circulation types for downscaling is the analogue method
(Zorita and Storch, 1999). For each type, an analogue
is looked up in historical observation data which is
connected to certain weather conditions. These are then
transferred to the circulation type.
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In this study, a special type of cluster analysis devel-
oped by Philipp et al. (2007) called SANDRA is applied.
For a detailed description, refer Philipp et al. (2007,
2010). The selection of this classification method is based
on the improved performance of the simulated annealing
algorithm compared to conventional k-means. The latter
has no strategy to avoid local optima in the optimisation
function (Philipp et al., 2007, 2010; Fereday et al., 2008)
whereas SANDRA is able to approximate the global opti-
mum.

SANDRA allows for the contribution of several large-
scale atmospheric variables to the classification. For that
purpose, all variables need to be normalized separately
before clustering.

As circulation pattern classification does not include
any information about the local weather state (e.g. pre-
cipitation), it might be meaningful to incorporate this
information in the classification procedure, i.e. to condi-
tion the classification by precipitation or other predictand
variables. For this purpose, normalized precipitation time
series are added to the normalized predictor time series
and processed together. To account for different numbers
of parameters (grid points vs stations in this case) and
to control the influence of the predictor and predictand
variables on the clustering, a so-called weighted cluster
analysis is performed. The contribution of each variable
to the clustering is expressed by a percental factor, the
weight λ, which is applied to the squared Euclidean dis-
tance D:

D
′ (

X
′
i, X

′
j

)
= D

(
Xi, Xj

) · λ/m (3)

where X is any predictor or predictand variable con-
tributing to the analysis, X

′
the corresponding weighted

variable. X (X
′
) is the unweighted (weighted) cluster cen-

troid, i (j ) is the object (cluster centroid) number of X

(X) and m is the number of parameters which is used for
scaling.

D (D
′
) are the unweighted (weighted) Euclidean dis-

tances between X (X
′
) and its corresponding cluster

centroid X (X
′
), which are used to assign objects (daily

predictor pattern or predictand values) to their nearest
cluster centroid. To calculate the overall Euclidean Dis-
tance, predictors’ and preditands’ individual Euclidean
Distances are summed up. As can be seen from Equa-
tion (3), the weighted distance represents the unweighted
distance first scaled by 1/m, which yields an equal con-
tribution of all variables to the clustering. The scaled
distance is then multiplied by the user-defined weight λ.

As multiplying D by the factor λ/m is computationally
expensive (the factor is applied every time the Euclidean
distance is recalculated during clustering iterations), the
observational data needs to be scaled and weighted,
separately for any predictor and predictand prior to the
actual clustering. The factors to be applied to the different
datasets can be directly derived from the equation of
the overall Euclidean distance Dw between object i and

its cluster centroid j which is the sum of n different
predictors’ and preditands’ Euclidean distances:

Dw(i, j) =
n∑

v=1

m(v)∑
p=1

(
X

′
ip(v) − X

′
jp(v)

)2 =

n∑
v=1

m(v)∑
p=1

(
Xip(v) − Xjp(v)

)2 · λ(v) · 1/m(v) =

n∑
v=1

m(v)∑
p=1

(
Xip(v) · √

λ(v) · 1/m(v) − Xjp(v)

·√λ(v) · 1/m(v)

)2
(4)

Solving Equation (4) leads to the direct weighting of
the data:

X
′
(v) = X(v) · √

λ(v) · 1/m(v) (5)

where X
′
(v) (v = 1 . . . n) is any predictor and predictand

scaled by its corresponding number of parameters m(v)

and weighted by its corresponding individually defined
λ(v), prior to clustering. Note that the square root needs
to be applied to any scaling and weighting factor as it is
squared later in the equation of the Euclidean distance.

Thus, a weighting value of one (or 100%) means
that all variables equally contribute to the classification
regardless of the number (m) of parameters. For this
study, λ of the predictor variables is set to 1 (100%)
whereas a range of different values is evaluated for the
precipitation weight (Section 4.1). Moreover, weighting
is applied separately for the four representative stations
to account for the varying cause of rainfall events by
different weather patterns in different regions.

Furthermore, the number of clusters has to be pre-
defined. The estimation of an appropriate number is done
by t-mode PCA assuming that the number of dominant
patterns constitutes the number of patterns that are needed
to represent the majority of variance within the set of
predictor fields. Therefore, for each month in the study
period 1961–1990, separate analyses were carried out for
SLP (yielding a number of 7–9 clusters) as well as for
combined analyses with all predictor variables (16–22
clusters).

For this study, four types of classifications are car-
ried out for each month and different calibration periods
(Section 3.3): a SLP-based approach, a multiple-variable-
classification using SLP, HGT, VORT and MF u, and also
weighted variants of both. Result of each classification is
a time series that gives the cluster number for every day.
A predictor-predictand relationship is then established by
averaging precipitation of all the corresponding days of a
cluster or circulation type, receiving a mean precipitation
value for every type. To validate the model, calibration
and verification predictor data is assigned to the most sim-
ilar circulation type, which is represented by its centroid
(i.e. mean cluster pattern), using the squared Euclidean
distance. Subsequently, a precipitation time series is gen-
erated by inserting the circulation type specific mean
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precipitation value. In the case of weighted cluster anal-
ysis, predictand data (precipitation) is excluded during
validation and only predictor data (circulation variables)
is assigned to the classification centroids. Therefore, with
increasing weight, Euclidean distances deviate more and
more from the distances calculated only on predictor
data (as in case of validation) and an increasing num-
ber of days is assigned to a different cluster compared
to the clustering procedure. These different assignments
have to be considered when establishing the downscaling
models. It is recommended to choose the lower weight
when model skills are similar as less different assign-
ments occur and models are more stable.

As for the transfer function models (Section 3.1), not
only is just one model calibrated and verified for each
type of classification and month, but an ensemble of
several models with different calibration periods. This
ensemble approach is described in the following section.

3.3. Calibration and verification – an ensemble
approach

Within the 30-year study period from 1961 to 1990, a
10-year moving window selects 5 segments. The remain-
ing 20 years are used to calibrate the model, which is
verified within the corresponding 10 independent years
(Table II). Thus, for each month, an ensemble of five dif-
ferent models is generated. For verification, observation-
based and statistically derived precipitation are aggre-
gated to monthly values and correlated with each other,
separately for each ensemble member. Thereafter, an
ensemble mean value and standard deviation of the Pear-
son correlation coefficients of all members is calculated
(Figures 6 and 8). The standard deviation characterizes
the variation within the model ensemble and is referred
to as Within-Ensemble Variance (WEV). Significance of
the correlation coefficients is verified by Student’s t-test.
Since significance depends on the number of cases (here
the number of monthly precipitation amounts), thresh-
olds for calibration and verification periods differ. For
the calibration period, coefficients greater than 0.4 are
significant at the 90% level; for the verification period,
the threshold is 0.55. To characterize each method’s gen-
eral performance by one figure, correlation coefficients
were averaged over all four representative stations and
five months, yielding a calibration and a verification cor-
relation coefficient (Section 4.4). As a second skill score,
Root Mean Square Error (RMSE) was used to detect
considerable positive/negative deviations of the modelled

Table II. Calibration and verification periods for the five
different model ensemble members m1 to m5.

Model Calibration Verification

m1 1971–1990 1961–1970
m2 1961–1965, 1976–1990 1966–1975
m3 1961–1970, 1981–1990 1971–1980
m4 1961–1975, 1986–1990 1976–1985
m5 1961–1980 1981–1990

time series from the observed ones in case of significant
correlations. As for the correlation coefficients, overall
RMSE values averaged over all four stations and five
months were calculated for calibration and verification
periods.

Cross-validation is often used to estimate the potential
forecast skill (Michaelsen 1987; Huth 2002) consid-
ering bias resulting from model fitting and predictor
screening, or for short study periods to account for non-
stationarities in the statistical relationships between pre-
dictor and predictands (von Storch and Zwiers, 1999;
Murphy 2000). As pre-analyses have shown considerable
non-stationarities in the statistical relationships between
circulation and precipitation, a cross-validation approach
was also applied in the present study. The partitioning
of the study period in different samples (shown above)
allows the verification of the model’s quality and trans-
ferability, leading to an unbiased estimate of potential
predictability. In case of an unstable relationship, the
model performance is more dependent on the selected
period, whereas stable connections yield more consistent
results across the whole ensemble of models. This is par-
ticularly important for the transferability of the statistical
relationships to an independent dataset.

4. Results

4.1. Weighting experiments

As discussed in Section 3.2, simple circulation classifica-
tion does not include any information about precipitation.
To improve classification and to condition it by pre-
cipitation, rainfall station data was added and weighted
by a percental factor to regulate its influence on the
clustering. This is directly connected to the identifica-
tion of an appropriate weight. Too small weights yield
results that marginally differ from a pure circulation
classification, and clusters correspondingly do not rep-
resent wet and dry patterns. On the other hand, too large
weights will lead to a classification mainly driven by
precipitation, and clusters correspondingly include highly

Figure 3. Cluster frequencies (in days) for different precipitation
weights (x-axis) and a fixed cluster number of 9 for Jerusalem in
January, ensemble member m3 (Section 3.3, Table II). This figure is

available in colour online at wileyonlinelibrary.com/journal/joc
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dissimilar circulation patterns. The latter also leads to
a high number of wrong assignments during verifica-
tion when only circulation data is used. To deal with
this problem, a range of values between 1 and 25% is

applied and the results of the different weighted mod-
els are compared and evaluated. Figure 3 shows cluster
frequencies, and Figure 4 centroids of the unweighted
(left) and weighted models (right, lambda = 5%) and

Figure 4. SLP Cluster centroids, corresponding pattern mean precipitation (mean), standard deviation (std) and frequencies of rain days (frd)
(box, lower left corner) of an unweighted (left) and a weighted SANDRA cluster analysis (right, lambda = 5%) conditioned on Jerusalem
precipitation in January, ensemble member m3 (Section 3.3, Table II). Number of days assigned to each cluster is given on the top of each map.
Spatial correlation is used to identify pairs so that each of the centroids from weighted SCA is sorted according to its most similar unweighted
correspondent. Note that the cluster numbers remain unchanged and are set according to the centroids’ frequency. This figure is available in

colour online at wileyonlinelibrary.com/journal/joc
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Figure 4. (Continued ).

their corresponding mean precipitation values, standard
deviations (which also serve as error estimate) and fre-
quencies of rain days (box, left corner) for the example
of a SLP-classification conditioned to Jerusalem precip-
itation in January for model period 3 (Section 3.3). In
Figure 4, centroids from unweighted SANDRA Cluster
Analysis (SCA) are sorted by frequency. Spatial correla-
tion is used to identify pairs so that each of the centroids
from weighted SCA is sorted according to its most similar
unweighted correspondent. Note that the cluster numbers
remain unchanged and are set according to the centroids’
frequency. The unweighted classification (weight 0 in
Figure 3) yields circulation types that differ marginally
regarding their frequencies. Precipitation means are gen-
erally low, 3 clusters are associated with values below
1.0 mm. With increasing weight cluster frequencies first
differ marginally, but at a weight of 4–5% a partitioning

into some clusters with frequencies below 50 days, some
clusters with frequencies between 50 and 80 days, some
others with frequencies above 90 days, and 1 cluster com-
prising only 26 days takes place. The most infrequent
cluster also represents the circulation type that receives
the highest amount of mean precipitation (44.2 mm).
When further increasing the weight, only small changes
occur that appear to be rather random than driven by pre-
cipitation. At a weight of 17% another partitioning takes
place, thus it can be concluded that changes in frequen-
cies with increasing precipitation weight occur stepwize.
This was also found for other stations and months.

The highest mean precipitation amount (14.9 mm)
for unweighted SCA is associated with lower pressure
over Cyprus, Persia, Near East, and Arabia (cluster
centroid #4) compared to the western oceanic regions.
The SLP pattern yielding the second highest rainfall
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amount (12.4 mm), centroid #8, shows low pressure
above Cyprus and parts of continental near east, as well
as above the Red Sea. In contrast to centroid #4, this
pattern has a clear low-pressure centre over Cyprus,
whereas in pattern #4, the low itself is shallow but
the gradient to the western high is strong. Regardless
of their depth, Cyprus lows are known to cause winter
rainfall in Israel (Alpert et al., 2004; Sarooni et al., 2010,
Section 4.4) with rainfall amounts depending on pressure
gradients. As mean precipitation amounts are moderate
and standard deviations are comparably high, it can be
assumed that other pressure patterns than Cyprus lows
which might be responsible for higher rainfall amounts,
contribute to those two patterns which are associated
with very small amounts of rain or no rain at all.
Corresponding patterns may be Persian lows in the case
of pattern #4 and Red Sea troughs in the case of pattern
#8. For weighted SCA, similar patterns exist (Cluster
centroids #3, #5, and #9; note that cluster number labels
reflect frequency order). For unweighted cluster pattern
#4, two similar patterns, #3 and #5, can be found.
Their pressure gradients are less pronounced, rainfall
means are lower (3.8 and 6.8 mm). Low pressure of
pattern #9 (which corresponds to unweighted pattern
#8) is more concentrated in northern parts and cannot
be found above the Red Sea. The pressure gradient
between high and low pressure is stronger in the weighted
pattern #9. This pattern is also associated with the
highest mean precipitation (44.2 mm), 100% rain days
and a lower standard deviation (11.8 mm) than for
the unweighted SCA pattern #8 (18.2 mm). This is
also the maximum standard deviation value within the
weighted classification being lower than the maximum in
unweighted SCA. Therefore, weighted pattern #9 is also
more homogeneous concerning precipitation.

For all different weights, downscaling models are
established and evaluated for changes in performance
with increasing weight. Therefore, mean ensemble cor-
relation coefficients, difference between calibration and
verification coefficients, and standard deviations are
examined. Figure 5 shows an example of a SLP-
classification conditioned by Jerusalem precipitation for
January. For low weights, the calibration correlation coef-
ficient first decreases and then increases to a peak at
the weight of 4–5% where the continuously increas-
ing verification correlation also shows a maximum with
both values higher than the corresponding coefficients for
unweighted clustering. For higher weights, there is no
significant change in performance. The variance between
the ensemble members shows higher fluctuations for low
weights and lower ones for high weights. Choosing an
appropriate weight is a compromise between the follow-
ing criteria:

• Highest mean correlation coefficients
• Lowest difference between correlation coefficients for

calibration and verification periods
• Lowest variability within the ensemble

Figure 5. Ensemble mean correlation coefficients (R) between observed
and modelled January precipitation for different precipitation weights
(x-axis) and a fixed cluster number of 9 for Jerusalem: calibration
(cal), verification (ver), calibration-verification-mean (cvmean), calibra-
tion-verification-difference (cal-ver), calibration standard deviation (std
cal), verification standard deviation (std ver). This figure is available

in colour online at wileyonlinelibrary.com/journal/joc

Table III. Weights applied for precipitation-conditioned
(weighted) SANDRA cluster analysis using sea level pressure

as single predictor.

Station Nov Dec Jan Feb Mar

Jerusalem 14 12 5 10 4
Kefar Gilad 13 0 25 12 9
Beer-Sheva 2 4 4 0 5
Tel Aviv 5 3 4 0 9

• Lowest weight in case of similarity of the first three
criteria for different weights (Section 3.2).

A semi-objective procedure selects the most appropri-
ate weights. For January and station Jerusalem, a weight
of 5% is suggested. Examining all months and all four
stations (Table III), the optimal weight is mostly below
20%, in many cases even below 10%, indicating a much
higher variance within precipitation compared to SLP.
Note that unweighted results (weight 0 in Table III) are
kept and used for further considerations when weighting
does not increase performance.

Weighting evaluation is also performed for the multi-
ple-predictor-models. Weights are generally higher than
those of the SLP-models because, in this case, precip-
itation is only 1 of 5 variables implying that a weight
of 100% means an overall contribution of 20%. In 50%
of the cases model performance is not improved by
weighting; for Tel Aviv all months are best modelled by
unweighted SCA (Table IV).

Using the same weight for all stations and months
cannot be recommended as the classification is highly
sensitive to differences in precipitation amounts and
variability. To get the best result, an individual weight
has to be chosen for each station and each month. This
weight is applicable to any of the five sub-periods of the
corresponding ensemble.
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Table IV. Weights applied for precipitation-conditioned
(weighted) SANDRA cluster analysis using sea level pressure,
500 hPa-geopotential heights, 500 hPa-vorticity, and 1000 hPa-

moisture flux as predictors.

Station Nov Dec Jan Feb Mar

Jerusalem 0 12 3 0 4
Kefar Gilad 0 11 0 16 10
Beer-Sheva 10 3 3 0 9
Tel Aviv 4 11 0 1 6

4.2. Models with sea level pressure as the only
predictor

Differences in model performance arising from the appli-
cation of different downscaling techniques using SLP as
single predictor are displayed in Figure 6. Mean corre-
lation coefficients (R) vary strongly across techniques,
months, and stations. For Jerusalem, coefficients are low-
est for the drier transition months of November and
March, the standard deviation indicates the existence of
even negative values for the latter. Highest significant
correlations can be found for the winter month December

(for thresholds refer Section 3.3). Within-ensemble vari-
ance (errorbars in Figure 6) is highest for March for all
techniques and for the verification ensemble of Febru-
ary for the regression-based techniques, indicating non-
stationarities in the predictor-predictand relationships.
For Beer-Sheva, unweighted and weighted SCA fails
to establish stable models in November, January, and
March, showing mostly insignificant correlations and
high WEV. In December and February, SCA performs
better, with the weighted result being the best of all
techniques. For Kefar Gilad and Tel Aviv all techniques
(except for the unweighted SCA) perform reasonably
well for the months of November–February with corre-
lation coefficients above 0.5, while WEV is not satisfy-
ing. Considering RMSE (Figure 7), deviations between
observed and modelled time series are highest in the
wettest month of January and lowest in the drier tran-
sition month of March with lowest values for the driest
station of Beer-Sheva. Different stations’ and months’
RMSE values, as well as different time periods, cannot
be inter-compared as RMSE increases with increasing
precipitation amounts. RMSE is also highly sensitive to
errors in peak values as differences between observed and

Figure 6. Calibration and verification ensemble mean correlation coefficients (R) and standard deviations for all study months (x-axis) and
all selected downscaling techniques: unweighted SANDRA cluster analysis (SCA), weighted SANDRA-CA (SCA wgt), multiple regression
analysis (MR) and canonical correlation analysis (CCA). The only Predictor is sea level pressure. This figure is available in colour online at

wileyonlinelibrary.com/journal/joc
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Figure 7. Calibration and verification ensemble mean root mean square errors (RMSE) for all study months (x-axis) and all selected downscaling
techniques: unweighted SANDRA cluster analysis (SCA), weighted SANDRA-CA (SCA wgt), multiple regression analysis (MR) and canonical
correlation analysis (CCA). The only predictor is sea level pressure. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

modelled rainfall amounts are squared emphasising these
errors. However, RMSE remains a useful tool for com-
parison of several methods applied to a particular station
and period. Regarding different techniques, in most cases
weighted SCA yields the highest values (about 80 mm
for January in Jerusalem and 100 mm in Kefar Gilad),
whereas all other techniques achieve comparable RMSE
values. In some cases for SCA, RMSE values are a little
bit higher than those for MR and CCA.

Altogether, the regression-based methods CCA and
MR show comparable performance regarding correla-
tion coefficients and RMSE with marginal differences
between individual cases. Both methods clearly outper-
form the classification technique with higher correlations
and lower WEV with few exceptions (e.g. higher WEV
in February and January for MR and CCA). SCA shows
weak performance regarding both correlations and RMSE
for most of the months of all stations. Weighting clearly
increases explained variances but also increases RMSE.
In some cases, weighted SCA even outperforms CCA and
MR (e.g. Jan/Feb of Jerusalem), yielding higher correla-
tion coefficients and comparable, or lower, RMSE values.

In most cases, SLP as a single predictor fails to
explain precipitation on a local scale sufficiently. Model

performance is strongly dependent on month and station,
therefore best values can be found for the wetter months
and stations (winter months and Kefar Gilad/Tel Aviv).
Both correlation coefficients and RMSE have to be
considered carefully. Models yielding low correlations
combined with low RMSE cannot describe the observed
variability, even though deviations are small, whereas
models achieving good correlations (and therefore, high
percentages of explained variance R2) combined with
high RMSE are capable to reproduce the observed
variability but considerably under- or overestimate the
observed precipitation amounts.

For further considerations, additional predictors are
included in the models in order to evaluate how model
performance can be improved.

4.3. Multiple-predictor models

Including geopotential heights and relative vorticity of
the 500-hPa level and moisture flux of the 1000-hPa
level as additional predictors leads to more consistent
results (Figures 8 and 9) and high agreements in cor-
relation coefficients of the different techniques. RMSE
values are substantially reduced. Beer-Sheva remains the
station with lowest model performances, but compared
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Figure 8. Calibration and verification ensemble mean correlation coefficients (R) and standard deviations for all study months (x-axis) and
all selected downscaling techniques: unweighted SANDRA cluster analysis (SCA), weighted SANDRA-CA (SCA wgt), multiple regression
analysis (MR) and canonical correlation analysis (CCA). Predictors are sea level pressure, 500 hPa-geopotential heights, 500 hPa-vorticity, and

1000 hPa-moisture flux. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

to the SLP-models correlation coefficients are notably
higher. Winter months’ R values are mostly significant
with CCA and MR performing comparably well and
weighted SCA showing the best performance in most
cases. Coefficients for the transition months are generally
lower with higher variations within the ensembles. All
other stations’ modelled time series are found to be signif-
icantly correlated with the observed precipitation, except
for unweighted SCA applied to Jerusalem and Kefar
Gilad. RMSE values are comparable for all techniques
but tend to be higher during verification for MR and
CCA. Application of weighting leads to a considerable
improvement, i.e. higher mean correlation coefficients
and lower WEV. RMSE values are similar or marginally
reduced. Altogether, CCA and MR again perform com-
parably well with little differences. For both techniques
there are some cases (e.g. all months in Beer-Sheva, or
November/December in Tel Aviv) with calibration corre-
lation coefficients being higher than those for verification.
Unweighted SCA performs better when including differ-
ent predictors. In case of high WEV, weighting reduces
the variations, leading to a result that is comparable to
those of MR, also yielding lower RMSE values compared

to CCA. In some cases weighted SCA outperforms MR
and CCA, especially as verification correlation coeffi-
cients do not drop.

Figure 10 shows the comparison of the four tech-
niques’ modelled monthly precipitation to the observed
one, for one example of Jerusalem (Figure 10(a)) and
one of Beer Sheva (Figure 10(b)). This selection aims
to pick one successful example and one with low
performance. For Jerusalem December precipitation of
model period 2 (Section 3.3, Table II) was selected (R:
0.65–0.85, RMSE: 39–62 mm, weight = 12). Obvi-
ously, all models are capable of reproducing the long-
term variance. Dependent on the applied technique, some
peaks are over- or underestimated, such as 1971 or 1985.
Figure 10(b) displays modelled and observed March pre-
cipitation for Beer-Sheva, model period 1 (R: 0.0–0.765,
RMSE: 11–25 mm, weight = 9). None of the techniques
succeeds in properly modelling precipitation.

To summarize findings in Sections 4.2 and 4.3, corre-
lation coefficients and RMSE values were averaged over
all ensemble members, months and stations. Figure 10
displays the model skills for the calibration (Figure 11(a)
+ (c)) and the verification periods (Figure 11(b) + (d)).
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Figure 9. Calibration and verification ensemble mean root mean square errors (RMSE) for all study months (x-axis) and all selected downscaling
techniques: unweighted SANDRA cluster analysis (SCA), weighted SANDRA-CA (SCA wgt), multiple regression analysis (MR) and canonical
correlation analysis (CCA). Predictors are sea level pressure, 500 hPa-geopotential heights, 500 hPa-vorticity, and 1000 hPa-moisture flux. This

figure is available in colour online at wileyonlinelibrary.com/journal/joc

Models based on SLP as single predictor yield aver-
age correlation coefficients of around 0.6 or lower with
weakest results for unweighted SCA and weighted SCA
performing comparably well to CCA and MR. RMSE
values reach 50–60 mm with highest values for weighted
SCA and lowest for CCA. Skills for calibration and
verification differ only marginally. Additional predic-
tors considerably improve results. Correlation coefficients
reach values of 0.6 or higher and RMSE is reduced by
10–20 mm. For the calibration periods, MR and CCA
yield the highest mean correlation 0.821/0.820, but during
verification, they drop to 0.653/0.668, whereas, weighted
SCA provides values of 0.749 and 0.701 for calibra-
tion and verification, respectively; the smaller difference
between these two values indicates a higher model sta-
bility. Calibration RMSE values are comparable for the
three techniques but higher during verification for MR
and CCA. With respect to correlation coefficients and
RMSE, the regression-based techniques can be consid-
ered as the best performing techniques for models based
on the predictor SLP. For models based on multiple pre-
dictors, weighted SCA yields the best results, closely
followed by MR and CCA.

When comparing all models and techniques it becomes
clear that differences between techniques are smaller
than those between the two predictor sets. Correlation
coefficients are varying for one predictor set and different
techniques only around 0.1, whereas, differences between
both predictor sets for one particular technique are
around 0.2.

4.4. Synoptic comparisons

To study differences and similarities between objective
unconditioned and precipitation-conditioned (weighted)
SANDRA cluster analysis with respect to some dynami-
cal characteristics, both classifications were compared to
the semi-objective classification defined by Alpert et al.
(2004). It includes 19 expert-defined classes belonging
to 6 synoptic groups. One group – ‘winter lows’ – only
contains Cyprus lows or lows located near Cyprus. Sub-
division in this group (as for all others) was carried out
according to the location and depth of the Cyprus lows
(or other systems).

In this study, Cyprus lows are considered in particular
as they are the main contributor to rainfall in Israel and
Jordan (Goldreich, 2003; Saaroni, et al. 2010). According
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Figure 10. Observed and modelled monthly precipitation for Jerusalem (December, ensemble member m2, see Section 3.3, Table II) and
Beer-Sheva (March, ensemble member m1, see Section 3.3, Table II), using different downscaling techniques: unweighted SANDRA cluster
analysis (SCA), weighted SCA (SCA wgt), multiple regression analysis (MR) and canonical correlation analysis (CCA). This figure is available

in colour online at wileyonlinelibrary.com/journal/joc

to Saaroni et al. (2010) who use six of the seven winter
low types or Cyprus lows, the latter are connected
to different amounts of rainfall. For the example of
January in Jerusalem (Figure 4 and Section 4.1), the
occurrence of Cyprus low types is 72 and 68% for the
unweighted wettest patterns #4 and #8. For pattern #4,
mostly deep and shallow and lows to the East can be
found which account for about 7–11 mm rainfall on
average (average daily rainfall for different low types
in Sarooni et al., 2010). For pattern #8, the deep Cyprus
low to the North which is connected to about 16 mm
on average accounts for 38%. Other types accounting
for less precipitation also occur. As rainfall occurrence
of pattern #8 is lower (76%) than that of pattern #4
(88%), fewer days with more intense rainfall contribute
to the pattern. For the residual percentages of rain days,
other pressure patterns are found corresponding to the
classification of Alpert et al. (2004). For patterns #3
and #4 of the weighted (weight = 5%) classification
(which corresponds to unweighted SCA pattern #4),
Cyprus low occurrences drop to 47 and 50% which
agrees with a lower frequency of rain days and less
mean precipitation. Pattern #9 (which corresponds to
unweighted SCA pattern #8), which yields the highest
average amount of rainfall (44.2 mm) with a rain-day
frequency of 100%, is connected to a Cyprus low

occurrence of 96%, with 35% deep lows to the North,
and 38% lows to the East. Rainfall on the remaining 27%
of days is connected to other synoptic types. The number
of 9 clusters appears to be insufficient to split up this
pattern into different synoptic types connected to days
with high precipitation amounts. However, a pre-defined
larger number of clusters would lead to a classification
consisting of patterns with very specific conditions and
low pattern occurrences. As a classification of that
kind cannot be transferred to independent periods, some
within-pattern variability has to be accepted.

5. Summary and conclusions

To contribute to the improvement of regional climate pro-
jections, this study compared the performance of several
statistical downscaling techniques for station-based pre-
cipitation in the ME region. Two classical techniques, MR
and CCA, as well as a novel approach, unconditioned and
precipitation-conditioned (weighted) SCA, were evalu-
ated for the main rainy season (November–March) using
cross-validation. An ensemble of five models was estab-
lished for each of the selected months and validated using
two different skill scores, correlation coefficients (R)
between observed and modelled precipitation and RMSE,
as well as the WEV. Prior to the comparison of the
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Figure 11. correlation coefficients (R, parts (a) and (b)) and root mean square errors (RMSE, parts c and d) for calibration (parts (a) and (c)) and
verification periods (parts (b) and (d)) averaged over all ensemble members, months and stations, for different downscaling techniques (x-axis)
and predictor combinations (indicated as slp for SLP-models or ext for multiple predictor-models): unweighted SANDRA cluster analysis (SCA),

weighted SCA (SCA wgt), multiple regression analysis (MR) and canonical correlation analysis (CCA).

different techniques, the application of different weights
to the precipitation-conditioned SCA was evaluated. The
best results were selected and applied for the comparison
to the remaining techniques. To evaluate the effect of
selected predictor variables on the modelling results, two
different predictor sets were used, one set consisting of
SLP as the only predictor, and another set using further
atmospheric predictors: geopotential heights, relative vor-
ticity, and MF u.

The main conclusions that can be drawn from the
analyses can be summarized as follows:

• All selected downscaling techniques were successfully
applied for the study region

• For the synoptic downscaling technique, the inclu-
sion of precipitation into the clustering leading to
a precipitation-conditioned (weighted) cluster analy-
sis considerably improves model performance with
results that are comparable to the regression-based
methods. SLP-based unweighted SCA that does not
include information on precipitation, produces circula-
tion patterns that do not represent a particular weather
state or rainfall amount, but include days with highly
variable rainfall amounts. Variability within such a
pattern is higher than variability across different pat-
terns. Weighted SCA, however, is capable to find

patterns that aggregate days with similar precipita-
tion amounts, reducing within-pattern variability for
the benefit of more dissimilar circulation patterns with
different precipitation characteristics. This also affects
downscaling in a favourable way: Stability of the
circulation-precipitation relationships and downscaling
model performances are distinctly increased

• SLP as single predictor does not perform sufficiently
well. Resulting downscaling model performance is
strongly dependent on the selected month, station or
technique

• The inclusion of HGT, relative vorticity and MF u

as additional predictors considerably improves model
performance, regardless of the particular technique
used. Correlation coefficients are higher, RMSEs are
reduced, and a lower within-ensemble variance indi-
cates enhanced model stability

• MR and CCA yield the best results when only SLP
is used as predictor compared to the remaining tech-
niques. Unweighted SCA shows lowest performance.
Weighting improves correlation coefficients but also
increases RMSE

• SCA performs best when further predictors are in-
cluded. It is closely followed by MR and CCA.
Even unweighted SCA performs reasonably well with
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additional predictors, indicating that especially the
inclusion of humidity information of some kind (i.e.
MF u in this case) results in a weather pattern classifi-
cation with dissimilar patterns accounting for different
rainfall amounts. Weighting further increases dissimi-
larity in some cases. Thus, weighted multiple-predictor
SCA proves to be a well performing downscaling tech-
nique besides CCA and MR; it might have the potential
to outperform the regression-based techniques.

• When considering all models from different predictor
sets and techniques, results clearly show that the
differences between techniques are smaller than those
between the two predictor sets. Therefore, a careful
choice of predictors is very important before the best
technique can be identified.

Considering water scarcity and the associated risk
for social and political conflicts in the eastern Mediter-
ranean/Middle East region, further downscaling studies
for recent and future climates as well as impact stud-
ies are required. Future work should apply the described
techniques and analyse, e.g. the impact of future climate
change on water availability.
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