
A Veri�ed POSIX-Compliant Flash File System
Modular Veri�cation Technology & Crash Tolerance

Dissertation

Zur Erlangung des Doktorgrades Dr. rer. nat.

Institut für Software & Systems Engineering

Fakultät für Angewandte Informatik

Universität Augsburg

Gidon Marian Ernst

Reviewers: Prof. Dr. Wolfgang Reif

Prof. Dr. Alexander Knapp

Prof. Dr. John Derrick

Day of Defense: November 28, 2016

Abstract

In the Flashix project, a �le system for �ash memory has been developed. It is proven func-

tionally correct and tolerates system crashes such as abrupt power cuts at any point in time

during its execution. The development approach is based in incremental and modular re-

�nement. This dissertaion reports on the veri�cation approach, the practical development,

and the results.

The �rst contribution is a re�nement theory with strong guarantees for composition-

ality built in. It is based on the observations that can be made of a sequential interface

of subcomponents that have an encapsulated state. In order to be able to study the e�ect

of power cuts, which may hit the system in any intermediate state of its execution, the

foundations are a �ne grained, trace-based semantics that exposes such steps. The inte-

gration of subcomponents with their context is done via operation calls with explicit input

and output parameters. At such calls, the steps of the program de�ning the operation are

collapsed into an atomic view, which provides the lever for a substitution theorem for

submachine re�nement.

The second contribution is an extension of the theory that permits to specify and verify

the e�ect of system crashes and their subsequent recovery. This extension is fully com-

patible with the incremental and modular approach used for the functional veri�cation.

Furthermore, two di�erent views of the atomicity of operations are considered, namely a

white box semantics that is adequate for implementation level components, and a black

box semantics that is adequate for speci�cation level components. Several proof methods

for compositional re�nement in the presence of crashes are derived. A reduction theorem

permits to gradually switch to the much simpler black box view.

The third contribution consists of formal models of concepts for �ash �le system that

capture the implementation challenges at a high degree of abstraction, while at the same

time these models do not introduce unrealistic conceptual simpli�cations. Speci�cally, a

formal model of the POSIX standard for �le systems is presented. Exploiting the modular

theory for re�nement under crashes, a veri�ed implementation is described that separates

generic aspects from the �ash speci�c details. The models in the re�nement hierarchy

comprise a coherent working system, from which code is generated that can run on real

�ash hardware.

Acknowledgment

This thesis is part of the results of a long-term e�ort of quite a few people contributing in

various ways to the success of the project.

I like to thank Prof. Dr. Wolfgang Reif for his continuous support and his critical re-

marks in favor of the more general perspective, complementing the technical side.

Many thanks to Prof. Dr. Alexander Knapp for a lot of interesting discussions that were

always a very valuable source of inspiration and knowledge.

I am grateful to Dr. Gerhard Schellhorn for his patience to discuss even the most intri-

cate details of �ash �le systems and re�nement theory and for sharing his vast experience

in modeling and proving.

Many thanks to all of my colleagues making the years interesting and fun. I had a great

time working together with Jörg Pfähler, sharing the o�ce and pushing the project towards

completion. His work on on the parts not covered by this thesis and our cooperation on

the overlap was awesome. I am happy to having shared the o�ce with Bogdan Tofan as

well, working together brie�y on separation logic in the context of concurrency.

Of the many students who have participated in the project, I would like to especially

thank Stefan Bodenmüller for continuously maintaining extending the models and proofs,

Stefan Fritsch for realizing the tool support for the ASM theory, and Sarah Edenhofer and

Jessica Tretter for pioneering several of the formal models in Flashix.

To my wonderful friends, my dad, my mam, my brother, and Martina—she’s the best.

Contents

1 Introduction 1
1.1 Software Development and Formal Methods 1

1.2 File Systems and the POSIX Standard . 2

1.3 Flash Memory . 3

1.4 Research Challenges . 4

1.5 Approach and Methodology . 6

1.6 Contributions of this Thesis . 8

2 The Flashix File System 11
2.1 High-Level Description . 11

2.2 From Paths to Bytes . 13

2.3 The Veri�cation Perspective . 18

2.4 The Practical Perspective . 20

2.5 Summary of Related Work . 22

3 Background 25
3.1 Algebraic Speci�cations . 25

3.2 Abstract State Machines . 27

3.3 Sequent Calculus . 29

3.4 Re�nement of State-Based Systems . 29

3.5 Separation Logic . 31

3.6 The Veri�cation System KIV . 33

4 Hierarchical Components 35
4.1 Semantics of Programs . 37

4.2 Data-Type like Abstract State Machines . 41

4.3 Submachine Composition . 44

4.4 Calculus . 46

4.5 Extracting Submachine Runs . 48

4.6 Related Work . 51

5 Modular Re�nement 57
5.1 Trace Re�nement . 58

5.2 Forward simulation . 59

5.3 Submachine Re�nement . 63

5.4 Related Work . 68

5.5 Discussion and Outlook . 70

6 Models in Flashix 73

7 POSIX Model 79
7.1 State . 79

7.2 Path Lookup and Tree Modi�cations . 80

7.3 Operations . 81

7.4 Preconditions and Error Handling . 84

7.5 Invariants . 85

7.6 Orphans and Power Cuts . 86

7.7 Related Work . 87

8 Virtual File System 91
8.1 Data Model and Abstract File System Interface 92

8.2 State . 94

8.3 Structural Operations . 95

8.4 Deletion . 96

8.5 File Truncation . 97

8.6 Reading and Writing . 98

8.7 Invariants . 101

8.8 Veri�cation . 102

8.9 Related Work . 105

9 Flash File System Internals 107
9.1 General Strategy . 108

9.2 Speci�cation of the Journal and the Index 110

9.3 Regular Operations . 112

9.4 Commit and Recovery . 114

9.5 Garbage Collection . 114

9.6 Invariants . 115

9.7 Veri�cation . 116

9.8 Related Work . 117

10 Hardware Model 121
10.1 State . 121

10.2 Operations . 122

10.3 Power Cuts . 123

10.4 Related Work . 124

11 Crash-Safe Re�nement 125
11.1 A Simple Model . 126

11.2 Atomicity of Crashes . 129

11.3 Crash-Aware Machines . 131

11.4 Submachines and Modularity . 133

11.5 General Proof Methods . 135

11.6 Crash Neutrality and Reductions . 137

11.7 Related Work . 141

12 Dealing with Power Cuts 147

12.1 Summary and Technical Rundown . 148

12.2 High-Level Crash Recovery . 150

12.3 Recovery in the Flash File System . 151

12.4 Related Work . 154

13 Summary and Discussion 157
13.1 Theoretical Results . 157

13.2 Practical Results . 159

13.3 Statistics and Development E�ort . 159

13.4 Lessons Learned . 160

14 Conclusions and Outlook 165

Bibliography 167

A Model Summary 175

Chapter 1

Introduction

Summary. The topic of this thesis is the development of critical software systems to

achieve to high assurance by the use of formal methods, which despite many recent

advances is still a di�cult and costly undertaking. This thesis contributes theoretical

work on modular and incremental development of veri�ed systems by re�nement in

the presence of power cuts that interrupt the regular �ow of execution at any point

in time. The theory is put to the test with the development of the �rst �le system for

�ash memory that is proven functionally correct as well as power cut safe.

Contents

1.1 Software Development and Formal Methods 1

1.2 File Systems and the POSIX Standard 2

1.3 Flash Memory . 3

1.4 Research Challenges . 4

1.5 Approach and Methodology . 6

1.6 Contributions of this Thesis . 8

1.1 Software Development and Formal Methods

Background of this work is the prevalence and increasing complexity of embedded soft-

ware systems. Some examples are the areas automotive (brakes, engine control, airbags),

avionics (�y-by-wire), and aeronautics (�ight control, communications, navigation, data

storage). For the software deployed in these areas, high demands to the reliability and

safety are typically made: the safety of people and the environment as well as large sums

of money are at stake. Flaws in the design and implementation of �le systems already lead

to serious problems in mission-critical systems. A prominent example of a software defect

is the Heartbleed bug in OpenSSL, e�ectively breaking the encryption of the communica-

tion between millions of internet users [48]. In 2004, the Mars Exploration Rover “Spirit”

was almost lost during mission due to a severe �le system bug [129].

Traditional approaches to improve the reliability of software include rigorous devel-

opment processes, proper documentation of requirements, thorough testing, and code re-

views. A complementary approach is to use mathematically founded techniques—Formal
Methods—which are able to prove the absence of certain classes of software defects, thereby

giving much higher con�dence in the correctness of software than traditional techniques.

Besides improving reliability, formal methods can reduce development costs, and lead to

better documentation and maintainability of software. For these reasons, formal methods

are becoming more popular in industry, see for example the survey [160].

As a practical example, Wheeler [156] provides a comprehensive analysis of Heartbleed

2 Chapter 1. Introduction

and discusses di�erent approaches to formal analysis of software systems, their strengths

and limits, and their potential to �nd such defects—or better—to prevent them beforehand.

The quality assurance applied at NASA is described in [71]. Although a multitude of tech-

niques are integrated, no full functional veri�cation was done for the redevelopment of

Spirit’s successor “Curiosity”, which promptly su�ered from problems in 2013: A �rst in-

cident turned out to be caused by physical corruption of one of the �ash memory chips, but

a second incident was traced to a software defect related to the �le system implementa-

tion.
1

In 2016, Curiosity entered safe-mode again, supposedly due to a mismatch between

the camera software and the data processing module.
2

Widespread use of formal methods today is often limited to techniques that can be au-

tomated well, such as SAT solving and model checking. For data intensive systems with

complex algorithms, automatic techniques cannot cope without human guidance and cre-

ativity, which is fairly di�cult and requires expert knowledge.

Tony Hoare’s grand challenge for computing research [84] calls for widespread collab-

oration to improve the veri�cation technology that is available in order to to scale the

use of formal methods to systems that are built and maintained in practice. The current

trend trend is clear: in both academic and industrial contexts formal models are gradually

applied to larger and more complex systems as demonstrated for example by the veri�ed

operating system seL4 [95]. Nevertheless, it remains active research area, as the goal has

not yet been achieved to apply these techniques routinely to the development of complex

software systems that are composed of many di�erent components and span many con-

ceptual layers of abstraction.

The incident with the Mars Rover Spirit prompted Joshi and Holzmann [91] from the

NASA/JPL to propose the veri�cation of a �le system for �ash memory as a pilot project

for Tony Hoare’s long-term grand challenge. This thesis takes up the challenge by the

development of the Flashix �le system, the �rst veri�ed implementation of a �le system

for �ash memory.

1.2 File Systems and the POSIX Standard

A �le system provides the familiar structure of �les, directories, and paths on top of a low-

level representation that is mapped down to the bytes and blocks of the storage hardware.

It o�ers operations to create/delete �les and directories and to access their content and

metadata. These operations are typically exposed to client applications through an oper-

ating system, which in turn �xes a stable interface on which application programmers can

rely on.

Such an interface for the access to the �le system is de�ned as part of the Portable

Operating System Standard (POSIX) [3]. The standard covers many aspects including a

description of the high-level view of a �le system as well as the underlying data model.

Speci�cally, POSIX �le systems are hierarchical name spaces, where each entity is either

a directory or a �le. These are addressed by paths. The view of �le content is that of a

�at sequence of bytes, which is addressed indirectly through �le handles that are acquired

and released explicitly by an application. Metadata of �le system entities comprises ac-

cess rights, several time stamps (e.g. for the creation and most recent modi�cations), and

various counters such as the number of entries within a directory.

1http://www.jpl.nasa.gov/news/news.php?feature=3732, article from March 18, 2013.

2http://www.jpl.nasa.gov/news/news.php?feature=6559, article from July 6, 2016.

http://www.jpl.nasa.gov/news/news.php?feature=3732
http://www.jpl.nasa.gov/news/news.php?feature=6559

1.3. Flash Memory 3

POSIX knows several advanced concepts that optimize various access patterns in prac-

tice. For instance, shallow copies using hard-links (multiple names for one �le) provide a

convenient mechanism to backup large amounts of data incrementally without duplica-

tion. Furthermore, the POSIX standard speci�es to some extend the degree of atomicity of

operations regarding concurrent access and power cuts. Applications such as data bases

rely on these features to provide higher-level abstractions on top of the POSIX interface.

The task of a �le system is complex as it is burdened to realize the mentioned concepts.

There are many di�erent existing implementations with di�erent design goals, trading for

example between simplicity, performance, robustness, and features [102].

Modern operating systems such as Linux, Mac OS X, and di�erent incarnations of BSD

adhere (mostly) to the POSIX standard. Windows provides many of the necessary inter-

faces as part of the standard C library and with Cygwin
3

there is an emulation layer that

bridges the remaining gaps. The bottom line is that POSIX is an established standard and

therefore serves as the target speci�cation of this thesis.

1.3 Flash Memory

Flash memory is a persistent mass storage technology. It is built into a large number of

di�erent products, such as USB drives and memory cards. Over the last years it has replaced

traditional magnetic hard drives in personal computers in the form of Solid State Disks or

hybrid disks where it is used as an intermediate cache, and it is becoming more widespread

in the server market as well. The reason for the popularity of �ash memory is that it has

higher access speeds than traditional hard drives and consumes less power. It does not

contain any moving parts and is therefore more shock-resistant and compact. For these

reasons it is predominant in embedded systems that must endure extreme conditions, such

as the onboard computers in space crafts and the already mentioned Mars exploration

vehicles.

The downsides of �ash memory are that it strongly restricts write access. The storage

hardware is partitioned into erase blocks, each of which consists of a �xed number of phys-

ical memory pages. Write access is o�ered at the level of whole pages only, which must be

written sequentially within each block. Storage space cannot be overwritten directly and

can only be reclaimed for further use by erasing physical blocks in their entirety. Erasing

is a relatively slow operation and has the e�ect that it wears out the memory cells over

time. Modern hardware supports between 10
4

and 10
6

erase cycles before a block breaks

down and becomes unusable. Flash memory is inherently unreliable: It may happen during

ordinary operation that operations fail sporadically, prompting a subsequent erase cycle

to recover the block for further use (in which case the present data should be backed up

to a di�erent location �rst).

Most consumer �ash memory comes with a built-in controller that exposes a traditional

interface to the operating system, speci�cally, they permit (virtual) overwriting of data in

place. Such a controller is called a Flash Translation Layer (FTL). It has the advantage

that existing �le systems can be used without modi�cations to work on �ash memory.

Implementing e�cient and correct FTLs is a di�cult task. Early controllers in (cheap) USB

pen drives for example were not spreading out erases evenly, quickly leading to many

unusable blocks; this e�ect shows up as decreased overall capacity and ultimately leads to

loss of data. Modern �ash controllers addressing these problems are highly complex and

3https://www.cygwin.com

https://www.cygwin.com

4 Chapter 1. Introduction

bin

home

sh

Figure 1.1: Comparison of the POSIX view of a �le system as a hierarchy of directo-

ries and �les (left) to the �ash memory layout consisting of erase blocks and physical

hardware pages. The conceptual gap in between the two worlds needs to be bridged

by a �ash �le system.

have a long history of defects and bugs in the controlling �rmware [153, 163].

An alternative to translation layers is the use of a Flash File System (FFS) that is specif-

ically designed to work with the raw �ash memory interface. While an FTL must employ

a conservative strategy in order to present a hard-disk like interface, integrating decisions

when to erase blocks and where to store data into the �le system itself has the potential

of being more e�cient due to the additional information.

The challenge to design an e�cient and robust FFS stems from balancing strong re-

quirements of the interface exposed to applications and the weak guarantees o�ered by

the hardware. Speci�cally, in high-assurance applications it is expected that power cuts

and likewise the sporadic hardware errors do not lead to data loss. Accessing �les and

directories should take e�ect perceivably atomic, i.e., an operation succeeds completely

or fails without modifying the observable state at all. As an example, the Unsorted Block

Image File System (UBIFS) [69, 88] is a modern �le system for �ash memory that is part of

Linux since 2008 and represents the state of the art.

1.4 Research Challenges

A study by Lu et al. [102] examines the reliability of existing �le system implementations

in Linux. The authors observe that “semantic bugs [. . .] are the dominant bug category”

(Section 1) and suggest the use of formal methods, because these types of bugs are partic-

ularly hard to �nd using traditional approaches such as testing. Why is that so?

First, the gap between the high-level tree-based view and the low-level byte-based rep-

resentation of the hardware is quite high, as already outlined in the previous sections and

visualized for �ash memory in Figure 1.1. The strategies to provide reliable and e�cient

data storage services are complex, especially for �ash memory (see e.g. the UBIFS whitepa-

per [88]). These strategies must then be realized correctly in the implementation. To do

so, the �le system code must interact with the operating system’s infrastructure as well

as the driver level. These interfaces come with more or less well documented functional-

ity, assumptions, and with varying ease of use. For instance, despite the existence of the

thorough textual speci�cation of the POSIX system interface [3], there are still semantic

ambiguities as pointed out in [132], and the guarantees under power cuts are even less

clear [125]. Hence, there are many potential sources of errors, even if shallow program-

ming bugs associated with the low-level nature of the commonly used C language are not

counted in.

1.4. Research Challenges 5

The point made for the use of formal methods in [102] aims at reducing the high-level—

semantic—problems related to 1) implementation concepts on one hand and 2) the integra-

tion with existing infrastructure on the other hand. Incremental, stepwise, and modular

formal modeling of a system addresses the �rst point, whereas a precise, mathematical

speci�cation of the system’s boundary can clarify the interaction, or at least properly doc-

ument the assumptions made.

However, as indicated at the beginning of this chapter, use of formal methods still

no routine activity, which is emphasized by the roadmap for NASA’s �ash �le system

challenge by Freitas et al. [60], too. Two aspects of Tony Hoare’s grand vision [84] are

singled out here that complement the previous arguments, providing a broader context

for the research and goals (and results) of this thesis:

Research e�orts should challenge the state of the art. Development of new and

improved theories for specifying systems and verifying properties makes formal methods

applicable to novel problem domains in the �rst place.

A modern and e�cient �ash �le system incorporates many data structures and algo-

rithms related to the mapping of the high-level directory structure down to the bytes and

blocks of the hardware. These can be attributed to di�erent conceptual views and conse-

quentially the associated implementation and veri�cation problems should be addressed

individually and preferably abstracted within separate components. Therefore, a modular
and incremental approach is required.

On the other hand, power cut tolerance is a concern that pervades the entire system.

The strategies necessary to deal with this issue involve close cooperation of di�erent parts

of the system. The mathematical theory behind the corresponding proofs has started to be

developed in the past few years only and is still fairly unexplored.

The main challenge therefore lies not only in expressing in the �rst place what it means

for a system to be power cut safe but more importantly to develop a veri�cation method-

ology that integrates well with the modular decomposition and conventional proofs for

functional correctness.

Methods should be shown to be e�ective. Conducting actual case studies to evaluate

and �ne-tune formal theories contributes experience about best practices, e�ort, and costs;

and it is a prerequisite for scaling to realistic systems and problem sizes.

The �ash �le system project is large enough that it is no longer su�cient that a chosen

approach and mathematical theory is applicable in principle but that it copes in practice
as well. Many concepts that have been described only informally so far are given a precise

and understandable meaning in terms of formal models. The �nal goal is to end up with

running code that can be integrated into the existing software landscape, one cannot a�ord

to make unrealistic assumptions or to expose interfaces that are impractical.

As a result one has to deal with many issues that tend to be neglected in many formal

developments that regard speci�c aspects in isolation only. With the integration of these

aspects into a coherent system it shows whether the methodology is e�ective in the sense

that it can solve real-world problems while at the same time the e�ort to conduct the

development and proofs does not hit systematic limitations.

6 Chapter 1. Introduction

1.5 Approach and Methodology

Flash File System Concepts. This thesis relies on established standards and modern

concepts in order to provide a �ash �le system. The requirements are expressed by an ab-

stract formal model of the POSIX standard [3]. POSIX is a textual speci�cation of operating

system services and interfaces, including an extensive documentation of conformant �le

system behavior, de�ning names of operations and their parameters.

The implementation concepts are taken from existing solutions. For the generic part

that is independent of the speci�cs of �ash memory, the design is inspired by the Virtual

Filesystem Switch architecture of Linux. For the �ash speci�c data structures and algo-

rithms, UBIFS [88] is taken as a blueprint as well as its submodule UBI [69] which is an

abstraction layer of the hardware interface.

Hierarchical Components. Underlying this work is a hierarchical model of systems

expressed by components. These are integrated via interfaces, which expose operations that

can be called from the outside. To illustrate a system’s architecture and likewise the re�ne-

ment relations between models of di�erent abstraction, diagrams of two types are used.

Borrowing notation from the Uni�ed Modeling Language (UML) [4], Figure 1.2 shows two

components that are integrated via an interface that is expressed by the symbol . Dia-

grams like Figure 1.2 serve as the graphical representation of the �rst of the two structuring

mechanisms that underlie the formal speci�cation and analysis in this thesis.

Technically, components in this work are represented by a speci�c class of Abstract

State Machines (ASMs) [29, 72] that provide an explicit representation and modeling sup-

port for the di�erent types of diagrams shown here.

Observational Re�nement. The methodological basis for veri�cation is correctness by
construction: One starts with an abstract, mathematically precise model of the system’s

behavior, which speci�es exactly what the system should do, but now how this should be

done. In a series of re�nement steps, this abstract description of the system is transformed

into the �nal software with full details concerning algorithms and data structures. A proof

accompanies each step stating that the re�ned, more concrete model of the system exhibits

the same behavior as the abstract one—the proof veri�es the correctness of the �nal soft-

ware product. The idea of correctness by construction in software engineering has a long

history and comes in many di�erent �avors, see for example [13, 14, 44, 83, 101, 157].

Here, re�nement will be based on observable equivalence, captured in terms of the in-

puts and outputs made by the system as its computation progresses through time, which

complements the static composition of the system described so far by its dynamics.

Graphically, re�nement of a speci�cation towards its implementation is denoted by

dashed lines as shown in Figure 1.3. The speci�cation (white) is connected to the cor-

responding implementation (grey) by a formal proof that establishes their observational

equivalence.

Modularity. Figure 1.4 shows the static composition of a system with a hierarchy of

components in three levels of abstraction, combining the two concepts of interface com-

position and re�nement. A top-level speci�cation is decomposed into some parts that can

be made concrete already and a subcomponent that is to be re�ned further. On the inter-

mediate level, an interface is established. In the next chapter, Figure 2.2 shows the

structure of the whole Flashix �le system as such a diagram.

From the engineering perspective, the bene�t of this scheme is that the subcomponent

1.5. Approach and Methodology 7

supercomponent subcomponent

Figure 1.2: Component composition.

Specification

Implementation

Figure 1.3: Re�nement.

can be developed further without considering the part of the implementation split o� at

this stage while there is a formal guarantee that combining all the implementations (grey)

produces a system that adheres to the topmost speci�cation. The huge plus of this approach

is that one can decompose not only the problem domain on a conceptual level, but structure

the veri�cation just the same, breaking the e�ort into individual pieces with a complexity

that becomes manageable.

toplevel specification

(part of the)
implementation

subcomponent
specification

subcomponent

increasing
degree of
abstraction

Figure 1.4: Modular re�nement of a hierarchical system.

Crash Tolerance. A power cut is the sudden loss of power supply with the consequence

that the system stops computing and communicating immediately. Power cuts and in gen-

eral system crashes are problematic in particular related to data storage: a running write

operation may be interrupted in the middle, leading to half written and possibly garbage

data, depending on the physical characteristics of the storage medium. Not all operations

can easily be implemented atomically, for example when several blocks are a�ected by

one operation. The fundamental problem is to reconstruct from partial data without fur-

ther knowledge a view consistent with the e�ect of the operation aborted at the time of

the crash: Either the e�ect of the operation has taken place entirely or not at all.

While the implementation level strategies to mitigate the e�ect of power-cuts are quite

mature (see e.g. [135]), formal approaches that permit to specify and verify desirable prop-

erties of a system under power cuts are being explored only recently. The theory behind

such undertakings must necessarily be able to reason about intermediate steps of a com-

putation, which is in stark contrast to many existing approaches to program veri�cation

that are based on pre- and postconditions [44, 82].

The subject is addressed here by a �ne-grained program semantics that exhibits the

necessary intermediate steps, in conjunction with a mechanism to increase the degree of

atomicity wrt. when crashes happen to simplify the veri�cation. The theory is seamlessly

integrated with re�nement, to yield a uniform and convenient approach that covers the

whole veri�cation e�ort.

8 Chapter 1. Introduction

1.6 Contributions of this Thesis

This thesis contributes to the advancement of system’s development using formal meth-

ods in the two regards as outlined in Section 1.4. The contribution is threefold: On the

theoretical side, a novel modularity theorem for re�nement and a comprehensive speci�-

cation and proof methodology for power cut analysis are presented. Development of the

case study using this theory contributes the practical aspect.

Modular Re�nement.

• A component model for hierarchical systems is developed, where components are

represented by “data type like” Abstract State Machines with an interface de�ned by

operations and explicitly declared subcomponents, called submachines. The de�ning

feature of the theory is that it aligns a �ne granular semantics of programs to the

execution traces of the whole system. The dual purpose of execution traces permits

to relate the steps of a context program to the operation calls to the submachine.

• A compositionality result will shown that explicitly recording input/output traces

of systems is a su�cient criterion for substitutivity in sequential contexts that are

again data type like ASMs. This contrasts existing proofs in the literature for e.g.

data re�nement [41, 64], which are based on the stronger criterion of simulation as a

proof method, and for action systems [14], which are based on parallel composition.

Crash-Safety.

• A framework for the speci�cation of the e�ect of power cuts and recovery is intro-

duced. The theory is integrated into the re�nement approach and gives a precise

account of the behavior of the corresponding system. Su�cient syntactic proof obli-

gations in temporal logic are given. It is shown that the modularity theorem proved

for non power cut aware systems propagates to the extension.

• Taking the dual role of traces as the high-level steps of a system and the small steps

of programs provides a lever to systematically switch the degree of atomicity under

which power cuts are analyzed. The central result is a reduction theorem that per-

mits to decrease the veri�cation e�ort in practice signi�cantly by giving su�cient

conditions when atomicity can be increased. Speci�cally, it is shown how to forgo

with temporal logic proof obligations in favor of conventional pre-/post veri�cation.

The Flashix �le system.

• The work in the context of the Flashix �le system has produced formal models that

capture a number of �ash-relevant implementation concepts. The need to state these

clearly to make the development amenable to formal proofs implies that these mod-

els can illustrate and document the internals of modern �ash storage systems, not

only how these work, but also why the implementation strategies are correct. As

this thesis covers a large part of the system, it contributes general insights to the

development of such systems.

• A signi�cant outcome of the whole project is a working prototype that can run on

existing hardware and can be integrated into today’s software landscape. The Flashix

�le system is therefore an alternative to present solutions when high-assurance

guarantees are needed.

• Finally, by the e�ort of the whole Flashix-team, NASA’s challenge [91] is solved.

1.6. Contributions of this Thesis 9

Outline

Chapter 2 gives an overview of the Flashix project and its goals and discusses the correct-

ness guarantees and assumptions as well as the use of the �le system in practice. Chal-

lenges and approaches to address these are outlined alongside an description of the di�er-

ent components of the system.

Chapter 3 provides some background on algebraic speci�cations, the ASM formalism

and re�nement, the KIV veri�cation system, as well as separation logic, which is used in

some of the re�nement proofs.

Chapter 4 gives an account of data type like ASMs and the sequential programming

language that de�nes their operations in terms of traces, called intervals here. Intervals

are used to represent runs of transition systems, which give meaning to machines, and to

represent the execution steps of programs as well.

Chapter 5 demonstrates that this dual use leads to a composition theorem that permits

to nest re�nements as shown in Figure 1.4.

Chapter 6 complements Chapter 2 with a technical overview of the re�nement hierar-

chy, brie�y sketching the models to give a coherent picture. The Chapters 7 to 10 detail the

formal models and re�nements of the �ash �le system development. The challenges out-

lined in Chapter 2 are realized with the system model of Chapter 4, and the ideas behind

the respective formalizations are presented.

Chapter 11 introduces power cuts and crashes in general into theory as events that

disrupt the normal �ow of execution of the system. Focus lies on a) explicit modeling

support for the concepts involved such as speci�cation of the e�ect of power cuts and

integration of recovery operations and b) approaches to reduce the veri�cation e�ort by

exploiting a connection between power cuts and error handling.

Chapter 12 complements the functional aspects of Chapter 7 to 10 by giving details how

exactly crash safety is realized for Flashix and how the collaborative e�ort of recovery after

such an event can be achieved in the �rst place: it will be shown that crashes lead to subtle

e�ects in the behavior of the system and it is often not clear how to address these correctly.

The results and statistics are summarized in Chapter 13: what were the challenges

encountered in practice to solve the large case study? What is the in�uence of the theory

and also the tool support?

Chapter 14 draws �nal conclusions and outlines future work.

Appendix A contains a systematic overview of the models, outlining the concepts

solved, their representation of state, and their interface.

10 Chapter 1. Introduction

Publications

Parts of the contributions presented in this thesis are based on previous publications:

Articles

1. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular, crash-safe re�nement for ASMs

with submachines. Science of Computer Programming (SCP), 2016. In Print.

2. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV—Overview and VerifyThis

competition. Software Tools for Technology Transfer (STTT), 17(6):677–694, 2015.

In Proceedings

1. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a veri�ed �ash �le system: transac-

tions & garbage collection. In Proc. of Veri�ed Software: Theories, Tools, Experiments (VSTTE),
volume 9593 of LNCS, pages 73–93. Springer, 2015.

2. G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif. Development of a veri�ed �ash

�le system. In Proc. of Alloy, ASM, B, TLA, VDM, and Z (ABZ), volume 8477 of LNCS, pages

9–24. Springer, 2014. Invited Paper.

3. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular re�nement for submachines of

ASMs. In Proc. of Alloy, ASM, B, TLA, VDM, and Z (ABZ), volume 8477 of LNCS, pages 188–

203. Springer, 2014.

4. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. Veri�cation of a Virtual Filesys-

tem Switch. In Proc. of Veri�ed Software: Theories, Tools, Experiments (VSTTE), volume 8164

of LNCS, pages 242–261. Springer, 2013.

5. J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Formal speci�cation of an erase

block management layer for �ash memory. In Proc. of Hardware and Software: Veri�cation
and Testing (HVC), volume 8244 of LNCS, pages 214–229. Springer, 2013.

6. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. A formal model of a Virtual

Filesystem Switch. In Proc. of Software and Systems Modeling (SSV), volume 102 of EPTCS,

pages 33–45. Elsevier, 2012.

Chapter 2

The Flashix File System

Flash, a-ah, savior of the universe — Queen

Summary. Flashix is a POSIX compliant �le system for �ash memory that can be

used in a real world context. This chapter outlines the scope of the project, the chosen

approach to its design, the system’s architecture and implementation concepts. We

start from an intuitive, top-level speci�cation in terms of a tree of directories and

�les. It is explained how the gap down to the erase blocks and bytes of the �ash

hardware is bridged. Along the way, challenges and solutions to problems speci�c to

the characteristics of �ash memory are outlined.

Publications: This chapter is based on [144].

Contents

2.1 High-Level Description . 11

2.2 From Paths to Bytes . 13

2.3 The Veri�cation Perspective . 18

2.4 The Practical Perspective . 20

2.5 Summary of Related Work . 22

Goal of the Flashix project is to develop a �le system for raw �ash memory according to

high assurance standards. The project follows the correctness by construction approach: An

abstract but precise, formal speci�cation of the requirements is gradually and stepwise

transformed towards an implementation with all algorithmic details.

The �le system should be realistic, which means two things speci�cally: Its interfaces to

the outside world adhere to established standards, namely the Portable Operating System

Standard (POSIX) and the Memory Technology Device (MTD) interface, so that it can be

integrated into existing systems without trouble. State of the art implementation strategies

are employed to deal with the speci�cs of �ash memory in order to guarantee that there are

a priori e�ciency limitations built in. For the latter, the design of Flashix is based on the �le

system architecture of Linux, the existing Unsorted Block Image Sile System (UBIFS) [88]

for �ash memory, and its erase block management layer UBI [69].

2.1 High-Level Description

The Flashix �le system consists of several parts as shown in Figure 2.1 that mirror this

approach: A top-level speci�cation of the POSIX �le system interface de�nes the interface

exported to the application layer. Flashix provides the operations create, mkdir, rmdir,

link, unlink, rename, open, close, read, write, and truncate as described by the textual

12 Chapter 2. The Flashix File System

POSIX system interface

Erase block management

Hardware/driver interface

Application

Flash storage

Generic FS concepts

Flash FS core concepts

> _

Figure 2.1: High-level structure of the Flashix �le system showing the system’s

boundary interfaces at the top/bottom and the main conceptual components. For the

components marked in grey an implementation is provided, whereas the white ones

are speci�ed abstractly and integrate Flashix into existing infrastructure.

standard in [3], respectively by the manual pages in section 2 that can be viewed with the

man command line tool on a UNIX system. With slight deviations from the standard, Flashix

provides readdir (the low-level/system interface is unspeci�ed by POSIX), readmeta (cor-

responding to the stat system call), and writemeta (subsuming chmod/chown etc).

The implementation of the POSIX operations is split into three major components

marked grey in Figure 2.1, in software engineering terms it is a three layer architecture.

A generic part that realizes �le system concepts such as path resolution and checking of

access rights, a �ash speci�c core that deals with high-level data structures and algorithms

related to the storage hardware, and an abstraction layer that mediates access to the hard-

ware in terms of logical erase blocks. These three parts can be used independently of each

other—it is possible to integrate them with other developments such as [93].

The �ash storage is accessed through a driver interface that exposes the low-level op-

erations read, write, and erase, as well as bad block management via two operations

is_bad and mark_bad at the level of physical erase blocks. This interface is modeled after

the Memory Technology Device (MTD) interface of Linux [69] and encodes the assump-

tions made about the behavior of the hardware. It has a critical role in the context of the

whole development as the overall correctness of the �le system in practice depends on the

adequacy of these assumptions.

The Flashix �le system encompasses the complete stack of layers of Figure 2.1. These

are further subdivided into di�erent subcomponents, each one with a formal speci�cation

and a veri�ed implementation as explained in the following section.

The (formal) development focuses on the conceptual challenges of building an FFS,

which means that algorithms and data structures, as well as the architectural decomposi-

tion and invariants necessary for the veri�cation are of particular interest. For this reason,

the executable code is generated automatically, in contrast to a veri�cation directly on the

code level.

In the remainder of this chapter, the Flashix �le system is reviewed from several per-

spectives. Section 2.2 summarizes the main concepts found in modern �ash �le systems

2.2. From Paths to Bytes 13

AFS

POSIX requirements

VFS

AFS + recovery

index abstract journal

transact. journal

persistence interface

B+ tree

Flash independent
concepts and models

High-level concepts
of flash file systems

Flash file system

mapping/WL

logical blocks

driver spec.

write buffer

encoding abstract blocks

IO interface

encoding

erase block-
management

transition
to bytes

Legend:

Implementation

Specification Interface

Refinement

Figure 2.2: Detailed component structure of the system. The white boxes repre-

sent abstract speci�cation models. The grey boxes represent concrete implementation

models from which the �nal code is composed. Re�nements are indicated by dotted

lines.

and explains how these are realized (modularly) as part of the architecture shown in Fig-

ure 2.1. Section 2.3 addresses the view of the proof engineer: What are the guarantees that

the system provides? What are the assumptions about the behavior of the hardware under

normal operations, hardware errors, or power cuts? Section 2.4 complements this view by

practical considerations: How is the Flashix �le system be integrated into existing infras-

tructure? What kind of performance can one expect in comparison to other systems? This

work is brie�y put in perspective to related work in Section 2.5, a more detailed comparison

follows in the individual chapters.

2.2 From Paths to Bytes

This section describes the boundary interfaces and the three implementation layers of

Figure 2.1, brie�y introducing all the concepts, data structures and algorithms necessary to

understand how a modern �ash �le system works internally. The concepts are illustrated in

several ways alongside the detailed system architecture and re�nement hierarchy shown

in Figure 2.2.

Following the re�nement approach, each layer de�nes its own particular view and

abstraction of the state that exists at runtime. The respective view is chosen to support

reasoning about the concepts studied at that level. As shown in Figure 2.2, the hierarchy

is deep as there are many di�erent concepts involved, so that the data representation is

switched often in the formal development.

Each re�nement step encodes design decisions, which makes a part of the �le system’s

state concrete and which keeps the remaining part abstract. Key to understanding how

this works is that there is no state that is truly persistent in some sense, all �ash access

ultimate goes through the driver interface represented by an abstract formal model. The

implication is that each concrete layer can only employ internal data structures that are

stored in volatile main memory, and therefore power cut safety must be considered on all

layers.

A similar description of modern �ash �le system concepts can be found in the UBIFS

14 Chapter 2. The Flashix File System

white paper [88]. The interested reader is referred to this document for more details that

are directly connected to the implementation and some additional aspects not covered here

(such as disk quota and transparent data compression).

2.2.1 POSIX—The Speci�cation

The role of the POSIX speci�cation in Figure 2.1 is to de�ne syntactic interface, and more

importantly, the speci�cation of the desired behavior of the Flashix �le system. The associ-

ated formal model re�ects precisely the textual standard [3] without conceptual simpli�ca-

tions in the interface so that it can be used by existing applications in practice. At the same

time, the formal model has been designed to be highly abstract: the formalization (exclud-

ing a characterization of possible error codes) can be presented compactly on one sheet of

paper (see Figure 7.2). This makes it easy to understand the correctness guarantees.

A POSIX compliant �le system is a name space of directories and �les that is addressed

by paths. However, the POSIX speci�cation has several features that go beyond a model

of a �le system as a simple tree.

It is permitted to reference a �le under di�erent paths by hard-links. This feature is

useful for example to create backups without duplicating the �le’s content. Hard-links,

however, lead to sharing in the �le system and its structure becomes a directed acyclic

graph (only the directory part remains a proper tree). File content is accessed indirectly

through �le handles. There may be several handles pointing to the same �le at a time. Each

�le handle stores a current read/write o�set into the �le. As a consequence, there are two

di�erent kinds of references to a �le, from the tree and from �le handles, which must be

tracked so that the resources can be released appropriately.

An important part of the POSIX standard is concerned with error handling. The textual

standard speci�es to a great detail, which error codes must or may be returned in which

situations and it is necessary to re�ect these in the formal model as well, see Section 7.3.

Errors can be partitioned into two classes: Invalid user input such as the request to remove

a �le that does not exist, and internal errors that cannot be foreseen from the outside such

as resource exhaustion or hardware failures. Flashix enforces the strong guarantee that in

any case an unsuccessful operation must not modify the state in any observable manner

(the textual POSIX standard [3] does not speci�cally require this and is often imprecise in

this regard, although some explicit but weaker guarantees are given for e.g. rename).

Lastly, the formal POSIX model requires that the implementation is robust against

power cuts by specifying that all operations must take e�ect atomically. However, it is

not the case that such a crash is completely invisible from the outside even on this level

of abstraction: any �le handle that had been open at the time the power cut must be dis-

carded because the proces owning the �le handle ceases to exist. This potentially causes

some cleanup of resources related to orphaned �les, as described in Section 7.6.

2.2.2 VFS + AFS: Generic Concepts

A Virtual File System (VFS) is an abstraction layer that sits between the external interface

exposed to application programs and a concrete �le system implementation. It provides

functionality that can be realized generically and independently of the data representa-

tion and internals of a concrete �le system. This functionality covers for example name

resolution/path traversal in conjunction with checking of access rights, handles to open

2.2. From Paths to Bytes 15

�les, and the segmentation of �le content conformant to virtual memory pages.
1

The VFS

is a central point where optimizations like caching can be implemented uniformly.

Such an abstraction layer appeared for example in Solaris 2.0 [105] in 1992 with the goal

of unifying local and remote access to �les. Similar concepts have since been integrated

into each major operating system: the corresponding component is called Virtual Filesys-

tem Switch in Linux—with dozens of concrete implementations—and similarly Installable

File System (IFS) in Windows.

The VFS relies on a concrete �le system implementation for storing data on the device.

To this purpose, it de�nes an internal interface, data model, and an associated contract

through which it communicates with the concrete �le system implementation. This in-

terface decouples the internal data representation of the concrete �le system from the

externally visible path-based interface. In the following we refer to this interface and later

and its formal speci�cation as the Abstract File System (AFS). Any compliant concrete im-

plementation can be plugged in, as long as it satis�es the contract of the AFS interface. In

particular the �ash �le system core described in Chapter 9 is a veri�ed implementation of

AFS.

The formal development process follows the same decomposition: The proof that VFS

correctly realizes POSIX concepts relies on the abstract speci�cation in terms of AFS only

but is independent of the �ash speci�c parts, and conversely, further development does

not need to reconsider the concepts addressed in VFS—several hard problems are solved

once and forall, in particular, the mapping of the algebraic tree structure to a pointer-based

representation (with all the well-known di�culties [24]), and a mapping from a linear view

of �le content as a sequence of bytes (which involves nonlinear arithmetic and several

corner cases).

2.2.3 Flash Speci�c Concepts

The �ash �le system core in Figure 2.2 tackles the problem that updates need to be written

out-of-place to �ash to accomodate the limitations of the hardware (cf. Section 1.3). It is

modeled after UBIFS [88], which is a log-structured �le system [135]. All �le system data

is maintained uniformly in an unordered collection on �ash memory. New data is always

written to fresh locations and an index in main memory tracks the current version of a

given datum. The index, however, is just a caching mechanism. It can be reconstructed

from an outdated version that had been persisted earlier on �ash, in conjunction with

the information of recently written data that is kept in a log. The log must determine

a sequential ordering of these recent writes to maintain the inter-dependencies between

user-level operations. A direct solution for �ash �le systems is to write entries constituting

the log linearly to a dedicated part of the storage medium, called the journal. Once this part

becomes full it is integrated into the regular storage area, updating the �ash index as well

in an operation called commit. A new empty journal area is then allocated and the log is

cleared.

The FFS core relies on two submodules: an e�cient implementation of the index as

a B
+

tree (Section 2.2.5) and the mapping of data to the block structure of the hardware,

called the journal layer (Section 2.2.4). These are factored out and represented by their

respective abstract speci�cations (just like the decomposition at the level of VFS).

The FFS core takes a central role in the assignment of responsibilities in the overall �le

1

These are distinct from the physical pages of the hardware.

16 Chapter 2. The Flashix File System

system: it balances the narrow design space between the relatively strong requirements to

satisfy the AFS speci�cation it implements and the weak guarantees that the submodules

can provide due to power cuts and general unreliability of the �ash hardware. In the formal

re�nement, this manifests in the exact way how invariants and preconditions formulated

and the order in which steps of an operation are performed.

The �le system core implements safety against unexpected power cuts by two means

with the help of its two submodules:

1. Data from all top-level operations is grouped into transactions that are encoded in

a way that makes it possible to detect partially written groups in the log. Partial

groups are discarded upon recovery.

2. Since the index is just a cache an invariant is maintained that roughly reads as

ram index = replay(�ash index, log).

Since replaying the log dominates startup time, the on �ash index is re-written periodically

during commit, incorporating all changes made to the ram index so far in an incremental

way. The previous log simply becomes part of the ordinary collection of �les and directo-

ries.

Due to out-of-place updates, data accumulates over time on the medium. It is necessary

to clean up unreferenced version of data, comparably to garbage collection in (functional)

programming languages. Some aspects can already be studied on this level of abstraction,

for example, that only obsolete data is freed.

2.2.4 Transactional Journal

The journal layer of the �le system writes objects representing �le system data of the

core as part of transactions that appear to take e�ect atomically with respect to power

cuts. In order to guarantee this atomicity, the journal groups such objects per operation.

Such groups must have been written in their entirety in order to make a valid contribution

to the observable �le system state. Atomicity at the level of individual writes of objects

is required as well, but for the sake of modularization this concept is not addressed in

the journal but in the persistence layer (explained below in Section 2.2.6), which handles

serialization/deserialization and thus provides the transition down to a byte-based view.

The algorithms realized in the journal refer to the block structure of the hardware,

partitioning the device into Logical Erase Blocks (LEB) that are mapped to physical coun-

terparts by the Erase Block Management layer (described in Section 2.2.7). The content

of each block is regarded as a simple sequences of data objects (which is the view pro-

vided by the persistence layer). This approach permits one to reason about transactions at

a relatively high degree of abstraction without taking speci�cs of the on-disk layout into

account.

At the same time, it becomes possible to reason about several aspects of free space

management and allocation of erase blocks. In close cooperation with the index module,

the journal layer keeps track of how many bytes in each block still contain live data. If

this measure falls under a certain threshold or if storage space becomes scarce, a garbage

collection procedure moves live data out of almost-empty blocks so that these can be erased

and reused.

2.2. From Paths to Bytes 17

2.2.5 B+ Tree Index

The index module realizes the indirection necessary to transparently move objects around

on �ash memory (by writing newer versions and through garbage collection). As viewed

from the �le system core, it is a simple mapping from stable object identi�ers (keys) to the

current address of the object on �ash memory. The index is realized as a B
+

tree [18].

The �rst concern of the index is to support rapid queries and updates of this mapping

by caching these operations as part of an in-memory data structure. The second concern

is to support persisting this mapping to �ash memory by the periodic commit. The size of

the index grows linearly with the size of the �le system, including the amount of storage

allocated for �le content. Therefore, it works incrementally: the in-memory representation

is populated lazily from the underlying on-�ash version during access, and conversely,

during a commit, only the changed portion is written to disk.

B
+

trees lend themselves naturally to this mode of operation, since they are well-suited

for large amounts of data. The on-�ash index can be updated similarly to a functional data

structure—this scheme is called “wandering trees” in the context of �le systems [88].

2.2.6 Persistence Layer

The conceptual switch from high-level data structures towards a low-level byte-based view

is centralized within the persistence layer. The two components for the journal and the

index rely on this interface to store objects of the �le system core respectively the nodes

of the on-�ash copy of the index.

More generally, the persistence layer de�nes the overall layout of the �ash device,

which is partitioned into several areas (the on-�ash copy of the index, the main area storing

the data from the journal, the log as a list of recently written erase blocks, and the orphan

area). The current location of all of these areas is indexed by a superblock that is stored at

a known location.

The persistence layer takes responsibility to encode and decode data structures in the

di�erent areas and to provide information about the sizes of serialized data (the upper “en-

coding” component in Figure 2.2). In order to protect against partial writes from hardware

errors or power cuts, the serialization format includes additional headers and trailers that

surround the actual data on disk. A missing or damaged trailer, for instance, signi�es a

partial write.

The persistence relies on a cache, the write-bu�er, that mitigates the restriction of the

�ash hardware supporting page-aligned writes only. With such a cache, multiple requests

to write some objects can be coalesced, although there will be some data pending in a

partial, cached page in memory that has not yet been �ushed to disk. In order to provide

atomicity guarantees within the upper layers, the persistence interface encompasses an

operation to synchronously write out this cache to the hardware, �lling the remaining

(wasted) space with a padding marker. Such holes in the on-�ash format are eliminated by

garbage collection later on, which always packs objects tightly.

2.2.7 Erase Block Management and Hardware Model

All �ash access described so far is interpreted in terms of Logical Erase Blocks (LEB) that

are mapped transparently to their physical counterparts in an on-demand fashion. The

Erase Block Management (EBM) layer (“logical blocks” in Figure 2.2) provides an interface

that is similar to the low-level operations of the hardware (read, write, and erase), except

18 Chapter 2. The Flashix File System

that blocks are addressed logically. With an extra indirection between logical and physical

blocks it is possible to implement several advanced features:

Logical blocks are allocated on-demand and mapped to physical ones. Erasing of phys-

ical blocks can be done asynchronously in the background, reducing the latency of the

external operation to deallocate logical blocks (removing the mapping), which then ap-

pears to take e�ect immediately.

The EBM layer can change of a whole logical block apparently atomically in a way that

is safe against power-cuts, simply by preparing a fresh physical one with the new content

and then updating the mapping. This is employed for example to write a new superblock

during a commit, when the di�erent areas move around the storage space.

The EBM implements a technique called wear-leveling to prolong the lifetime of the

device: As each physical block can endure only 10
4
–10

6
erase cycles, these should be dis-

tributed evenly. This requires a proactive strategy. For instance, an almost full �le sys-

tem with a lot of stale data (that doesn’t change any more) causes the other remaining

available physical blocks to be repeatedly written and erased. To prevent this, the inter-

nal wear-leveling operation transparently migrates the stale data to a block that had been

used heavily to give it some rest. As consequence, blocks with low erase counters that

hadn’t been used much in the past will be scheduled for future operations. Overall, running

the wear-leveling algorithm causes the maximum distance between two erase counters to

shrink.

The erase block management layer includes a submodule to encapsulate serialization

and deserialization of organizational data that is internal to the EBM (lower “encoding” in

Figure 2.2), notably an inverse mapping stored in the physical blocks to an assigned logical

block number for allocated blocks.

As outlined previously, an abstract model of the �ash hardware (resp. its driver inter-

face, “driver spec.” in Figure 2.2) contrasts the top-level POSIX speci�cation as the bottom

boundary of the overall development. The model encodes the assumptions stated in Sec-

tion 2.3.1 in a concise manner and thus captures the semantics of the hardware operations

to read, write, and erase pages and blocks subject to a no-overwrite policy.

2.3 The Veri�cation Perspective

Purpose of this section is to answer the question: What does it mean that the correctness

of Flashix has been formally veri�ed? The answer to this question relates to the formal

speci�cation of the boundary interfaces, namely POSIX as the provided interface and MTD

as the driver interface relied on. Here, the intentions are described that underlie the design

of the formal models.

2.3.1 Assumptions

The assumptions about the hardware strike a balance between guarantees that the �le

system can rely on and the limited reliability actual hardware can provide.

A write or erase operation may take partial e�ect. This mirrors the fact that Flash hard-

ware can sporadically show errors due to the somewhat unstable physical characteristics.

It is assumed, however, that such as situation can be detected reliably from an error code

returned by the driver interface. Furthermore, only the portion of the data accessed at the

time of a write operation may be a�ected by an error, whereas previously written data is

assumed to be safe.

2.3. The Verification Perspective 19

For read operations, Flashix assumes that the state of the device is not changed at

all. This assumption is not entirely realistic: Investigation of modern �ash hardware has

revealed the so called “unstable-bit” issue
2

or “read disturb” in [153, Section 4.1.3], where

locations on the device that had been written at the time of a power cut may degrade

with a small number of read operations. UBIFS tries to protect against such a situation by

migrating away data from the a�ected blocks. Such a procedure has not been integrated

into Flashix yet.

The �nal assumption is that the mechanism for bad block management is reliable. The

assumptions stated above are encoded as part of the formal model of the driver interface

described brie�y in Section 2.2.7 and formally with more detail in Chapter 10.

Of course, the standard restrictions for veri�ed software apply: a bug in any of the

tools involved can weaken the result of the formal proofs. It is therefore assumed that the

theorem prover (KIV [53] in this case) does not permit to derive invalid conclusions due to

a problem in its inference engine, dependency management, and so on. Furthermore, the

executable code is automatically derived from the formal models (see Section 2.4.1). Bugs

in the code generator are not covered by the veri�cation so far, this issue may addressed

in future work. However, experience tells that such errors surface quickly and loudly in

the form of a compilation failure or a runtime crash. They can be �xed easily most of the

time as they tend to be systematic. The approach circumvents common programmer slips,

too (such inadvertedly using the wrong comparison operator), because these are already

caught at a higher-level in the formal models by the proofs.

2.3.2 Guarantees

Formal veri�cation of the Flashix �le system shows several desired properties of the im-

plementation model, presuming that the formal POSIX model actually captures the stan-

dard [3] adequately.

Functional correctness means that the implementation behaves exactly as required by

the top-level formal speci�cation, it is established by re�nement proofs. As a consequence,

all internal data structures and algorithms supporting the �ash �le system concepts are

shown to be realized correctly.

Proper handling of invalid input is enforced by the elaborate speci�cation within the

POSIX model.

The internal operations, namely garbage collection, commit, asynchronous erase, and

wear-leveling, work as advertised and have no externally visible e�ect, even in the pres-

ence of hardware errors and take e�ect atomically with respect to power cuts. A successful

garbage collection cycle of a logical block actually makes this block available.

The �le system can recover from a power cut at any time. This implies that the resulting

state will be consistent in the sense that all data structures in memory and on disk are

well-formed and all the invariants hold. More speci�cally, recovery produces a state that

is observably equivalent to either the one before or after the operation running at the

time of the power cut. This guarantees in e�ect that the top-level interface is atomic with

respect to power cuts.

The �le system deals gracefully with errors of the hardware. Operations are safe-

guarded against write errors similarly to power-cuts and therefore the visible e�ect of

such an error is a non-operation. Furthermore, write operations are potentially retried

2http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits

http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits

20 Chapter 2. The Flashix File System

several times internally.

However, the �le system does not have builtin redundancy that can mitigate read errors

and any data that is stored in a broken location on the device will remain inaccessible. Some

integrity measures are implemented, e.g., several on-�ash data structures are guarded by

checksums in addition to error correction provided by some hardware, although this is

currently not done for all data stored on �ash. Such extensions are considered orthogonal

to this work and could be added modularly in the future. Nevertheless, hardware errors

typically manifest during write or erase operations and can therefore be detected before

bad locations are populated with data. In such cases, the bad blocks are excluded from

further use before any harm is done.

The functional guarantees and the error behavior manifest in the formal model of

POSIX in Chapter 7. The guarantees related to power cuts are established by interpret-

ing the top-level speci�cation as an atomic one in the �rst place—the formal re�nement

theory underlying the veri�cation ensures that the �nal implementation adheres to the

speci�ed atomicity (in addition to the usual mechanism for functional correctness).

2.4 The Practical Perspective

This section discusses how the Flashix �le system works in practice.

2.4.1 Integration, Running Code, and Validation

From the formal models we generate executable code in two programming languages,

Scala and C. Both can be integrated into the Linux directory hierarchy via the File System

in Userspace (FUSE) library
3

that permits one to implement a �le system as a conventional

user-space program. The two code generation targets di�er in their purpose:

Scala
4

is a modern, scalable, multi-paradigm programming language that compiles to

the Java Virtual Machine (JVM). It supports object oriented concepts that are used to en-

code the ASM models as classes with the given operations and an internal state. Scala

emphasizes immutable data structures and functional programming and provides a com-

prehensive library of data types such as lists, sets and maps, which makes it easy to trans-

late algebraic de�nitions from the formal speci�cations. The generated Scala code closely

resembles the formal KIV models. The Scala code is used for simulation, testing, proto-

typing, and validation of the formal POSIX model. By running on top of the JVM, it is

simple to integrate Java libraries for example to visualize data structures. An interactive

demonstration has been developed that shows the status of erase blocks and the index for

instance.

Targeting C code makes it feasible to run Flashix on actual embedded devices. The C

code is much more e�cient in terms of run time and memory in particular and can be

integrated more easily with the FUSE and MTD interfaces. The code generator is limited

to the implementation level models of the hierarchy (the grey ones in Figure 2.2). The gen-

erated code is more verbose (≈13 kLoC of C in contrast to≈7 kLoC of Scala), for example,

it needs to be augmented by explicit memory management and an encoding of algebraic

data types as C structures and tagged unions. The C code must bridge the conceptual gap

between the value semantics of the algebraic types towards destructive modi�cations. The

speci�cs of the code generator are not subject to this thesis, though.

3https://github.com/libfuse/libfuse
4http://scala-lang.org

https://github.com/libfuse/libfuse
http://scala-lang.org

2.4. The Practical Perspective 21

Figure 2.3: Garz & Fricke CUPID development board (14× 8 cm
2
).

The CUPID board shown in Figure 2.3 by Garz & Fricke is a small embedded system de-

signed for experimental setups and prototype applications.
5

It is equipped with a Freescale

ARM 11 processor with 532 MHz and 128 MB RAM and runs embedded Linux or Win-

dows CE. An on-board chip provides 256 MB of NAND �ash storage space consisting of

2048 erase blocks of size 128 KB with 64 pages of 2048 bytes each. The root �le system

is stored in one of several �ash partitions and is formatted with UBIFS by default. The

device is accessible via serial port and Ethernet. The CUPID board currently serves as test

platform for the Flashix �le system.

The guarantees that Flashix provides are necessarily relative to whether the formal

POSIX model actually expresses the intended behavior of the system. Re�nement proofs

only guard against errors in this part of the development to a certain extent.
6

For this

reason we have validated both the Scala code for the POSIX model as well as the C Code

using the SibylFS framework by Ridge et al. [132] for oracle-based conformance testing.

This activity has uncovered only minor issues with features beyond the scope of the Flashix

project (notably missing support for symbolic links, which then was added manually to

the generated C-code).

2.4.2 Performance

This section gives a glance at the performance of the C version of Flashix. Although a com-

prehensive evaluation of the �le system under di�erent workloads is beyond the scope of

this thesis, some evidence is provided that Flashix is fast enough to be used in practice. Fig-

ure 2.4 shows a comparison to UBIFS+UBI for some microbenchmarks on a simulated �ash

device. The �ash device provides 1 GB of storage and is simulated by the nandsim7
kernel

module that is distributed as part of Linux. The module is loaded with delays enabled. The

benchmark encompasses an initial formatting of the device, a subsequent mount, writing

a single larger �le (≈ 150 MB), writing many small �les (≈ 2500), and reading back each

of the small �les.

The measurements for UBIFS discern whether the sync mount option had been spec-

i�ed that forces all �le content to be written to disk immediately. In the asynchronous

5http://www.garz-fricke.com/cupid-core_en.html
6

It is possible that proofs for a correct implementation against a �awed spec uncover such problems. The

issue described in Section 7.7 has been found this way.

7http://www.linux-mtd.infradead.org/faq/nand.html#L_nand_nandsim

http://www.garz-fricke.com/cupid-core_en.html
http://www.linux-mtd.infradead.org/faq/nand.html#L_nand_nandsim

22 Chapter 2. The Flashix File System

format mount big write small writes read
0

5

10

15

20

25

30

Flashix
UBIFS sync
UBIFS async

Se
co

nd
s

Figure 2.4: Comparison of Flashix and UBIFS for di�erent microbenchmarks on a

simulated device. The measurements have been taken with all optimizations of UBIFS

and Linux disabled or bypassed (caches and compression in particular). The numbers

are dominated by disk access times.

case without that �ag, the measurements include a subsequent �ush of internal bu�ers to

disk (userspace command sync). The notable di�erence manifests for small writes that can

be partially coalesced in the asynchronous case. The support for internal compression had

been disabled for UBIFS, and the �le system was unmounted and remounted between each

test so that the elaborate caching in Linux does not in�uence the results.

The benchmark is not representative for a realistic workload and e�ectively measures

just the I/O load generated, disregarding any optimizations in UBIFS/Linux not imple-

mented by Flashix. The indicated numbers are dominated by the (simulated) access times

of the �ash hardware. The results shown in Figure 2.4 can be interpreted to demonstrate

that the concepts, algorithms and data structures implemented in Flashix are not signif-

icantly less e�cient than the ones in UBIFS, and that the re�nement-based development

method with generated code is a valid approach to produce systems that are both provably

safe and without sacri�cing much.

Under realistic workloads that necessarily take advantage of the more sophisticated

internals of UBIFS and Linux (caching and internal concurrency), Flashix exhibits a per-

formance that is slower by a factor of 2 to 5. Work to address this performance gap is

already ongoing.

2.5 Summary of Related Work

This section concludes with a short survey of �le systems for �ash memory; and a brief

discussion of related e�orts in a formal context.

2.5.1 Existing Flash File Systems

The Journaling Flash File System (JFFS) for raw �ash memory
8

targets devices of restricted

size only. It trades e�ciency in favor of a relatively simple design. For example, the index

is reconstructed at mount time instead of being stored on �ash, which makes initialization

slow and prompts high memory usage because the RAM index must be total. JFFS 1 targets

8http://sources.redhat.com/jffs2

http://sources.redhat.com/jffs2

2.5. Summary of Related Work 23

older NOR �ash only, support for modern NAND has been built into version 2. JFFS is

used for example in home routers, which often run embedded Linux. Yet Another Flash

File System (YAFFS)
9

has less restrictions, but it relies heavily on out-of-band data storage,

which is not always available on modern �ash devices.

UBIFS improves signi�cantly
10

on the performance of JFFS and YAFFS through ad-

vanced features: It supports for example incremental loading and storing of data structures

such as the index and free space tables, transparent data compression, asynchronous in-

ternal operations, and write-back caching. UBIFS has been part of Linux since 2008 and is

considered very mature. It is actively maintained and developed further at the time of writ-

ing, for example, it has recently grown support for Multi-level cell (MLC) NAND hardware,

where memory cells have more than two states and can thus store multiple bits.

The �ash �le system LogFS is based on the idea to store the directory tree explicitly

(similar to Ext2). It is updated out-of-place on �ash, similar to a functional data structure

or the wandering tree of the �ash index of UBIFS. LogFS has been integrated into Linux

in 2010, however, further development seems to have ceased by 2012.
11

For devices with a Flash Translation Layer (FTL) there are several �le systems that can

issue TRIM commands to the device in order to mark space as unused. This helps the FTL

to reclaim space that it could otherwise not determine as unused. TRIM is implemented in

�le systems originally designed for conventional magnetic disks, for example in Ext2 and

its successors.

The Flash Friendly File System (F2FS)
12

is an experimental design by Samsung that

takes the inner workings of FTLs into account and supposedly triggers less erase cycles.

A similar �le system is NILFS
13

, which builds a snapshot mechanism on top of its log

structured design.

2.5.2 Formal Approaches

An early pen-and-paper model of the “UNIX �ling system” is by Morgan and Sufrin [108].

It is written in the speci�cation language Z and considers a wide range of POSIX concepts

such as hard links and �le handles. This work has served as foundation and inspiration

for a �rst generation of formal models that have been mechanized [10, 39, 40, 57, 61, 81,

92]. These approaches typically study some aspects on a high level of abstraction and in

isolation. Although some e�orts are made towards an implementation, none of these has

produced a working prototype. Lali [98] summarizes these e�orts.

A second generation of �le systems research with formal methods aims at complete

and realistic systems [8, 33, 34, 65, 93, 104, 120, 132, 133]. The distinguishing result of most

of these e�orts is running code that serves as a test oracle or provides an actual storage

system. Furthermore, speci�cation of the POSIX interface is revisited in the light of state-

of-the art formal methods techniques, and safety against power cuts resp. system crashes

is considered seriously. In this context, domain speci�c languages such as Cogent [9, 121]

have shown the potential of bridging the gap between high-level models and low-level

implementations.

A detailed and technical comparisons to all of these existing e�orts is included at the

9http://www.yaffs.net
10http://www.linux-mtd.infradead.org/doc/ubifs.html#L_scalability
11https://github.com/prasad-joshi/logfs_upstream
12https://lwn.net/Articles/518718
13http://nilfs.sourceforge.net/en

http://www.yaffs.net
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_scalability
https://github.com/prasad-joshi/logfs_upstream
https://lwn.net/Articles/518718
http://nilfs.sourceforge.net/en

24 Chapter 2. The Flashix File System

end of the respective chapters as appropriate.

Orthogonal e�orts apply model checking to existing real-world �le systems with im-

pressive results in terms of defects found [21, 63, 96, 112, 161].

A more general perspective includes large scale formal methods applications such as

software of the Paris métro [19], Microsoft’s hypervisor Hyper-V [36], the PikeOS micro-

kernel [16], NICTA’s microkernel seL4 [94, 95], the veri�ed compilers CompCert [100]

and CakeML [97], and the distributed system IronFleet [76] (this list is not intended to be

exhaustive).

A comparative but smaller case study has been done for the Mondex electronic purse

where several teams have provided di�erent solutions to the veri�cation of a secure proto-

col, see [90] for an overview. Another well-documented case study is the Tokeneer access

control system [15].

Chapter 3

Background

Summary. The foundations of this work are structured speci�cations for algebraic

de�nitions of data types such as numbers, lists and sets, and functions over these

data types such as arithmetical operations, length, union, intersection and so on.

The algebraic part is de�ned using higher order logic. The computational part of

the models is given as transition systems over an algebraically de�ned state space,

syntactically encoded as Abstract State Machines (ASMs). The interactive veri�cation

system KIV supports these formalisms and provides a weakest-precondition calculus

to reason about properties of ASMs.

Contents

3.1 Algebraic Speci�cations . 25

3.2 Abstract State Machines . 27

3.3 Sequent Calculus . 29

3.4 Re�nement of State-Based Systems 29

3.5 Separation Logic . 31

3.6 The Veri�cation System KIV . 33

3.1 Algebraic Speci�cations

The foundations of this work are structured algebraic speci�cations and many-sorted

higher-order logic [12, 53, 130]. It is based on typed expressions e : t, which composed

of variables x ∈ Xt , typed function symbols f : t1 × · · · × tn → t, applications of a func-

tional to several arguments e(e1, · · · , en), and of lambda abstractions λ x1, · · · , xn. e Vectors

of values/variables are typically signi�ed by an underline x = x1, · · · , xn as in λ x. e. Func-

tion symbols that take no arguments (n = 0 in their type) are called constants. Expressions

of the builtin type Bool denote formulas. Function symbols p : t1 × · · · × tn → Bool are

called predicates, these include true, false : Bool (writing these in typewriter font), the

standard connectives ¬, ∧, ∨,→,↔ (in decreasing order of binding precedence), and the

existential and universal quanti�er ∃ ,∀ : (t → Bool)→ Bool as usual. Types are formed

from a set of base sorts s and function types.

The semantics is based on algebras A = (As, _
A) with a carrier set As for each base

sort and a function _
A

assigning meaning to constants and function/predicate symbols f ,

written f A. The carrier set of function types At→t′ = (At → At′) is de�ned recursively

over the structure of the type as the set of all functions from At to At′ (standard semantics).

Expressions e : t are evaluated with respect to an algebraA and a valuation v : Xt → At

26 Chapter 3. Background

for the variables as follows:

JxK(A, v) = v(x)

Jf K(A, v) = f A

Je(e1, · · · , en)K(A, v) = a(a1, · · · , an) for a = JeK(A, v), ai = JeiK(A, v)

Jλ x. eK(A, v) = a 7→ JeK(A, v(x 7→ a))

It is assumed that the connectives have their usual meaning, e.g.,¬A is logical negation,

and trueA = true resp. falseA = false for semantic values ABool = B = {true, false}
(written in italics). The semantics of a predicate p : t1 × · · · × tn → Bool can be regarded

as a relation on the carrier sets JpK ⊆ At1 × · · · × Atn (which is isomorphic to explicitly

mentioning the target type’s carrier set ABool). This is used to shorten the notation in the

later chapters.

A speci�cation is de�ned in terms of a signature, �xing the sorts and function symbols

that are available, and a set of axioms that characterize the properties of the functions.

An algebra is a model of a speci�cations, if it satis�es all axioms for any valuation. The

development in this thesis is to be understood as relative to such a model, which will be

left implicit.

Speci�cations will be introduced step by step later on as part of the mathematical for-

malization of the data structures as well as the algebraic functions and predicates in the

case study. Here, some of the commonly used data types and functions on them are de�ned

in terms of speci�cation fragments.

Frequent use is made of freely generated (algebraic) data types, introduced by the key-

word data. For example, lists List are constructed from the constant empty list [] and

addition of an element at the front (“cons”), written with an in�x +

data List = [] | _ + _ (head : Elem, tail : List),

where the selectors l.head and l.tail retrieve the constructor arguments of a list l (written

post�x by convention). l.head is the �rst element of a list l. Elem stands for any type of

elements that is stored in the list, instances List〈t〉 where Elem is replaced by a type t
are used as well. The length of a list is written as #l, concatenation is written _ ++ _ and

concrete lists are delimited by square brackets, e.g., [a, b, c]. The semantics of data types

are given by the algebra that is freely generated over terms only containing constructors.

The type of streams σ : Stream〈t〉 generalizes lists to potentially in�nite length. It

is speci�ed as a variant that is either a lists or a total function from natural numbers to

element of the element type t

type Stream〈t〉 = List〈t〉+ (Nat→ t)

with a function #σ : Nat + {∞} to retrieve the length of a stream σ, pre�x and post�x

selectors (σ to n) resp. (σ from n) (de�ned for n ≤ #σ), and concatenation σ1 ++ σ2.

Finite sets and maps (partial �nite functions) are used frequently, too, written s : Set〈t〉
resp. f : t 7→ t′ with domain t and range t′. The empty set and map is uniformly written

as ∅, cardinality of a set is denoted as |s|, and singleton sets and maps are written as {a}
resp. [a 7→ b]. Map lookup (partial function application) and update is written with square

brackets f [a], and f [a 7→ b] respectively.

3.2. Abstract State Machines 27

The disjoint union of two maps f1 ·∪ f2 is de�ned only when the domains of f1 and f2
are disjoint (in the remainder all occurence of ·∪ are assumed to be de�ned).

(f1 ·∪ f2)[a] =

{
f1[a] a ∈ dom(f1)
f2[a] a ∈ dom(f2)

Finite multisets m : Multiset〈t〉 are used as well, where] denotes multiset sum. The

characteristic function count(a,m) : Nat denotes the number of occurrences of a in m and

the membership test a ∈ m abbreviates count(a,m) > 0. When convenient, multisets are

treated as ordinary sets, in such cases an occurrence of m is taken to abbreviate the set

{a | a ∈ m}. Multiset displays use delimiters * · · · + that resemble the shape of a “bag”

(which is an alternative name for the mutliset type).

A data type that occurs frequently in implementations is the type of arrays ar : Array〈t〉
that is similar to partial functions, except that it has a length, written #ar , instead of a do-

main. Lookup ar[n] and modi�cation ar[n 7→ b] is written again with square brackets and

is de�ned for n < #ar (indices n are 0-based).

Finally, sometimes predicative types are used, such as arrays of a speci�c length, writ-

ten Arrayn〈t〉 = {ar : Array〈t〉 | #ar = n}. In the actual development in KIV these are

encoded by additional assertions and invariants.

3.2 Abstract State Machines

Abstract State Machines (ASM) [29, 72] are a framework for the description and develop-

ment of state-based software systems. The (sequential) ASM thesis formulated by Gure-

vich [73] states that every (sequential) algorithm can be simulated by an ASM with the

appropriate degree of abstraction: states correspond to mathematical structures and ASM

steps correspond to the steps that are attributed informally but intuitively to the algorithm

at the respective degree of abstraction. For this reasons the ASM formalism has been ad-

vocated by Börger and Stärk [29] and others as a tool for formal methods that is on one

hand very �exible because it scales with the development process and on the other hand

mathematically rigorous due to precise but simple foundations.

The steps of an ASM are de�ned by abstract programs that manipulate a vector of

program variables storing instances of algebraic data types as the state of the machine.

Programming and modelling concepts supported by ASMs include assignments, condi-

tionals, local variables, parallel composition, sequencing, nondeterministic choice, loops,

procedure calls and recursion as �rst class syntax known from structured programming

languages (see e.g. [28]). Some extensions deal with distributed and concurrent machines,

but these are not used in this work.

The ASM method is equipped with a notion of re�nement [27, 138] for incremental

development of systems starting from requirements down to the �nal code. There are sev-

eral tools related to the ASM formalism for simulation and testing (such as CoreASM [56]

and Asmeta [66]) and for formal veri�cation (such as KIV [53], which is used in this thesis,

see Section 3.6).

De�nition 3.1 (Abstract State Machine). An ASM M = (x : St, Init, p) has a predicate

Init : St → Bool to characterize initial states and a main program p that describes com-

putational steps, which manipulate a vector of program variables x : St constituting the

state space (also called “dynamic/controlled functions”). The computation induced by an

28 Chapter 3. Background

ASM starts in an initial state that satis�es Init. The program p is then repeatedly executed

and the states encountered are recorded in a trace, called a run.

In the following, a speci�c class of ASMs is used with most of the features outlined

above but with a restriction to parallelism at the level of assignments.
1

ASMs may also refer to named procedures ρ(x; y){p} with formal input parameters x
and reference parameters y and body p. The declaration of such procedures is simply as-

sumed to be given as part of the speci�cation that sets up the background theory.

De�nition 3.2 (Program syntax). The syntax of programs p, q is de�ned by the following

grammar.

program p, q ::= x := e parallel assignment

| p; q sequential composition

| if ϕ then p else q conditional

| choose x with ϕ in p ifnone q nondeterministic choice

| while ϕ do p iteration

| ρ(e; z) procedure call

Assignments x := e evaluate the right hand side expressions in parallel. An assignment

to a (partial) function f := f [a 7→ b] is abbreviated as f [a] := b (similarly for other indexed

data types, notably arrays). The empty assignment is abbreviated as skip, which has no

e�ect. Sequential composition p; q executes the two subprograms in order. Conditionals

if branch on a condition ϕ and execute either p or the (optional) alternative q depending

on the outcome of the test. The choose construct is a nondeterministic version of a let

that picks some values for new local variables x that satisfy condition ϕ and executes p
(the condition is sometimes omitted when it is true). If there are no such values then q is

executed instead. while-loops execute their body as long as a condition is satis�ed. The

statement abort abbreviates the nonterminating computation while true do skip. Finally,

calls to named procedures ρwith actual input parameters e and reference parameters z are

included. Standard local variable declarations can be encoded as

let x = e in p ≡ choose y with y = e in p
y
x ifnone skip,

where z are fresh variables and p
y
x denotes the renaming of x to y in p to avoid con�icts

when x occurs in e. Note that ifnone skip is never executed here and we drop ifnone

clauses in the following when they are irrelevant. Choice between two programs can be

encoded as follows, where b : Bool, omitting the condition ϕ ≡ true and the ifnone part,

and programs are grouped by curly braces:

p or q ≡ choose b in { if b then p else q }

Well-formed programs satisfy the usual consistency conditions. Identi�ers used in as-

signments and actual parameter lists must be in scope, i.e., they are either state variables

of the ASM or they are bound by a choose or by the formal parameters of a procedure

body. Typing constraints must hold, e.g., both sides of an assignment have the same type.

1

Formal deduction in the presence of arbitrary parallelism is complicated, because two programs running

in parallel can issue con�icting updates that have to be dealt with (cf. the proof system given by Stärk and

Nanchen [149] and the clash-freedom check by Schellhorn et al. [146]).

3.3. Sequent Calculus 29

3.3 Sequent Calculus

The proof system underlying the work in this thesis based on sequents Γ ` ∆ as judge-

ments (see Gentzen [67, 68]). The conjunctive antecedent Γ of a sequent is a list of formu-

las representing the assumptions which must imply one of several potential conclusions

in the disjunctive succedent ∆. A sequent Γ ` ∆ is thereby an abbreviation of the formula∧
Γ→

∨
∆. The proof system is syntax directed, there is exactly one proof rule for each

propositional connective for the antecedent resp. succedent. As an example, the rules for

conjunction are

ϕ, ψ, Γ ` ∆

ϕ ∧ ψ, Γ ` ∆
∧-left

Γ ` ϕ, ∆ Γ ` ψ, ∆

Γ ` ϕ ∧ ψ, ∆
∧-right

The intuition is that assuming a conjunction amounts to assuming both its constituents,

whereas proving a conjunction amounts to proving both constituents individually in two

sub-proofs. The rules for disjunction are symmetric—the case split occurs in the antecedent.

The logic provides three modalities to reason about programs: Formula 〈|p|〉ϕ denotes

that program p is guaranteed to terminate when started in the current state and ϕ holds

in all �nal states. This operator corresponds to the weakest precondition [44] of p wrt. ϕ
and encodes total correctness. Formula [p]ϕ denotes that whenever p terminates, ϕ holds

in the �nal state. This operator is the weakest liberal precondition and encodes partial

correctness. The sequent ϕ ` [p]ψ corresponds to the Hoare triple {ϕ} p {ψ}. Dually,

formula 〈p〉ϕ ≡ ¬[p]¬ϕ asserts the existence of some execution of p that terminates and

establishesϕ. For deterministic programs, 〈|_|〉_ and 〈_〉_ equivalent. The concrete notation

is borrowed from [74, 127]. The advantage of these operators over Hoare triples is that

several executions of di�erent programs can easily be related, as exploited by the proof

obligations for re�nement in Section 5.2.

The calculus symbolically executes programs in modalities. Similar to propositional

connectives, there are rules for each program construct. As an example, assignments in-

troduce an equation

Γ, x′ = e ` ϕx′
x ,∆

Γ ` 〈|x := e|〉ϕ,∆ where x′ fresh

(3.1)

where fresh variables x′ that capture the new values and for the postcondition ϕ
x′
x denotes

the corresponding syntactic renaming of x to x′ in ϕ. The calculus is described in e.g. [79,

130].

3.4 Re�nement of State-Based Systems

Re�nement [157] is the idea of gradually developing a system in several stages or proto-

types. One starts with an abstract possibly not feature complete description of a system

that is elaborated and broken down towards the �nal implementation. There are di�er-

ent understandings of what a re�nement step may comprise, for example the engineer

may introduce new functionality (sometimes called “horizontal re�nement”) or replace

an abstractly speci�ed algorithm or mathematical data structure by their implementation

counterpart (“vertical re�nement”).

State-based systems maintain an internal state that is not supposed to be accessible

directly from the outside. Instead, an (external) interface is provided to mediate access to

30 Chapter 3. Background

the stored information, for example, to prevent unintended or malicious modi�cations that

threaten internal consistency. The manipulation of the state is therefore fully under the

control of the system.

While the re�nement method was originally intended as a development guideline, it

has quickly been realized that a formal underpinning of re�nement leads to a useful strat-

egy in program veri�cation [44, 83], complementing for example the assertional methods

by Floyd [59] and Hoare [82]. Speci�cally, when an abstract (description of a) system A is

re�ned to a more concrete one C, one can take A as the speci�cation of C and formally

prove that the more complex C works the same as the easy-to-understand model A. In the

following, we write A v C when an abstract system A is (formally) re�ned by a concrete

one C, resp. when A speci�es C, i.e., when A speci�es the requirements for C.

With a suitable de�nition of the re�nement relation v, one can use A to reason ab-

stractly about the behavior of the system: Although the actual running code will be pro-

vided by C, the conclusions from that reasoning still hold. To this end, re�nement com-

pares the externally visible behavior that can be observed over the interface but hides the

internal state. This ensures that A and C can be regarded as essentially equivalent (where

“essentially” is to be made precise).

A minimal requirement on the re�nement relationv is that it is re�exive so thatA v A,

i.e., A may serve as its own speci�cation. Re�nement should further be transitive so that

A v B and B v C implies A v C, i.e., one can take the liberty to develop a system in as

many re�nement steps as desired.

The fundamental question is therefore what can be observed about a system from the

outside. This question can be addressed from two slightly di�erent angles, depending on

what is taken as the basis for observations.

The direct approach characterize a class of clients or contexts which may interact with

the systems. The possible observations are implicitly given by the interaction of the system

with its context. This view underlies the early de�nition of data re�nement, which [77]

succinctly states as

A v C ⇐⇒ for all programs P : P(A) ≡ P(C)

where systems A, C are called “data types” and contexts are sequential programs P calling

operations that constitute the interface of the respective data types. The equivalence ≡
between programs is meant to be a semantic one, i.e., the problem of comparing the two

systems A and C is reduced to comparing the outcomes of executing P(C) to those of

executing P(A). For nondeterministic programs this equivalence is weakened to the set

inclusion P(A) ⊇ P(C) on the pairs of initial/�nal states. The bene�t of this approach is

that it is immediately clear, what re�nement implies at the level of contexts.

An alternative approach introduces observations explicitly. For example, trace re�ne-

ment of action systems [14] captures the behavior of a system A as the possible sequences

beh(A) of actions that it can engage in. Re�nement A v C is then succinctly stated as

beh(C) ⊆ beh(A) (note the similarity to data re�nement—again, set inclusion is used to

permit that C is more deterministic than A). The minor drawback of this approach is that a

composition theorem that relates re�nement to contexts must be proved explicitly, which

is demonstrated in [14] for parallel composition that synchronizes the actions of A resp B
with a context M: A v B implies M||A v M||C. The proof is based on monotonicity of the

parallel composition operator || with respect to behaviors beh.

3.5. Separation Logic 31

A syntactic approach is taken by the re�nement calculus [13] that is based on Dijkstra’s

weakest precondition operators [44], which takes as observations the total correctness

contracts one can prove about a system (which is a program in this case), i.e.,

A v C ⇐⇒ ∀ ϕ. 〈|A|〉ϕ→ 〈|C|〉ϕ.

This formulation preserves any (total) correctness assertion made about the system in a

re�nement step and also between programs P(A) and P(C) containing A resp C as frag-

ments. Liskov’s substitution principle [101] and Meyer’s design by contract [107] for ob-

ject oriented programming narrow this down to a speci�c, given pair of precondition and

postcondition for each method.

Explicit observations have the bene�t that it becomes clear what a system means when

viewed in isolation: There is no need to look at contexts in order to understand how a

system works or in order to prove that a re�nement holds.

Re�nement of Abstract State Machines (ASMs) [27, 138] is based on comparing the

runs of a system. However, in contrast to extracting the behavior of a system (an ASM)

into observations that are separated from the state, one can specify explicitly, which part

of the state constitutes the relevant information. A relation IO the �xes the desired corre-

spondence between the abstract state of A and the concrete state of C, which permits for

instance to re�ne the domain of inputs/outputs, i.e., to switch from mathematical numbers

to a machine representation (cf. [42] for a similar concept in the speci�cation language Z).

Furthermore, the generalization to n:m re�nement permits to choose the points in time

when the system’s state is to be compared, while other states are excluded from the com-

parison. The ASM re�nement method is thus much more �exible in comparison to many

other approaches. However, it is also less clear how re�nement relates to di�erent patterns

of composing systems, and arguments for modularity are somewhat ad-hoc and informal

(see [27] for examples and [52, 162] for discussions).

There are some further technical decisions involved when setting up a re�nement the-

ory that are related to potential nontermination or in�nite behaviors, see [139] for a dis-

cussion. For background on data re�nement and related methods see de Roever and En-

gelhardt [41], Derrick and Boiten [42].

In summary the central aspect of a re�nement method is which observations are com-

pared, and how they are related to contexts that interact with the system. A major goal

is to ensure that a proof of A v C guarantees that C can be substituted for A in any

suitable context without violating the expectations of such a context on the behavior of

its subsystem. The conclusion of this section is therefore that substitutivity is therefore a

prerequisite for a modular decomposition of the development.

3.5 Separation Logic

Separation logic [131] is a logic designed to reason about pointer structures and destructive

updates. It is particularly well-suited for structures with limited or no aliasing such as

linked lists and trees. The presentation below is to be taken as a syntactic one, i.e., an

algebraic speci�cation, resembling the embedding of separation logic into KIV [53].

Formulas in the logic are assertions ϕ : Heap→ Bool about the shape of heaps, which

are mappings from locations to values, Heap = (Loc 7→ Val). The distinguished value

null : Loc denotes an invalid location and is never in the domain of any heap. Heap as-

sertions are built from the constant emp denoting an empty heap, the points-to predicate

32 Chapter 3. Background

l 7→ v describing singleton heaps, and the separating conjunction ϕ ? ψ that asserts that

the heap can be split into two disjoint parts satisfying ϕ resp. ψ.

emp(h) ↔ h = ∅
(l 7→ v)(h) ↔ h = [l 7→ v]

(ϕ ? ψ)(h) ↔ ∃ h1, h2. h = h1
·∪ h2 ∧ ϕ(h1) ∧ ψ(h2)

Iterated separating conjunction over a �nite set X = {x1, . . . , xn} for asserts a formula

ϕ(_) for each choice of x ∈ X on its own part of the heap.

?
x∈X

ϕ(x) ↔ ϕ(x1) ? · · · ? ϕ(xn)

Abstraction of pointer structures to algebraic counterparts is straight forward. The

classic example refers to singly linked lists, where the objects of type Val stored in the

heap are instantiated by nodes of the form

data Node = node(value : Elem, next : Ref)

The predicate ls correlates a pointer l to a list Node with an algebraic List as follows

ls(l, []) ↔ (l = null) ∧ emp

ls(l, a + x) ↔ ∃ r. l 7→ node(a, r) ? ls(r, x)

The recursion is well-founded over the algebraic data type. This de�nition states that an

empty algebraic list is represented by a null-pointer in an empty heap. A list a + x with

head a and tail x corresponds to at least one heap cell l 7→ node(a, r) with that element

and some next pointer r to the remaining elements. The separating conjunction states that

the �rst cell is disjoint from the remaining list, which precludes cycles globally.

With separation logic it is thus straight forward to specify recursive heap-data struc-

tures without sharing (proper trees in the general case) and to abstract them to an al-

gebraic counterpart. The bene�t of this approach is that whenever we have an assertion

(l 7→ v) ? ϕ for some heap h, it is already known where an assignment h[l] := v′ must

take place, because l cannot possibly alias any location in theϕ-part due to the disjointness

induced by the separating conjunction ?. Essentially, a syntactic assignment rule can be

recovered and the resulting heap assertion will be (l 7→ v′) ? ϕ regardless of ϕ—without

separation one would explicitly need to prove that ϕ is preserved. This idea is codi�ed by

a “small” context-insensitive axiom for heap assignments and the frame rule, which per-

mits to place a program running in a subpart of the heap into a bigger context, given by a

frame F .

{l 7→ v} h[l] := v′ {l 7→ v′} store

{P} p {Q}
{P ? F} p {Q ? F} frame

The proofs of the case study rely on a straight-forward shallow encoding of separation

logic as a set of higher-order operators that has been mechanized in KIV in the course of

this work. An example involving binary trees and further details can be found in [53]. Sim-

ilar approaches are described in [116, 154]. Later on, the theory is applied to the mapping

of a pointer-based directory tree to its abstract counterpart of POSIX (Section 8.8).

Two technical issues had to be addressed to make the approach work out. The �rst is

concerned with lifting connectives and quanti�ers over the heap parameter. For example,

3.6. The Verification System KIV 33

conjunction ∧h between heap assertions is characterized by (ϕ ∧h ψ)(h)↔ ϕ(h) ∧ ψ(h).

In practice, the _
h

subscript is omitted in favor of overloading the symbol ∧.

The second technical issue is that there is no built-in heap in KIV resp. its support for

ASM programs. Instead, the heap h is maintained explicitly as an ordinary program vari-

able. This decision is a trade-o�: with explicit heap variables it is possible to relate di�erent

(versions and types of) heaps, which is useful for specifying and proving re�nements (as

observed in e.g. [109]). The weakest-precondition calculus already supported by KIV had

to be adapted just a bit for e�cient proof support by a modi�ed assignment rule.

The drawback of an explicit heap as part of programs is that the frame rule for heap-

modular reasoning is not generally valid. Separation logic has been crafted carefully that

all actions are local, speci�cally that all heap locations accessed by a program must be listed

as part of the precondition; whereas in our setting non-local assignment such as h := ∅
are not ruled out in advance. A systematic �x for this lack of implicit framing is to justify it

for each progam p in an ad-hoc manner: instead of proving {P} p {Q} and lifting it by the

frame rule, we always show {P ? F} p {Q ? F} directly for a placeholder frame F , which

can be instantiated by an arbitrary context later on. Our experience is that this solution

imposes no additional e�ort in practice when the actions of p indeed a�ect the heap only

locally, which is almost always the case. This section concludes with the sequent calculus

rule for heap assignments that is now part of KIV, expressed over program modalities:

((l 7→ v′) ? F)(h′), h[l] = v ` ϕh′
h

((l 7→ v) ? F)(h) ` 〈|h[l] := v′|〉ϕ where h′ is fresh

and equally for the other modalities [_]_ and 〈_〉_. In the premise, the fresh variable h′

denotes the new heap to which the new assertion and updated postcondition ϕh′
h refer to.

The additional assumption h[l] = v records the previous value v at l so that no information

is dropped by the rule and no harm is in�icted by automatically applying this rule during

symbolic execution.

3.6 The Veri�cation System KIV

The mechanization and proof support is provided by KIV [53, 130], a tool

for the development and formal analysis of software systems. It is actively

developed at the University of Augsburg and has been employed in sev-

eral large scale formal projects such as the Mondex Challenge [90] and is

also applied to the development of Flashix. KIV is used for teaching formal

methods to students, too. Teams using KIV have participated successfully at veri�cation

competitions with the goal of comparing state of the art technology in the �eld.
2

The sys-

tem is available at the site http://isse.de/kiv.

In its latest version, the KIV system supports several formalisms, notably functional

and applicative models, imperative and concurrent programs, Abstract State Machines;

associated with an integrated proof strategy that is based on symbolic execution for se-

quential and concurrent systems [145]. As a result of the work for this thesis, KIV now has

explicit modeling and proof support for the re�nement theories developed here.

KIV provides some advanced features that are speci�cally geared towards incremental

development of big systems starting from a formalization of requirements down to realistic

2

See http://vscomp.org and http://www.verifythis.org.

http://isse.de/kiv
http://vscomp.org
http://www.verifythis.org

34 Chapter 3. Background

programs. The proof system provides interactive discovery of proofs on one hand and pow-

erful automation on the other hand, scaling from initial prototypes and exploration (e.g.

of system invariants) to maintenance and extensions of existing systems. A dependency

management guarantees consistency between speci�cations, theorems and their proofs

across multiple projects that tracks and minimizes impacts of changes to a development,

which proved crucial for this project.

A graphical user interface that facilitates and speeds up development. It is comple-

mented by an integration of project management and the speci�cation editor into the

Eclipse software platform,
3

with modern features such as syntax highlighting and incre-

mental parsing and error checking of source �les.

3http://eclipse.org

http://eclipse.org

Chapter 4

Hierarchical Components

It’s bigger on the inside! (comment on the TARDIS)

Summary. Components are represented by a speci�c class of Abstract State Ma-

chines (ASMs) that resemble data types: they have an interface given explicitly by

operations with inputs, outputs and a precondition instead of just a main program.

The theory is based on a �ne grained view in terms of intervals that captures uni-

formly the semantics of components in terms of their runs as well as the steps of

programming, building the foundations for the treatment of power cuts later on in

this thesis and a compositional re�nement method that supports abstraction of atom-

icity.

Publications: This chapter is based on [52].

Contents

4.1 Semantics of Programs . 37

4.2 Data-Type like Abstract State Machines 41

4.3 Submachine Composition . 44

4.4 Calculus . 46

4.5 Extracting Submachine Runs . 48

4.6 Related Work . 51

Purpose of this chapter is to introduce a component model amenable to hierarchical com-

position, expressed in terms of ASMs that provide externally callable operations as their

interface. Recall the diagrams for submachine composition from the introduction in Sec-

tion 1.5 that describe the static structure of a system’s development. In the following, the

�rst diagram will be explained and formally de�ned, whereas re�nement is postponed to

Chapter 5.

submachine composition M X

Submachine composition is subject to the restriction that the two components may not

depend directly on the other’s internals. A machine M synchronously calling the operations

of its submachine X is denoted by M(X) respectively by M X graphically.

The view of ASMs in the remainder of this thesis is streamlined so that it matches more

closely the intuition of interfaces de�ned by operations. Therefore, machines provide such

an interface with top-level operations Opj with an index j (a name) and explicit parameters,

each de�ned by a program pj . These machines will be referred to as “data type like” in

the following. Graphically, one can interpret interface provision as the right half X of

submachine composition.

36 Chapter 4. Hierarchical Components

steps I M(X) of M(X)

steps I X of a submachine call OpX

Figure 4.1: Dynamics of submachine calls. Several internal steps of OpX at the bottom

are abstracted to an atomic call in the context of the caller (fat arrow at the top), hiding

the grey states at the bottom.

De�nition 4.1 (Data type like Abstract State Machine). A data type like Abstract State

Machine M = (x : St, Init, {Opj}j∈J) has state variables x : St, a predicate Init : St →
Bool to characterize initial states, and of operations Opj for indices j ∈ J . Each operation

Opj = (prej, inj, pj, outj) consists of an ASM program pj that describes possible state tran-

sitions, provided precondition prej holds. It reads input from of formal input parameters

inj , and writes output formal output parameters outj .

Data type like ASMs resemble standard ones from De�nition 3.1, except that they have

multiple operations instead of a single main program. It should be emphasized that this

speci�c view is merely a shortcut to express certain facts and properties of composed sys-

tems in a direct way and to facilitate reasoning about compositionality and later on power

cuts. It is, however, not an essential deviation from standard ASMs that have one main

program only. This means in particular that the notation X denotes just the (data type

like) machine X, but it emphasizes that X is subject to use by some context. An embedding

of such machines into the regular ASM formalism as described by Schellhorn [139] de-

termines the semantics of data type like ASMs by transition systems (see De�nition 4.11),

although we’ll capture the index of called operations and their inputs and outputs explic-

itly as part of their runs (cf. Section 3.4), whereas standard ASMs rely on input and output

functions that are implicitly set by the environment.

The aspect that does in fact go beyond the standard ASM formalism is to admit sub-
machine calls OpXj (e; z) with actual inputs e and outputs z to a submachine X in the context

of a supermachine M(X). Dually to provision of an interface, this corresponds to its use,
i.e., the left half M of submachine composition, also denoted by M(_), which stands for a

partial construction that is not a valid machine on its own until the missing submachine

is linked in as described in Section 4.3.

In accordance with the interpretation of interfaces as establishing a contract between

the caller and the callee [107], it must be ensured that the former respects information

hiding and also the precondition of submachine: The submachine’s state is accessed in-

directly only via the inputs and outputs of its operations and the veri�cation must check

the respective preconditions at call sites. This renders submachines in an outer context

as passive components like data types [77], in contrast to the prevalent view of ASMs as

active components that internally choose their next steps (and thus have guards that de-

termine applicable operations). This distinction is indeed required for builtin modularity

as established by the modular re�nement in Section 5.3.

On a technical level, the theory relies on a dual interpretation of sequences of states,

called intervals I in the following: As the semantics of programs I |= p, expressing that I
corresponds to the steps of a possible execution of p, and as the semantics of machines

I ∈ runsM(j, i, o), expressing that I corresponds to a run of M where the sequences j, i,

4.1. Semantics of Programs 37

and o denote the called operations, their inputs, and outputs, respectively..

The main idea is to integrate submachine calls OpXj (e; z) of a subcomponent X as atomic

steps into the run of a caller M(X) as shown in Figure 4.1: The �ne-grained steps of the

program de�ning OpXj are collapsed to a single atomic one in the context. The bene�ts of

this approach are:

• The steps I M(X) |= p of a supermachine program can be projected to a run I X of the

submachine X indicating which operations of X had been called. As a result, re�ne-

ment expressed in terms of these runs gives rise to a corresponding substitution

theorem in Chapter 5, which replaces X by a re�ned machine.

• From the small steps I |= p of the execution of a program one can extract the inter-

mediate states that are relevant for the analysis of power cuts (see Chapter 11).

• There is a well-de�ned place to change the degree of atomicity of steps at call sites by

collapsing the micro steps of the underlying programs to a macro steps of the called

operation (thus being bigger on the inside). This provides a lever for a systematic

abstraction of power-cut safety.

The remainder of this chapter introduces the necessary concepts and de�nitions bot-

tom up. The �ne-grained nonatomic semantics of programs, the coarse grained atomic

semantics of operations Op, data type like ASMs (interface provision), and �nally the inte-

gration of two machines M(X) with submachine calls (interface use).

4.1 Semantics of Programs

An interval I ∈ Stω is a �nite or in�nite sequence of states in St. The length of an interval

#I ∈ N] {∞} re�ects the number of transitions. If I is �nite it consists of #I + 1 states.

In particular, the smallest intervals with #I = 0 have one state only. The k-th state of an

interval is denoted by I(k), where I .�rst := I(0) and I .last is the last state of a �nite I .
Sequential composition of �nite intervals I1 o

9
I2 is de�ned when I1.last = I2.�rst or

when I1 is in�nite. It is de�ned by I1 o

9
I2 := (I1(0), · · · , I1.last, I2(1), I2(2), · · ·) for �nite I1

so that the common state is collapsed in the result. If I1 is in�nite, then I1 o

9
I2 := I1 re�ects

the intuition that I1 corresponds to a computation taking in�nite time and I2 will never be

reached. The operator
o

9
is taken from Interval Temporal Logic (ITL) [31] where it is called

“chop”.

In addition to in�nite intervals that model nonterminating programs, the integration

of subcomponents requires to expose divergence of calls over an interface explicitly. Di-

vergence is represented by states ⊥, which can potentially occur at the end of intervals,

but only there. This means that I(k) = ⊥ implies that I(k′) = ⊥ for all k ≤ k′ < #I .
Intervals I that are either in�nite or end in ⊥ both represent divergence, denoted by I ↑ in

the remainder. Keeping some additional ⊥ states at the end of an interval provides some

freedom of choice for its length. Care will be taken that the semantic de�nitions are robust

against such an extension at the end.

In the following, by convention (s0, s1, · · ·) with trailing dots refers to in�nite inter-

vals, correspondingly (s0, · · · , sn) with a speci�ed �nal state sn denotes a �nite interval of

length n.

“Ordinary” sequences a ∈ Aω over a set A are underlined by convention, called vectors

when they are �nite. Notation |a| counts the number of elements of a (contrasted to #I
counting steps). Concatenation of sequences does not collapse the intermediate state and

38 Chapter 4. Hierarchical Components

is written by juxtaposition a = a
1
a

2
. Sometimes, sequences of sequences resp. sequences

of value vectors are used, these are written in boldface as a = (a
0
, a

1
, · · ·)

Modi�cation s(x 7→ a) of a state s at a vector of variables x to new values a is written

with round parentheses like lookup. If s = ⊥ then any modi�cation will again give ⊥.

Similarly, modi�cation of the whole trace of x in an interval I to a sequence of value

vectors a is written I(x 7→ a) such that I(x 7→ a)(k)(x) = a(k).

Recall that the de�nition of the program syntax from Section 3.2

p, q ::= x := e | ρ(e; z) | p; q | if ϕ then p else q | while ϕ do p

| choose x with ϕ in p ifnone q

consists of assignments, procedure calls, sequential composition, conditionals, while loops

and nondeterministic choice. The denotational semantics I |= p as shown in De�nition 4.2

records the steps of p within I that is �nite whenever p terminates and in�nite otherwise.

The judgements I |= p are derived by a (recursive) inference system as usual. However, in

order to be able to derive in�nite intervals for nonterminating programs, the commonly

used least �xpoint is inadequate. Instead, the greatest �xpoint is used, which admits the

construction of such intervals through in�nite derivations. This approach is fairly stan-

dard [22, 23, 115].

The semantics of parallel assignments x := e in rule (4.1) consists of one step from s to

s(xs 7→ JeKs) that overwrites the values of x in the new state with the denotation JeKs of e
in the �rst state s, i.e., all expressions e are evaluated in parallel.

Sequential composition p; q is de�ned in terms of concatenation of intervals. There are

two cases, depending on whether p diverges (rules (4.2) and (4.3)). Recall that I ↑ signi�es

that p does not terminate normally, i.e., #I = ∞ or alternatively that the last state is ⊥,

which can arise from a diverging submachine call, see Section 4.3. Conditionals evaluate

the test ϕ in the �rst state I .�rst of the interval and then execute one of the branches.

The choose construct selects a sequence a = (a
0
, a

1
, · · ·) of value-vectors ak for the

variables x so that x 7→ a
0

in the �rst state establishes condition ϕ. The sequence a in

rule (4.6) �xes the values of x throughout the entire interval I during the execution of p
and masks the previous value of x from the outer scope. If ϕ is unsatis�able in the �rst

state then the alternative q is executed instead by rule (4.7).

The while loop discerns whether ϕ holds in the �rst state of the interval. In the case ϕ
holds, the loop is unfolded once, executing p and then the loop again if p terminates

(rule (4.2)). Otherwise, the diverging body alone determines the interval (rule (4.8)). If ϕ
is falsi�ed, the loop is exited with a skip step (s, s) by rule (4.9). The de�nition e�ectively

splits the interval I = I1 o

9
I2 o

9
· · · into segments Ik |= p such that Ik.�rst |= ϕ for each k. The

loop terminates, if the split is �nite and all Ik are. In this case the last state of I falsi�es ϕ.

The semantics of calls ρ(e; z) for a declaration ρ(x; y) {p} unfolds to the procedure

body p by rule (4.10). During the execution of p, the formal input parameters x are bound

locally to their trace as a sequence of value vectors a of which the �rst entry is initially

given by the actual arguments e. Likewise, the formal reference parameters y are bound

to value vectors b, initially given by the actual ones z. In contrast to a, the values b of

reference parameters become visible in the resulting interval in z. Furthermore, the con-

catenation of intervals in the conclusion of the call rule is well de�ned, since the second

s is collapsed with the �rst state of the subsequent interval and this state is fact equal to

I(z 7→ b).

The skip steps (s, s) in (4.9) and (4.10) enforce that exiting a loop and procedure calls

4.1. Semantics of Programs 39

De�nition 4.2 (Nonatomic semantics of programs). The nonatomic interval semantics

I |= p of programs is de�ned by the greatest �xpoint of the following inference system:

(s, s(x 7→ JeKs)) |= x := e (4.1)

I |= p
I |= p; q if I ↑

(4.2)

I1 |= p I2 |= q
I1 o

9
I2 |= p; q

if I1.last = I2.�rst
(4.3)

I |= p
I |= if ϕ then p else q

if I .�rst |= ϕ
(4.4)

I |= q
I |= if ϕ then p else q

if I .�rst 6|= ϕ
(4.5)

I(x 7→ a) |= p
I |= choose x with ϕ in p ifnone q

if I(x 7→ a).�rst |= ϕ
(4.6)

I |= q
I |= choose x with ϕ in p ifnone q

if I .�rst 6|= ∃ x. ϕ
(4.7)

I |= p
I |= while ϕ do p

if I .�rst |= ϕ and I ↑
(4.8)

I1 |= p I2 |= while ϕ do p
I1 o

9
I2 |= while ϕ do p

if I1.�rst |= ϕ and I1.last = I2.�rst

(s, s) |= while ϕ do p
if s 6|= ϕ

(4.9)

I(x, y 7→ a, b) |= p

(s, s) o

9
I(z 7→ b) |= ρ(e; z)

if I .�rst = s and a = (JeKs, · · ·), b = (s(z), · · ·)
(4.10)

for a procedure de�nition ρ(x; y){p}
with formal inputs x outputs y and body p

40 Chapter 4. Hierarchical Components

take time, i.e., the rules are productive. A procedure that immediately calls itself in no time

would not impose any constraints on the interval, rendering the semantics useless to ob-

serve any property of such a procedure, including nontermination. Nakata and Uustalu [115]

describe some interesting anomalies that arise with non-productive rules.

Remark. In contrast to [55, Section 3.2], De�nition 4.2 here has been simpli�ed slightly:

The �xpoint de�nition for the while loop is now part of the inference system instead of

being de�ned by the greatest �xpoint operator ν explicitly. The simpli�cation lends itself to

de�ne recursive procedure calls by the same mechanism—these had been omitted in [55].

Next, some interesting properties of the semantics are stated.

Proposition 4.3. I |= p implies that I has a step (#I 6= 0).

Proof. By structural induction on p. Every rule that does not make p smaller has indeed a

proper step.

Lemma 4.4 (Termination). The least �xpoint of De�nition 4.2, written as I |=↓ p in the
following, yields exactly the �nite (terminating) executions of p:

I |=↓ p ⇐⇒ I |= p and #I 6=∞.

Proof. Since the derivation rules are exactly the same on both sides of the equivalence, the

only interesting part of the proof is which inductive argument to pick.

The �rst part of the =⇒ direction follows by the standard property that the least

�xpoint is contained in the greatest one. Finiteness of I follows from the fact that the

prerequisite I |=↓ p must have been derived by a �nite number of inference steps and each

step extends the interval only by �nitely many states. The technical argument supporting

this claim is an induction over the least �xpoint underlying |=↓, see [150].

The ⇐= direction can be shown by a lexicographic induction on the length of I ,
which is �nite by assumption, and the structure of the program: either the interval is

shortened (which is the case for entry into a while loop or a procedure call) or the premise

refers to a structurally smaller program (which is the case for sequential composition, and

conditionals).

Proposition 4.5 (Existence of program executions). For each program p and initial state s
there is some interval I with I .�rst = s such that I |= p.

Proof Sketch. The interval I is constructed incrementally, similarly to the proof for forward

simulation of in�nite intervals (Theorem 5.3). For a program p started in s′, pick a canonical
successor p′ and the �rst step (s, s′) from p to p′, essentially by de�ning a deterministic

structural operational semantics. Repeating this up to a counter k gives the k-th interval Ik
of the diagonalization—I is chosen such that I(k) := Ik.last. Additional attention needs to

be paid to the fact that p may terminate “prematurely” before the counter k is reached.

The way how I was constructed shows that it satis�es indeed De�nition 4.2.

A similar approach is taken in [115], where an additional functional semantics is de-

�ned. The underlying de�nitional principle ensures that all functions are total so that some

interval I |= p exists as the return value of that function.

Note that to demonstrate a given instance of I |= p (regardless of whether I is �nite) is

typically much simpler, as one can rely on the coinduction principle of the greatest �xpoint

4.2. Data-Type like Abstract State Machines 41

underlying the de�nition of derivability. Dually to induction, such a claim follows from a

set of assumptions when these can be propagated over some valid rule applications to the

premises upwards the derivation tree (see e.g. the tutorial by Jacobs and Rutten [89] for a

detailed explanation).

Example 4.6 (Coinduction). Assume (?) that I = (s, s, · · ·) in�nitely repeats an arbitrary

single state s. We’ll demonstrate that I models the execution of the trivial nonterminating

loop by coinduction:

I |= while true do skip

One needs to �nd a suitable rule application so that each premise is either obvious and can

be shown directly or has the same shape as the original statement. Of the three rules for

while in De�nition 4.2, the only applicable rule from De�nition 4.2 is (4.2) since s |= true

(which rules out (4.9)) and any I ′ |= skip for the body is always �nite (I ↑ does not hold,

which rules out (4.8)). We have I1 = (s, s) |= skip in the �rst premise, and I2 = (s, · · ·)
in the second premise has one state “less” than I such that I1 o

9
I2 = I . The remainder I2

satis�es the original assumption (?) to repeat s in�nitely often and therefore the second

premise is covered by the coinductive hypothesis. �

4.2 Data-Type like Abstract State Machines

This section formalizes data type like ASMs that provide a sequential interface to the world

in terms of operations, which in turn are de�ned by programs. The nonatomic program

semantics I |= p is �rst lifted to an atomic relational one JpK that collapses �nite intervals

into their �rst and last states and produces⊥ as successor state for in�nite intervals. Based

on this the (atomic) semantics of operations JOpK additionally checks preconditions and

copies inputs and outputs from and back to the caller, so that JOpK �nally provides the

transitions of the machine.

De�nition 4.7 (Atomic semantics of programs). The relational atomic semantics of pro-

grams JpK ⊆ St × St collapses the nonatomic interval semantics I |= p into their �rst and

last states (�rst line). In contrast to the interval semantics of De�nition 4.2, nontermina-

tion is expressible by �nal states ⊥ (assuming ⊥ ∈ St), corresponding to in�nite intervals

(second line). A program started in a ⊥ state “after” a nonterminating computation does

nothing (last line), coinciding with the absorption of I2 in the composition I1 o

9
I2 = I1

when I1 is in�nite.

(s, s′) ∈ JpK ⇐⇒ (s, · · · , s′) |= p for a �nite interval, possibly ending in ⊥
(s,⊥) ∈ JpK ⇐⇒ (s, · · ·) |= p for an in�nite interval

(⊥,⊥) ∈ JpK always

De�nition 4.8 (Atomic semantics of operations). The atomic semantics of operations

Op = (pre, in, p, out) is based on the corresponding atomic semantics JpK of the program p.

Additionally, the precondition is evaluated and if it does not hold, the result is unspeci-

�ed in agreement with the interpretation as a contract, which is modeled by a successor

42 Chapter 4. Hierarchical Components

state ⊥.

(i, s, s′, o) ∈ JOpK

⇐⇒

{
(s(in 7→ i), s′) ∈ JpK and o = s′(out), s(in 7→ i) |= pre

s′ = ⊥ and o arbitrary, otherwise.

The actual inputs values i are initially copied to the state in which the body p starts to

execute. Upon termination, the output is ready in out. The output s′(out) is unspeci�ed

and irrelevant when s′ = ⊥.

Remark. In [55] we have permitted an arbitrary state s′ ∈ St when the precondition is

violated. These extra outcomes are unnecessary, because these are only possibly needed in

the re�nement proofs, however the worst possible result ⊥ already matches any concrete

behavior. The technical consideration is that characterizing (5.3) of context steps context

becomes a little simpler with the present approach.

The semantics of ASMs is interpreted in terms of labeled transition systems. These are

a natural choice to encode the behavior of data type like machines: the transitions cor-

respond to invocations of operations Opj , whereas the labels attached to the transitions

expose the index j alongside the input passed to the operation as well as the output re-

turned.

De�nition 4.9 (Labeled transition system). A transition system T = (S, L, Init,−→) over

a state space S and a set of labels L has a set of initial states Init ⊆ St and a transition

relation −→ ⊆ S × L × S between pairs of states and a label. An individual transition

from state s ∈ S to s′ ∈ S labelled by l ∈ L is written as s l−→ s′.

De�nition 4.10 (Executions and runs). An execution of a transition system T exhibiting

sequences of observations l ∈ Lω is an interval I over the corresponding state space S,

written I ∈ execsT (l), such that #I = |l| and

I(k)
l(k)−−−→ I(k + 1) for all k < #I .

It is a run, written I ∈ runsT (l), if I .�rst ∈ Init, i.e., the �rst state is an initial one.

From now on, we’ll use the speci�c instance that adds a distinguished element ⊥ to

the base set of states St := S]{⊥} to denote divergence, and labels l = j, i, o are triples of

an index of an operation j, and input value i and an output value o. We will leave the set of

labels L implicit in the following but assume that it contains triples j, i, o for all j ∈ J and

possible types of inputs and outputs of the machines in question. We require that a system

cannot recover from divergence, i.e., ⊥ ...−−→ s′ implies s′ = ⊥, too (which is satis�ed by

De�nition 4.8).

De�nition 4.11 (Semantics of data type like ASMs). The semantics of a data type like

ASM M = (x : St, Init, {Opj}j∈J) is given by the transition system M = (St, Init,−→)
subject to the conventions above. The state space St := ASt] {⊥} is instantiated by the

carrier sorts of the algebraic types St of the state variables x. The initial states of M are the

ones satisfying the initialization condition Init = {s ∈ St | s |= Init}, and the next state

relation is instantiated by the atomic semantics of the called operation Opj , which provides

the observed inputs i and outputs o.

s
j,i,o−−−→ s′ ⇐⇒ (i, s, s′, o) ∈ JOpjK.

4.2. Data-Type like Abstract State Machines 43

Executions execsM and runs runsM are inherited from the underlying transition system.

Remark. A data type ASM can be encoded by a conventional ASM with a main program

consisting of a big choice between guarded fragments for each Opj = (prej, inj, out) of the

form

if op = j then {if prej then pj else abort}

The index of the called operation is provided within an “input location” op, and similarly

the input in a location inj which can be read by by pj . Complementary, the output is passed

back to the environment in the “output location” outj , which pj is supposed to assign (cf.

[29]). This syntactic embedding agrees with the semantics of De�nitions 4.7 and 4.8, as

(s, s′) ∈ JabortK only if s′ = ⊥.

Example 4.12 (A Mini File System). This example introduces an idealistic model of a �le

system as a data type like ASM, referred to as Mini FS in the following.

Purpose of the Mini FS is to store a set of �les which are referenced by names. It provides

four operations to create and delete �les, and to read and write their content. It can be seen

as an abstraction of a POSIX �le store with a �at namespace (there are no directories) where

the content of �les is left abstract (they are read and written in their entirety).

Mini FS is speci�ed as a data type like ASM with one state variable fs : Name 7→ File

that is a �nite map from abstract names of type Name to abstract �les of type File that

is initially empty, i.e., Init(fs) := (fs = ∅). Figure 4.2 shows the four operations of the

model, i.e., the set of indices is J = {create, delete, read, write}, although in concrete

ASM listings, the operations are indicated by their name instead of the indexed notation

Opj for some j ∈ J . Each operation is equipped with a precondition—indicated by an ex-

plicit keyword—that speci�es the conditions when it is appropriate to call the respective

operation.

The create operation allocates a new �le with an empty content, denoted by the con-

stant empty : File. It is required that the name doesn’t already exist in the domain of fs.
The delete operation conversely removes the name from the mapping. The read opera-

tion returns the content associated with the name given as input parameter name in the

output parameter �le. The write operation stores new content �le under the given name,
where the assignment fs[name] := �le abbreviates fs := fs[name 7→ �le] that overrides the

previous value at the key name with the new value �le.
In concrete ASM listings as the one in Figure 4.2, inputs are separated by a semicolon

from the outputs by convention, i.e., the listing in Figure 4.2 stands for

Opread = (name ∈ dom(fs)︸ ︷︷ ︸
precondition

, name︸ ︷︷ ︸
input

, �le := fs[name]︸ ︷︷ ︸
program

, �le︸︷︷︸
output

)

in the notation of De�nition 4.1.

The example demonstrates how ASM operations are broken down to algebraic ones,

here lookup and override on functional maps as described in Section 3.1. This pattern is

fairly common, although the real models of the case study are typically much more com-

plex and include for instance case distinctions, multiple assignments, and calls to opera-

tions of subcomponents.

Note that except for read the preconditions given are stricter than necessary to just

guarantee that the algebraic operations are well-de�ned (for instance, re-creation of a �le

44 Chapter 4. Hierarchical Components

create(name)
precondition ¬ name ∈ dom(fs)
fs[name] := empty

delete(name)
precondition name ∈ dom(fs)
fs := fs − name

read(name;�le)
precondition name ∈ dom(fs)
�le := fs[name]

write(name,�le)
precondition name ∈ dom(fs)
fs[name] := �le

Figure 4.2: Speci�cation of Mini FS, an idealized �le system. The state variable fs is

omitted from the parameter lists.

under an existing name could simply reset the contents to empty). This is to document

speci�c design decisions and intended use of the interface. Such stronger preconditions

become relevant when a speci�cation is re�ned towards an implementation with a dif-

ferent representation of the state, which may have less liberal well-de�nedness criteria

(e.g., re-creating an existing �le could otherwise lead to unde�ned e�ects or a violation of

internal invariants).

4.3 Submachine Composition

This section clari�es interface use M(_) (corresponding to the pictographic notation M) in

terms of “�lling the hole” in the context M by a submachine X to yield the composition M(X).

As already outlined, interface provision is expressed by operations OpXj superscripted by

the name of the machine. Complementary, interface use is expressed by calls to such op-

erations that are now admitted in the grammar of programs by extending De�nition 3.2

with a new clause

p ::= · · · | OpX(e; xx, z)

with actual input parameters e and output parameters z. The state of xx of X is passed

as an explicit reference parameter, to avoid global variables in the calculus. Submachine

composition M(X) is built from a context or supermachine with a hole

M(_) = (mx : StM, InitM, {OpMk}k∈K)

where the programs occurring as the bodies of the operations OpMk may now contain such

calls OpX(e; xx, z) (for a speci�c X). Filling the hole with the required submachine

X = (xx : StX, InitX, {OpXj }j∈J).

yields the composed system M(X), which is again a proper machine. In order for the com-

position to be well-de�ned, the state variables mx and xx have to be disjoint. Furthermore,

the signature of the operations provided by X must match the expectations of M(_).

De�nition 4.13 (Submachine composition). When the composition is well-de�ned, it

gives rise to the following machine

M(X) := (mx, xx : StM, StX, InitM ∧ InitX, {OpMk}k∈K)

that combines the state space and initialization and exposes the operations of M.

4.3. Submachine Composition 45

Although the programs of the operations OpM may access the state of X only indirectly

through the interface of X, the invariants and preconditions of M may well refer to the

internal state xx of the submachine. The reason is simply that invariants and preconditions

appear only in the veri�cation but not in the running code of a composed system—the

veri�cation of M(X) needs to render X transparent anyway.

The states s of a well-de�ned compound M(X) can be split disjointly into xs = s(xx)
and ms = s(mx), which is written s = xs ⊕ ms in the following. Likewise, intervals I
can be split point wise, separating the two states into two sub-intervals as I X = I(xx) and

I M = I(mx) such that I = I X ⊕ I M.
Like calls to named procedures ρ(e; z), submachine calls OpX(e; xx, z) accept actual

argument expressions e for their input parameters and write their result to actual output

parameters z. Semantically, however, submachine calls are handled di�erently than named

procedures calls. While the latter are just unfolded to their body according to De�nition 4.2,

exposing their internal steps, submachine calls are integrated compositionally by referring

to the atomic semantics JOpXj K of the operation, which decouples the context from the

details how such operations are realized.

De�nition 4.14 (Calls to operations of submachines). A call to an operation OpXj (e; xx, z)
of a machine X = (xx : StX, InitX, {OpXj }j∈J) with actual arguments e and z from a con-

text machine M generates a one-step interval I when the call terminates and a potentially

in�nite interval continuation with only ⊥ states for a diverging call

(xs ⊕ms, xs′ ⊕ms(z 7→ o)) |= OpXj (e; xx, z)
if (i, xs, xs′, o) ∈ JOpXj K and xs′ 6= ⊥

(xs ⊕ms,⊥,⊥, · · ·) |= OpXj (e; xx, z)
if (i, xs,⊥, o) ∈ JOpXj K

where i = JeK(ms) in both cases and o is e�ectively unconstrained in the second rule by

the semantics of diverging operations.

The �rst rule captures terminating calls, whereas the second rule captures diverging

calls. The inputs JeK(ms) are evaluated from the outer statems of M and passed to the atomic

semantic of OpX; conversely, the output o is passed back to the state of X by ms(z 7→ o) in

the �rst rule.

Operation calls conform to the information hiding principles of proper use of the sub-

machine X: The actual parameters e, z may reference only the state of the supermachine

(re�ected by the evaluation of the input i = JeK(ms) in the state of M), whereas the suc-

cessor M state is unchanged except for storing the actual output in z. Note that there is no

premise that unfolds the body of OpXj , re�ecting the fact that there is a semantic dependence

on OpXj only.

For a diverging submachine call the execution continues with an arbitrary number of⊥
states. This re�ects the fact that nothing is known “after” the diverging call. For technical

reasons that will be explained in Section 5.3 it is convenient not to �x the length of the

outcome, e�ectively permitting any re�ned behavior of an implementation of OpXj when X

is a speci�cation level machine. In fact, arbitrary ⊥-states can be appended to an interval

I |= p that already ends with ⊥ (shown as Lemma 5.8 later on).

Example 4.15 (A Client of the Mini File System). Consider a client shown in Figure 4.3

of the Mini FS from Example 4.12. The task is to copy a �le denoted by from : Name to a

46 Chapter 4. Hierarchical Components

copy(from, to)
precondition from ∈ dom(fs) ∧ to /∈ dom(fs)

let �le = ? in

read(from;�le)
create(to)
write(to,�le)

let �le′ = ? in

read(to;�le′)
assert �le = �le′

Sequence of assignments

as executed by the submachine

�le := fs[from]
fs[to] := empty

fs[to] := �le

�le′ := fs[to]

Figure 4.3: Copying a �le with the Mini FS interface.

new name to : Name, using the operations create, read, and write provided by the Mini FS

machine.

The precondition just states that from exists and to does not (refering to the state fs
of the submachine). The subsequent line introduces a local variable �le to temporarily

hold the contents to be copied, it is passed as an output parameter of read (following the

semicolon) and assigned to fs[from] as a result of the call as shown in the listing on the

right in Figure 4.3 (cf. the de�nition of read in Example 4.12). The next two lines create the

destination to and write the contents such that fs[to] = �le afterwards (cf. the de�nition

of write).

After copying the �le, the client actually veri�es that the operation succeeded by read-

ing the contents of to into another local variable �le′, which is then compared to the orig-

inal one.
1

From the sequence of assignments executed by the submachine as shown at the right

in Figure 4.3, it is straight forward to conclude that �le = fs[from] equals �le′ = fs[to]
when the assertion is evaluated. The next section shows how to verify that in the calculus

the assertion holds when the precondition of copy is satis�ed (Example 4.18).

4.4 Calculus

The three weakest-precondition modalities from Section 3.3 can be de�ned as follows by

the nonatomic semantics of programs

s |= [p] ϕ ⇐⇒ for all s′ with (s, s′) ∈ JpK: s′ 6= ⊥ implies s′ |= ϕ
s |= 〈p〉 ϕ ⇐⇒ for some s′ with (s, s′) ∈ JpK: s′ 6= ⊥ and s′ |= ϕ
s |= 〈|p|〉 ϕ ⇐⇒ for all s′ with (s, s′) ∈ JpK: s′ 6= ⊥ and s′ |= ϕ

so that standard symbolic execution rules and equivalences hold (for example the termi-

nation splitting lemma 〈|p|〉ϕ↔ 〈|p|〉true ∧ [p]ϕ and the duality 〈p〉¬ϕ↔ ¬[p]ϕ).

Two symbolic execution rules support proofs about operations Op = (pre, in, p, out)
of data-type like ASMs. In the sequent calculus, total correctness

Γ ` 〈|Op(e; x, z)|〉 post

states that when the operation Op computing on x is called with actual inputs e and actual

outputs z in a state satisfying assumptions Γ (a list of formulas), it will terminate and the

�nal state satis�es a postcondition post (cf. Section 3.3).

1assert ϕ ≡ if ¬ϕ then abort.

4.4. Calculus 47

The �rst rule simply inlines the body of the operation p:

Γ, in = e ` pre Γ, in = e, pre ` 〈|pzy|〉 post
Γ ` 〈|Op(e; x, z)|〉 post call

(4.11)

The �rst premise checks whether the precondition is established by Γ when the formal

parameters in are assigned to the actual ones e (some renaming would be required when

the variable in happens to be free in Γ). The second premise reduces correctness of the op-

eration to the correctness of program p provided the precondition holds (where the formal

output parameters out are replaced to refer to the actual ones z). The rule the existential

modality 〈_〉_ is alike. The rule for partial correctness omits the �rst premise.

The second rule used to prove properties about operations permits one to use a lemma,

a correctness assertion of the form ϕ ` 〈|Op(in; x, out)|〉 ψ, to dispatch the call without

unfolding it:

Γ, in = e ` ϕ Γ, in = e, ϕ ` ∀ z. ψz
out → post

Γ ` 〈|Op(e; x, z)|〉 post lemma

This time, the �rst premise asserts the precondition of the lemma (which in turn must im-

ply the precondition of the operation for the lemma to hold). The second premise replaces

the call by the postcondition ψ of the lemma, adapted analogously to the call rule for the

actual reference parameters. The universal quanti�er prevents any information in Γ about

the initial value of z to leak into the �nal state.

Variations of this rule for the possible combinations of di�erent modalities are imple-

mented in the KIV system and there is an option to keep the original execution of Op around

when the lemma is itself is insu�cient to establish post. Detailed information about these

proof rules and how they are automated can be found in: A Practical Course on KIV [142].

Often, it makes sense to constrain the states of transition systems resp. machines by

invariants that must hold throughout every run.

De�nition 4.16 (Invariant). A property Inv ⊆ St is an invariant of a transition system T ,

if for every I ∈ runsT (j, i, o) we have I(k) ∈ Inv for every k.

We give the following standard conditions without proof.

Proposition 4.17. An invariant Inv can be proved inductively with

Init ⊆ Inv and Inv o

9
(

j,i,o−−−→) ⊆ Inv,

that is, the invariant is established in initial states and propagated over each transition. The
corresponding syntactic proof obligations that establishes Inv = JInvK in the calculus are
straight-forward, when Inv(x) is given by a predicate over some state variables x.

Init(x) ` Inv(x) initialization

Inv(x), prej(in, x) ` 〈|Opj(in; xx, out)|〉 Inv(x) propagation

Besides deduction over sequential programs the KIV system provides a symbolic exe-

cution calculus for concurrent programs as well. It is based on the interval temporal logic

RGITL [145] that is compatible with the semantics shown in Section 4.1 (for an empty

48 Chapter 4. Hierarchical Components

environment). Formulas in the logic are evaluated over an entire interval instead of just

a single state, for example I |= �ϕ requires ϕ to hold in all su�xes of I . Correctness

assertions in RGITL are expressed as sequents [p]x ` ϕ for a program p computing on

variables x, meaning that I |= ϕ should hold for every execution I |= p (in the absence of

other concurrent processes). The connection to weakest precondition calculus is given by

〈|p|〉 ϕ ⇐⇒ [p]x ` ♦(last ∧ ϕ) and [p] ϕ ⇐⇒ [p]x ` �(last→ ϕ),

where the atomic formula last holds only at the end of an interval. It is thereby possi-

ble to switch to the more expressive temporal calculus for properties that must refer to

intermediate states as it is the case with power cut safety.

Beyond crash safety, the tight integration of the di�erent formalisms permits to extend

the veri�cation to a concurrent setting in the future, such that the Flashix �le system can

satisfy multiple client applications running in an interleaved fashion at the same time;

and similarly internal operations (such as wear-leveling and garbage collection) can be

executed in parallel to the ordinary ones in the background. For such proofs, process local

reasoning in terms of rely-/guarantee decomposition is provided [152].

Example 4.18 (Veri�cation of copy). Let’s prove that the assertion in the copy operation

of the client shown in Example 4.15 holds, i.e., that a call to copy terminates normally. The

proof is presented as a series of intermediate proof goals, not as a complete derivation tree.

We start from the conclusion

from 6= to ` 〈|copy(from, to)|〉 true,

where from 6= to corresponds to the precondition of copy. We can inline the call to copy

by rule (4.11), yielding

from 6= to ` 〈|read(from;�le); create(to); write(to,�le), . . . |〉 true

and subsequently call the submachine procedures and execute the assignment by rule (3.1),

yielding for fresh fs′, fs′′ the sequent

from 6= to,�le = fs[from], fs′ = fs[to 7→ empty], fs′′ = fs′[to 7→ �le]

` 〈|read(to;�le′); assert �le = �le′|〉 true.

The next read returns �le′ = fs′′[to] and we symbolically execute the assertion via the

equivalence (〈|assertϕ|〉 true)↔ ϕ. Substituting the equations into the conclusion yields

from 6= to,�le = fs[from]

` fs[to 7→ empty][to 7→ �le][to] = fs[to 7→ empty][to 7→ �le][from]

which reduces to the trivial goal ` �le = �le, because from and to are di�erent from the

precondition of copy. �

4.5 Extracting Submachine Runs

This section discusses how the steps of a program of a composed machine M(X) are related

to the executions and runs of the submachine X. More speci�cally, given I X ⊕ I M |= p,

4.5. Extracting Submachine Runs 49

we will establish that I X ∈ execsXτ (j, i, o) for some observed call sequence j, inputs i, and

outputs o that re�ect the interaction of the two machines over the interface.

Hence, the dual role of intervals as outlined at the start of this chapter is made precise

(cf. Figure 4.1). The relation between a context and its submachine later serves as the basis

for a substitution theorem as motivated in the backround on re�nement in Section 3.4.

Intuitively, the execution of the program exhibits steps that are either regular assign-

ments, which modify the state ms of M to some ms′, but not the state xs of X, which is

encapsulated, or we have a submachine call OpX(e; xx, z) such that (i, xs, xs′, o) ∈ JOpXj K
for i = JeK(ms) and ms′ = ms(z 7→ o). In principle, these two conditions characterize

warrant that I X with such steps I X(k) = xs and I X(k + 1) = xs′ is an execution of X.

However, there are two aspects that complicate the matter:

1. Regular assignments in p induce steps that are not submachine calls. These need to

be mapped to “stutter” steps in I X (indicated by the subscript τ of execs), which leave

the state of X unchanged and are there just to align the lengths of I X and I M.
2. Unfortunately, a given interval I X⊕ I M |= p does not fully determine the outcomes of

nondeterministic choices made by the execution when viewed in retrospect: There

may be di�erent sequences j matching the observed states found in I X, as demon-

strated shortly in Example 4.20. The solution is to annotate the interval semantics

by the observed call sequence (and in/outputs) as in I X ⊕ I M, j, i, o |= p.

The �rst aspect is addressed by extending the set of indices as Jτ = J] {τ} to include

an extra marker τ indicates stuttering transitions that. Such steps can be used to model

inactivity or explicit waiting for a context.

De�nition 4.19 (Stuttering executions and runs). The stuttering executions of a transition

system T , written with subscript τ as I ∈ execsTτ (j, i, o) and likewise runs I ∈ runsTτ (j, i, o),

are de�ned by steps

I(k) = I(k + 1), if j(k) = τ (and i(k), o(k) arbitrary)

I(k)
j(k),i(k),o(k)
−−−−−−−−→ I(k + 1), otherwise.

The weakness of the interval semantics to precisely resolve nondeterministic decisions

in retrospect is illustrated by the following example.

Example 4.20. Consider the simple program p ≡ OpXj () where the operation OpXj (){ skip }
just skips. An interval I X |= p such that I X = (xs, xs) is an execution fragment I X ∈
execsXτ (j) for a one-element call sequence j = (j) consisting just of the index j. However,

I X ∈ execsXτ (τ) for the call sequence j = (τ) is valid, too.

Example 4.20 is deliberately kept simple. It wouldn’t be too hard to construct a more

realistic example (in particular one that does not depend on τ steps). To expose the weak-

ness, it su�ces that the call sequence, inputs and outputs are not uniquely determined by

the interval I X alone.

The solution is to strengthen the nonatomic semantics to judgements I , j, i, o |= p,

where the additional sequences record the values of the respective call steps. Submachine

calls OpCj (e; cx, z) determine exactly one element of these sequences, in particular j = (j)
(see below). For assignments in the program of M, j = (τ) gives a stutter step for A and i
resp. o are arbitrary one-element sequences. Furthermore, the three sequences are threaded

through sequential composition just like the interval. The problem in Example 4.20 is ruled

out by the fact that I C, j, ... |= OpCj () �xes j = (j) 6= (τ).

50 Chapter 4. Hierarchical Components

De�nition 4.21 (Nonatomic semantics revisited). The nonatomic semantics of programs

that uniquely determines the call sequence, inputs, and outputs of the submachine derives

judgements of the form I , j, i, o |= p. The interesting rules are

(s, s′), (τ), (i), (o) |= x := e
where s′ = s(x 7→ JeKs)

I , j, i, o |= p

I , j, i, o |= p; q I ↑

I1, j
1

, i
1
, o

1
|= p I2, j

2

, i
2
, o

2
|= q

I1 o

9
I2, j

1

j
2

, i
1
i
2
, o

1
o

2
|= p; q

I1.last = I2.�rst

(xs ⊕ms, xs′ ⊕ms(z 7→ o)), (j), (i), (o) |= OpXj (e; xx, z)
xs′ 6= ⊥

(xs ⊕ms,⊥,⊥, · · ·), (j, ..), (i, ..), (o, ..) |= OpXj (e; xx, z)
xs′ = ⊥

where (i, xs, xs′, o) ∈ JOpXj K and i = JeK(ms) as in De�nition 4.14. Note that a diverging

submachine call admits an arbitrary call sequence and inputs/outputs (which of course

must have the same length as the interval). The cases for the other programming con-

structs are omitted here, because they do not add new aspects: the rules for condition-

als and nondeterministic choice just propagate the sequences to the respective premises,

whereas loops and calls to named procedures resemble speci�c instances of the sequential

composition.

Lemma 4.22 (Submachine execution). From a program p over Xwe can get the call sequence,
inputs, and outputs explicitly as

I X ⊕ I M |= p ⇐⇒ ∃ j, i, o. I X ⊕ I M, j, i, o |= p

so that the additional information j, i, o from the existential induces the corresponding stut-
tering execution fragment of X

I X ∈ execsXτ (j, i, o),

where the τ -transitions correspond to the steps performed by p that are not calls.

In the following a simple fact distributes modi�cation of a compound state and interval

down to the respective component, provided y is part of the context.

(xs ⊕ms)(y 7→ a) = xs ⊕ (ms(y 7→ a)) (4.12)

(I X ⊕ I M)(y 7→ a) = I X ⊕ (I M(y 7→ a))

Proof of Lemma 4.22. The =⇒ direction of the �rst formula constructs j, i, o incremen-

tally, using the approach from Proposition 4.5 (not detailed here). The ⇐= direction

constructions a derivation of I X ⊕ I M |= p from I X ⊕ I M, j, i, o |= p for given, arbitrary j, i, o
by the coinduction principle of the greatest �xpoint. The correspondence is immediate by

comparing the individual rules side by side.

4.6. Related Work 51

To show that I X is indeed an execution for the given calls, inputs, and outputs, all steps

k < #I X must satisfy

I X(k) = I X(k + 1), when j(k) = τ (4.13)

(i(k), I X(k), I X(k + 1), o(k)) ∈ JOpXj(k)K, otherwise. (4.14)

Assuming not all steps satisfy these conditions, then pick k as the �rst o�ending one.

A lexicographic induction over this k and the structure of p leads to a contradiction—

step k is a “good” one and the assumption is false. An analysis over the derivation of the

provided I X, j, i, o |= p gives the following cases:

• An assignment implies that I X has one step and consequently k = 0 from the as-

sumption k < #I X. Then (4.13) follows from the enriched semantics in De�ni-

tion 4.21 and (4.12). A submachine call is analogous, except that (4.14) applies.

• For a sequential composition p; q, when p does not terminate normally, the inductive

hypothesis for the structurally smaller p concludes the proof. Otherwise, the interval

I X = I X
1

o

9
I X
2

splits into two parts that are nonempty by Proposition 4.3. For k < #I X
1

the k-th step occurs in the smaller p. Otherwise, step k is done by q, which is covered

by the hypothesis for I X′ := I X
2

and k′ := k −#I X
1

, using Lemma 4.23 (see below) to

split o� the I X
1

part of the execution.

• The cases omitted in De�nition 4.21 just invoke an appropriate induction hypothesis

for either a structurally smaller program or a shortened interval resp. smaller k. For

choose, the second line of (4.12) ensures that the local states I X of the submachine

are una�ected by introduction of the local variables.

The following lemma connects sequential composition of intervals to executions and runs.

The lemma allows one to build larger executions from smaller fragments.

Lemma4.23 (Composing executions). Sequential composition of intervals distributes through
executions alongside labels

I1 o

9
· · · o

9
In ∈ execsT (j

1

..jn, i1..in, on..o1
) ⇐⇒ Ii ∈ execsT (ji, ii, oi) for all i ≤ n,

provided that the composition is de�ned, i.e., all Ii except for the last one are �nite and Ii.last =
Ii+1.�rst for all i < n. If I1 is a run starting in an initial state, then trivially I is one as well.
Furthermore, an in�nite concatenation when all the Ii are �nite distributes similarly

I1 o

9
I2 o

9
· · · ∈ execsT (j

1

.., i
1
.., o

1
..) ⇐⇒ Ii ∈ execsT (ji, ii, oi) for all i ≤ n.

Proof. In the binary case for I1 o

9
I2 by point wise analysis of its steps k. The key observation

is that k ≥ #I1 implies (I1 o

9
I2)(k) = I2(k−#I1); a similar property holds for the sequences

of observables. The general case for a �nite split follows by induction on n. For an in�nite

split, the =⇒ direction goes by induction on i from the right hand side, whereas if the left

hand side is falsi�ed in the ⇐= direction there is an Ii for the earliest step k in I1 o

9
I2 o

9
· · ·

that is not a transition contradicting the right-hand side.

4.6 Related Work

This section discusses other approaches that relate to �ne-grained program semantics as

well as to the hierarchical speci�cation of state-based systems. A detailed comparison to

data re�nement [77, 83], which considers data types with operations will be subject to

Section 5.4.1

52 Chapter 4. Hierarchical Components

4.6.1 Trace Semantics

The idea to use traces (intervals) to model the execution of programs or transition systems

is standard. The Book of Traces by Diekert and Rozenberg [43] gives a good introduction

and overview.

Early work on trace semantics is for example by Brookes [22]. He considers a while

language equivalent to De�nition 3.2 where the semantics of programs JpK in his notation

is a set of traces corresponding to {I | I |= p} in the notation of the thesis. The rule

system is set up just like De�nition 4.2, although the least �xpoint is used and the semantics

for loops is given explicitly as the union of all traces that are �nite and end with a state

where the loop’s guard is false and those traces where the guard is in�nitely often enabled.

Brookes shows equivalence to a characterization with the greatest �xpoint that is similar

to the de�nition for while in our work [55]. A technical achievement of Brookes [22] which

should be mentioned for completeness of the discussion is a proof that the semantics is

“fully abstract” with respect to an equivalent operational one, although the result will not

be relevant in this thesis.

Semantics based on greatest �xpoints occur for example in [70] and [115]. The latter

work presents and compares four di�erent semantics for a while-language (relational and

functional ones) each formulated a big step and a small step fashion. The development is

fully mechanized in the Coq proof assistant [20], which has native support for coinductive

de�nitions and proofs. Nakata and Uustalu [115] de�ne two judgements

(p, s)⇒ I , corresponding to I .�rst = s and I |= p

(p, I1)
∗

=⇒ I , corresponding to I = I1 o

9
I2 for some I2 such that I2 |= p when I1 is �nite

This particular de�nition of sequential composition is fully constructive and thereby �ts

well within the mathematical framework of Coq (implying that one cannot rely on case

distinctions whether an interval is �nite or not). In the paper, the authors give some nice

examples what happens in case of a non-productive rule system, for example that obser-

vations can be made “after” an in�nite loop.

The logic presented by Bubel, Din, Hähnle, and Nakata [23] can express liveness and

safety properties over the traces I |= p of sequential programs. The focus in this paper is

to de�ne proof rules that can be applied in automated reasoning at the level of individual

program steps, which is complementary to the work in this thesis.

Traces are typically used as models of concurrent systems, such as the failure & di-

vergences semantics of Communicating Sequential Processes (CSP) [86]. Logics to rea-

son about the temporal behavior include Linear Time Logic (LTL), Computational Tree

Logic (CTL), or Interval Temporal Logic (ITL). Speci�c instance and terminology in this

thesis inspired by the latter (ITL) [31, 110].

For the logic RGITL [145], a deep embedding into the KIV prover has been done in

order to verify the deduction rules of symbolic execution for temporal logic programs.
2

A similar e�ort has been made by the author to study the �ne-grained interval semantics

as presented in De�nition 4.2 and to validate the lemmas in Section 4.1, leading to some

clari�cations in the former approach related to the semantics of procedure calls.

A generalization is to replace the total sequential ordering of steps with a partial or-

der, which leads to the model of partially ordered multiset (pomset) by Pratt [128]. This

model permits to switch the degree of atomicity and abstraction somewhat similarly to

2https://swt.informatik.uni-augsburg.de/swt/projects/RGITL.html

https://swt.informatik.uni-augsburg.de/swt/projects/RGITL.html

4.6. Related Work 53

the submachine call mechanism in this work, although in [128] no calling that exploits

this feature is described, whereas this aspect is central here. Further exploring similarities

to the pomset model is left as future work.

4.6.2 Reactive Systems

Event based systems such as CSP [86] communicate via shared events that synchronize

the steps of systems running in parallel.

TLA
+

by Lamport [99] is a speci�cation language designed to model concurrent and

distributed systems. It is based on execution traces that are made “stutter-invariant”, which

introduces freedom to collapse the internal steps of a system. Communication is exclu-

sively modeled by shared variables, instead of explicit observations as in this thesis.

Action systems [14] partition the state of a system into an internal part a and a global

part u, where the latter is visible from the outside only. Transitions of the system are

characterized by external actions nAj for indices j

∃ j.nAj(ai, ui)(ai+1, ui+1)

and stuttering actions

nA](ai, ui)(ai+1, ui+1) =⇒ ui = ui+1

which leave the global state is unchanged but the internal one may do something. Note

that these are di�erent from our transitions τ , which leave do not change the internal as

well.

The behavioral semantics of action systems considers traces beh that contain the exter-

nal actions only. The fundamental composition of systems is a parallel one that interleaves

the steps of the system. A sequential calling protocol similar to our submachines is not con-

sidered [14, Section 3.3]. The interaction of parallel systems versus sequential submachine

calls will be discussed for an ASM based approach in the next section.

4.6.3 Abstract State Machines

Abstract State Machines were originally introduced under the name “evolving algebras”

by Gurevich [72] with the intention to model the steps of any sequential algorithm (ASM

postulate). The fundamental idea was that the states of an ASM would correspond to math-

ematical structures, in other words algebras. The signature of logical functions is parti-

tioned into a static part (including e.g. mathematical operators) and a dynamic part, which

is updated by assignments.

In his thesis, Schellhorn [137] de�nes an encoding of ASMs into Dynamic Logic [74],

where algebrasA interpret the static signature only. Dynamic functions are instead mapped

to (higher order) function variables or maps (cf. Section 3.1) which interpreted by valua-

tions v. This partitioning is taken here as well. The di�erence between the two approaches

is marginal and is mostly re�ected in terminology.

With respect to standard ASMs, our syntax only uses a fragment of the syntax available

in [29]. In particular we use parallel updates only in the atomic updates, while control state

ASMs allow arbitrary ASM rules.

For the semantics given in De�nition 4.2 it is not di�cult to show that it agrees with

standard semantics of ASMs in the following sense: A �nite interval (s, · · · , s′) |= p cor-

responds to a successful computation JpK(s) . U of a consistent set of updates U that is

54 Chapter 4. Hierarchical Components

applied to s to get the �nal state s′ = s ⊕ U . Likewise, the atomic semantics of operations

(i, s, s′, o) ∈ JOpK corresponds to the computation of a Turbo ASM rule in [28] and [29,

Chapter 4] such that s′ = ⊥ corresponds to either a diverging computation of updates, or

to the computation of an inconsistent set.

It would probably be possible to generalize the atomic steps to general ASM rules and

to admit synchronous parallelism (par and forall constructs). However, this would com-

plicate code generation as well as symbolic execution, since parallel rules may have clashes
(cf. the calculus by Stärk and Nanchen [149] and [29, Chapter 8]). Initial work to recognize

these and to recover a simpler semantics without update sets and a corresponding calculus

is for instance by Schellhorn et al. [146].

Integrating arbitrary (synchronous) parallelism by the ASM construct par would fur-

thermore require an extended notion of runs to express the constraints when it is admitted

to call interface operations in parallel, i.e., to express how the M(X) program

OpXj1(e1
; z

1
) par OpXj2(e2

; z
2
)

is mapped to an execution of X in accordance with Lemma 4.22. Such an extension would

deal problems similar to the speci�cation of concurrent interfaces, which is fairly complex

(see for example [38] for an overview).

The submachine concepts for ASMs described by Börger and Schmid [28] di�er from

the ones in this work: A submachine in [28] is simply a named procedure that may have

local state. This state, however, is not preserved across several calls, and hence just a

work-around for providing assignments to local variables (otherwise introduced by let

and choose).

The standard approach to compose ASMs is via external functions, which are parti-

tioned into inputs and outputs. Input (also called monitored) functions can be read but not

written to by a machine—its values are provided by the environment afresh for each step.

Output locations are conversely written by a machine for the environment to observe.

The de�nition of “�ring of updates” in [29] admits any new value for input locations after

computation (sk, s′) ∈ JpK of the main program p. For each dynamic function f :

sk+1(f) =

{
s′(f), if f is controlled by the machine,

arbitrary, when it is an input function.

(4.15)

In order to prove something meaningful of an interactive machine, the environment must

be speci�ed by additional means. Labeling the transitions as in De�nition 4.8 formally

gives a handle on this.

Remark. The presentation in [55, De�nition 3] did rely on resetting the inputs to arbitrary

values to accommodate for environment actions, resulting in an unnatural formalization

artifact. With the present De�nition 4.8, copying the input parameters happens explicitly

and right before an operation is run (not after as in the above update), which is more natural

in our opinion.

Note also that when the input i(k + 1) is taken from the parameter i of runs(i, · · ·) the

nondeterministic choice in (4.15) is explicitly resolved, whereas the ASM formalism relies

on syntactic choice functions that are typically left implicit due to the notational overhead

they would introduce in a fully precise presentation.

Another approach to set the values of input functions from the execution of other ma-

chines is presented by Nicolosi Asmundo and Riccobene [117] as the so-called component

4.6. Related Work 55

composition M1 ⊗ · · · ⊗Mn. The machines Mi execute in parallel and inputs from one ma-

chine are provided by the outputs of another, while ordinary state is kept private (by an

embedding into the distributed ASM framework). This setup resembles the synchroniza-

tion of actions in process calculi such as CSP [86] and Action Systems [14].

A major concern in [117] is to express the conditions so that M1 ⊗ · · · ⊗Mn produces

no (additional) clashes and that the signatures are compatible. From the perspective of this

thesis, an interesting result is stated in [117, Section 7.1], which is the parallel equivalent

of the sequential Lemma 4.22 (extracting runs of subcomponents):

“⊗-Property. Given a system M = ⊗n
i=1

Mi, for every component Mi of M ,

the set of runs of the projection of Mi over M is included in the set of runs of Mi.”

This result is interpreted as behavioral correctness of the composed system. The paper

proceeds (Section 7.2) to relate safety and liveness properties formulated over the values

of external functions to the runs of the composition (demonstrated by an example). The

formal connection how safety and liveness propagate through ⊗ is made in Nicolosi As-

mundo’s thesis [11, Section 6.5.3], essentially stating that projection of runs onto external

functions distributes over ⊗ and that ⊗ is monotone. It is left open how ⊗ relates to ASM

re�nement.

Submachine composition M(X) can in principle be encoded as component composition

M ⊗ X when calls to X are integrated via a protocol that synchronizes whether M or X exe-

cutes and parameters to operations of X can be passed via external functions. Abstraction

of many steps of X into one as done by the calling mechanism in De�nition 4.14 can be

modelled by compressing these into one Turbo step [28].

In this thesis, submachine calls are �rst class in the sense that they are built in—there

is no need to encode them explicitly every time the concept of a call is used. The major

hassle associated with encoding such calls is that it introduces additional control state in

order to split up the steps of M at sequential compositions so that M can actually wait until

the call returns. Börger and Schmid [28] argue in accordance with our experience that this

often leads to undesired overhead in practice.

Besides supporting a more direct modeling approach where the required concepts of

interfaces and calls can be expressed, our approach has the additional bene�t that semantic

properties can be proved on the meta level, notably submachine substitution (Theorem 5.9)

and the extension to crashes (Chapter 11).

The recent thesis of Zenzaro [162] aims at “language level solutions” to address lacking

modularity in the ASM formalism (see Section 3.3). The work is fundamentally tied to

the CoreASM infrastructure [56]. While this is not a limitation on its own, the concepts

de�ned in [162] are often just characterized by the code of the interpreter that executes

them, referring to special locations such as selectedRule, which have no clear semantic

manifestation. It is sometimes hard to determine their rigorous mathematical counterpart,

although some concepts are described by inference rules. The real issues of modularity—

a semantic account of compositionality—is bypassed completely, which makes Zenzaro’s

work valuable for modeling purposes but not for formal veri�cation.

4.6.4 B and Event-B

The B-Method by Abrial [5] also called classical B and its simpli�ed successor Event-B [6]

emphasize structural aspects of systems and an incremental, re�nement-based approach.

56 Chapter 4. Hierarchical Components

Classical B permits one to de�ne machines that are similar to data type like machines

and to employ di�erent composition patterns as described in detail in [126]. The underly-

ing logic is set theory, where “contexts” take the role of the algebraic speci�cations in this

work (cf. Section 3.1). Besides submachine composition, “read-only” access to internals of

other machines is permitted as well. The restriction that the state of machines is inac-

cessible from the outside is thereby relaxed somewhat. Potet and Rouzaud [126] give the

conditions under which this is correct in the sense that re�nement relations are preserved.

The simpli�cations over B introduced in Event B a�ect the internal structure of events,

which correspond to the operations in this work: The programs used in events are re-

stricted to parallel assignments—no sequential composition, loops, or calls are permitted.

This signi�cantly streamlines the theory in comparison to this work resp. the classical B

(which supports these constructs in implementation level machines). The decision behind

this shift is twofold: on one hand, Event B is intended for the modeling of systems instead

of programs, on the other hand, a simpler theory supposedly leads to a more approachable

method for non-experts. This claim is supported by recent success and applications of the

Rodin Platform [7],
3

an Eclipse-based environment for Event B. However, the simpli�ca-

tions of Event-B make the formalism unsuitable for developments such as the Flashix �le

system, which bene�ts much from expressive programming language features.

3http://www.event-b.org

http://www.event-b.org

Chapter 5

Modular Re�nement

I’m not sure. I’m afraid we need to use . . . math!
— Hubert J. Farnsworth

Summary. This chapter regards the incremental development of hierarchical sys-

tems using re�nement: An abstract speci�cation of the system is gradually trans-

formed into a concrete implementation with proofs supporting the preservation of

behavior. The focus lies on nested machines and compositional replacement of sub-

machines within the context of an outer supermachine. A novel technical result lifts

re�nement expressed in terms of runs over sequential submachine composition, in-

dependently of the method used to prove re�nement.

Publications: This chapter is based on [52, 55].

Contents

5.1 Trace Re�nement . 58

5.2 Forward simulation . 59

5.3 Submachine Re�nement . 63

5.4 Related Work . 68

5.5 Discussion and Outlook . 70

In this chapter, the re�nement method underlying an incremental system development is

given. Speci�cally, re�nement of an abstract machine A to a concrete machine C—written

A v C and pronounced “A is re�ned by C”—expresses that C adheres to it speci�cation A.

Re�nements are visualized by dashed lines as shown in the diagram below.

submachine
composition refinement

M A
A

C

M A

M C

composition

The main result of this chapter connects submachine composition and re�nement:

Theorem (Compositionality). A v C =⇒ M(A) v M(C).

Graphically, this means that the two diagrams can be composed as shown on the right

i.e., the grey parts can be linked together as a system M(C) representing the �nal code that

at runs at the end. The theorem guarantees that this system is correct with respect to the

compound speci�cation M(A).

58 Chapter 5. Modular Refinement

Compositionality of re�nement used in this thesis is based entirely on the input/output

behavior of machines (cf. Section 3.4): it will be shown that inclusion of the runs of C

within the ones of A (modulo nontermination of operations) is a su�cient criterion for

replacement within a sequential context. Surprisingly, in the literature such a theorem has

only been proved for the strictly stronger conditions of forward and backward simulation:

He, Hoare, and Sanders [77] as well as de Roever and Engelhardt [41, Section 4.4] prove it

for data re�nement, Gardiner and Morgan [64] give an account in the re�nement calculus.

However, it may not always be appropriate to �x a particular proof method beforehand

(either forward or backward simulation). For example, one future extension planned for

Flashix is concurrency, where criteria such as linearizability [80] or serializability are pri-

marily expressed in terms of runs and are not necessarily amenable to simulation proofs,

because they reorder steps of a system. This means that the theorems in [41, 64] will not

help. On the other hand, Filipović et al. [58] and Schellhorn et al. [143] have shown that

linearizability is equivalent to observational re�nement.

Therefore, this thesis will take the weaker prerequisite of inclusion of input/output

behavior as foundation, which leads to a more general compositionality theorem that is

independent of the proof method but nevertheless makes observations explicit.

In the ASM re�nement method, which is based on runs, the notions of machine in-

terfaces, contexts and observational behavior are intentionally not �xed [27, Section 3].

It is argued that the conditions given there for correct re�nements are �exible to enough

cover a wide range of applications and this claim is supported well by the examples given.

However, the price to pay is that any compositional reasoning must be justi�ed in an

somewhat ad-hoc fashion. This works on paper but a mechanized approach clearly needs

a more restrictive discipline to scale.

5.1 Trace Re�nement

The idea behind re�nement A v C of data type like machines for a speci�cation A to

an implementation C is simple: A client or context of machine A can only see the called

operation, inputs, and outputs, whereas the internal state of A is hidden (cf. De�nition 4.14

of the semantics of submachine calls). Therefore, replacing A by an implementation C that

can engage in the same interactions (i.e., gives the same outputs for a particular input)

does not a�ect the context in any way. Therefore, this re�nement theory will be based on

modeling observations explicitly (cf. Section 3.4). The formal de�nition is introduced at

the level of transition systems:

De�nition 5.1 (Re�nement of transition system). An abstract transition system A =
(ASt, InitA,−→A), correctly re�ned to C = (CSt, InitC ,−→C) written A v C, i� for all IC

and sequences of observations j, i, o

IC ∈ runsC(j, i, o) =⇒ ∃ IA ∈ runsA(j, i, o) such that IA v IC (5.1)

where correspondence IA v IC of two intervals requires that their lengths is the same and

that the concrete system diverges only after the abstract one permits it:

IA v IC ⇐⇒ #IA = #IC and for all k ≤ #IA (5.2)

IC(k) = ⊥ =⇒ IA(k) = ⊥

The requirements are discussed in turn.

5.2. Forward simulation 59

as1 as2 ⊥ ⊥ . . .

cs1 cs2 csk ⊥ . . .

j1, i1, o1

j1, i1, o1

Figure 5.1: Re�nement between abstract run (as1, · · ·) and corresponding concrete

run (cs1, · · ·), where the abstract run diverges some time after as2.

• Condition (5.1) states that the input/output behavior of C is covered by its speci�ca-

tion A, regardless of the internal states: whenever C exhibits a sequence of observa-

tions j, i, o then A must be able to reproduce this sequence in some way witnessed

by the existentially quanti�ed run IA.

• Condition (5.2) speci�es that ifC diverges then this must also be covered by the spec-

i�cation. According to De�nition 4.8, there are two reasons when this is admitted by

A due to as −→A ⊥: The abstraction precondition is not satis�ed, or alternatively,

the abstraction operation does not terminatge. Both are considered as equally bad

and impose no requirement on C. In Figure 5.1 this happens at step k.

Lemma 5.2 (Properties of re�nement). Re�nement is re�exive and transitive:

A v A and A v B, B v C =⇒ A v C.

Proof. Obvious from De�nitions 5.1.

5.2 Forward simulation

Dealing with potentially in�nite runs directly is cumbersome. It is more useful to rely on

an inductive argument that breaks the conditions down to individual transitions.

Theorem 5.3 (Forward simulation). Re�nement A v C can be proved by an inductive
invariant R ⊆ ASt × CSt between states of A and states of C called a forward simulation

such that

InitC ⊆ InitA o

9
R initialization

R o

9
(

j,i,o−−−→C) ⊆ (
j,i,o−−−→A) o

9
R for all j, i, o correctness

where o

9
denotes relational composition. We postulate that (⊥, cs) ∈ R for all cs ∈ CSt to

permit any cs when as is already ⊥ in accordance to (5.2).

Purpose of the relation R is to accumulate additional information such as invariants

of the two transition systems and a coupling between the two state spaces. The relation R
expresses that the internal view of the states of A and C is consistent with each other.

Forward simulation renders the components transparent in order to make incremental

proofs possible.
1

Figure 5.2 shows a commuting 1:1 diagram of two lockstep transitions from A and C for

the “correctness” condition. For a given concrete transition cs
j,i,o−−−→ cs′, a suitable abstract

1

Backward simulation, which also modularizes re�nement proofs, will not be considered here since it is

applicable to �nite runs only.

60 Chapter 5. Modular Refinement

as ∃ as′

cs cs′

R R

j, i, o

j, i, o

Figure 5.2: Forward simulation R with commuting 1:1 diagrams.

successor state as′ has to be found that satis�es the fat, dashed lines: it is an A transition

with observation j, i, o and R holds again. The ensuing proof for Theorem 5.3 concatenates

such diagrams to construct a complete matching abstract run witnessing the re�nement

condition as graphically shown in Figure 5.2.

Proof of Theorem 5.3. From a run IC ∈ runsC(j, i, o) its counterpart IA ∈ runsA(j, i, o) of

the same length is constructed so that IA v IC from (5.2) holds.

If IC is �nite then IA is incrementally extended at the end by induction on the length

of IC . The base step invokes the initialization condition. The inductive step invokes the

correctness condition for the last transition in IC . In order to establish that R holds between

the last states of the two intervals constructed so far as required by condition correctness,

the inductive statement is strengthened so that we keep track of R(IA.last, IC .last), which

is the prerequisite of the correctness condition in the inductive step. In case IC .last = ⊥,

however, IA.last = ⊥ canonically extends the trace.

In�nite runs require a diagonalization argument: for all k a corresponding interval

IAk ∈ runsA(j(0), i(0), o(0), · · · , j(k − 1), i(k − 1), o(k − 1)) of length k exists such that all

shorter intervals from the construction are its pre�xes, i.e.,

IA
0

= (as0) such that as0 ∈ InitA

IA
1

= (as0, as1)

IA
2

= (as0, as1, as2)

.

.

.

.
.
.

The abstract run IA = (as0, as1, as2, · · ·) consists of the diagonal of last states such that

IA(k) = IAk .last—technically the construction invokes the axiom of choice to get a handle

on all of these simultaneously. A stepwise analysis shows that IA is indeed a run of A,

because as0 is initial and the respective last step of each IAk+1

ask
j(k),i(k),o(k)−−−−−−−−→A ask+1

is a valid transition as guaranteed by the fact that IAk+1
is a run. The construction of the

individual IAk mirrors the inductive argument from the �rst part of the proof for a �nite IC ,

although over the counter k instead of #IC .

The syntactic proof obligations for data type like ASMs that imply re�nement (of the

corresponding transition systems) by Theorem 5.3 can be expressed in the weakest pre-

condition calculus of Section 3.3.

5.2. Forward simulation 61

Theorem 5.4 (Forward simulation of ASMs). Machine C = (cx : StC, InitC, {OpCj }j∈J)
re�nes A = (ax : StA, InitA, {OpAj }j∈J) provided a forward simulation condition R(ax, cx)
such that

InitC(cx) ` ∃ ax. InitA(ax) ∧ R(ax, cx) initialization

R(ax, cx), preAj (in, ax) ` preCj (in, cx) applicability

R(ax, cx), preAj (in, ax), 〈|OpAj (in; ax, out′)|〉true correctness

` 〈|OpCj (in; cx, out)|〉 〈OpAj (in; ax, out′)〉 (out = out′ ∧ R(ax, cx))

The conditions re�ect their semantic counterparts of Theorem 5.3. The �rst line guar-

antees the existence of matching initial states.

The second line propagates that the abstract precondition to the concrete one, ensuring

that whenever some context calls the Amachine, the Cmachine can also deal with the given

inputs. The applicability condition is re�ects its semantic counterpart (5.2) without directly

referring to ⊥-states that have no explicit representation in the algebraic speci�cation

of StA and StC.

The third line expresses that when R holds, every execution (〈|_|〉_) of the concrete ASM

operation OpCj leads to a state such that there is some corresponding abstract execution

(〈_〉_) of OpAj with the same outputs that re-establishes R. Note that ax and cx in the postcon-

dition of the modalities refers to modi�ed states after executing both operations. Addition-

ally, one may assume the (abstract) precondition. To prove the correctness condition, one

may assume that the abstract system does something useful, i.e., precondition preAj holds

and the abstract operation is guaranteed to terminate (written as 〈|OpAj (in; ax, out′)|〉true).

Proof of Theorem 5.4. By Theorem 5.3. Initialization is trivial. The correctness condition of

Theorem 5.3 is established by a case analysis of whether the abstract operation potentially

diverges. If so, correctness holds trivially by the assumption that (⊥, cs) ∈ R. Otherwise,

both the abstract precondition must hold as well as the abstract operation terminates, so

that the third line applies.

Schellhorn [137, 138] gives a general characterization of a variety of such re�nement

conditions. It is based on the original, more liberal de�nition of re�nement for ASMs by

Börger [27] and does therefore not establish the stronger notion of re�nement according to

De�nition 5.1: The liberal de�nition works for machines only that can assume full control

of their execution, which is not adequate for data type like ASMs.

Example 5.5 (Re�nement of the Mini File System). We continue the development of the

idealized �le system of Example 4.12 by a re�nement that introduces out-of-place updates

similar to its realistic counterpart in Flashix, the �ash �le system core, which is explained

in Chapter 9.

Recall that the Mini FS provides four operations, namely create, delete, read, and

write. Its internal state is a mapping fs : Name 7→ File from names to �le content.

This state is now broken down to an index index : Name 7→ Address that tracks lo-

cations of �les on a �ash store disk : Address 7→ File. The indirection via addresses

adr ∈ Address permits to move data around on the disk storage to fresh locations. The idea

is that the abstract �le store can be reconstructed by function composition fs = disk◦index,

i.e., lookup is now a two-stage operation fs[name] = disk[index[name]]. In order for this

62 Chapter 5. Modular Refinement

composition to be well de�ned, we state the invariant ran(index) ⊆ dom(disk) that must

be maintained by operations.

The re�ned operations are shown below in Figure 5.3. Two aspects are new in com-

parison to Figure 4.2: The operation create now lazily postpones allocation of the �le

content on disk by recording a special address null ∈ Address in the index. We establish

that disk[null] = empty, i.e., there is only one incarnation of the empty �le content as an

optimization to save some disk space (we could choose not to store this �le and adapt the

read operation, but then the coupling fs = disk ◦ index would be more complicated).

The initial state is thus disk with disk[null] = empty and index = ∅.

The second di�erence to the Mini FS is the indirection via addresses. This manifests in

the write operation, which chooses a fresh location adr for the new content �le to which

the data is written. The index is updated alongside to refer to this new location, but only

after the �le has actually reached the disk.

This strategy gives a hint about power cut mitigation. Suppose a crash happens that

interrupts the assignment disk[adr] := �le, leaving partially written data at the address

adr , then the index (provided it can be recovered) still refers to the previous content. As

long as the disk is not cleaned up by removing obsolete entries adr /∈ ran(index), this

system is power cut safe.

create(name)
precondition ¬ name ∈ dom(index)
index[name] := null

delete(name)
precondition name ∈ dom(index)
index := index − name

read(name;�le)
precondition name ∈ dom(index)
�le := disk[index[name]]

write(name,�le)
precondition name ∈ dom(index)
choose adr /∈ dom(disk) in

disk[adr] := �le;
index[name] := adr

Figure 5.3: Re�nement of Mini FS with �ash speci�c out-of-place updates.

We brie�y demonstrate how to verify the re�nement by forward simulation. The cou-

pling matches the two states and contains the invariants:

R(fs, index, disk) := fs = disk ◦ index ∧ ran(index) ⊆ dom(disk)∧ disk[null] = empty

• Initialization: R(∅,∅, disk) holds trivially.

• Applicability: From the composition disk ◦ index and the invariant about the range

of the index from R we have that dom(index) = dom(fs).

• Correctness, shown for write. We have to prove

R(fs, index, disk), name ∈ fs

` 〈|writeC(name,�le)|〉 〈writeA(name,�le)〉 R(fs, index, disk).

By symbolic execution of the modalities, the remaining predicate logic goal is

R(fs, index, disk), name ∈ fs, adr /∈ dom(disk)

` R(fs[name 7→ �le], index[name 7→ adr], disk[adr 7→ �le])

where adr is the fresh address chosen by the concrete write operation (cf. Figure 5.3).

Checking that this condition holds is trivial. �

5.3. Submachine Refinement 63

I M(A)∗ as0 ⊕ms0 ask ⊕msk ask+1 ⊕msk+1 · · ·

I A∗ as0 ask ask+1 · · ·

I C∗ cs0 csk csk+1 · · ·

I M(C)∗ cs0 ⊕ms0 csk ⊕msk csk+1 ⊕msk+1 · · ·

I Ak ⊕ I Mk |= pAk
Step 3

I Ak

I Ck

I Ck ⊕ I Mk |= pCk

Step 4

Step 2

Step 1

Figure 5.4: Substitution of a concrete run I C by an abstract one I A within the context

of a machine M. The k-th call to an operation of M is singled out. The bold arrow at the

top represents substitution of C for A in the operation’s program, which is central to

the proof.

5.3 Submachine Re�nement

Syntactically, substituting (or “linking”) a given machine A for X in M(X) produces the com-

pound system M(A), which is de�ned by structurally replacing calls to OpXj by their counter-

parts OpAj in the programs de�ning the operations of the context M. The replacement at the

level of programs is written as p{X 7→ A}. In the following it is assumed that X and A are

syntactically compatible in the sense that they are de�ned over the same set of indices J
and that the signatures of operations are the same.

Purpose of this section is to formally prove that re�nement A v C between an abstract

machine A and a concrete machine C propagates to the context, i.e., M(A) v M(C) holds.

Although forward simulation is incomplete in general (see e.g. [41, Section 2.2.2]) it is

nevertheless stronger than re�nement as it guarantees that the same run can be extended

by a step at the end, whereas re�nement may pick any IA for a given IC , in particular,

abstract runs of di�erent lengths may be entirely unrelated. This aspect must be taken into

account to prove the desired compositionality: one must show that a �xed but arbitrary

concrete run I M(C)∗ maps to some abstract run I M(A)∗ as a whole–it will not be possible to

construct this I M(A)∗ incrementally.

Proof Outline.

The high-level argument can be followed graphically in Figure 5.4 along the textual de-

scription below. The argument proceeds from the given, concrete interval (cs0⊕ms0, . . .)
at the bottom to construct the corresponding abstract interval (as0 ⊕ms0, . . .) at the top.

Step 1 (Extraction). From each transition I M(C)∗ (k) −→ I M(C)∗ (k+1) of the global run shown

at the bottom in Figure 5.4 of the concrete compound system an execution fragment I Ck
is extracted that captures the steps of the program of the k-th call of an M operation by

Lemma 4.22. These can be composed to a stuttering run I C∗ = I C
1

o

9
I C
2

o

9
· · · of C. Similarly,

the remainder of the state for M is collected in an interval I M = I M
1

o

9
I M
2

o

9
· · · with splits of the

same lengths. The depicted states ask , csk , and msk correspond to the ones shared by the

64 Chapter 5. Modular Refinement

respective adjacent intervals with I M(C)∗ (k) = (csk ⊕msk(in 7→ i)) (for some inputs i of M)

and csk = I Ck .�rst = I Ck−1
.last (likewise for msk).

Step 2 (Mapping). Re�nement A v C guarantees the existence of a matching abstract

run I A∗ = I A
1

o

9
I A
2

o

9
· · · consisting of execution fragments of A with same lengths as the

corresponding I Ck . The critical aspect of this step is that the run of C must be mapped as a

whole. The mapping is depicted as the two runs in the middle in Figure 5.4.

Step 3 (Substitution). The central technical part of the proof is to show that it is irrelevant

from the perspective of M which submachine it calls. For any two matching intervals I A v
I C, I C ⊕ I M, j, i, o |= pC implies I A ⊕ I M, j, i, o |= pA, i.e., I A is compatible with I M when I C

is (for the same calls j, inputs i, and outputs o of the two submachines). Here, pC is any

program calling operations of C and pA := pC{C 7→ A} is its counterpart where calls have

been redirected to A.

Step 4 (Recombination). It remains to be shown that the complete abstract run I A∗ con-

structed in this manner �ts within the context by considering each k-th operation of the

global M run individually. In the �gure, this subpart of the intervals is singled out, and the

desired conclusion is represented by the bold arrow at the top, which is established by

substitution (Step 3) for the instances I{A,C,M} := I{A,C,M}k and p{A,C} := p{A,C}k .

To summarize, compositionality is lifted from to the level of the steps of a program and

to the steps of the whole machine.

Step 1: Extraction

The extraction of I C in Step 1 of the high-level argument stems from a characterization of

the M(C) step s
j,i,o−−−→ s′ that exposes this I C explicitly by inlining the corresponding call

(i, s, s′, o) ∈ JOpMj K with the atomic semantics of operations De�nition 4.8 and programs

De�nition 4.7. There are intervals I C, I M, a call sequence j as well as inputs i/outputs o that

capture the execution of the submachine throughout the program pj belonging to OpMj , i.e.,

s
j,i,o−−−→ s′ ⇐⇒ (5.3)

∃ I C, I M, j, i, o.

{
I C ⊕ I M, j, i, o |= pj, if s 6= ⊥ and s(in 7→ i) |= prej

I C = I M = (⊥), otherwise

where (I C ⊕ I M).�rst = s(in 7→ i) initially copies the input of the supermachine to the

state, s′ := (I C⊕ I M).last is the last state of the combined interval, which also produces the

output o := s′(out). If this interval is in�nite then s′ = ⊥.

By Lemma 4.22, I C ∈ execsCτ (j, i, o), where the outcase in (5.3) produces a default one-

state interval (⊥) that composes nicely with subsequent steps (the choice is somewhat

arbitrary but convenient).

The I Ck provided by (5.3) at each step k in the global interval can be concatenated to the

complete run I C∗ of C. There are two cases

1. All the I Ck are �nite, then the potentially in�nite I C∗ = I C
1

o

9
I C
2

o

9
· · · is well de�ned (second

construction in Lemma 4.23) because all overlapping pairs I Ck .last = I Ck+1
.�rst match

by the above construction. Note that there is at most one ⊥ state at the end of I C∗ ,
because several one-state intervals (⊥) are collapsed.

5.3. Submachine Refinement 65

I C∗ cs0 cs1 · · · csn−1 csn · · ·

I M(C)∗ cs0 ⊕ms0 csn ⊕msn ⊥

I C
0

I Cn−1
I Cn

Op
M(C)
jn+1

Figure 5.5: Divergence of operation OpM(C) at step n in the global interval I M(C)∗ shown

at the bottom, inducing an in�nite I Cn . The reason for this can be either an in�nite

loop within the context itself, or divergence of a submachine call OpCjn+1

.

2. There is some in�nite I Cn , in which case I C∗ = I C
1

o

9
· · · o

9
I Cn is well de�ned (�rst con-

struction in Lemma 4.23) and cancels all I C>n in the sequential concatenation. All the

states in the global interval I M(C)∗ from n+ 1 onwards are⊥, whereas the states up to

n are proper ones since in�nite I Cn are only generated by program executions started

with states di�erent from⊥ in the �ne grained semantics. The situation is visualized

in Figure 5.5.

In both cases, the observables jk , ik , ok are concatenated likewise to j∗, i∗, o∗ and the com-

posed interval I C∗ is a stuttering execution of C by Lemma 4.23. From the initialization of

the compound system M(C) (De�nition 4.13) and the initial state of the global run we can

conclude that it is in fact a stuttering run I C∗ ∈ runsCτ (j∗, i∗, o∗).

Step 2: Mapping

Proceeding with the high-level proof Step 2, re�nement A v C maps the concrete run I C∗ to

an abstract one I A∗ ∈ runsAτ (j∗, i∗, o∗) for the same observations. Fortunately, this aspect is

trivial by De�nition 5.1. Since I A∗ v I C∗ , the two intervals must have the same length and it

is possible to replicate the shape of the concrete split as I A∗ = I A
1

o

9
I A
2

o

9
· · ·.

Step 3: Substitution

Turning to the key step in the proof, with the enriched interval semantics substitution of

calls at the level of programs becomes possible.

Lemma 5.6 (Substitution of submachine calls). For all executions I C ∈ execsCτ (j, i, o) and
executions I A ∈ execsAτ (j, i, o) such that I A v I C:

I C ⊕ I M, j, i, o |= pC =⇒ I A ⊕ I M, j, i, o |= pA.

Proof. By coinduction over the derivation of the consequence I A ⊕ I M, j, i, o |= pA of the

lemma. Dually to induction, it must be shown that the substitution property passes on

from the conclusion to the premises of the respective rule deriving the interval for pA.
When there are no premises, the implication must be shown directly. In the following,

“assumptions from the lemma” refers to the left hand side of the implication plus the con-

dition about the respective executions. The interesting cases are sequential composition

and submachine calls. The other cases a�ect just I M in the same way on both sides of the

implication. Note that #I C = #I A because the length of the intervals coincides with |j|
from the executions.

66 Chapter 5. Modular Refinement

• Case p ≡ x := e. Assignments induce a stuttering step j = (τ) so that from the exe-

cutions, I C = (cs, cs) and I A = (as, as). This matches the semantics of assignments

by (4.12) for the same I M on both sides of the implication.

• Case pC ≡ OpCj (e; cx, z) and pA ≡ OpAj (e; ax, z). The non-diverging case for calls in

De�nition 4.21 provides I A = (as, as′) such that as′ 6= ⊥ and j = (j), i = (i),

o = (o). It must be shown that the side conditions of the rule hold. By the de�nition

of I C |= OpCj (e; cx, z) we get the following facts: I C is a one-step interval (cs, cs′) such

that cs′ 6= ⊥ from I A v I C, and (i, cs, cs′, o) ∈ JOpCj (e; cx, z)K holds. Since I A is an exe-

cution for the given call sequence and inputs/outputs, (i, as, as′, o) ∈ JOpAj (e; ax, z)K
holds, regardless of whether as′ = ⊥. The other part of the side condition that

I M = (ms,ms′) also matches the A call, because ms′ depends on the output o only,

which is the same (resp. can be in the case of as′ = ⊥) on both sides of the implica-

tion.

• Case p ≡ p1; p2.

The case when pC
1

does not terminate just cancels the remaining program p2 leading

directly to the hypothesis (rule (4.2)).

If pC
1

terminates, then the left hand side of =⇒ produces splits of the C and M

intervals and the call sequence j, i.e., I M = I M
1

o

9
I M
2

, I C = I C
1

o

9
I C
2

, j = j
1

j
2

, i = i
1
i
2
, and

o = o
1
o

2
. We �x I A

1

o

9
I A
2

:= I A such that #I A
1

= #I C
1

. Note that that the I Ai for i = 1, 2
are �nite stuttering A execution for ji, ii, oi (by Lemma 4.23, and similarly for C).

If I A.last 6= ⊥ then the derivation

I A
1
⊕ I M

1
, j

1

, i
1
, o

1
|= pA

1
I A
2
⊕ I M

2
, j

2

, i
2
, o

2
|= pA

2

I A ⊕ I M, j, i, o |= (p1; p2)
A

by rule (4.3) is valid and the premises are covered by the coinductive hypothesis.

However, it is possible that a submachine call in pA diverges on I A
1

already even

if the concrete machine continues to function properly (cf. De�nition 5.1). Then

I A.last = ⊥ and therefore I A ↑ holds and rule (4.2) applies:

I A ⊕ I M, j, i, o |= pA
1

I A ⊕ I M, j, i, o |= (p1; p2)
A

However, because pC
1

terminates normally, the coinductive hypothesis just provides

I A
1
⊕ I M

1
, j

1

, i
1
, o

1
|= pA

1
which at least has the right program. Observe that the remain-

der I A
2

= (⊥, · · ·) of the split consists of⊥ states only, because I A
1
.last = ⊥ (similarly

for I M
2

). The insight is that the interval semantics is robust against extension of such

states at the end, which of course depends on the liberal De�nition 4.14 of diverging

submachine call. This is codi�ed by Lemma 5.8 that closes the remaining gap.

The proof is concluded by a remark on the while-case: nothing essential happens when

applying the rule, except that the program is exchanged (cf. De�nition 4.2). This is perfectly

�ne as the argument does not depend on the (size) of the program in any way—unfolding

the derivation of I C ⊕ I M, j, i, o |= pC once by the rule for pC = while ϕ do qC su�ces to

demonstrate that the assumptions from the lemma hold for the premise as well.

Example 5.7 (Lack of expressiveness of the unannotated semantics I |= p.). We brie�y

demonstrate where the proof would break down when the calls, inputs, and outputs are

5.3. Submachine Refinement 67

not annotated to the program execution in the case for submachine calls, as argued in

Example 4.20. We know that the intervals I C ∈ execsCτ (j, i, o) and I A ∈ execsAτ (j, i, o) match

I A v I C for the speci�c call sequence j extracted by Lemma 4.22. However, for I C⊕ I M |= pC

from the assumptions, the case of a submachine call will give p ≡ Opj′ for a potentially

di�erent index j′ 6= j. It is clearly not possible to conclude that I A will model this call for the

abstract submachine. The e�ect is prevented when the parameter j from the executions is

linked to the program, which �xes j′ = j from the extended semantics of submachine calls

in De�nition 4.21.

Remark. The proof for the substitution lemma in [52] proceeds by induction on the struc-

ture of the program p and has a special case for while loops that explicitly iterates the

construction. Relying on coinduction here uni�es the argument and renders the cases for

while and procedure calls obvious.

Lemma 5.8 (⊥-extension). For a �nite I with I .last = ⊥

I |= p =⇒ I o

9
⊥ω |= p.

For the extended semantics De�nition 4.21 arbitrary sequences of calls, inputs and outputs
can be appended analogously (not shown for brevity).

Proof. By induction on the �nite derivation of I |= p (Lemma 4.4), comparing the infer-

ence rules.
2

The extension is witnessed at some diverging submachine call that necessarily

occurs from the fact that I already ends with ⊥.

Step 4: Recombination

Finally, the main result:

Theorem 5.9 (Compositionality). A v C =⇒ M(A) v M(C).

Proof. It has already been demonstrated how to obtain I C∗ = I C
1

o

9
I C
2

o

9
· · · and I A∗ = I A

1

o

9
I A
2

o

9
· · ·

from the global run I M(C)∗ = I C∗⊕I M∗ of M(C). It remains to show that the interval composed of

all the I Ak .�rst and possibly some continuation with ⊥-states is a run of M(A). Analogously

to Step 1 there are again two cases:

• When all the intervals are �nite, the concrete and the abstract operations match at

each step k.

• The split is �nite and all but the last intervals I Cn and I An are �nite. The calls up to n
match, and the global intervals both continue as (⊥, · · ·) onwards.

Both cases follow from characterization (5.3) for the transition relation of M(C) resp. M(A).

The inputs and outputs communicated between the operations of M(_) to the outside world

are re�ected in the I Mk only and are the same for the abstract and concrete runs.

Example 5.10 (Compositionality for the Mini FS client). Theorem 5.9 can be applied to

the client of the toy �le system described in Example 4.15. Recall that it had one operation,

copy(from, to) to copy a �le given by from to the new name to, which was implemented in

terms of three submachine operations read, create, and write and a subsequent validation

that read back the destination to.

2

Coinduction on I o

9
⊥ω |= p is also appropriate.

68 Chapter 5. Modular Refinement

Using the �ash speci�c implementation of Example 5.5 instead of the simple speci�ca-

tion does not invalidate the assertion made: since the copy using the abstract submachine

is guaranteed to terminate so is the copy refering to the concrete �ash speci�c implemen-

tation (cf. De�nition 5.1, speci�cally (5.2), for a one step run).

5.4 Related Work

This section picks up Section 3.4 and compares the approach of this thesis to di�erent

techniques.

5.4.1 Data Re�nement

Data re�nement [41, 42, 77, 83] is based on data types

DT = (St, Init, {Opj}j∈J , Fin),

where each operation Opj ⊆ St × St is a relation on states. Re�nement considers pro-

grams p(DT) that initialize the data type using Init ⊆ GSt × St, call some operations, and

then shut down the data type using Fin ⊆ St × GSt, where GSt is the global state space

of the context. It follows that programs p(DT) using such a data type induce a relation

between such global states, i.e., Jp(DT)K ∈ GSt × GSt.
The global state provides what can be observed from the outside, whereas the inter-

mediate state space St includes the representation of the data type that is not visible when

considering a complete program (thanks to initialization and �nalization). This permits to

exchange the data type by a re�ned version without a�ecting the overall behavior of the

program:

De�nition (Data re�nement).

ADT v CDT ⇐⇒ ∀ p. Jp(CDT)K ⊆ Jp(ADT)K

However, the operations of data types are just relations between states. There is no

prede�ned calling mechanism that passes inputs and outputs back and forth. In [41, Sec-

tion 2.3.2], its argued that the context program (of a supermachine in this work) is com-

posed of such operations only, collapsing the notion of steps done by the context with

those that are “true” calls in this work. Instead, there is a distinction into normal vari-

ables (belonging to the context) and representation variables (submachines state) which

are treated di�erently. In e�ect, this specializes St to be of the form GSt × LSt.
To record the relevant observations the data type is typically enriched to store these as

part of the state space so that this information can be extracted into the global state GSt at

the end. In particular, one can store the complete history corresponding to the sequence of

labels j, i, o. The bene�t is that the Opj ⊆ St × St just maps each state to its potential suc-

cessors and does not refer to inputs and outputs, simplifying the presentation (in fact, [77]

is charmingly concise). See [159] for a canonical de�nition of such a �nalization operation

and [139] for a formalization into the ASM approach.

We have opted here to keep the the inputs and outputs of operations explicit. One

reason is that it makes explicit what is taken as the semantics of machines without the

need to de�ne a �nalization. More importantly, we can reason about partial or even in�nite

submachine executions, whereas data re�nement works for �nite executions only as at the

end �nalization must be applied.

5.4. Related Work 69

To see that we do need in�nite traces to correctly replace submachine behavior, con-

sider the simple program of a composed system M(C), which calls the submachine operation

OpC to determine whether the loop should be exited.

while b do OpC(; b)

For an in�nite execution where b is always true and a re�nement A v C, we need to be

able to record and substitute the corresponding run of the submachine in order to justify

that such a behavior is admitted by A.

The forward simulation condition (called “downwards” in [77]) for a coupling relation

R ⊆ ASt × CSt are analogous to the ones in Theorem 5.3:

InitC ⊆ InitA o

9
R initialization

R o

9
OpCj ⊆ OpAj o

9
R for all j ∈ J correctness

R o

9
FinC ⊆ FinA �nalization

Each concrete step OpC must be witnessed by an abstract one OpA. Note that no observa-

tions are made along the way: these are postponed on purpose to the �nalization operation.

Swapping the sides of the relational compositions _
o

9
_ in the proof obligations du-

ally leads to backward simulation. Together, forward and backward simulation provide

complete proof method [77], i.e., De�nition 5.4.1 can always be demonstrated by such a

combination. However, backwards simulation works its way from the end of a run to the

start, and it therefore not adequate without restrictions (like image �niteness in [103]) for

in�nite runs.

The embedding of nontermination is based on the contract-based approach of Z [159].

It can be viewed as an adaption of this approach to the setting of ASMs. We prefer the

operational style of ASM rules over the relational style of Z operations, since ASMs can

be executed and directly translated to code. Nevertheless, our atomic semantics (De�ni-

tion 4.8) of ASM operations parallels the contract embedding of Z relations into states with

bottom, except that we do not add {⊥}× S⊥, but just {⊥}×{⊥} to preserve the meaning

of ⊥ as “nontermination” (not “unspeci�ed”). [139] argues that for both embeddings the

same re�nements are correct, in particular our simulation proof obligations are those of Z

re�nement.

The embedding when preconditions are violated is more strict in this work: De�ni-

tion 4.8 in this thesis contains pairs (s,⊥) ∈ JOpK when s 6|= pre, whereas the standard

approach is to permit arbitrary successor states s′ ∈ S] {⊥}. For backwards simulation

the more liberal de�nition is indeed needed, because an abstract successor state as′ is not

subject to choice but given by the proof obligation for the respective commuting diagram.

Speci�cally, one has to �nd as such that (as, as′) ∈ JOpAK, and in the case when the pre-

condition must not hold (as 6|= preA) we might have as′ 6= ⊥.

A similar approach is due to Gardiner and Morgan [64] in the context of re�nement

calculus: By using predicate transformers one can express a backwards rule (called “cosim-

ulation” in this paper) that is complete on its own. However, as with data re�nement in

general, only �nite traces are considered (the limitations are outlined below).

Divakaran et al. [47] consider similar modularity for data types, however, for �nite

runs only, and some restrictions on nondeterminism and coupling apply.

70 Chapter 5. Modular Refinement

5.4.2 ASM Re�nement

In the ASM approach, observations like j, i, o are part of the state space. The abstract and

concrete states are connected by a relation IO ⊆ ASt × CSt. This permits a high degree of

freedom to express many di�erent re�nement concepts (see [27]) but makes it hard to have

built-in modularity guarantees. In [55], which does not make the sequences j, i, o explicit,

we have therefore restricted the relation IO for submachines to identity between input and

output locations (cf. Section 5.2, equation (1) in [55]).

The de�nition given here is on the one hand more liberal than the one in [141], as it

allows one to implement a diverging operation on the abstract level with any run on the

concrete level. On the other hand it is more strict, as it forbids general m:n diagrams where

m > 1 abstract operations are implemented with n concrete ones, since the environment

cannot be forced to call a speci�c sequence of m operations.

5.4.3 Guards versus Preconditions

A major technical di�erence between our formalism and Event B [6] is that events can

have guards only but not precondition (classical B has both), emphasizing that machines

in Event B are systems interacting with an outside world instead of passive components

being called by a client.

Guards are appropriate for reactive systems (see also [14]), where the system has full

control over its internal �ow of control and interacts via messages or events with the

outside world, or alternatively using shared locations as in [99]. Here, calling an operation

forces the submachine to react, i.e., whether an operation is executed is subject to the caller.

5.5 Discussion and Outlook

One can draw an analogy of “placeholder” machines X to regular variables x of predicate

logic by introducing machine variables X that are interpreted by a corresponding machine

environment µ, which takes the role of the valuation. The semantics of machines JMKµ is

therefore parametrized by such a µ. Correlating syntactic substitution M{X 7→ A} and se-

mantic modi�cation of the machine environment µ(X 7→ JAKµ) gives then rise to substitu-

tion theorems on the level of machines and on the level of programs that closely resembles

the one of predicate logic, i.e.JeK(s(x 7→ a)) = Je{x 7→ e′}K(s) for a = Je′K(s).

While this view does not seem lead to a shortcut of some kind for the proofs of com-

positionality, the approach renders the results in a potentially more familiar way. With a

semantics that depends on machine environments, substitution can characterized by

I(x 7→ I(ax)) ∈ runsJMKµ(X 7→JAKµ) ⇐⇒ I ∈ runsJM{X 7→A}Kµ

I(x 7→ I(ax)), µ(X 7→ JAKµ) |= p ⇐⇒ I , µ |= p{X 7→ A},

where it assumed that the variables x capturing the state of X are known. The modi�ed

interval I(x 7→ I(ax)) swaps in the whole trace I(ax) of A as an assignment to x. In this

setting, a submachine call OpX (e; z) occurring in p refers to the atomic semantics JOpµ(X)K
of the operation of the machine bound to X .

Remark. The concept of variables ranging over machines is not as uncommon as it may

sound, see for example their use in ambient ASMs [30]. Of course, the fundamentals of

object-oriented languages are closely related, although in this thesis, the system’s structure

5.5. Discussion and Outlook 71

is not dynamic, whereas typically calculi for object-oriented programs rely on simulation-

like proof obligations (e.g., Hatcli� et al. [75], Liskov and Wing [101]) instead of inclusion

of runs.

Chapter 6

Models in Flashix

3. Das logische Bild der Tatsachen ist der Gedanke.
— Ludwig Wittgenstein

Summary. This chapter gives a brief technical overview over the data structures

and models in the re�nement tower of Flashix, starting with the top-level POSIX

speci�cation and going down to the interface of the persistence layer. Along the way,

it is shown how the concepts outlined in the introduction of this thesis are realized

and how they can be modeled formally and abstractly.

Publications: This chapter is based on [144].

The next chapters bring together the conceptual description of Chapter 2 and the theo-

retical foundations of Chapter 4 and 5 by detailing the formal models and technical de-

composition of the Flashix system. The way how crash-safety is realized is postponed to

Chapter 12. The full details can be found in the web-presentation [49]. The models docu-

ment not only the the e�ort in general to develop a veri�ed �le system, but more impor-

tantly, how concepts are captured abstractly and decomposed incrementally towards the

implementation.

The formal models are described systematically by giving their state space, the oper-

ations, and their invariants as we have seen already in the Examples 4.12 and 5.5. The

following concrete notation and conventions are used. Program variables and logical vari-

ables are written in italics, algebraic constants, functions, and predicates are written in

typewriter font, type names are capitalized and slanted, and keywords are written in

boldface.

The state space of a machine M is by listing the state variables and their types as

state vars (M) x1 : St1, · · · , xn : Stn.

We generally use the keyword state vars for implementation level machines (i.e., the

ones from which the running code is derived), contrasted by the keyword spec vars,

which highlights that the machine corresponds to an abstract speci�cation model that is

not compiled into the code. The distinction does not indicate a technical di�erence, though.

Initial states and invariants of a machine M are speci�ed syntactically by

initial state (M) ϕ(x)

invariant (M) ψ(x)

74 Chapter 6. Models in Flashix

meaning that InitM(x) := ϕ(x), where ϕ and ψ are a formula over the state variables

x = x1, · · · , xn of M. A named operation is pre�xed with the respective machine and is

speci�ed by

M_op(in; out)

precondition ϕ(in, x)

body

with formal input parameters in and output parameters out separated by a semicolon “;”,

a precondition ϕ, and an ASM program as body. For simplicity, the state of the respective

model is omitted in the parameter lists. In the concrete KIV models, however, this state

is made explicit since KIV does not admit global variables, and consequently the state

variables xi accessed by a particular operation are part of the formal reference parameters

(resp. as part of the input parameters when the state is only read but not modi�ed).

This chapter and the next one progress by outlining a series of re�nement steps A v C

from a speci�cation A towards a composite implementation C := M(X) that refers to a

submachine X. For the next re�nement step X recursivelly takes the role of the speci�cation

of the subpart of the respective development.

Typically, each implementation level M is introduced alongside the abstract speci�ca-

tions of its subcomponents X: To understand the implementation of M operations and their

integration with X it is necessary to know how X works internally. The coupling between

the state spaces in a re�nement step (relation R in Section 5.2) is consequently speci�ed as

coupling (A v M(X)) ϕ(ax,mx, xx),

where formula ϕ may refer to the state variables of all three machines.

When de�ning the state space of any abstract (sub-)machine A two orthogonal goals

are followed. On one hand, it should represent the problem domain subject to this machine

as abstractly as possible. This facilitates reasoning about its invariants and likewise about

the behavior of its context M. On the other hand the state A may be enriched with auxiliary

state that is not strictly necessary to specify functionality but to shift much of the proof

burden for invariants and the re�nement coupling towards the abstract layer.

AFS

POSIX requirements

VFS

persistence interface

Flash file system
index journal

B⁺ tree transact.

Figure 6.1: Upper Layers

of Flashix.

This section complements Section 2.2 from a technical

side. The general pattern is to gradually switch from a nested,

functional encodings towards �at, imperative concepts such

as records, pointers, and arrays. The monolithic view of the

state in terms of tree-like algebraic data types is thereby bro-

ken up in favor of smaller quantities that can be modi�ed

individually and are linked together by indirections. Exam-

ples are a graph-based view at the level of VFS in contrast to

the POSIX model which is a proper tree and the index in the

�le system’s core that references on-�ash data.

An excerpt of the model stack from Figure 2.2 in the intro-

duction is reconsidered as shown in Figure 6.1. We to brie�y

summarize the di�erent concepts and where they are ad-

dressed.

The abstract POSIX model detailed in Chapter 7 at the top

of the hierarchy captures the requirements of the �le system.

75

It deals with the concepts described in the textual POSIX speci�cation [3] resp. the manual

pages available on UNIX systems: the directory tree, �les, paths, access rights, and �le

handles.

This speci�cation is realized modularly by the combination of the Virtual File Sys-

tem (VFS) and the Abstract File System (AFS) speci�cation in Chapter 8. Generic aspects

shared by all concrete �le system implementations are handled in VFS, without relying on

a speci�c representation on disk. The two are integrated by an interface and a common

data model.

As a consequence of this separation of concerns in Chapter 8, the �ash speci�c part of

the project can focus on a subset of the challenges. The �ash �le system as described in

Chapter 9 realizes strategties to e�ciently deal with the speci�c characteristics of the �ash

hardware. It uses two subcomponents: The journal mediates access to the underlying stor-

age and provides atomicity in the presence of power cuts. The index tracks the location of

current versions of data on �ash, which necessarily moves around due to the no-overwrite

restriction of the storage technology.

Both subcomponents of the �le system core access the �ash memory through the per-

sistence layer, which determines the device layout and o�ers byte-based access to various

regions storing di�erent kinds of data structures. The remaining components are not sub-

ject to this thesis and will not be described.

Example 6.1 (Directory Tree). On a Unix system, for example, the �le system hierarchy

can be explored by the tree shell command:

> tree /home

home

ernst

notes.txt

references.bib

...

The command follows the prompt >, the output appears in the subsequent lines. In the

example, there is the user’s home directory with some notes and a bibliography �le.

Paths are formed by concatenating directory and �le names with a separating char-

acter “/” following the UNIX convention.
1

Paths can be either absolute or relative to a

“current directory”, although this work deals with absolute paths only. An example abso-

lute path is /home/ernst.

Example 6.2 (Creating a File). The running example will be the creation of a new �le

named thesis.tex in the user’s home directory. The following C code calling the system

operation creat(e)
2

accomplishes this task in a POSIX compatible environment:

int err = creat("/home/ernst/thesis.tex", 0644);

The �rst parameter denotes the full (absolute) path to the new �le and the second parame-

ter denotes an access mode (the octal value 0644 stand for user-writable, world-readable).

To satisfy the request to create a �le, the �le system looks up the path /home/ernst to

the parent directory. A new empty �le is allocated and an entry pointing to it is recorded

in the parent directory.

1

On Windows, the separator is a backwards slash “\”.

2

The trailing “e” is not part of the name in the actual C POSIX interface.

76 Chapter 6. Models in Flashix

POSIX (Chapter 7). The representation of the tree in the formal POSIX model is a recur-

sive, functional data structure tree : Tree with directories (containing subtrees) and �les

(containing a link to their content). The actual content of �les is stored separately in a �nite

file store fs. All modi�cations to this tree are expressed as non-destructive operators, for

instance, lookup of a path p is written tree[p] and replacing the subtree at p with a di�erent

one tree′ is written tree[p 7→ tree′]. The tree thus resembles a mapping from paths to some

kind of data, but with a speci�c internal structure by construction. For the example above

the modi�ed state is determined by

tree["/home/ernst/thesis.tex" 7→ fnode(�d)] and fs[�d 7→ file(0644, [])]

for a new �le identi�er �d, where the �le gets the speci�ed mode 0644 and an empty list

of bytes [] as its content.

Virtual File System (Chapter 8). Within the AFS that stores the state of the next layer

of the hierarchy, this monolithic tree is broken up: �les and directories are identi�ed by

unique “inode” numbers ino : Ino, following the UNIX naming tradition. Files and directo-

ries are kept in two disjoint maps dirs : Ino 7→ Dir and �les : Ino 7→ File that correspond

to the tree tree and the �le store fs of the POSIX model. The tree structure enforced by the

tree data structure at the POSIX level must now be ensured through explicit invariants as

the data model is a pointer-based graph. In the AFS model, objects of Dir contain a store

entries : String 7→ Ino that maps names of children to their respective inode numbers.

The content of �les in is contained in the File objects. To continue the example, local

modi�cations after resolving the path are expressed by assignments

dirs[pino].entries["thesis.tex"] := ino and �les[ino] := file(0644, · · ·)

where pino identi�es the parent directory and ino the new �le.

The connection to the POSIX model is given for a �le ino ∈ dom(�les) by a correspond-

ing �d ∈ dom(fs). For a directory ino ∈ dom(dirs), the relation is more complex: there is a

path p ∈ tree such that any path p/s extended by a name s induces s ∈ dom(entries) of

that directory, such that the correspondence holds recursively for entries[s].

Flash File System Core (Chapter 9). The �ash �le system core �attens the VFS/AFS

representation in favor of three kinds of objects that are already present in the data model

of the VFS interface: inodes representing (the metadata of) �les and directories, directory
entries encoding the edges of the �le system graph, and pages storing the content of �les.

These objects are uniformly encoded into so called “nodes”, which are identi�ed uniquely

by keys. Yet another indirection is introduced by linking keys to the addresses of the cor-

responding node on �ash. The main data structures that model this view abstractly are

the RAM index ri : Key 7→ Address and the �ash store fs : Address 7→ Node so that lookup

of a node corresponding to a key is a two-stage process adr := ri[key]; nd := fs[adr]
(the credit for this model goes to Schierl et al. [147]). Note that this encoding of the state

does not resemble much the intuition of a hierarchical �le system any more. The keys and

corresponding nodes that are relevant for creating a �le are

inodekey(pino) inodenode(· · · , size + 1, · · ·) (6.1)

dentrykey(pino, "thesis.tex") dentrynode(· · · , ino)
inodekey(ino) inodenode(· · · , 0644, · · ·),

77

where the squiggly arrow informally stands for a mapping via some address. Some

bookkeeping information in the parent is updated to account for the new child, too.

The state of the core is related to AFS so that whenever inodekey(ino) ∈ ri either ino ∈
dom(dirs) or ino ∈ dom(�les) and the metadata of fs[ri[inodekey(ino)]] matches. For the

other types of keys/nodes, the correspondence looks into Dir resp. File for the respective

inode number. Note that such an abstraction is robust against changing the addresses,

i.e., the composition fs ◦ ri of the �ash store and the RAM index already determines the

observable behavior of the �le system core. This is a desired feature: Moving data around

during garbage collection of on-�ash memory doesn’t leak to the upper layers.

Transactional Journal. Each top-level �le system operation such as creating a �le will

a�ect several nodes simultaneously. These updates come in groups that must be made

power cut safe: only when all of the Nodes of such a group reach the �ash store the op-

eration is considered to have taken e�ect. Ensuring this is the task of the implementation

of the transactional journal, which maps the unordered flash store fs to the block struc-

ture of the �ash device. However, blocks are still kept abstract at this level of detail as

mathematical sequences of individual Node objects. The state—that is part of the speci�-

cation of the persistence layer—can be roughly characterized by a map gblocks : Nat 7→
List〈Header × Node〉 (group blocks) where the domain contains logical block numbers

and each node is accompanied by a header that carries the grouping information.

Appending the three nodes (ndi below) of (6.1) for the example to gblock = gblocks[lnum]
with logical number lnum gives an updated state gblocks[lnum] := gblock′ for

gblock′ = gblock ++ [(start, nd1), (mid, nd2), (end, nd3)],

where the “start” and “end” markers signify the group boundaries, and gblock ++ [· · ·] de-

notes concatenation of the node group at the end of the previous content of the block.

The connection to the unordered store fs of the journal layer is made by making the

type Address = LNum × Nat more concrete. Addresses adr = (lnum, o�set) now store a

logical block number and a byte-based o�set of the group node in that block, which is then

mapped to the respective position in the list.

Index Implementation. The implementation of the index is a B
+

tree [18], which is a

data structure that can represent large sets or mappings e�ciently. There are several as-

pects that make the implementation complicated: In the context of the Flashix �le system,

the index implementation has a few further complications in comparison to a standard B
+

tree.

The RAM index is loaded partially only. Its nodes are allocated on demand and popu-

lated from the �ash copy. Conceptually, this leads to a structure that interleaves parts of

the two versions of the index as shown in Figure 6.2. To that purpose, each downwards link

does not only point to the node in memory but also stores the address of the corresponding

node on �ash.

As the RAM index is continuously modi�ed, the mismatch to the outdated version

on �ash accumulates. This di�erence is called the dirty part of the RAM index. Dirty

nodes may not be removed from the cache (in contrast to non-dirty ones). These nodes

are marked with a small black box at the top-right. The dotted lines denote that the

corresponding �ash node has not been loaded into main memory yet.

Since updating the on-�ash copy of the index with each operation is very costly, these

are delayed for some time and then written out in batch transactions, so that the index

78 Chapter 6. Models in Flashix

RAM

6 7

2 8

Flash

2 3 7 9

2 8

3

3

Figure 6.2: RAM & �ash B
+

tree.

“wanders” around on the �ash device [88]. The parts of the on-�ash index that haven’t

been changed can be reused, though.

Like the nodes encoding �le system objects, the nodes making up the structure of the

B
+

tree are laid out in the logical �ash blocks sequentially in a map iblocks (“index blocks”)

that mirrors gblocks.

Uniform Modeling of Hardware Errors A general concern that is present in almost

all of the abstract models in the following is to adequately express what errors can occur.

The mathematical data types on which the state space is based on are reliable: one can as-

sume in�nite, perfect storage so that e.g. reading, writing, and allocation always succeeds.

However, transient and persistent failures are quite common with real �ash hardware; al-

location may fail due to insu�cient memory, and the �ash device can be full. Since the

speci�cation-level models are way too abstract to capture when exactly such errors arise,

most operations are permitted to fail nondeterministically. This is achieved by a uniform

pattern for operations:

A_op(· · · ; err) (6.2)

{ body, err := ESUCCESS }
or { choose err ∈ {EIO · · · } }

Either the operation succeeds with the regular e�ect body. In this case, the returned er-

ror code err indicates success. Otherwise, err is selected from a set of low-level errors

(including a generic input/output error EIO), without modifying the state in any way. The

returned error codes are then checked by the caller, and either masked by some alternative

code path or propagated further up the model stack potentially to the POSIX application

level. Whenever an operation does not admit such errors it is explicitly mentioned in the

description of the models and furthermore indicated by omitting the output parameter err .

Chapter 7

POSIX Model
Speci�cation of Correctness Requirements

Summary. This section presents a concise and intuitive model of the POSIX �le sys-

tem interface that follows the textual standard [3] closely. It captures various corner

cases and subtleties on which real programs rely on. The model authoritatively ex-

plains how Flashix works from the client’s perspective.

Publications: This chapter is based on [50, 51].

Contents

7.1 State . 79

7.2 Path Lookup and Tree Modi�cations 80

7.3 Operations . 81

7.4 Preconditions and Error Handling . 84

7.5 Invariants . 85

7.6 Orphans and Power Cuts . 86

7.7 Related Work . 87

7.1 State

The �le system state consists of a directory tree tree, a �le store fs, and a registry of open

�le handles oh. Files are referenced by �le identi�ers of the abstract sort Fid. Open �les

are referenced by natural numbers (“�le descriptors” in Unix).

spec vars (POSIX) tree : Tree

fs : Fid 7→ FileData

oh : Nat 7→ Handle

The directory tree is speci�ed as an algebraic data type Tree with two constructors: File

nodes (fnode) form the leaves and store the identi�er of the corresponding �le. Directory

nodes (dnode) make up the internal nodes and store the directory entries as a mapping

from names to the respective subtrees.

data Tree = fnode(fid : Fid)

| dnode(meta : MetaData, entries : String 7→ Tree)

The test t.dir? yields whether tree t is a dnode. The abstract sort MetaData is a placeholder

for any further associated information. We postulate some selectors for md : MetaData,

to retrieve for example read, write and execute permissions pr(user,md), pw(user,md),

80 Chapter 7. POSIX Model

px(user,md) for some unspeci�ed user user : User. This formalization of permissions has

been taken from Hesselink and Lali [81].

Files are given by the data type FileData that stores the content as a list of bytes,

and—analogously to directories—some associated metadata.

data FileData = fdata(meta : MetaData, content : List〈Byte〉)

File handles store a �le identi�er fid, and keep track of the current read/write o�set pos

in bytes, and a mode, which can be read-only, write-only or read-write.

data Handle = fhandle(fid : Fid, pos : Nat, mode : Mode) (7.1)

Mode = r | w | rw

The initial state is given by an empty root directory and no �les:

initial state (POSIX) tree = dnode(md,∅) ∧ fs = ∅ ∧ oh = ∅ (7.2)

7.2 Path Lookup and Tree Modi�cations

A directory tree t : Tree is indexed by paths p : List〈String〉, which are lists of names

(strings). The symbol ε denotes the empty path and / denotes concatenation of paths p, p′

resp. paths and individual segments s : String, written s/p, p/s, and p/p′ respectively.

The directory tree can be regarded as a partial function from paths to subtrees enriched

with some internal structure. Consequently, the notation to index a tree t is borrowed from

the one for partial functions: A path p is valid in a directory tree t, written p ∈ t, if starting

from the root t the path can be followed recursively such that each path segment is mapped

by the respective subdirectory. Similarly, lookup of a valid path p ∈ t is written t[p]. The

expression t[p 7→ t′] denotes the tree t where the subtree t′ has been stored at path p,

possibly replacing an existing subtree; modi�cation is only de�ned if the parent of p is a

directory. Conversely, t − p denotes the tree t without the whole subtree at path p; it is

only de�ned if p ∈ t. Finally, we write p v p′ when the path p is a (non-strict) pre�x of p′.
It should be emphasized that the update operations t[p 7→ t′] and t − p are functional:

a new tree is constructed as a result instead of destructively modifying the old one. This

means that one does not have to worry about aliasing, sharing, or cycles.

The four operators validity, lookup, update, and deletion are the foundations on which

the ASM speci�cation of the POSIX interface is based on (Figure 7.2).

De�nition 7.1 (Path Operators). Validity and lookup of paths is de�ned by the following

recursive equations. Lookup at a �le node is meaningless and therefore left un(der)speci�ed.

ε ∈ t ↔ true

s/p ∈ fnode(�d)↔ false

s/p ∈ dnode(md, st)↔ s ∈ st ∧ p ∈ st[s])

t[ε] = t

dnode(md, st)[s/p] = st[s][p] if s ∈ st

The �rst line states that the empty path ε is valid in every tree. A compound path s/p with

leading name s is valid in directories only, if s denotes a valid subtree in st containing the

remainder p recursively.

7.3. Operations 81

Addition and deletion of paths can be done only at directories, the cases discern whether

the path consists of one component s only, or whether one has to recurse for a remainder

p, in which case s ∈ st ∧ p 6= ε is presumed (second/fourth line).

dnode(md, st)[s 7→ t′] = dnode(md, st[s 7→ t′])

dnode(md, st)[s/p 7→ t′] = dnode(md, st[s 7→ st[s][p 7→ t′]])

dnode(md, st)− s = dnode(md, st − s)

dnode(md, st)− s/p = dnode(md, st[s 7→ (st[s]− p)])

Directory trees t : Tree have several nice structural properties related to paths. Validity

of paths is pre�x-closed, i.e., if p/p′ ∈ t then p ∈ t, furthermore t[p] is a directory node if

p′ 6= ε. Validity, lookup, insertion and deletion of paths compose with path concatenation

_ /_, for example:

p/p′ ∈ t ↔ (t ∈ p ∧ p′ ∈ t[p]) (7.3)

t[p/p′] = t[p][p′] if p ∈ t

These properties can be proved easily by induction over the length of the paths.

7.3 Operations

Operations realize the POSIX speci�cation by using the algebraic functions on trees. The

POSIX model is presented in Figure 7.2—omitting some precondition checks and generic

error handling code at the beginning of each operation, which is explained in Section 7.4.

For the moment, assume that the input satis�es the constraints outlined in the man-pages,

e.g., that a path passed to create does not exist yet.

Figure 7.1 shows an abstract graphical representation of a POSIX �le system. The direc-

tory part forming a proper tree is visualized as in triangular form at the top. Each individual

directory corresponds to a subtree, i.e., the structure is inherently recursive, where each

directory is the root of a subpart of the �le system hierarchy. The grey part of Figure 7.1

represents the hierarchy under /home/ernst.

To continue Example 6.2, the operation create receives the path path to the new �le

and its mode as part of the abstract metadata md. An identi�er �d for the �le is chosen

that is not already in use. Subsequently, both the tree is modi�ed to contain an fnode at

the given path using the algebraic operations de�ned in the previous section, where the

assignment t[p] := t′ abbreviates t := t[p 7→ t′] analogously to function update. The new

�le is stored in fs with the given metadata and an empty sequence [] of bytes as its content.

The e�ect of the operation is visualized in Figure 7.1. The grey subtree corresponds to the

parent directory t[parent(p)]; the newly created �le node and associated data are denoted

by the dashed triangle and box respectively.

In Figure 7.1 the e�ect of the create operation is depicted by a dotted contour. The

grey triangle denotes the subtree with the parent directory as its root, and the small white

triangle denotes the new entry named thesis.tex. The entry for the new �le in the tree

points to the content of the new �le at the bottom. This extra indirection supports hard-

links, i.e., several references to the same �le under di�erent names.

The operations in Figure 7.2 are divided into structural ones shown in the left column

and access to �le content shown in the right column.

82 Chapter 7. POSIX Model

path lookup

directory
tree

file
content

file handle

Figure 7.1: Directory Tree.

posix_create(path,md; err)
choose �d with �d /∈ fs
in tree[path] := fnode(�d)

fs[�d] := fdata(md, [])

posix_link(from, to; err)
let �d = tree[from].fid
in tree[to] := fnode(�d)

posix_unlink(path; err)
let �d = tree[path].fid
in tree := tree − path

if �d /∈ fids(tree, oh)
then fs := fs − �d

posix_rename(from, to; err)
let t1 = tree[from], t2 = tree[to]

exists = (to ∈ tree)
in tree := tree − to

tree[to] := t1
if exists ∧ ¬ t2.dir?
∧ t2.fid /∈ fids(tree, oh)

then fs := fs − t2.fid

posix_mkdir(path,md; err)
tree[path] := dnode(md,∅)

posix_rmdir(path; err)
tree := tree − path

posix_readmeta(path;md, err)
if tree[path].dir?
then md := tree[path].meta
else md := fs[tree[path].fid].meta

posix_writemeta(path,md; err)
if tree[path].dir?
then tree[path].meta := md
else fs[tree[path].fid].meta := md

posix_readdir(path; names, err)
names := dom(tree[path].entries)

posix_open(path,mode; fd, err)
let �d = tree[path].fid
in choose n with n /∈ oh
in fd := n

oh[fd] := fhandle(�d, 0,mode)

posix_close(fd; err)
let �d = oh[fd].fid
in oh := oh− fd

if �d /∈ fids(tree, oh)
then fs := fs − �d

posix_read(fd; buf , len, err)
let �d = oh[fd].fid

pos = oh[fd].pos
in choose n with n ≤ len

in len := n
copy(fs[�d].content, pos, 0, len; buf)
oh[fd].pos := pos + len

posix_write(fd, buf ; len, err)
let �d = oh[fd].fid

pos = oh[fd].pos
in choose n with n ≤ len

in len := n
splice(buf , 0, pos, len; fs[�d].content)
oh[fd].pos := pos + len

posix_truncate(path, len; err)
let �d = tree[path].fid
in resize(len; fs[�d.content])

Figure 7.2: Operations in the POSIX model (omitting error handling).

7.3. Operations 83

The operation link and unlink create resp. remove hard links on existing �les. Linking

a �le under a di�erent path simply amounts to adding a corresponding leaf to the tree

that carries the (unique) identi�er of the target. The converse operation must additionally

check if the last reference to the �le has just been deleted, in which case the content must

be freed as well (deletion from fs)
Directories are created by mkdir, which stores a new node with an empty set of subtrees

at the given path under the tree. Since directories cannot be hard-linked, the removal case

is easier: rmdir simply removes the node, although POSIX requires such directories to be

empty.

The most complex structural operation is rename, which allows to change the name

and optionally the parent directory of a �le or directory, potentially overwriting the exist-

ing �le/directory at the target path (under some restrictions). It accesses and modi�es the

tree at two di�erent paths and has several cases that combine the e�ect of the other struc-

tural modi�cations. The reason why rename is a separate operation, though, is that the

whole modi�cation of the �le system’s state can be implemented atomically. This feature

of POSIX is relied on by applications for data consistency, since it can be used to overwrite

a �le virtually atomically by �rst preparing the new version and then replacing the old

version with rename.

Access to the metadata of �les and directories is provided by readmeta and writemeta,

which subsume stat, chmod, chown, and so on. The operation readdir lists the contents

of a given directory by the names of the direct children (from the domain of the subtree

mapping).

File content is accessed through �le handles that are obtained for a speci�c mode (read,

write, or both) by open and released by close. Opening a �le chooses an unallocated de-

scriptor fd that is initialized to a handle at the beginning of the �le (position 0). Closing a

handle must check whether the �le is an had been unlinked from the tree before and if so

deallocate the �le’s content when no other �le handles remain.

Reading and writing through a �le handle transfers a slice of bytes between the input

resp. output bu�er buf where len denotes the desired length of the slice. As the operations

read and write can transfer large amounts of data in one call, it is neither practical nor

required by the textual standard to provide atomicity of these operations (even disregard-

ing power cuts). Instead, the operations may process less than len bytes and still succeed,

either because the concrete implementation runs out of disk-space during the write, or due

to an intermediate low-level error. This is modeled by nondeterministically setting len to

a smaller number (“short read and write”).

When the reason for a short read or write persists then the next attempt is expected

to fail (in the case of a full disk-space). Other reasons that could be recovered later on

include temporary storage pressure that is in the process of being resolved (e.g. by back-

ground garbage collection), in which case an implementation may indicate the special error

code EAGAIN.

Lastly, the operation truncate permits one to change the size of an existing �le, padding

the content with zero-bytes at the end when the �le grows.

The ASM code relies on several helpers that operate on lists of bytes: resize(len; l)
adjusts the size of list l to len, possibly padding l with zeroes at the end; copy and splice

copy len elements of the source list src starting from o�set src-pos into list dst at o�set

dst-pos, preserving the elements outside of the destination range. While copy keeps the

size of dst, splice may increase the size as necessary. The latter operation corresponds

84 Chapter 7. POSIX Model

posix_create(path,md; err)
choose err with pre-create(path,md, tree, fs, err)

if err = ESUCCESS

then choose �d with �d /∈ fs
in tree[path] := fnode(�d)

fs[�d] := fdata(md, [])

Figure 7.3: The create operation of the POSIX model without simpli�cations.

exactly to the semantics of the POSIX write operation, i.e., it may extend dst at the end as

shown below, where #l denotes the length of l.

splice(src, src-pos, dst-pos, len; dst)
if len 6= 0 then

if dst-pos + len < #dst
then resize(dst-pos + len; dst)
else copy(src, src-pos, dst-pos, len; dst)

7.4 Preconditions and Error Handling

All operations perform extensive error checks to guard the �le system against unintended

or malicious calls to operations. Speci�cally, all operations are total (de�ned for all possible

values of input parameters). However, there are requirements that must be ful�lled in order

for an operation to succeed. For example, to create a new �le, the given path must not

refer to an existing one already. The term “prerequisite” will be used in the following to

characterize valid inputs to contrast such conditions from proper preconditions, where a

violation leads to an unspeci�ed e�ect. However, violation of prerequisites here must lead

to an errorwithout observably modifying the state. This behavior is required by POSIX and

it has been acknowledged by some formal approaches also [81], whereas others that model

errors leave the outcome open [57]. The nondeterministic approach presented below was

introduced by Ernst et al. [51], though.

Insu�cient handling of the returned error codes of C system calls is a well-known

source of problems that possibly have security implications, since the program(mer) relies

on assumptions that can be invalidated. An attacker may deliberately provoke error codes,

for example by exhausting the resources of the machine. Similarly, correct error handling

inside the Flashix �le system causes a lot of additional e�ort. Internal error conditions are

either mitigated locally by the implementation or propagated to the POSIX surface

Error handling is nondeterministic. It is possible that two errors conditions hold si-

multaneously, e.g., the whole path does not exist, or permissions to traverse an exist-

ing pre�x are insu�cient. The POSIX speci�cation does not restrict the order in which

di�erent conjuncts of prerequisites are checked. Prerequisites are de�ned as predicates

pre-op(in, · · · , err) that specify possible error codes err for an input in given to the opera-

tion op. An implementation just has to satisfy the constraints imposed by these predicates.

Figure 7.3 shows the full ASM code of the create operation in the model. Initially, the

error code err is chosen so that complies with the prerequisite predicate. The e�ect is only

executed if the operation is bound to succeed (implying a valid input).

Prerequisite-predicates contribute a signi�cant part of the speci�cation, just like doc-

umentation of the many corner cases takes up most of the standard. The predicates are

7.5. Invariants 85

de�ned by case distinction on possible error codes, as exempli�ed below for the condition

pre-create. Success is only admitted (case err = ESUCCESS) when the path to the new �le

does not exist yet, the parent is fact a directory, and when the user has su�cient permis-

sions to access and write to the directory at parent(path) (omitted). The remaining cases

take apart these conjuncts and attach potential error codes to them. Certain errors, such

as hardware failure or memory allocation (denoted by EIO, · · ·) are not restricted, i.e. they

may occur anytime. All other errors cannot occur (last case).

pre-create(path,md, tree, fs, err)

↔

path /∈ tree ∧ parent(path) ∈ tree ∧ tree[parent(path)].dir?

∧ permissions hold

if err = ESUCCESS

path = ε, if err = EACCESS

(insu�cient permissions) if err = EACCESS

path ∈ tree, if err = EEXIST

parent(path) /∈ tree, if err = ENOENT

¬ tree[parent(path)].dir?, if err = ENOTDIR

true, if err ∈ {EIO, · · · }
false, otherwise

The precise mechanism how the permission checks are speci�ed is described in detail by

Hesselink and Lali [81] and won’t be repeated here.

Recovering from low-level errors EIO, · · · in the implementation without an observable

state change is by far trickier than detecting whether the prerequisites are satis�ed. In

fact, in Chapter 8 it will be shown how almost all of the high-level errors that can arise by

violation of prerequisites can be dealt with uniformly and generically as part of the Virtual

File System (VFS), without considering any details speci�c to a concrete implementation

or �ash memory.

7.5 Invariants

The POSIX model maintains two explicit invariants over the state with tree tree, �le store fs
and open �le handles oh. The easy one is simply that the root must be a directory The sec-

ond invariant states that the set of �le identi�ers referenced by tree or oh is equal to dom(fs).

It guarantees that for any �d in use, the associated �le data in fs is available (no dangling

hard-links—well-de�nedness of lookups fs[tree[path].fid] in Figure 7.2), and that fs con-

tains no garbage (all obsolete �les are in fact cleaned up):

invariants (POSIX)

tree.dir? ∧ dom(fs) = fids(tree) ∪ fids(oh), (7.4)

86 Chapter 7. POSIX Model

given two overloaded functions to determine �le identi�ers in the tree resp. in the store of

open handles. The �rst one is de�ned recursively over the structure of the tree:

fids : Tree→ Multiset〈Fid〉
fids(fnode(�d)) = *�d+

fids(dnode(md, st)) =
⊎
s∈st

fids(st[s]).

File nodes produce a singleton multiset with that one identi�er. For directory nodes the

subtrees are accumulated (] is multiset sum). The second one is just the identi�ers in the

range of oh:

fids : (Nat 7→ Handle)→ Set〈Fid〉
fids(oh) = {oh[n].fid | n ∈ oh}.

Multisets are preferred over ordinary sets for the �le identi�ers in the tree for two

reasons. On one hand, the number of occurrences of �d in the set fids(t) correlates with

the number of hard links to a �le. On the other hand, the e�ect of insertion or removal of

a subtree on fids directly maps to multiset sum] and di�erence \, respectively. Given an

existing path to a parent directory node p ∈ t, equations (7.5) and (7.6) can be proven by

structural induction on p.

fids(t[p/s 7→ t′]) =

{
fids(t)] fids(t′) if p/s /∈ t
fids(t)] fids(t′) \ fids(t[p]) otherwise

(7.5)

fids(t − p) = fids(t) \ fids(t[p]) (7.6)

With these lemmas, the proofs for invariant (7.4) are straight forward when taking the

prerequisites of the operations into account. The critical cases are in unlink, rename, and

close, where the check occurs whether the last link or �le handle to an orphan has just

been removed.

7.6 Orphans and Power Cuts

Files that are referenced only as open �les but not from the directory tree are called or-
phans. These arise when a �le that is currently open loses its last link due to an unlink

call.

Orphan �les are useful during package upgrades, for example, when the binary �le of

a running application is overwritten. The running process still keeps a pointer to the old

version of the �le and prevents the �le system from deleting its contents on disk. Orphans

are also used as hidden lock �les in the Apache web server and to store temporary data

outside of the visible name space by the MySQL database. To achieve this the application

deletes a �le immediately after opening it. POSIX requires that the content of an orphaned

�le can be read and written normally until the �le is closed.

The �le system tracks these references precisely to know when a �le’s content can

actually be released, either upon deletion of the last hard-link (operation unlink) or upon

closing the last �le handle (operation close). Formally, the set of �le identi�ers of orphaned

�les can be captured by

orphans(t, fs) = dom(fs) \ fids(t).

7.7. Related Work 87

Another characterization is based on the function

links(�d, t) = { p ∈ t | t[p] = fnode(�d) }

that tells, which links to a �le exist as a set of absolute paths in the directory tree. From

invariant (7.4) it is easy to see that links(�d, t) = ∅ exactly when �d ∈ orphans(t, fs).

Orphans demonstrate already in this abstract setting that an understanding of crash

tolerance as observable atomicity of operations is insu�cient: when the system crashes,

data stored in main memory is erased, in particular, all processes running at that point in

time cease to exist and the opportunity to delete orphans during a close operation will be

missed, yet there are no remaining references. Therefore during recovery the �le system

must be burdened with deleting all existing orphans.

Technically, the e�ect of a crash is characterized by a binary relation over pairs of states

(from unprimed to primed). For the POSIX model, it is assumed that both the directory tree

and the �le content are stored persistently, so that they remain unchanged:

crash (POSIX) tree′ = tree ∧ fs′ = fs (7.7)

The open �le handles in contrast are stored in main memory and the value oh′ after a crash

is thereby completely unconstrained. The recovery operation, which has to reconstruct a

valid state after a crash, therefore reinitializes oh and deletes the orphaned �les:

posix_recover()

oh := ∅
fs := fs \ orphans(tree, fs)

Note that after recovery, invariant (7.4) from Section 7.5 is reestablished.

Observe that this abstract speci�cation does not give so much indication of how to

implement such a requirement. Speci�cally, not losing any data as stated by (7.7) is a hard

task. It is also up to the implementation to determine the set orphans(t, fs) in terms of its

internal data structures. A direct computation from the complete state (e.g. by scanning

the entire device) would be infeasibly slow, so in practice the set is maintained explicitly.

The theory that integrates crashes and recovery into the re�nement method of this

thesis will be explained in Chapter 11. How the requirements outlined in this section are

implemented and veri�ed in the �ash �le system is postponed to Chapter 12.

7.7 Related Work

In the literature there are many e�orts in the area to �le system modeling and veri�cation

with di�erent scope and data structures that can be related do di�erent levels of abstraction

and models in the re�nement chain described in this chapter. This section focuses mostly

on the modeling aspects of normal behavior, in contrast to treatment of power cuts and

the veri�cation. Comparison to related work regarding these two aspects is done in detail

later on.

In the context of NASA’s challenge [91], Freitas et al. [60] list a number of issues to be

addressed: adequacy of the speci�cation of the POSIX interface and the subset modeled,

consistency of data structures after unexpected power-cuts and dealing with the unrelia-

bility of the �ash memory hardware itself (i.e., fault tolerance in general), allocation, even

use, and reclamation of storage space. The paper aims to integrate the challenge with a

88 Chapter 7. POSIX Model

proposal by Intel [1], which de�nes APIs for �ash access and �le systems at many di�er-

ent levels of abstraction. In this thesis, the approach is not followed, as the document [1] is

fairly large and seems to impose some unjusti�ed overhead. Nevertheless, the conceptual

di�culties are summarized well in [60].

The existing modeling and proof e�orts related to �le systems can roughly be classi�ed

into two categories:

The �rst category encompasses high-level models that capture isolated aspects at a

high-degree of abstraction only, where it is sometimes unclear or even doubtful that the

presented formalizations can serve as top-level speci�cation for a realistic and running im-

plementation. Much of the work in this category can be linked to NASA’s challenge [91]

and related activity in the Veri�ed Software Repository [158]. However, none of the e�orts

has come near an implementation that actually provides a working �le system. Much of

this work is a continuation from an early pen-and-paper model of the POSIX �le system

interface by Morgan and Sufrin [108], written in the speci�cation language Z [159]. Nev-

ertheless, the models in this category give a lot of details about di�erent approaches and

thereby have built a solid foundation for successive work. A survey of this work has been

published by Lali [98].

The second category encompasses full-blown developments that typically have the

goal to produce running code and take additional challenges into account. For example,

Chen et al. [34] have developed a simple but working �le system for conventional magnetic

storage and proved it correct and power-cut safe. Such recent results clearly demonstrate

the continued interest in systems software veri�cation with a focus on realistic problem

sizes that are by now in the reach of automated theorem provers.

In the literature there are several approaches to modeling the directory tree of a POSIX

�le store.

The approach to formalize a POSIX �le system with an algebraic tree as has been used

previously only by Heisel [78] to evaluate speci�cation languages and speci�cation reuse,

which is an orthogonal interest as it doesn’t measure the ease of proofs.

The work of [108] is based on a �at mapping from paths to �les and directories. This

approach has been picked up e.g. by the mechanizations of Ferreira et al. [57], Hesselink

and Lali [81]. It comes at the cost of an extra invariant that path validity is pre�x-closed

(“legitimate stores”) that is veri�ed in Hesselink and Lali [81]. The invariant holds by con-

struction in this work:

Proposition 7.2 (Legitimate stores.). Directory trees t : Tree model legitimate stores as a
direct consequence of (7.3):

ε ∈ t ∧ ∀ p, q. p v q ∧ q ∈ t → p ∈ t

A lot more concepts are described in Morgan and Sufrin [108], such as hard-links,

orphaned �les, and reading and writing through �le handles. While it covers a wide range

of POSIX related topics it is not mechanized and consequently does not have a strong focus

on proofs (of invariants for instance). The work has partly been mechanized by Freitas

et al. [61] in the Z-Eves theorem prover (although it does not consider paths at all).

Except for [132], there seems to be no formalization of hard links that is mechanized.

In Hesselink and Lali [81], equivalence classes of paths are suggested as an alternative

solution. We are not aware of an attempt to realize this idea, though it would be interesting.

Damchoom et al. [40], in contrast, formalize the hierarchical structure by parent point-

ers with an acyclicity invariant. Hard links are inherently not supported by this design. We

7.7. Related Work 89

think that this approach is too di�erent from the intuitive understanding of a �le system

to serve as top-level speci�cation.

Prerequisites that characterize valid inputs to POSIX operations are treated similarly

to Hesselink and Lali [81], i.e., operations must not modify the state on errors. Ferreira

et al. [57] also have a comprehensive error speci�cation in their POSIX-style speci�cation,

however, they �x the order of checks and allow arbitrary behavior on errors in their re�ne-

ment proof obligations (although they haven’t actually developed re�ned models). To our

knowledge, underspeci�ed hardware failures are admitted elsewhere only in [132].

Morgan and Sufrin’s work [108] describes read and write operations on sequences of

bytes as the model presented in this chapter does. It contains a minor error (that has been

taken over by [61, 92]): they do not specify an equivalent of the test len 6= 0 in splice

(Section 7.3), which may result in overly large �les. The corresponding requirement in the

POSIX standard [3] states that “[. . .] if nbytes [=len] is zero [. . .] the write() function

shall return zero and have no other results.” Instead, the write operation is speci�ed as

follows

content := zero(pos)⊕ content ⊕ (buf shift pos)

where zero(pos) is an �le of length pos, which introduces the padding if pos ≥ #content.
The operator⊕ denotes relational override in Z, and shift adjust the input bu�er buf from

0-based to pos-based indices. As a consequence, a write of length 0 beyond the current size

of the �le will always increase it needlessly. The models in [65, 132] are similar in this

regard, as the descriptions of the POSIX read and write operations are expressed at the

level of sequences of bytes (although the error above is not present in these works).

Curiously this error had also been present in the early stages of the formal POSIX model

in Flashix. It was discovered during failed re�nement proofs when the implementation did

in fact handle this situation correctly. A corresponding test case has been integrated into

SibylFS [132] by the suggestion of the author of this thesis.

Chapter 8

Virtual File System
Separating Generic File System Concepts

Summary. This section shows, how the composed system of VFS AFS breaks

down the top-level POSIX concepts down to local operations and a representation

of the �le system as a graph structure. The interplay between VFS and AFS that has

been outlined in Section 2.2.2 is made precise. It is shown how the formal models

separate di�erent concerns.

Publications: This chapter is based on [50, 51].

Contents

8.1 Data Model and Abstract File System Interface 92

8.2 State . 94

8.3 Structural Operations . 95

8.4 Deletion . 96

8.5 File Truncation . 97

8.6 Reading and Writing . 98

8.7 Invariants . 101

8.8 Veri�cation . 102

8.9 Related Work . 105

The combination VFS AFS realizes the POSIX interface in a �rst formal re�nement

step. Conceptually, the VFS component breaks the global, connected view of a �le system

in terms of tree and fs in favor of a local understanding of directories and �les as individual

entities and nodes of a graph structure. The edges of the graph corresponding to the entries

in directories are made more explicit as well. The graph based view in Figure 8.1 contrasts

to the “monolithic” directory tree object of the POSIX model shown in Figure 7.1. On a

technical level, this switch amounts to the introduction of an indirection, i.e., the under-

lying data model becomes a pointer structure. The nodes—called index nodes (inodes) for

historic reasons—are identi�ed by unique inode numbers, and the edges—called directory
entries (dentries)—are identi�ed uniquely by the inode number of the parent and a name.

File content, which is attached to the leaves in the tree, is partitioned into uniformly sized

segments—called VFS pages—that match the size of the virtual memory pages of the CPU

architecture (typically 4 KB) to support e�cient caching coordinated by the VFS (which is

already prepared here and currently being realized outside the scope of the thesis).

The graph structure permits one to map the algorithmic steps needed to perform a

system-level POSIX operation to multiple AFS operations. Figure 8.2 shows the interac-

tion between the two layers in terms of the call sequence for Example 6.2 that deals with

creating the �le /home/ernst/thesis.tex. Each segment of the path to the parent direc-

92 Chapter 8. Virtual File System

path lookup

dirs

files

Figure 8.1: Directory Tree as a

pointer structure.

VFS AFS

lookup home create
/home/ernst/
thesis.tex

lookup ernst

create thesis.tex

inode number

inode number

success or error

Figure 8.2: Interplay between VFS and AFS.

tory /home/ernst is looked up individually yielding the respective inode number. Along

the way, VFS checks whether the current user has the access rights to traverse the given

path and whether he may in fact create the �le (not shown). Finally a request to create the

new �le is issued that returns an error or indicates success. In Figure 8.1 the new �le and

the edge representing the corresponding directory entry are depicted by a dotted contour.

The parent directory is marked in grey.

8.1 Data Model and Abstract File System Interface

The focus of this section is the interface between VFS and AFS, more speci�cally, the view

that the VFS has in terms of its data model. The high-level integration is outlined, while

more speci�c aspects are addressed in subsequent sections. Since the VFS layer is an im-

plementation level component that will end up as executable code, the data structures

passed over this interface are concrete as well, moreover, they should be independent of

(but close to) the actual representation of data on �ash resp. on disk. The �le system’s

state is a graph encoded by three types of objects, namely index nodes (inodes) represent-

ing �les and directories, directory entries dentries (dentries) with names attached to them,

and pages containing uniformly segments of �le data.

Inodes correspond to the nodes of the graph, i.e., the �les and directories. Inodes are

uniquely identi�ed by an inode number ino : Ino ' Nat and store some associated infor-

mation. The sort Inode is formally de�ned as an algebraic data type:

data Inode = inode(ino : Ino, meta : MetaData, dir?: Bool,

nlink : Nat, size : Nat, nsubdirs : Nat)

It has one constructor inode that records the inode number (ino), some metadata (meta)

such as permissions and timestamps, whether it corresponds to a �le or a directory (dir?),

the number of hard-links (inbound edges, nlink), the �le size resp. the number of directory

entries in case of a directory inode (size). In the latter case, it is tracked how many of these

are again directories (nsubdirs).

Dentries correspond to the edges of the graph. They relate one of the directories to

its children (represented by their inode numbers) and are labelled with the respective �le
names. Dentries store a name and come in two �avors: Normal dentries point to an existing

�le identi�ed by the selector target. Negative dentries indicate that a �le name is not
contained within a directory—they are used for example as return value of the lookup

8.1. Data Model and Abstract File System Interface 93

operation.

data Dentry = dentry(name : String, target : Ino)

| negdentry(name : String)

The content of �les is partitioned into uniformly sized pages. This has several advan-

tages: The size of pages typically corresponds to the size of a virtual memory page, enabling

caching and memory-mapped input/output. Furthermore, sparse �les, i.e. �les with large

empty parts, can be represented e�ciently by the convention that non-present pages con-

tain zeros only. Pages are modeled as arrays of bytes of a �xed length, speci�ed by the

constant VFS_PAGE_SIZE:

type Page = ArrayVFS_PAGE_SIZE〈Byte〉,

where the empty page containing all zero bytes is denoted by [0, · · · , 0].
Since these data structures are not (necessarily) stored, they serve primarily for com-

munication purposes. Either the �le system implementation or the VFS creates a number of

these on-demand in order pass information back and forth over the interface between

the two layers.

The signature of the AFS operations is modeled by its counterpart in the Linux kernel,

just like the data structures are. For example, the two operations lookup and create in-

volved in creating a �le are implemented by �le systems in the Linux kernel by functions

of the following types:

struct dentry *lookup(struct inode *dir, struct dentry *dent, ...);

int create(struct inode *dir, struct dentry *dent, int mode, ...);

Both operations receive the inode dir to the parent directory and a negative dentry with

the name of the link, which is then populated with the target of the lookup resp. the new

�le by the concrete FS implementation.

In the formal model, these are mapped to ASM operations with similar signatures:

afs_lookup(inode : Inode; dent : Dentry, err : Error)

afs_create(md : MetaData; inode : Inode, dent : Dentry, err : Error)

Note that dent is a reference parameter in both operations (coming after the semicolon),

mirroring the fact that the directory entry passed in is being modi�ed to contain the tar-

get’s inode number as the result of the operation. The create operation additionally mod-

i�es the parent inode by increasing its size by one to accommodate the new entry in that

directory. The abstract metadata md captures the mode of the Linux C interface. Both oper-

ations also return an error code err indicating whether the operation had been successful.

The operations of the AFS have true preconditions in the sense that it is assumed that

the VFS already validates the user-supplied input and thereby establishes the prerequisites

outlined for the top-level POSIX operations in Section 7.4.

Remark. Although many AFS operations take full-blown objects of type Inode, sometimes

it is convenient or even necessary to indicate just the inode number (e.g. when the VFS

obtains an Inode in the �rst place). At the time of writing, the internal interface between

the two layers is being refactored to simplify the introduction of uniform caching at the

level of the three communication data structures and consequently favors passing these.

The presentation in the publications [50, 51], in contrast, is typically just based on the

inode numbers for simplicity.

94 Chapter 8. Virtual File System

8.2 State

Having de�ned the communication data structures so far, this section presents, how these

are maintained internally by the AFS as part of its state. Recall that while this state is

hidden behind an interface during runtime, it is necessary for the understanding of the

overall behavior of the composed system VFS AFS and to relate it to the counterpart

of the POSIX model of Chapter 7.

AFS maintains as its internal state two separate stores for �les and directories mapping

inode numbers to the respective objects, encoding the directory tree tree and the �le store fs
from the POSIX level as an equivalent pointer structure.

spec vars (AFS) dirs : Ino 7→ Dir, �les : Ino 7→ File.

Note that there is no preimposed requirement to keep these in two separate stores. The

separation is motivated by the distinction into structural and content modi�cations: the

former will a�ect mainly dirs while the latter will a�ect only �les. This decision simpli�es

the re�nement proofs between the POSIX layer and VFS (and makes a sum-type Dir+File

unnecessary). However, it comes at the cost of an extra simple disjointness invariant (see

Section 8.7). Inode numbers ino ∈ (dom(dirs) ∪ dom(�les)) are called allocated, they refer

to valid directories resp. �les.

The data types for �les and directories are as de�ned follows:

data Dir = dir(meta : MetaData, size : Nat, nlink : Nat,

nsubdirs : Nat, entries : String 7→ Ino)

data File = file(meta : MetaData, size : Nat, nlink : Nat,

content : Nat 7→ Page)

The respective �rst part of the constructor arguments re�ects the information stored in the

Inodes of the VFS data model. Although this information is partially redundant, it turned

out to be a good idea to introduce the redundancy early on in the re�nement chain, where

it is much easier to prove the associated consistency invariants.

At the heart of the de�nitions are the maps entries resp. content, where the directory

entries and pages of the data model are represented. These are contained in the enclosing

object they belong to, i.e., the entire information about one �le or directory is kept as one

object (cf. the introduction to this chapter). Files explicitly track their sizes, because that

cannot be recovered from the allocated pages alone (which are aligned to VFS_PAGE_SIZE).

The store content of pages can be sparse by simply omitting any page that contains

just zeroes. This feature has the potential of saving a lot of disk space for applications (e.g.

exploited by backup tools, databases, and for disk images by hardware emulators such as

QEMU and VMWare). In the following, a �le’s content is visualized in terms of the pages

surrounded by a box denoting the relevant part in the range 0 · · · size:

AFS pages

The grey boxes represent allocated pages. The empty space in the middle represents an

absent page implicitly containing zeroes. The hatched part at the end denotes the part of

the last page that is cut o� by the size of the �le (surrounding box). This part does not

contain any relevant bytes, however, as pages are uniformly sized, it is still there. The

8.3. Structural Operations 95

vfs_create(path,md; err)
if path = ε then

err := EACCESS

else let

ino = ROOT_INO

dent = negdentry(path.last)
path = path.parent

in vfs_walk(path; ino, err)
if err = ESUCCESS then

vfs_may_create(ino; inode, dent, err)
if err = ESUCCESS then

afs_create(md; inode, dent, err)

vfs_walk(path; ino, err)
err := ESUCCESS

while path 6= ε ∧ err = ESUCCESS do

vfs_may_lookup(ino; err)
if err = ESUCCESS then

let dent = negdentry(path.head)
in afs_lookup(ino; dent, err)

if err = ESUCCESS then

ino := dent.target
path := path.tail

Figure 8.3: Operations of the VFS/AFS model realizing �le creation, pre�xed by the

respective layer they belong to. Permission checks are done by the *_may_* routines.

Lookup of a single path segment is delegated to afs_lookup �lling in the target in

the reference parameter dent.

abstract view as a linear sequence of bytes can be recovered by concatenating the pages

and zeroes for the empty spaces up to the �le’s size (see Section 8.8).

The combination of dirs and �les represents the tree t and the �le store fs of the POSIX

model of Chapter 7. The remaining constituent of the state, namely the store of open �le

handles, is managed by the VFS analogously to POSIX, except that it is now understood as

part of the implementation.

state vars (VFS) oh : Nat 7→ Handle where

data Handle = fhandle(ino : Ino, pos : Nat, mode : Mode)

where �le handles are equivalent to (7.1) except for the fact that they refer to inode num-

bers Ino instead of �le identi�ers Fid.
1

The initial state is given by an empty root directory with a �xed inode number ROOT_INO

and no �les:

initial state (VFS/AFS)

dirs = [ROOT_INO 7→ dir(md,∅)] ∧ �les = ∅ ∧ oh = ∅ (8.1)

8.3 Structural Operations

The structural VFS operations (cf. Section 7.3) all follow the same pattern: a path walk by

vfs_walk followed by the corresponding local AFS operation.

To continue the Example 6.2, the VFS code to create a �le is shown in Figure 8.3 along-

side the operation vfs_walk for path traversal. The entry point is vfs_create, receiving

the path path to the new �le and its meta data md. The �rst line already picks up the exten-

sive error handling seen in Section 7.3: an empty path ε leads to an error EACCESS. Starting

at the root directory, referred to by ROOT_INO, lookup of the path excluding its last segment

is initiated by a call to vfs_walk. For each step the permission are checked �rst and a (neg-

ative) dentry with the name of the current segment is prepared and the result of the lookup

1

The re�nement relation shown in Section 8.8 identi�es these two types Ino ' Fid.

96 Chapter 8. Virtual File System

afs_lookup(pino; dent, err)
precondition pino ∈ dirs
if dent.name ∈ dirs[pino].entries
then let ino = dirs[pino].entries[dent.name]

in dent := dentry(dent.name, ino)
err := ESUCCESS

else dent := negdentry(dent.name)
err := ENOENT

afs_create(md; inode, dent, err)
precondition

inode.ino ∈ dirs
∧ dent.negdentry?
∧ dent.name /∈ dirs[pino].entries

let pino = inode.ino in

choose ino 6= 0 with ino /∈ dirs ∧ ino /∈ �les
in dirs[pino].entries[dent.name] := ino

dirs[pino].size += 1

�les[ino] = file(md, 0, 1,∅)
dent := dentry(dent.name, ino)
err := ESUCCESS

or { choose err ∈ {EIO, · · · } }

Figure 8.4: AFS code for lookup and create. Nondeterministic errors are only

sketched for create. In the full model these are integrated as shown in (6.2) into

both operations, as both do access the potentially faulty �ash storage.

is found in dent.target after the call to afs_lookup. At that time, the prerequisite of the

operation has been established and thus the precondition of afs_create is satis�ed. Back

in vfs_create the �le is created using the directory entry prepared with the actual name

path.last of the �le. Note that the inode of the parent is returned by the vfs_may_create

helper as an optimization (which needs it anyway to check the permissions) so that it can

be passed directly to afs_create.

The AFS counterpart to Figure 8.3 is shown in Figure 8.4. The lookup operation checks

whether the indicated �le name is stored in the parent directory speci�ed by pino. If so,

the target inode number ino is returned as part of an updated positive directory entry and

success is indicated. Otherwise, a negative directory entry is returned alongside the error

code ENOENT. The create operation needs to select a fresh identi�er ino di�erent from 0

(zero inode numbers are not valid) that is not in use for an existing directory or �le. The

entries of the parent directory pino are updated with the given additional mapping and

the content of the �le is created as an object with the provided metadata md, a size of 0,

a link count of 1, and an empty store of pages. The returned directory entry is populated

with the new inode number.

The other structural operations link/unlink, mkdir/rmdir, and rename are likewise

realized by one or two traversals of the directory tree and a subsequent local AFS operation.

Note that the create operation shown in Figure 8.4 admits potential errors of the hard-

ware in the last line, following the pattern (6.2) for abstract speci�cations of this aspect.

8.4 Deletion

As described in Section 7.3, �les become obsolete on two occasions, namely in unlink,

rename, and close when the last hard-link resp. �le handle is dropped. While in the POSIX

model this was easy to accomplish because all the information was readily available from

the state, the knowledge about �le handles and hard-links is now separated: the VFS knows

the former (from oh) whereas AFS knows the latter (from dirs).
The two layers synchronize by a protocol where VFS signals an explicit call to the

operation afs_evict whenever the last handle is closed by vfs_close, implemented by

8.5. File Truncation 97

vfs_close(fd; err)
if ¬ fd ∈ dom(oh)
then err := EBADF

else oh := oh− fd
vfs_putinode(ino)

vfs_putinode(ino)
if ¬ is-open(ino, oh)
then afs_evict(ino)

afs_evict(ino)
if links(ino, dirs) = ∅ then

if ino ∈ dirs then dirs := dirs − ino
if ino ∈ �les then �les := �les − ino

Figure 8.5: Two-step protocol for eviction.

the helper procedure vfs_putinode. The three operations are shown in Figure 8.5, where

the predicate

is-open(ino, oh)↔ ∃ fd ∈ oh. oh[fd].ino = ino

determines whether there is still some �le handle fd for the given ino. Note that directories

are deleted through afs_evict as well for uniformity, which is called unconditionally from

vfs_rmdir right after the corresponding local afs_rmdir. The set of links

links(ino, dirs) = {(pino, name) | dirs[pino].entries[name] = ino}

to an inode with number ino is computed from the directory store as pairs (pino, name)
such that pino has a directory entry name pointing to the �le/directory ino.

One particular aspect with eviction is that it may never fail as indicated by the absence

of an error output. The reason is that the state has already been modi�ed at that point

in time by the previous �ash operation (afs_unlink, afs_rmdir, or afs_rename) and thus

the corresponding VFS call may not fail as well to satisfy the requirement that only suc-

cessful operations can have observable e�ects as speci�ed by the formal POSIX model in

Section 7.4. This requirement is reasonable, because afs_evict will be implemented by an

in-memory operation. In Linux, this restriction is imposed also (the void return type of

evict prevents signalling an error).

8.5 File Truncation

The operation truncate changes the size of a �le to a speci�ed value, potentially extend-

ing it with zeroes at the end. In the page-based view of AFS this means that one has to

pay attention to the last page in the array (cf. Section 8.2) that contains additional bytes:

whenever the range extends to include a fraction of this part, the last page must be rewrit-

ten. Alternatively, one might attempt to state the invariant that these bytes are already

cleared, however, as discussed later on, in the presence of hardware errors (and later on

power-cuts), this invariant becomes impossible to maintain. It is easier to �x up the situa-

tion during truncate (UBIFS does the same).

The code of the AFS model is shown in Figure 8.6. First, the number and the o�set

of the potentially a�ected page are computed. In the critical case, the page is patched by

copying VFS_PAGE_SIZE− o�set bytes from the empty page.

98 Chapter 8. Virtual File System

afs_truncate(inode, len; err)
precondition inode.ino ∈ �les ∧ // the �elds of inode match the data stored at �les[ino]

let content = �les[ino].content
pageno = inode.size / VFS_PAGE_SIZE

o�set = inode.size % VFS_PAGE_SIZE

in if inode.size ≤ len ∧ o�set 6= 0 ∧ pageno ∈ content
then copy([0, · · · , 0], o�set, o�set, VFS_PAGE_SIZE− o�set; content[pageno])
�les[ino].content := content upto len
�les[ino].size := len

Figure 8.6: File truncation in AFS.

afs_readpage(ino, pageno; page, err)
precondition ino ∈ �les
let content = �les[ino].content
in if pageno ∈ content

then page := content[pageno]
else page := [0, · · · , 0]

afs_writepage(ino, pageno, page; err)
precondition ino ∈ �les
�les[ino].content[pageno] := page

Figure 8.7: Access of single pages.

The algebraic operation content upto len deletes mappings n 7→ page from content
that fall outside the new �le size, i.e., where the �rst byte in the page n is at least len.

content upto len = content \ [(n 7→ page) | n · VFS_PAGE_SIZE ≥ len]. (8.2)

8.6 Reading and Writing

The basic building blocks for the operations vfs_read and vfs_write are two AFS opera-

tions that access a single page in the store content : Nat 7→ Page of a given �le. These are

shown in Figure 8.7.

Reading and writing in VFS maps a linear bu�er onto the �le’s array of pages. There is

a number of corner conditions and special cases that must be considered, rendering both

the implementation inside VFS as well as the re�nement proofs quite complicated:

• Files may contain holes (unallocated pages in the content of a file object) that

implicitly represent a part of the �le �lled with zeroes. These empty pages are re-

constructed on the �y by the AFS internally and lead to some case distinctions

(cf. afs_readpage in Figure 8.7)

• Reading and writing transfers ranges of bytes that are not necessarily aligned at

page boundaries. The input/output bu�er passed to the read resp. write operation is

therefore �lled incrementally with chunks that come from subranges of pages, where

the �rst and last page accessed must be treated specially. The arithmetic involves

division and modulo and is therefore nonlinear which is undecidable in general.

• A write operation may implicitly increase the size of a �le when the transferred

range reaches over the end of the �le. This means that a) the part of the last page

that contains some bytes beyond the original �le size suddenly become relevant

and it matters at which point in time these are zeroed out and b) together with an

8.6. Reading and Writing 99

I/O buffer

AFS pages

Figure 8.8: Reading unallocated pages. Figure 8.9: Extending the size.

extending write the new size of the �le must be written to �ash storage, which may

fail due to an error or an interruption by a power cut and it is not immediately clear

how that can be done in accordance with the speci�cation given in Figure 7.2.

• As an outlook on the veri�cation: The di�erent cases encountered in the loop body

of the algorithm shown below tend to accumulate quadratically in the invariants of

the proofs (see Section 8.8).

These aspects and the way they are addressed will be explained in more detail below by

graphical illustrations and the concrete ASM code.

An example read operation is visualized in Figure 8.8. At the bottom, the �le’s pages

are denoted by gray boxes with an outer frame indicating the �le size. The hatched part

of the last page contains arbitrary data and does not contribute to the �le’s content. The

white space among the pages denotes an unallocated page, which implicitly represents a

range of all zeros in the �le. The rectangle at the top denotes the destination bu�er. The

black part corresponds to the range that should be read. The bu�er may be larger than this

range (white part). The read operation loads the a�ected pages sequentially and copies the

required parts (graphically delimited by arrows) into the bu�er.

Listing 8.10 shows the core helper procedure that is called in a loop until done or an er-

ror occurs. Parameters start and end de�ne the range to read, as absolute positions into the

�le in bytes. Of this range, total bytes have been processed so far, the operation therefore

considers a subrange starting at position pos = start + total of length n ≤ VFS_PAGE_SIZE

bytes. Note that done, buf and total are passed by reference. The procedure computes the

current page and o�set into that page and considers three upper bounds for the length

n of the range to copy in this iteration: the maximum number of bytes to transfer (len),

the end of the current page, and the end of the �le. Nonexistent pages are handled by

afs_readpage already as shown in Figure 8.7.

Writing is done similarly, an example is shown in Figure 8.9, assuming the operation

is executed with the same �le as in Figure 8.8. A write operation may extend the �le at

the end. In this case, the dotted lines indicate the newly allocated parts of the �le: the

missing second page is written, as well as an additional page at the end. The fourth page,

which contained the irrelevant hatched part, is overwritten and becomes part of the �le

entirely. The write operation relies on a helper routine similar to vfs_read_block (not

shown). The changes for vfs_write_block amount to leaving out the inode size boundary

in the computation of the number of transferred bytes n, also dropping the precondition

start + total ≤ inode.size for being able to extend the �le size. Naturally, the direction of

the copy call is reversed, followed by a afs_writepage with the updated contents of the

page.

The VFS code of the operation vfs_read calling the one-step procedure vfs_read_block

is shown in Figure 8.11. After a few error checks to ensure that the �le descriptor fd is set

up for reading, the inode object of the �le is loaded (afs_iget) and the range start to end
is initialized, starting with a total number of 0 bytes processed so far. Everything else is

100 Chapter 8. Virtual File System

vfs_read_block(start, end, inode, buf , dirs; total, done, err)

precondition inode.ino ∈ �les ∧ ¬ done ∧ err = ESUCCESS

∧ start + total ≤ inode.size ∧ total ≤ #buf

let pos = start + total
pageno= pos / VFS_PAGE_SIZE

o�set = pos % VFS_PAGE_SIZE

in let // bytes to read in this iteration

n = min(end − pos, // write size boundary

VFS_PAGE_SIZE− o�set, // current page boundary

inode.size− pos) // inode size boundary

in if n > 0 then

afs_readpage(inode.ino, pageno; page, err)
if err = ESUCCESS then

copy(page, o�set, total, n; buf)
total := total + n

else done := true

Figure 8.10: Reading a subrange of a partial page.

vfs_read(fd; buf , len, err)
if fd /∈ oh then err := EBADF

... // check read mode of fd
afs_iget(oh[fd].ino; ino, err) // load �le information

if err = ESUCCESS then

let start = oh[fd].pos, end = start + len
total = 0, done = false in

if start ≤ inode.size then

while ¬ done ∧ err = ESUCCESS do

vfs_read_block(start, end, inode, buf , dirs; total, done, err)
if total 6= 0 then err := ESUCCESS

oh[fd].pos := oh[fd].pos + total
len := total

else len := 0

Figure 8.11: Implementation of the read operation in VFS.

handled by the subroutine, including advancing the counter total and setting the done �ag

when the transfer is complete.

Upon an error that can arise from a failed page read the transfer is interrupted (loop

check for err = ESUCCESS), but the error is ignored if any bytes have been processed at

all (check for total 6= 0): the reason is that the read operation so far was indeed successful

and it is adequate return the partial result as discussed in Section 7.4. Ultimately, the cur-

rent read o�set in the �le handle is advanced and the number of bytes copied into buf is

returned in the output parameter len.

The vfs_write implementation is rather similar to vfs_read. After initialization which

potentially zeroes out a last page that now becomes part of the �le using afs_truncate, all

the bytes in the range are transferred with the subroutine vfs_write_block. The critical

question is when to write the new size of the �le in case it must be increased so that it

is robust against the failure to write all of the pages. Writing the new size before even

starting out means that the size will grow too much but instead of the bytes proper the tail

8.7. Invariants 101

of the �le contains zeroes or even garbage if some obsolete pages were previously present

and the initial truncate fails. This is not admitted by the POSIX speci�cation. Writing the

new size in lockstep with the pages is ine�cient and just wastes a lot of space for the

metadata updates of the �le that needs to be reclaimed later on.

Writing the new size at the end when it is known how far the operation has succeeded

is therefore the only option, but it may well be possible that this ultimate change to the

storage medium fails, too. This strategy in fact complies with the POSIX requirements:

regardless whether the old or the new size is stored on �ash, the bytes up to this value will

be the right ones, and the whole operation can succeed by restricting len to whatever �ts

into the �le as given.

8.7 Invariants

We have proved the following simple invariants on the VFS and AFS state oh resp. dirs
and �les. Inode numbers 0 are never used (8.3) as they are used by the FFS core to denote

deletion in some cases, conversely, the distinguished constant ROOT_INO : Ino is a direc-

tory (8.4). The domains of dirs and �les are disjoint (8.5). Invariant (8.6) states closure under

lookup: following a directory entry leads to an allocated inode number. Directories have

at most one parent (8.7). The inode number of each open �le handle is valid (8.8).

invariants (AFS)

0 /∈ dom(dirs) ∧ 0 /∈ dom(�les) (8.3)

ROOT_INO ∈ dom(dirs) (8.4)

dom(dirs) ∩ dom(�les) = ∅ (8.5)

∀ ino. ran(dirs[ino].entries) ⊆ dom(dirs) ∪ dom(�les) (8.6)

∀ ino ∈ dom(dirs). dirs[ino].nlink ≤ 1 (8.7)

invariant (VFS)

∀ fd ∈ dom(oh). oh[fd].ino ∈ �les (8.8)

The proofs are not di�cult, a couple of helper lemmas lead to high automation. The

veri�cation of the AFS invariants can be done locally and crucially relies on the AFS pre-

conditions. For example, the link operation requires the target to be a �le, otherwise in-

variant (8.7) may be violated. The rmdir operation requires that the path is not empty, so

that the root directory is never deleted (invariant (8.4)).

In addition, the redundant �elds of �les resp. directories must store the correct value

that is given by the cardinality of a speci�c set. For a directory ino ∈ dom(dirs):

invariants (AFS)

dirs[ino].nlink = |links(ino, dirs)|
dirs[ino].size = |dom(dirs[ino].entries)|
dirs[ino].nsubdirs = |dom(dirs[ino].entries) ∩ dom(dirs)|

and for a �le ino ∈ dom(�les):

�les[ino].nlink = |links(ino, dirs)|

102 Chapter 8. Virtual File System

8.8 Veri�cation

This section sketches the key steps in the veri�cation of the Virtual File System Switch

wrt. its speci�cation, the POSIX model from Chapter 7, i.e., we prove POSIX v VFS(AFS).

The presentation encompasses the de�nition of the abstraction relation. Separation logic

(see Section 3.5) is used to map the pointer-based graph structure in VFS to the algebraic

directory tree of POSIX. File content is abstracted to in�nite streams instead of �nite se-

quences of bytes, which keeps any argument about �le sizes out of the main part of the

proofs for reading and writing.

8.8.1 Abstraction to POSIX

The coupling relation R is de�ned as

coupling (POSIX v VFS(AFS))

fs = fs(�les) ∧ tree(tree, ROOT_INO)(dirs)

where fs : (Ino 7→ File) → (Fid 7→ File) speci�es the abstract �le store fs and tree :
Tree× Ino→ ((Ino 7→ Dir)→ Bool) abstracts the pointer structure with root ROOT_INO

to the directory tree tree using separation logic. By de�ning Fid := Ino, open �le handles

oh coincide in both layers. This section formally de�nes tree and fs.

Directory Tree. The directory tree is mapped to the store of directories dirs, instanti-

ating the separation logic theory from Section 3.5 with Loc := Ino and Val := Dir. We

de�ne the predicate tree(tree, ino) by structural recursion on the tree. The idea is that

whenever tree(tree, ino)(dirs) holds, ino is the number of the root inode of a �le system

tree in dirs that corresponds to tree. We’ll use the convention to denote stores for directory

entries in the algebraic tree by st and to denote stores in the inode based AFS model by si.
Names of entries are abbreviated by n : String to shorten the presentation to shorten the

presentation.

tree(fnode(�d), ino)↔ (emp ∧ ino = �d) (8.9)

tree(dnode(md, st), ino)↔ (8.10)

∃ si. dom(si) = dom(st) ∧ ino 7→ dir(md, si) ? ?
n∈st

tree(st[n], si[n])

Assertion (8.9) for �le nodes requires that the inode number corresponds to the �d of the

node and that the remaining part of the heap is empty.

Assertion (8.10) for directory nodes requires a corresponding directory in dirs that has

the same metadata and corresponding directory entries si. The iterated separating conjunc-

tion ? recursively asserts the abstraction relation for all subtrees st[n] to children si[n] in

pairwise disjoints parts of dirs.
One can show by induction on p that tree(t, ino)(dirs) implies

path(p, ino, dirs,�les) ↔ p ∈ t

We furthermore de�ne the assertion tree|p(t, ino1, ino2)(dirs) that cuts out the subtree

with root ino2 at path p. Equality (8.11) encodes one main reasoning step for the proofs. It

allows us to unfold the directory that is modi�ed by an operation at path p ∈ t:

tree(t, ino1)(dirs) ↔ (tree|p(t, ino1, ino2) ? tree(t[p], ino2))(dirs) (8.11)

8.8. Verification 103

★ =
p

Figure 8.12: Unfolding the tree abstraction at path p.

This lemma is visualized in Figure 8.12.

Another critical lemma discards algebraic tree modi�cations if p is a (not necessarily

strict) pre�x of q. It permits to change the grey part in Figure 8.12 without a�ecting the

algebraic part represented in white.

q = p/p′ → tree|p(t[q 7→ t′], ino1, ino2) = tree|p(t, ino1, ino2) (8.12)

Finally, the abstraction implies the following equivalence, which ensures correct dele-

tion of �le content in close, unlink and rename:

�d /∈ fids(t)↔ links(ino, dirs) = ∅ for ino = �d

File Store. The abstract �le store is de�ned for each �d ∈ �les, �d = ino with �les[ino] =
file(md, size, · · · , content) by the extensional equation

fs(�les)[�d] = fdata(md, concat(content) to size)

where concat : (Nat 7→ Page) → Stream〈Byte〉 assembles a stream of bytes from the

pages of a �le. The abstract �le must store the �nite pre�x of length size of that stream. The

abstraction to streams eliminates a lot of reasoning about list bounds and many case dis-

tinctions that would otherwise be necessary in de�nitions and proofs. In particular it sim-

pli�es the invariants of the loops in operations vfs_read and vfs_write in Section 8.8.2.

We de�ne the content of a �le as an in�nite stream with trailing zeroes beyond the end

of the �le:

concat(content) = λ n. getpage(content, n/VFS_PAGE_SIZE)[n%VFS_PAGE_SIZE]

getpage(content,m) = if m ∈ content then content[m] else [0, · · · , 0]

8.8.2 Re�nement Proofs

The re�nement is proved by forward simulation (Theorem 5.4).

Proof obligation “initialization” is trivial: (8.1) implies (7.2) for the same metadata md
of the root directory and all invariants hold.

Proof obligation “correctness” is established by symbolic execution of the VFS oper-

ation, which yields a state dirs′,�les′, oh′
1
, out1, followed by symbolic execution of the

POSIX operation to construct a matching witness run with a �nal state t′, fs′, oh′
2
, out2,

similar to Example 4.18.

During symbolic execution, whenever the VFS chooses some value by the left rule for

〈|_|〉_ in (8.13), the POSIX is free to choose the same value by the existential quanti�er in

the right rule for 〈_〉_ in (8.13).

` ∀x.ϕ(x)→ 〈|p|〉ψ ` ∃x.ϕ(x)

` 〈|choose x with ϕ(x) in p|〉ψ
` ∃x.ϕ(x) ∧ 〈p〉ψ

` 〈choose x with ϕ(x) in p〉ψ (8.13)

104 Chapter 8. Virtual File System

The error code err ′ selected by POSIX is determined this way, as well as e.g. the �d in in

the operation create in Figure 7.3 corresponding to the new inode number ino picked in

Figure 8.3.

The predicate logic goals resulting from symbolic execution have the form

Γ ` R(t′, fs′, oh′
1
, dirs′,�les′, oh′

2
) ∧ out1 = out2

where Γ = R(t, fs, oh1, dirs,�les, oh2), · · · contains the initial instance of the simulation

relation, as well as preconditions and other information that has been gathered during

symbolic execution (e.g., results of the tests in conditionals and subroutine postconditions).

The goals reduce to two core proof obligations:

directories: tree(t, ROOT_INO)(dirs),Γ ` tree(t′, ROOT_INO)(dirs′)

�les: fs = fs(�les),Γ ` fs′ = fs(�les′)

Proof Strategy for Directories. Two types of modi�cations to the directory tree occur:

insertions t′ = t[p 7→ · · ·] and deletions t′ = t − p at a path p. These correspond to a local

modi�cation of some directory dirs′ = dirs[ino 7→ dir(md′, si′)] (for some new metadata

md′ and directory entries si′) resp. dirs′ = dirs − ino, where ino is found at parent(p).

The proof strategy is determined by the symbolic execution rules (cf. Section 3.5 for

assignment and deallocation. The notation ψh′
h denotes renaming of the heap h to a fresh

variable h′ representing the updated heap in the remaining program modality resp. post-

condition ψ.

(l 7→ v ? ϕ)(h′) ` ψh′
h

(l 7→ _ ? ϕ)(h) ` 〈h[l] := v〉ψ
assign-h

(ϕ)(h′) ` ψh′
h

(l 7→ _ ? ϕ)(h) ` 〈h := h− l〉ψ dealloc

The �rst step is to unfold the tree by (8.11) and (8.10) so that the maplet for ino is ex-

plicit and the assignment can be applied, propagating the assertion to the new directory

store dirs′. The dnode predicate for ino is restored wrt. the new subdirectories si′, e.g., by

introducing an additional fnode assertion in the proof for create. The context tree|p is

rewritten to t′ as well by (8.12) (applied from right to left), so that the whole abstraction

can be folded by reverse-applying (8.11). Most of these steps are automated by rewrite

rules.

Proof Strategy for Files. For ino = �d and given σ = concat(content) the following

two top-level equalities promote the concrete modi�cation through the abstraction fs:

fs(�les[ino 7→ file(size,md, content)]) = fs(�les)[�d 7→ fdata(md, σ to size)]

fs(�les − ino) = fs(�les)− �d

It remains to establish that σ to size matches the abstract operation, which is trivial for

create (σ to 0 = 〈 〉) and di�cult for write because of the loop in VFS, see Figure 8.9.

The loop invariant for writing states that the �le content can be decomposed into parts

of the initial �le concat(content0) at the beginning and at the end, with data from the bu�er

in between:

write inv: concat(content) = concat(content0) to start (8.14)

++ buf to total

++ concat(content0) from (start + total)

8.9. Related Work 105

The key idea behind the proofs to propagate the invariant through the loop is to nor-

malize all terms of type stream to a representation with ++. For example, the e�ect of

afs_writepage is captured by the equality

concat(content[pageno 7→ page])

= concat(content) to (pageno · VFS_PAGE_SIZE)

++ page

++ concat(content) from (pageno · (VFS_PAGE_SIZE + 1))

A similar theorem exists for copy(buf , total, o�set, n; page). Equation (8.14) is then re-

stored by distribution lemmas such as (σ1 ++ σ2) from n = σ2 from (n−#σ1) if n ≥ #σ1,

and by cancellation of leading stream components of both sides of the equation (σ ++σ1 =
σ ++ σ2) ↔ σ1 = σ2 for �nite σ. Finally, the loop invariant is mapped to the respective

abstract POSIX operation.

Compared to the canonical alternative—a formulation of the loop invariants with splice

(resp. copy for reading)—our approach is considerably more elegant: Invariant (8.14) does

not need to mention the “current” size of the �le, which would lead to case distinctions

whether the �le needs to grow. Such case distinctions (also found in max) produce a quadratic

number of cases in the proof as one needs to consider the previous and the new version

of the invariant.

8.9 Related Work

The model by Hesselink and Lali [81] treats �les as atomic entities, focusing entirely on

the tree structure.

The model by Damchoom and Butler [39] breaks �les down to the level of pages and

maps these directly to the physical structure of the �ash hardware. The work is motivated

from a more theoretical point of view, namely as a demonstration of event decomposition

in the Event-B framework [6]. The approach taken is somewhat unrealistic: it is assumed

that the pages of the hardware can be programmed individually, atomically, and in par-

allel. All of these assumptions do not hold for modern �ash hardware (cf. Section 2.3.1

and Chapter 10).

The study by Arkoudas et al. [10] seems to be the earliest e�ort to formally model and

prove properties of page-based reading and writing. While the underlying data structure

is realistic (essentially what has been presented in Chapter 8), the interface presented to

the outside world permits a client to access single bytes at a time only, which is clearly not

satisfactory in practice.

Reading and writing �les at byte-level has been addressed also by Kang and Jack-

son [92]. They have built a vertical prototype in the speci�cation language Alloy
2

that

breaks the linear view of �les down to the pages of the �ash hardware (similarly to [39]).

They validate an algorithm corresponding to the read and write implementation of VFS

(Section 8.6) for small bounded state spaces. However, their algorithm relies on an explic-

itly precomputed list of subranges of the pages to read/write in order to accommodate the

limitations of the model checker. In Flashix, page access is determined on the �y without

the need for an intermediate data structure.

2http://alloy.mit.edu/

http://alloy.mit.edu/

106 Chapter 8. Virtual File System

Another approach is taken for the veri�ed �le system FSCQ [32, 34], the abstract spec-

i�cation in [65], and the elaborate SibylFS [132]: the directory tree is modeled as a pointer

structure with forward links, thereby supporting hard-links, although these are not real-

ized in FSCQ. This design skips the �rst re�nement step of Flashix in favor of starting

with a more concrete speci�cation in the �rst place. The approach can be justi�ed well.

In both [34, 65], separation logic is used, which permits to reason about pointer structures

e�ectively as if they were algebraic trees, whereas the model in [132] serves as a test oracle
where complexity of the speci�cation is not so much an issue.

SibylFS is a conformance checker for �le systems by Ridge et al. [132]. The goal of

the project is to provide a highly precise formal model of the POSIX �le system interface,

which can serve as a test oracle. The model is written in Lem [111], a language bridging

functional programming and formal logic. The authors have taken care to model many

subtleties of POSIX implementations, including deviations from the standard in Linux or

Mac OS X. The model is vast in comparison to the one presented here (several thousand

lines of code), and although it is very suitable for the intended task, it may be much too

complex to serve as a high-level speci�cation for a formal veri�cation.

FSCQ [34] is a complete implementation and produces running code at the end (based

on the FUSE library like Flashix) It thereby includes much of the complexities of the VFS

(for instance reading and writing).

In her recent thesis, Najafzadeh [113] describes a formal graph-based POSIX model

similar ours VFS/AFS. The models serves as a case study for weak or “hybrid” consis-

tency invariants in the presence of concurrency and replication of state. These invariants

are classi�ed and uniform approaches to proving their preservation are presented. The

analysis is based on partial and total causal orderings between operations, and their com-

mutations and stability in a concurrent context. For the POSIX case study, it is shown that

the data structure representing the �le system remains a proper tree.

The work is backed by a tool CISE [114] (“Cause I’m Strong Enough”), which automat-

ically checks for such properties. According to Najafzadeh [113, Section 8 and 9] the tool

helped to detect and remove unneeded synchronization between operations in many cases

and also uncovered that moving �les around is not safe without such synchronization. The

properties considered in this work are beyond the scope of this thesis, and it is not clear,

how the analysis would integrate with re�nement. Nevertheless, the ideas presented are

interesting for the future development of Flashix. The locking mechanism is based on the

speci�cation of con�ict relations T1 ./ T2 between two sets of tokens that link concurrent

operations (akin to the con�ict relation # of event structures [118]).

Chapter 9

Flash File System Internals
E�ciently Dealing with Flash Memory Characteristics

Summary. This chapter continues the development of the formal models of Flashix

in the re�nement hierarchy from the core concepts of a �ash �le system implemen-

tation. It implements e�cient strategies to store data on �ash memory, while at the

same time the concepts are introduced as abstractly as possible. Central to the �ash

�le system is the life cycle of on-�ash data that is always written to fresh locations

by operations.

Publications: This chapter is based on [54] and the work of Schierl et al. [147].

Contents

9.1 General Strategy . 108

9.2 Speci�cation of the Journal and the Index 110

9.3 Regular Operations . 112

9.4 Commit and Recovery . 114

9.5 Garbage Collection . 114

9.6 Invariants . 115

9.7 Veri�cation . 116

9.8 Related Work . 117

This section presents the formal model of the core concepts of the Flashix �le system,

denoted by FFS or “core” in the following. It is based on work by Schierl et al. [147] pio-

neering the early stages of the project, while additional aspects and the modularization in

terms the the index and the journal are described as part of [54].

The �le system core implements the AFS interface from the previous section. It in-

troduces the �rst artifacts that are speci�cally tailored towards �ash memory. Recall that

storage is structured into erase blocks that themselves are partitioned into pages. Write

access is provided at the granularity of whole pages. Modern hardware typically supports

writing pages within a block in sequential order only. To reuse storage space, blocks can

be erased in their entirety. Reading is supported for random subranges of a block.
1

Although these details are abstracted away here as much as possible, they nevertheless

determine the fundamental approach taken in the �le system core: It stores a unordered

collection of data items, called “nodes”, which represent �les, directories, directory entries,

and pages that store the content of �les and correspond directly to their counterparts of

the VFS data model described in Section 8.1. New versions of nodes are always written

1

At least, if the hardware doesn’t support unaligned reads, the driver interface can easily emulate such a

behavior. With Linux MTD this can be relied on.

108 Chapter 9. Flash File System Internals

to fresh locations on the storage medium as in-place updates are impossible. Since data

moves around all the time, yet another indirection via an index is required that tracks the

addresses of the most recent copy of a given node. The strategy has already been sketched

with Example 5.5.

Management of on-�ash storage space is delegated to the journal subcomponent, which

also provides the necessary means to group multiple write operations into transactions

that take e�ect atomically wrt. power cuts. Likewise, the index is also realized in its own

submodule, implemented as a B
+

tree. The core combines the functionality of the journal

and the index to implement an AFS-compatible �le system that is linked into the VFS in

the generated code. This means that while the two subcomponents are re�ned further, the

glue code presented here that ties them together is part of the �nal system.

Remark. Actually, it is not possible to strictly separate the index and the journal into their

own isolated submachines. For instance, the journal must be able to determine which ad-

dresses are still in use by the index (for garbage collection), some operations (e.g., commit

and recovery) cannot be speci�ed separately, because they modify data structures of both

layers at the same time. There is also a number of invariants that ties the layers closely

together. For this reason, the index and the journal are realized as one machine in the KIV

mechanization (that is re�ned as a whole). We keep the presentation separate here when

it makes sense but take a combined view when it becomes necessary.

9.1 General Strategy

The state of the index component is given by the RAM index ri and the flash index �. All

operations except commit and recovery access the RAM index only. The abstract state of

the journal is given by an unordered flash store fs. The log records the addresses of those

nodes that have been written recently, for which the RAM and �ash address di�er.

The high-level �ow of data as a�ected by external and internal operations of the �ash

�le system core is visualized in Figure 9.1. The state is partitioned into a volatile part ri
and a persistent part �, fs, and log (attribution at the top) managed by the index and the

journal (attribution at the bottom). White boxes represent the constituents of the state.

Arrows indicate which part of the state �ows through which kind of operation. These are

denoted by grey boxes and encompass 1. regular operations from the AFS interface, and

several internal ones, namely 2. recovery and 3. commit as well as 4. garbage collection of

on �ash storage space. It is assumed that initially the RAM index and the on-�ash version

coincide (ri = �), there is some �le content fs present and also some free space (indicated

by ∅), and the log is empty ([]).

1. Regular operations operate on the RAM index and write new entries to the �ash

store. The �ash index is not modi�ed immediately, instead the di�erence between

the two indices is recorded in the log. The part fs remains unchanged but some

part potentially becomes obsolete due to out-of-place updates replacing previous

versions of data. In the �gure, this is indicated by splitting fs into old and fs′.
2. The recovery operation takes over after a power cut to restore the RAM index, which

resides in volatile memory and is therefore lost, from the persistent data structures.

Refering to the �gure, ri+new is reconstructed from �(= ri) and the new part from

the log and the �ash store. Recovery is the only operation that reads the on-�ash

index �.

9.1. General Strategy 109

RAM index

ri = fi

flash index

fi

flash store

fs

log

[]

ri + new fi old new

ri + new fi new

1. regular

2. recover

ri + new fi + new []

3. commit

ri' + new fi + new moved

4. garbage collection

∅

new fs'

old new fs'

old new fs'

fs'' ∅

volatile state persistent state

Legend:

data flow

state

operation

crash

deallocation

index layer journal layer

Figure 9.1: Data life cycle and e�ect of operations on the state (illustration adapted

from Schierl et al. [147, Figure 1]).

3. Purpose of the commit operation is to re-establish the initial situation: the �ash

index is updated to re�ect the in-memory version and thus the log can be emptied.

Commit is the only operation that writes the on-�ash index �.

4. Garbage collection clears up the old part in the �ash store, potentially moving some

live data around that happens to sit in almost-empty blocks (updating ri as well).

Like regular operations, garbage collection modi�es the RAM index, the log and the

�ash store, but not the �ash index.

The integration of the data structures of the index and the journal is shown in Fig-

ure 9.2, complementing the previous views in Figure 7.1 and Figure 8.1, as well as the

dynamics in Figure 9.1. At the bottom the �ash memory is visualized as an unstructured

storage (by its cloudy shape). At the top, the index is shown: a current version (grey trian-

gle) in main memory encompasses all modi�cations, and the outdated �ash version �ash

(black triangle) shares some unchanged part (white) with the RAM index. The log (at the

bottom) encodes the changes that transform the outdated �ash index to the current one in

main memory.

The example state in Figure 9.2 demonstrates the links between the index, �ash store,

and log for new objects generated by creating a �le named thesis.tex (Example 6.2). The

updated parent directory (folder symbol), the encoded directory entry carrying the name

of the �le (denoted by the big arrow in the middle) and the encoded inode object storing

the metadata of the new �le (visualized as a leaf of paper) are part of the �le store and are

referenced by the latest three log entries. The index is also updated to point to the new

objects stored on �ash, in Figure 9.2 these updates a�ect the grey part of the index.

110 Chapter 9. Flash File System Internals

flash
store

flash
index

RAM
index

…

log …

index
layer

journal
layer

thesis.tex

Figure 9.2: Conceptual view of the �ash store, the index, and the log, showing the

directory inode (folder symbol), the directory entry labeled “thesis.tex” and the inode

of the new �le (leaf of paper).

9.2 Speci�cation of the Journal and the Index

The state consisting of the two indices, the �ash store, and the log is speci�ed abstractly

by algebraic maps resp. a list:

spec vars (index) ri,� : Key 7→ Address

spec vars (journal) fs : Address 7→ Node,

log : List〈Address〉

The objects representing keys and nodes are de�ned by algebraic data types with con-

structors resembling the data model of the VFS shown in Section 8.1. The idea is that

whenever a key is present in the index, then a node of the corresponding type is stored on

�ash at that address.

data Key = inodekey(ino : Ino)

| dentrykey(ino : Ino, name : String)

| datakey(ino : Ino, pageno : Ino)

data Node = inodenode(key : Key, meta : MetaData, dir?: Bool,

nlink : Ino, size : Ino, nsubdirs : Ino)

| dentrynode(key : Key, target : Ino)

| datanode(key : Key, data : Page)

Inodes are uniquely determined by their numbers. They store meta data meta, whether

they belong to a directory, the number of hard links (equal to 1 for directories except the

root), the size of a �le resp. the number of directory entries, of which nsubdirs determines

how many of these are again directories in the latter case. Directory entries are uniquely

identi�ed by the inode number of the parent directory and a name. The corresponding node

references the inode number of the child, i.e., the target of the edge in the graph structure of

the directory hierarchy. The data pages making up the �le’s content are uniquely identi�ed

by the �le they belong to and the sequential number of the page within the �le. The node

simply stores the contained data as an array of bytes with the length VFS_PAGE_SIZE.

In addition, each node stores the key which references it in the index to permit reverse

lookup. For instance, it is possible to check whether a node read from �ash is still refer-

9.2. Specification of the Journal and the Index 111

enced by the index by fs[adr].key ∈ dom(ri), which is relevant for garbage collection (see

Section 9.5). Reverse lookup is crucial for for power cut recovery, too (see Section 12.3).

The journal has an operation to read a node from �ash, and operations to store groups

of several nodes nd1···n, extending the log at the same time.

jnl_get(adr; nd, err)
precondition adr ∈ fs
{ nd := fs[adr], err := ESUCCESS }

or { choose err ∈ {EIO, · · · } }

jnl_appendn(nd1, · · · , ndn; adr1, · · · , adrn, err)
precondition true

{ choose adr1···n /∈ dom(fs) distinct

fs := fs[adr1 7→ nd1, · · · , adrn 7→ ndn]
log := log ++ [adr1, · · · , adrn]
err := ESUCCESS }

or { choose err ∈ {EIO, · · · } }

The operation jnl_get just returns the node nd associated with the address adr . The

operation jnl_append takes n nodes, stores these on disk and returns their locations on

�ash memory adr1···n, which are later stored in the index. It encodes the restriction that

no data can be overwritten on �ash: the addresses where the nodes are stored are chosen

to be fresh and not already part of fs. Furthermore, the intended interpretation is that

the assignment to fs and log happen atomically and at the same time. This encodes that

an implementation must be able to achieve the e�ect observably atomic with respect to

power cuts.

Like we have seen previously in Section 8.3, the journal exhibits nondeterministic er-

rors as it accesses the �ash memory. The index operations to lookup, store, and remove

mappings directly refer to their algebraic counterparts (left column).

idx_lookup(key; adr, exists)
exists := (key ∈ ri)
if exists then adr := ri[key]

idx_store(key, adr)
precondition adr ∈ fs ∧ adr /∈ ran(ri)
ri[key] := adr

idx_remove(key)
precondition key ∈ dom(ri)
ri := ri − key

idx_dentries(key; keys)
keys := entries(key)

idx_trunc(key, n)
ri := ri \ data≥(key, n)

idx_newino(; key)
choose ino
with ino 6= 0 ∧ inodekey(ino) /∈ ri
in key := inodekey(ino)

Looking up a key returns whether it is part of the index and provides the respective

address in that case. The precondition adr ∈ fs for idx_store guards the index implemen-

tation from having to deal with unallocated addresses, leading to the formal invariant (9.5)

below. The non-obvious precondition adr /∈ ran(ri) for idx_store prevents the same ad-

dress from being used twice. Technically, it means that the index is an injective map, which

is exploited to incrementally track the addresses referenced by ri: From key ∈ dom(ri) for

idx_delete one can conclude that the address stored at ri[key] becomes obsolete.

Additional operations include reading the entries of a directory, removing all data keys

for pages above a given �le size n, and selecting an unused inode number that can be used

to identify a new �le or directory. The algebraic helper entries selects the directory entries

with the inode number matching the directory given by key, whereas data≥ selects those

112 Chapter 9. Flash File System Internals

data keys that become obsolete by restricting the �le size for key to n. This corresponds to

the upto function (8.2) of the abstract level.

entries(key) = {dentrykey(ino, name) ∈ ri | ino = key.ino}
data≥(key, n) = {datakey(ino, pageno) ∈ ri | ino = key.ino (9.1)

∧ pageno · VFS_PAGE_SIZE ≥ n}

9.3 Regular Operations

With the prerequisites on the two subcomponents, it is now time to show how these are

integrated by the �ash �le system in order to realize the AFS interface.

Figure 9.3 shows as an example the regular operations fs_lookup and fs_createwhich

realize the AFS speci�cation from Figure 8.4.

The lookup operation receives the parent’s inode number and a �le name (as part

of dent). The precondition ensures that the parent is a directory. Via the index it is deter-

mined whether there is an entry with that name, i.e., the speci�ed dentrykey is contained

in ri. If so, the address adr holds the location of the corresponding node on disk, which can

be retrieved via the journal (e�ectively nd = fs[ri[dentrykey(pino, name)]]). The return

value is determined in dent just as in the speci�cation, except when reading from the �ash

storage failed (err 6= ESUCCESS after jnl_get), in which case this error is passed on to the

caller of fs_create with an unmodi�ed dent.
The create operation receives the VFS inode object of the parent directory, and the

name (as part of dent) and the metadata md of the new �le. A fresh inode number �no : Ino
for the new �le is requested from the index by idx_newino. Several keys and nodes are

prepared: The parent directory identi�ed by pino is a�ected because its size changes (all

other �elds are kept unchanged from the inode). The key for the directory entry links the

�le under pino with the given name, and the corresponding node stores the target �no.

The �le itself is created with the provided metadata, the directory �ag set to false, a link

count of 1 and a size of zero (and a dummy value 0 for the number of subdirectories). The

nodes are written to disk via the journal layer, which yields three addresses as outputs. The

index is updated at the end, but only if the write to �ash was successful (err = ESUCCESS).

Most other operations of the AFS interface Chapter 8 are realized by this pattern (cf. the

�rst row in Figure 9.1): preparing a few keys and nodes, writing these to disk, and �nally

updating the index.

Some operations, such as unlink or rmdir delete keys from the index instead of storing

new mappings. In order to record such deletions as durable on �ash the a�ected inode and

dentry nodes are written with an nlink resp. target of zero. This is shown in Figure 9.4,

which removes a hard-link to a �le. Like for create, three keys and nodes are prepared.

The second last line in the listing removes the key from the RAM index, which is does not

have a durable e�ect. In the event of a power cut, the e�ect of the unlink operation would

be lost and even worse, the size of the parent inode would be wrong. For this purpose a

directory entry node containing a zero target inode number is written, which signi�es its

deletion in a persistent way. Note that the �le itself is removed only when the link count

drops to zero and no further open �le handles are pointing to it by the evict operation (not

shown for the �ash �le system core), which is called by the VFS as described in Section 8.4.

9.3. Regular Operations 113

fs_lookup(pino; dent, err)
let key = inodekey(pino)

name = dent.name in

precondition key ∈ dom(ri) ∧ fs[ri[key].dir?

idx_lookup(dentrykey(pino, name); adr, exists)
if exists then

jnl_get(adr; nd, err)
if err = ESUCCESS then dent := dentry(name, nd.target)

else

err := ENOENT, dent := negdentry(name)

fs_create(md; inode, dent, err)
let pino = inode.ino

name = dent.name in

precondition inodekey(pino) ∈ dom(ri)
∧ fs[ri[inodekey(pino)]].dir?
∧ dentrykey(pino, name) /∈ dom(ri)

idx_newino(;�no)
key

1
:= inodekey(pino) nd1

:= inodenode(key
1
, · · · , inode.size + 1, · · ·)

key
2

:= dentrykey(pino, name) nd2
:= dentrynode(key

2
,�no)

key
3

:= inodekey(�no) nd3
:= inodenode(key

3
,md, false, 1, 0, 0)

jnl_append3(nd1, nd2, nd3; adr1, adr2, adr3, err)
if err = ESUCCESS then

idx_store(key
1
, adr1)

idx_store(key
2
, adr2)

idx_store(key
3
, adr3)

Figure 9.3: File system core: implementation of the operations lookup and create.

(The lets are moved to the beginning to shorten the presentation).

fs_unlink(md; inode, dent, err)
let pino = inode.ino

name = dent.name in

precondition inodekey(pino) ∈ dom(ri)
∧ fs[ri[inodekey(pino)]].dir?
∧ dentrykey(pino, name) ∈ dom(ri)

idx_newino(;�no)
key

1
:= inodekey(pino) nd1

:= inodenode(key
1
, · · · , inode.size− 1, · · ·)

key
2

:= dentrykey(pino, name) nd2
:= dentrynode(key

2
, 0)

key
3

:= inodekey(�no) nd3
:= inodenode(key

3
, · · · , inode.nlink− 1, · · ·)

jnl_append3(nd1, nd2, nd3; adr1, adr2, adr3, err)
if err = ESUCCESS then

idx_store(key
1
, adr1)

idx_remove(key
2
)

idx_store(key
3
, adr3)

Figure 9.4: File system core: implementation of operation unlink to remove a hard-

link to a given �le. In contrast to creation, the node encoding the directory entry

contains a zero target inode, which signi�es its deletion. The corresponding key is

deleted from the index in the second last line.

114 Chapter 9. Flash File System Internals

9.4 Commit and Recovery

This section brie�y describes the commit and recovery operations without going into much

of the details, which will be discussed in the presence of crashes in Section 12.3.

The commit operation is shown below. It copies the RAM index to �ash and clears the

log. Since commit writes to �ash memory it exposes potential hardware errors.

journal+index_commit(; err)
{ � := ri, log := [], err := ESUCCESS }

or { choose err ∈ {EIO, · · · } }

The RAM index determines exactly, which part of the �ash memory constitutes the

observable �le system state, more precisely, its composition fs ◦ ri with the �ash store.

However, in the event of a power cut the RAM state is lost. That the RAM index is truly

redundant and can be recovered to its previous state after a power cut is expressed by

invariant (FFS) ri = replay(log,�, fs), (9.2)

where replay is part of the system initialization resp. the recovery procedure that is called

after a power cut. The function traverses the log from oldest to newest and (re-)applies all

missing operations to the outdated �. The details of this recovery process are postponed

to Chapter 12, for now it su�ces to consider the existence of this connection to warrant

that the RAM index is functionally dependent on the persistent state. Note that after a

commit, the invariant trivially holds, because replay([],�, fs) := � for the empty log,

which equals ri. In the implementation of the �ash �le system core, the e�ect of the replay

function is realized programmatically.

9.5 Garbage Collection

As operations such as fs_create shown in Figure 9.3 store new data at new addresses

in fs but never delete something, it becomes necessary to periodically cleanup fs by a

garbage collection procedure. Speci�cally, addresses adr /∈ ran(ri) point to obsolete nodes

belonging to �les, directories, entries and data that have been modi�ed so that a new

version exists elsewhere, or that have been deleted entirely.

Intuitively, an abstract speci�cation of garbage collection omits a couple of such ad-

dresses by repetition of transitions

fs′ = fs \ {adr} where adr /∈ ran(ri) ∧ adr /∈ dom(log), (9.3)

where the domain of the list log : List〈Address〉 is simply the set of its elements. However,

the matter is not as simple.

First, the index is accessible (e�ciently) only by keys. Each node nd stores its respective

key, denoted by nd.key, and thus one can equivalently check fs[adr].key /∈ dom(ri). The

required invariant is (9.6) (see below).

Second, as data stored in blocks that can be reclaimed in their entirety only, it may

be necessary to move some nodes out of an almost-empty block before erasing it. These

moves are represented by transitions of the form

fs′ = fs[adr 7→ fs[ri[key]]] for key ∈ ri and adr /∈ dom(fs) (9.4)

log′ = log ++ [adr]

ri′ = ri[key 7→ adr ′]

9.6. Invariants 115

that update both the index and the log also and are intermixed with deletion steps (9.3).

Correctness of garbage collection requires one to prove that it is not observable from

the outside, i.e., it corresponds to a non-operation when abstracted to AFS. It can easily be

checked that (9.3) and (9.4) both preserve fs ◦ ri. However, note that a garbage collection

step may invalidate addresses contained in the outdated on-�ash version of the index, i.e.,

adr /∈ ran(ri) and adr /∈ dom(log) do not imply that adr /∈ ran(�), which will become

relevant when power cuts are considered, because then � is read.

9.6 Invariants

The index and the journal are tightly integrated. For example, the garbage collection algo-

rithm implemented as part of the journal needs to refer to the index in order to determine

whether a node is still in use. The tight integration also manifests in invariants over the

combined state space and preconditions that refer to both data structures. For that rea-

son we present the two layers at the same time (and in the development in KIV these are

combined into one ASM as remarked previously).

The following invariants can already be maintained internally to the index and journal

without relying on the concrete mappings stored by the �ash �le system core. They are

proved easily from the preconditions of the operations.

invariants (index & journal) (9.5)

ran(ri) ⊆ dom(fs)

injective(ri)

dom(log) ⊆ dom(fs)

The �ash �le system core maintains some further invariants in addition to (9.5) that

describe well-formed states. The main purpose is to connect the keys stored in the index to

the nodes on stored �ash. The following invariant ensures that the keys stored in the nodes

are the correct ones. It is used for reverse lookups when only an address is known during

garbage collection as described already and during recovery, which reads such addresses

from the log.

invariant (FFS) ∀ key ∈ dom(ri). fs[ri[key]].key = key (9.6)

Many invariants have been described in [147] already. For instance,

• The types of each key must match the type of the corresponding node, e.g., a key

for an inode should never lead to a directory entry

• As an equivalent to (8.6), the target of a directory entry node is a valid inode number

ino such that inodekey(ino) ∈ dom(ri). This ensures that path lookup doesn’t get

stuck.

• The parent of a dentry key is valid—this is an invariant that was implicit in the

AFS model, whereas here it must be stated explicitly. Purpose of this invariant is

to prevent super�uous pages �oating around in the index, which could otherwise

suddenly be associated with a newly created directory. Similarly, the ino referenced

by data keys must denote a falid �le.

The key point to these invariants is that a valid representation of the state by fs and ri
is less constrained than the dirs and �les of AFS by construction and must therefore be

narrowed down explicitly.

116 Chapter 9. Flash File System Internals

9.7 Veri�cation

This section sketches the key steps in the veri�cation of the Flash File System wrt. its

speci�cation, the AFS model from Chapter 8, i.e., we prove FFS(index+journal) v AFS.

9.7.1 Abstraction to AFS

The data structures found in the �ash �le system core are mapped to the AFS dirs and �les
by folding two layers of indirection, namely, by collapsing the intermediate addresses that

connect the RAM index ri to the �ash store fs and by nesting the nodes for directory entries

and data pages into the stores of the respective directories and �les. The �ash index � and

the log, however, are irrelevant for the abstraction here, since they come into play only

in the event of a power cut and subsequent recover. This issue is addressed in Chapter 12

by an extension of the AFS model that considers the distinction into RAM and �ash state

explicitly.

The abstraction to the AFS data structures is presented in terms of the extensional

properties of the two stores dirs = dirs(ri, fs) and �les = files(ri, fs) in terms ri and fs
as follows.

coupling (AFS v FFS(index+journal))

dom(dirs) = {ino | inodekey(ino) ∈ ri ∧ fs[ri[inodekey(ino)]].dir?}
dom(�les) = {ino | inodekey(ino) ∈ ri ∧ ¬ fs[ri[inodekey(ino)]].dir?}

For a (parent) directory pino ∈ dom(dirs) and nd = fs[ri[inodekey(pino)]] it is required

that

coupling

dirs[pino] = dir(nd.meta, nd.size, nd.nlink, nd.nsubdirs, entries) such that

entries = [name 7→ ino | dentrykey(pino, name) ∈ ri

∧ ino = fs[ri[dentrykey(pino, name)].target],

i.e., the metadata attributes of the directory are taken from the node on �ash, whereas

the map entries collects all the directory entries in terms of the keys with the right parent

inode number pino. The target ino of such an entry must be read from �ash.

A �le �no ∈ dom(�les) is assembled similarly for nd = fs[ri[inodekey(�no)]] by

coupling

�les[�no] = file(nd.meta, nd.size, nd.nlink, content) such that

content = [n 7→ page | datakey(�no, n) ∈ ri

∧ page = fs[ri[dentrykey(�no, n)].data],

such that the content consists of all the pages with a corresponding data node on �ash.

Note that this abstraction is only well-de�ned if the FFS core invariants (9.5) hold to

guarantee that for a key the lookups fs[ri[key]] fall are inside domains of ri resp. �. The

abstraction guarantees for example, that dirs and �les are disjoint. Furthermore, the ab-

straction is functional, i.e., the AFS state is uniquely determined by its FFS counterpart.

9.8. Related Work 117

9.7.2 Re�nement Proofs

As we have seen previously in Section 8.8.2, symbolic execution of the abstract and con-

crete operation produces sequents of the form

Γ ` R(dirs′,�les′, ri′, fs′) ∧ out1 = out2

where Γ = R(dirs,�les, ri, fs), · · · contains the initial instance of the simulation relation, as

well as preconditions and other information that has been gathered during symbolic exe-

cution (e.g., results of the tests in conditionals and subroutine postconditions). Concretely,

the proof goal will contain instances of

Γ ` �les′ = files(ri′, fs′) ∧ dirs′ = dirs(ri′, fs′),

which is solved by applying the standard extensionality principle of �nite maps:

m1 = m2 ↔ dom(m1) = dom(m2) ∧ ∀ k ∈ dom(m1).m1[k] = m2[m].

It states that two maps are equal exactly when their domains coincide and when lookup of

a given key k in the domains produces the same result. This breaks down the proofs to a

stage where the de�nitions of the coupling relations in Section 9.7.1 apply. It turns out that

simply unfolding these de�nitions su�ces in almost all cases to close the goal by discerning

the case distinctions whether a given inode number ino ∈ dom(dirs′) resp. ino ∈ dom(�les′)
has been modi�ed by the operation.

The second stage of the proof is concerned with comparing the store of directory

entries entries resp. the content of �les, which is also done by extensionality. Only the

truncate operation leads to a complex path in the proof, which compares the algebraic

function content upto n from (8.2) to its counterpart ri \ data≥(key, n) from (9.1). There

is no conceptual di�culty other than tedious case distinctions that can be automated to a

reasonable degree.

The initial approach to prove this re�nement involved a high number of lemmas to

propagate modi�cations through the abstraction relation, a simple example is

dirs(ri − inodekey(ino), fs) = dirs(ri, fs)− ino.

Unfortunately, most of these commutations, in particular when directory entries or pages

are accessed, require preconditions from the invariants of the �ash �le system (see Sec-

tion 9.6. These are tricky or impossible to establish for partially modi�ed states ri′ as in

dirs(ri′[dentrykey(ino, name), adr], fs),

when ri′ contains some other modi�cations in comparison to the original ri.

9.8 Related Work

The initial prototype model of the core concepts of UBIFS by Schierl et al. [147] has served

as the anchor for the whole development. The model presented here follows the same

general approach and is realized similarly by a characterization of the state in terms of

ri,�, log, fs

118 Chapter 9. Flash File System Internals

A number of extensions have been introduced as well: to accommodate nondetermin-

istic hardware errors, all operations that access the �ash storage can now fail. Deletion has

been factored into two operations, unlink and evict, and �le handles that were previously

not stored at all are now recorded by the VFS (see Chapter 8). As a consequence, orphaned

�les (cf. Section 7.6) are now handled by the model, although the presentation of this is

postponed to Section 12.3. As a technical aspect, the invariants have been restated for bet-

ter proof automation. The re�nement proof connecting the �ash �le system model to AFS

is entirely new.

The work at Data 61 (formerly known as NICTA) follows a subset of the goals of the

Flashix project. They aim at a fully veri�ed �le system for �ash memory but only realize

the part of the re�nement chain from the AFS speci�cation downwards to the erase block

management layer. In practice, their �le system BilbyFS introduced in [93] runs in the

Linux kernel and can therefore take advantage of the existing Virtual Filesystem Switch

as well as the UBI interface.

Research at Data 61 focuses speci�cally on the construction of veri�ed C code, which

brings in many low-level aspects that are out of the scope of this thesis. The approach taken

is to use a domain speci�c language called Cogent [9] designed for �le system implemen-

tations (previously described as CDSL in the technical report [121]). Besides BilbyFS they

have written an Ext2-like �le system in this language as well and demonstrate in [9] that

this approach leads to e�cient code on one hand and to an automatic abstraction to a func-

tional model of the C Code into the Isabelle system [119]. Closer inspection of the Cogent

code reveals that it is similar to the �ash �le system core in this chapter, in particular the

cascading chains of error handling are present there as well.

However, the design of BilbyFS is deliberately kept much simpler than UBIFS and

Flashix: The index is not stored on �ash memory and must be reconstructed at every boot

just like the tables storing information about free space.

The �le system FSCQ [32–34] is a �le system for conventional magnetic storage in-

spired by the design of the relatively simple xv6 �le system [37]. It is fully veri�ed with

the help of the theorem prover Coq [20] in a logic called Crash Hoare Logic, which permits

them to prove power cut safety. Running Haskell code is automatically derived from the

speci�cations by Coq’s extraction mechanism. It is integrated into Linux using the FUSE

library like Flashix (see Section 2.4.1).

FSCQ operates on standard block devices exposed by the Linux kernel. These have

a similar structure as �ash memory blocks but without the restrictions inherent to the

latter. FSCQ exploits this (like many conventional �le systems) to take the blocks as basic

primitives. For example, the content of a directory is stored in a linked list of several of

these blocks, where it is possible to update individual entries by sub-block writes.

Internal to FSCQ is a component that implements a sequential log maintaining a list

of pending blocks to be written to disk. In principle, this can be done asynchronously, al-

though for reasons fo crash-safety, the log is �ushed with each POSIX operation. The log

in FSCQ resembles much the erase block management layer, contrasting the transactional

journal in the Flashix core (Section 9.2), because the latter operates on smaller data quan-

tities (the nodes), whereas in FSCQ the upper layers are already responsible to encode data

down to byte-based blocks.

The log is backed by a bu�er cache that speeds up read operations. An interesting

aspect is that they integrate unveri�ed code for the cache-replacement strategy. The ac-

tions determined by the replacement algorithm are instead validated to conform to certain

9.8. Related Work 119

safety properties by a veri�ed check.

There is also not much need for an index in FSCQ, as blocks are allocated directly to

the �les and directories and this mapping does not need to change later on.

The veri�cation of FSCQ also includes the serialization and deserialization between

in-memory data structures and their byte representation. In Flashix, such routines are

currently outside of the scope of these and are instead synthesized by the code generator.

In a recent master’s thesis, Wang [155] has developed an improved version called

Rapid FSCQ, which considers checksum-based logging and a veri�ed implementation of

hash-algorithms for caching to speed up the �le system’s operations. She has shown that

this �le system performs comparably to Ext4.

Chen’s thesis [32] extends FSCQ by asynchronous writes and a speci�cation of the

POSIX operations fsync and fdatasync. This permits to implement and verify write-back
caching. It is speci�ed by recording the entire history of the �le system. Out-of-order writes

may rewrite this history. Such caching is beyond the scope of this thesis and will be ex-

plored in the future.

Galloway et al. [63] abstract the existing Linux VFS code to a SPIN model to check cor-

rect usage of locks and reference counters. With a similar approach, Taverne and Pronk [151]

consider a hand-crafted abstract model of a �ash �le system called RAFFS amenable to

model checking, however, the model does not incorporate much details of �ash FS inter-

nals due to a limited search space. Work that directly checks the C source code of existing

�le systems is by Mühlberg and Lüttgen [112], Yang et al. [161]. These approaches limit

themselves to speci�c properties that are weaker than functional correctness (e.g., memory

safety) or cover concepts orthogonal to this work (e.g., correct usage of locks). Neverthe-

less, they are an impressive achievement, notably because they have uncovered real bugs

in code that is used on a daily basis.

The Linux Veri�cation Center
2

takes these e�orts to a holistic scope: they routinely

check large parts of the Linux kernel and contribute a continuous stream of bug-reports.

It should be noted that these automated techniques complement the approach taken in

this thesis. Full functional veri�cation of existing code is a rather tedious undertaking (see

e.g. Baumann et al. [16, 17]), it can be worthwhile in some circumstances (the two papers

cited relate to an industrial application where a main asset—the PikeOS microkernel—

of the involved company has been considered). Similar work is by Divakaran et al. [46].

Both e�orts have in common that they consider less data-structure intensive properties

(e.g. priorities of scheduled tasks in the FreeRTOS realtime operating system) that can be

expressed well without several layers of abstraction. Incidentally, they both used the same

tool VCC [36], which is well-suited for such lower-level proofs directly on the C code.

However, it is not entirely clear how well it works to develop abstract models in retro-

spect (in the spirit of AFS), as real code tends not to have as clean interfaces (in particular

when C is concerned). This is apparent in the Linux kernel as well: For example, UBIFS

uses pre-provided internal data structures with cross-pointers and function calls all over

the place. The paper [46] actually takes a step towards retro�tting formal models onto

existing interfaces, building on previous work [35]. It would be interesting to see this ap-

proach to scale to systems of the size and complexity of UBIFS.

2https://linuxtesting.org

https://linuxtesting.org

Chapter 10

Hardware Model
Assumptions about Flash Hardware

Summary. This section formalizes the assumptions about the hardware, captured

by the behavior of an abstract interface representing the driver. The API is modeled

after the existing Linux Memory Technology Device (MTD) abstraction layer,
1

which

essentially exposes the low-level operations of the hardware.

Publications: This chapter is based on [123].

Contents

10.1 State . 121

10.2 Operations . 122

10.3 Power Cuts . 123

10.4 Related Work . 124

Although this model is not strictly part of the contribution of this thesis, it is nevertheless

important to understand the basis on which the re�nement chain is built. It is also the

anchor for the veri�cation methodology of power cut safety in Chapter 11.

10.1 State

Flash memory is organized as an array of physical erase blocks (PEBs):

state vars (MTD) pebs : Array〈Peb〉 where

data Peb = mkpeb(data : ArrayPEB_SIZE〈Byte〉, fillcount : Nat, isbad : Bool)

Each PEB stores a byte-array data of �xed length PEB_SIZE that is implicitly partitioned

into pages of length EB_PAGE_SIZE. A PEB stores a page-aligned counter fillcount that

tracks the part of the block that contains programmed pages, i.e., only data above fillcount

is known to be empty and can be written to. Note that the �ll counter cannot be accessed

by software. It is an auxiliary state only used to enforce that pages are written sequen-

tially and never overwritten. PEBs also carry a hardware-supported marker isbad that is

set explicitly by upper layers after access failures to prevent future usage of the block.

The model maintains the following invariant for all peb = pebs[i] with ¬ peb.isbad:

invariant (MTD)

aligned(peb.fillcount) ∧ peb.fillcount ≤ PEB_SIZE (10.1)

∧ ∀ n. peb.fillcount ≤ n < PEB_SIZE→ peb.data[n] = EMPTY,

1http://www.linux-mtd.infradead.org

http://www.linux-mtd.infradead.org

122 Chapter 10. Hardware Model

mtd_write(n, o�set, len, buf ; err)
precondition n < #pebs ∧ ¬ pebs[n].isbad ∧ o�set + len ≤ PEB_SIZE

∧ pebs[n].fillcount ≤ o�set ∧ aligned(o�set) ∧ aligned(len)

choose k with k ≤ len ∧ aligned(n) in

copy(buf , 0, o�set, k; pebs[n].data)
pebs[n].fillcount := o�set + k
if k = len then err := ESUCCESS else err := EIO

mtd_read(n, o�set, len; buf , err)
precondition n < #pebs ∧ ¬ pebs[n].isbad ∧ o�set + len ≤ PEB_SIZE

{ copy(pebs[n].data, o�set, 0, len; buf)
err := ESUCCESS }

or { err := EIO }

mtd_erase(n; err)
precondition n < #pebs ∧ ¬ pebs[n].isbad

{ pebs[n] := mkpeb(EMPTY_PEB, 0, false)
err := ESUCCESS }

or { err := EIO }

mtd_isbad(n; bad)
precondition n < #pebs
bad := pebs[n].isbad

mtd_markbad(n)
precondition n < #pebs
pebs[n].isbad := true

Figure 10.1: Speci�cation of the Linux MTD driver interface, encoding the expected

behavior of the hardware.

where

aligned(n) ↔ n % EB_PAGE_SIZE = 0

ensures that n divides by the size of a physical page. The invariant speci�es that the �ll

count is a multiple of EB_PAGE_SIZE and that all bytes above (inclusive) are empty (the

constant EMPTY equals 0xff for most real hardware). The invariance of this trivially follows

from the preconditions of the operations.

The initial state is given by an arbitrary con�guration that satis�es the invariant above:

the reason is that one can explicitly model formatting of the device from an unknown state

in the erase block management layer, and such an operation has been realized as part of

the lower models of Flashix. The format operation simply erases each block of the device

and writes some management information to the respective �rst pages.

initial state (MTD) pebs such that (10.1) holds

10.2 Operations

The operations of the model are shown in Figure 10.1. Preconditions ensure proper use

of the interface: each block n accessed is valid and not marked bad (for read, write, and

10.3. Power Cuts 123

erase). The range len to o�set + len of bytes read or written is below the size of the block

PEB_SIZE. Writing is con�ned to aligned o�sets above fillcount.

Hardware failures are modeled by nondeterministically choosing between success or

failure by the approach used already in many other layers. An exception is the write

operation: It chooses a page aligned value k that determines, how far the write succeeds.

In the best case k = len so that all of the bytes from buf are written, whereas in the worst

case k = 0 none of them reaches the �ash medium. Only in the former case, the whole

operation can be considered successful, otherwise, an input/output error is returned in err .
This model encodes the following assumptions about the hardware:

1. Page writes and block erasure can be viewed as atomic operations. This is repre-

sented for write by advancing the counter m and the fillcount by EB_PAGE_SIZE

bytes in each iteration of the loop. For erase, it is apparent by expressing the whole

operation as a single statement when copy is regarded as atomic.

2. Success of an operation can be recognized, i.e., an error is not returned by mistake.

This is modeled by always returning err := ESUCCESS in conjunction with a modi�-

cation.

3. Conversely, hardware failure can also be detected reliably. In particular, reads that

produce garbage can be recognized (leading to err := EIO).

4. Bad block handling is reliable, expressed by the absence of returned errors.

5. An unsuccessful page write/block erasure does not modify the state. For write this

is achieved by aligning the range copied to �ash to page boundaries (aligned(k) in

the condition of the choose in Figure 10.1).

6. An unexpected power failure has no further e�ect on the state of the �ash device.

Figure 10.1 intends to capture the complete behavior as discussed below.

Assumption 5 is not realistic and it is relaxed it to a certain degree by underspeci�cation

of upper layers (notably the input/output interface of the erase block management). For

example, checksums can be used to recognize certain kinds of data corruption. However,

on the level of MTD there is no possibility to express such application-speci�c concepts.

The details have been described in [123].

Assumption 6 is false for �ash memory with multi-level cells (MLC), which couples the

memory cells of two (or more) �ash pages in order to optimize physical space utilization.

In this approach, the memory cells are so close together that data in the �rst page of a pair

is not entirely stable when a write to the second one is interrupted by a power cut (see

[153, Section 4.1]. However, MLC �ash is currently not the target of this project, in fact,

support for this kind of memory has just become a beta feature of UBIFS and UBI.

10.3 Power Cuts

From the last assumption of about the behavior of �ash hardware, it follows that power
cuts should have no e�ect on pebs. The recovery operation in this abstract model simply

does nothing.

crash (MTD) pebs = pebs′

mtd_recovery() {skip}

124 Chapter 10. Hardware Model

10.4 Related Work

Formal models of the Open NAND Flash Interface (ONFI) standard [2] by Butter�eld and

Catháin [25], Butter�eld et al. [26] describe the low level internal structure of �ash hard-

ware. A particular relevant aspect here is the addressing of the blocks and their subdivision

into so called Logical Units (LUNs) that structure the access to the memory cells and pro-

vide opportunities for on-chip parallelism.

In comparison, the Flashix project does not consider the internals of �ash hardware

as it relies on an abstract speci�cation of the driver interface, which hides all these de-

tails. Nevertheless, providing a formal connection between our driver model and the ONFI

speci�cations in [25, 26] could validate our hardware assumptions and demonstrate that

it is at least feasible to construct �ash memory chips to high assurance guarantees that

will ultimately close the remaining gap towards the actual hardware. However, this would

clearly be out of scope of this project and is left open for future work.

The formal models [39, 92] discussed before in Section 9.8 do not respect the limitation

to sequential writes within an erase block, although non-sequential writes are often not

supported by newer ONFI-compliant devices [2].

Chapter 11

Crash-Safe Re�nement

Farnsworth: Behold! A time travelling machine!
Bender: Time? I can’t go back there!
Farnsworth: Ah, but this machine only goes forward in time.

Summary. This chapter considers systems that may crash during execution. A crash

is an event that is triggered asynchronously, aborting the currently executing oper-

ation in some intermediate state. Crash safety of such a system is its capability to

recover from such an event in a well-speci�ed and practically desirable manner. The

approach taken here integrates the veri�cation of crash-recovery correctness into

re�nement. For the speci�cation of crashes and recovery, �rst-class modeling con-

structs are introduced. These are considered by a modi�ed, crashing semantics of

machines, given as previously by transition systems. As a consequence, proof princi-

ples for trace re�nement are directly applicable. Practical veri�cation conditions are

given for the general case and for various specializations that reduce the proof e�ort

in practice. Speci�cally, a technique is developed to propagate the location where a

crash must be veri�ed forward in time towards the end of an operation.

Publications: This chapter is based on [55] and the technical report [124].

Contents

11.1 A Simple Model . 126

11.2 Atomicity of Crashes . 129

11.3 Crash-Aware Machines . 131

11.4 Submachines and Modularity . 133

11.5 General Proof Methods . 135

11.6 Crash Neutrality and Reductions . 137

11.7 Related Work . 141

This chapter considers data type ASMs that may exhibit crashes during execution. A crash

is an event that is triggered asynchronously, aborting the currently executing operation

in some intermediate state. In the context of �le system veri�cation, this typically means

unexpected power loss. A crash erases volatile state (i.e., data in main memory such as

caches), but the persistent state remains (mostly) unchanged. After a crash, a designated

recovery operation tries to reconstruct the previous situation.

Intuitively, crash safety states that operations have an observably atomic e�ect, i.e., an

interrupted execution followed by recovery either corresponds to a complete execution

of such an operation, or alternatively, partially written data is discarded and it seems as

if the operation had never been called in the �rst place. However, this understanding of

crash safety as observable atomicity is insu�cient for realistic systems—it is sometimes

126 Chapter 11. Crash-Safe Refinement

not possible or feasible to reconstruct the exact initial or �nal state during recovery but

one that is su�ciently similar to either one. We have already seen in Section 7.6 that this

is true already for the topmost POSIX model.

In the �ash �le system, many intermediate layers expose some e�ect of a crash that

cannot be masked by the recovery because of incomplete information. As a consequence,

the e�ect cannot be masked from the speci�cation either, which motivates our approach

to integrate crash safety into re�nement: an abstract machine A speci�es, to what extent
the corresponding implementation C must be able to recover from a crash.

11.1 A Simple Model

A transition system that exhibits crashes is speci�ed by

T = (St, Init,Cr, Rec,−⇀),

with a set St of base states, labels A, and initialization Init ⊆ St as usual. A transitions of

the system

j,i,o−−−⇀ ⊆ St × (St] St) may result in a state St := {s | s ∈ St, s 6= ⊥}
in addition to ordinary ones St. Such a state signi�es a partial computation, i.e., one that

prompts a subsequent crash. (for this reason, the transition relation is denoted by a “partial”

arrow with a half-tip). The e�ect of the crash is encoded by a relation Cr ⊆ St × St that

is immediately followed by recovery Rec ⊆ St × St
In contrast to nontermination ⊥, a state s carries over all the information stored in s,

except that it is marked specially. In the interval semantics I |= p of programs, only the

last state of a �nite interval can be marked in this way, re�ecting that after a crash no

further computation is possible until the system is rebooted and recovered. If an interval

ends in such a state, it cannot possibly be extended by program steps. In this case, condi-

tion I ↑ is de�ned to hold too, which means that rule (4.2) from the interval semantics of

programs can be used to propagate crashes over sequential program composition p; q: If a

crash occurs during execution of p then q is not executed at all. In contrast, occurrences of

crashed states in machine runs I ∈ runsT (j, i, o) are not restricted to �nal states, because

from a crashed state recovery is possible as explained in the following de�nition, which

lifts a transition system T to a regular one.

De�nition 11.1 (Crashing transition systems). The conventional transition system T =
(St] St ,A, Init,−→) induced by T lifts intermediate states s resulting from partial

computations to the level of runs in order to make these observable. The next-state relation

−→ of T lifting−⇀ to the complete behavior considers two cases: transitions from regular

states to states with a potentially pending crash (�rst case) and transitions where the crash

takes e�ect and is subsequently recovered (second case).

s
j,i,o−−−→ s′ ⇐⇒

{
s

j,i,o−−−⇀ s′ where s ∈ St and s′ ∈ St] St
(s, s′) ∈ (Cr o

9
Rec) where s ∈ St and s′ ∈ St

Note that the “where” clauses are merely there for clari�cation. They just re�ect the do-

mains of the constituent relations and do not impose additional constraints.

By the encoding with regular transition systems, the crashing ones inherit De�ni-

tion 4.10 of executions and runs, as well as the principles underlying the approach to

re�nement (see below).

11.1. A Simple Model 127

A few things about this de�nition are noteworthy. The de�nition does not specify at

all the mechanism how such states are generated. It is up to−⇀ to determine possible out-

comes s as a result of executing this transition partially, whatever that means in practice.

When de�ning −⇀ from the interval semantics of a program I |= p later on, it will be

natural to take such states from some intermediate I(k), roughly characterized by

s −⇀ s′ when (s, s′) ∈ JpK

s −⇀ s′ when (s, · · · , s′, · · ·) |= p

From the domain of the crash predicate, it is apparent that Cr applies to such marked

states only, i.e., as long as the system does not crash, its state is guaranteed to be una�ected.

Recovery always follows the crash immediately. It is still possible and useful to consider

Rec as part of the normal behavior, i.e., Rec ⊆ (−⇀) makes it necessary to show that the

system is crash safe during recovery, too.

The marked states s are the ones just before the crash, not after. They are nevertheless

visible in the run of T as a possible outcome of−⇀: this fact is of course crucial to determine

that crashes have occurred in order to align, e.g., the run of a concrete system to an abstract

one in re�nement, and to propagate submachine crashes to the caller to abort the entire

global step. At �rst, it might seem unintuitive that the uncrashed states are exposed as part

of the runs in contrast to states that have been a�ected by Cr already. The approach taken

here has two immediate advantages that are harder to achieve when merging Cr into−⇀:

The e�ect of a crash is separated from its occurrence. Application of Cr is a canonical part

of the transition system, independently of how −⇀ is realized internally. Conversely, −⇀
retains full control over crash atomicity, i.e., where exactly crashes have to be considered.

This is useful for modeling and abstraction purposes, leading to two di�erent interpreta-

tions of atomicity of operations in Section 11.2.

Crashes are canonically propagated to contexts. When nested machines M(X) are con-

sidered, a distinction must be made whether a crash occurs in the middle of a call OpX

or outside after an internal step of a program p of M. This aspect is actually independent

of applying the e�ect of the (combined) crash. When these two are kept separate, it is not

necessary to modify the nonatomic semantics of programs and submachine calls at all. The

notion I ↑ (of intervals that cannot be extended by program steps) captures nontermina-

tion,⊥ states, and interrupted states s uniformly, so that the inference rules (4.3) and (4.2)

of De�nition 4.2 can be reused. The approach furthermore implies that compositionality

of re�nement as demonstrated in Section 5.3 remains valid for non-recovery steps of the

transition system, even if the outcome is a crashed state (�rst possibility in De�nition 11.1).

Re�nement between two crashing transition systems is inherited from their encod-

ing into regular ones. Before discussing the mathematical details, we’ll illustrate how the

runs of A are related to the ones of C in Figure 11.1, which is the analogue to Fig-

ure 5.1 in the ordinary case. Several runs are compared, the abstract transitions are de-

picted at the top, the concrete ones at the bottom: Two regular runs (as1, as2, as3) and

(cs1, cs2, cs3) are matched as usual by their inputs and outputs jk, ik, ok . Two crashed runs

(as1, as2, as , as′, as4) and (cs1, cs2, cs , cs′, cs4) (sharing pre�xes with the regular ones)

are matched so that they have crashed transitions at the same time leading to states as
and cs , followed by a lockstep recovery. After that, the two systems must be in line again,

i.e., the subsequent transitions to as4 resp. cs4 have the same labels j3, i3, o3 again.

The formal de�nition of re�nement A v C between two crashing transition systems

128 Chapter 11. Crash-Safe Refinement

run of A as1 as2 as3

j1, i1, o1 j2, i2, o2

as as′
j2, i2, o? CrA o

9
RecA

as4

j3, i3, o3

run of C cs1 cs2 cs3

j1, i1, o1 j2, i2, o2

cs cs′
j2, i2, o? CrC o

9
RecC

cs4

j3, i3, o3

Figure 11.1: Re�nement of Runs with Crashes.

needs just one minor modi�cation in comparison to De�nition 5.1: the correspondence

between two intervals IA v IC must be lifted to deal with crashed states.

De�nition 11.2 (Re�nement of transition system with crashes). A concrete transition

system C that is encoded as C is a correct re�nement of an abstract speci�cation A that

is encoded as A, i� for all IC and sequences of observations j, i, o

IC ∈ runsC(j, i, o) =⇒ ∃ IA ∈ runsA(j, i, o) such that IA v IC

where correspondence IA v IC of two intervals requires as before that their lengths is the

same and that the concrete system diverges only after the abstract one permits it. The new

condition in the third line (?) enforces that the two systems must crash at the same time,

because crashed states St are disjoint from regular ones St.

IA v IC ⇐⇒ #IA = #IC and for all k ≤ #IA :

IC(k) = ⊥ =⇒ IA(k) = ⊥ and

IC(k) ∈ CSt ⇐⇒ IA(k) ∈ ASt (?)

Theorem 11.3 (Forward simulation with crashes). Re�nement A v C can be proved by
an inductive invariant R ⊆ ASt × CSt with (⊥, cs) ∈ R for all cs ∈ CSt that satis�es

InitC ⊆ InitA o

9
R initialization

R o

9
(

j,i,o−−−⇀C) ⊆ (
j,i,o−−−⇀A) o

9
R ∪ (ASt × CSt) for all j, i, o correctness

R o

9
(

j,i,o−−−⇀C) o

9
CrC o

9
RecC ⊆ (

j,i,o−−−⇀A) o

9
CrA o

9
RecA o

9
R recovery

The addition ofASt ×CSt on the right hand side of the correctness conditions has the

e�ect to drop any requirement for crashed outcomes. These are handled by the recovery

condition, which applies when some intermediate state cs before CrC is a crash-marked

one, forcing its abstract counterpart as to a crash as well (otherwise, these wouldn’t be in

the domain of the respective Cr relation). That way, one bypasses the need to incorporate

crashed states into the proof obligations (similarly to keeping⊥ states at the semantic level

for Theorem 5.4).

Proof of Theorem 11.3. Analogous to Theorem 5.3 in Section 5.2 for A v C over the length

of the concrete run resp. by diagonaliziation for in�nite runs. When the last state is crashed,

11.2. Atomicity of Crashes 129

the second last transition of the concrete run is examined as well. The recovery condi-

tion then gives the desired two new steps for the abstract run. To establish its precon-

dition R, the inductive argument is strengthened so that all previously seen pairs of ab-

stract/concrete state are in R when they do not carry the crash marker.

Remark. In contrast to our initial formulation of the theory in [124] we have elected to

mark crashes as part of the states as compared to introducing crashed indices J = { j |
j ∈ J }. Both approaches are reasonable to model the crashing semantics. The di�erence is

a rather philosophical one: Crashed indices j seem to suggest that control over whether a

crash occurs is dictated to the caller just as regular indices, inputs, and outputs. In contrast,

the formalization in this thesis makes it clear that it is an intrinsic part of the system itself

where crashes may occur (cf. the distinction into white- and black box semantics in the next

section). It seems more natural to prevent further execution after a crash by looking at the

interval but not the inputs and outputs to keep the notion I ↑ and rule (4.2). The approach

taken here is also in line with related work by Ntzik et al. [120], which represents crashed

states explicitly as described in Section 11.7.

11.2 Atomicity of Crashes

Extending the abstract model of Section 11.1 to machines whose computation is de�ned by

programs with multiple steps and submachine calls raises the question about their atom-

icity. To what extent can e.g. calls be treated atomically as the semantics in De�nition 4.14

suggests? In Figure 11.2, the submachine operation at the bottom does have some inter-

mediate states (grey). Given that X is an abstract machine, i.e., one that is re�ned further,

it makes sense to interpret X-calls as atomic, since proofs for crashed runs of M(X) will

be simpler. Consequently, only crashes within X in the white states should be considered.

In contrast, if the submachine corresponds to an implementation, all intermediate states

(white and grey) are relevant for the analysis, because that is what will eventually run in

reality. These di�erent views are captured by two semantics for crash-behavior:

A machine M with “white box” crash behavior permits crashes any time during the

execution of its operations. Under certain conditions, such a machine can be reduced to a

machine M with “black box” crash behavior: only states in between operations are relevant

in order to study crashes. Black box crash behavior of submachines X is what makes it

possible to treat calls atomically, in fact, we will treat the operations of any abstract model

in the re�nement hierarchy as atomic, consequently, all speci�cation machines will be

considered as black box ones. In the following, let M denote a machine M or M with either

crash behavior.

Example 11.4 (Abstract models are “black box”). Take for instance the model of the

Linux Memory Technology (MTD) interface shown in Chapter 10 that encodes the ex-

pectations to the hardware. It will be regarded as a black box machine, i.e., the lowest

layer in the hierarchy is given by MTD . The reason why this view is adequate is not just

“by convenience”—the model is designed on purpose that the view MTD gives the com-
plete observable behavior as discussed in Section 10.3. Notably, the mtd_write operation

shown in Figure 10.1 already accounts for partial writes that may have been interrupted by

a power-cut. Switching to a white box view MTD therefore does not add any additional

observations.

130 Chapter 11. Crash-Safe Refinement

I |= OpM(X)

OpX

crash
recovery

Figure 11.2: Di�erent degrees of atomicity of crash behavior of an operation of ma-

chine M(X). The states denoted by circles are generated by the semantics from Sec-

tion 4.1. M (X) considers the black states only, M (X) adds the white states to the

behavior and M (X) additionally considers the grey states. At the top, an example

crash in an intermediate state and subsequent recovery is shown. The corresponding

states at the top in the alternate execution are generated by the crashing semantics

as de�ned in Section 11.3.

The same holds for all of the other abstract speci�cation layers in the re�nement hier-

archy. Moreover, the general approach to model hardware errors by pattern (6.2)

{ body; err := ESUCCESS } or { choose err ∈ {EIO, · · · } }

induces an “all-or-nothing” e�ect when the body of the operation is considered atomically.

The distinction into black box and white box semantics gives rise to di�erent com-

position patterns with increasing degree of atomicity (cf. Figure 11.2): Machines M (X)
consider crashes at any point in time during execution, even in the middle of submachine

calls. Such machines correspond to the system that will �nally run, i.e., the system whose

correctness we are ultimately interested in. Machines M (X) view operations of X atomi-

cally, however, it is still possible to have a crash in the middle of an M-operation. Machines

M (X) consider crashes between M-operations only. From a veri�cation point-of-view such

machines are much simpler, since it is possible to reason about their behavior in an entirely

atomic setting. Technically, this means that weakest precondition calculus, as presented in

Section 3.3, is su�cient for proofs of their correctness.

Example 11.5 (Implementation machines are “white box”). Naturally, the power cut anal-

ysis of implementation level machines must consider each intermediate state. As already

said, this necessitates the white box semantics. For example, during the veri�cation the

Virtual File System (VFS) is regarded together with its submachine as the compound sys-

tem VFS (AFS), whereas the code that will eventually run (i.e., from which code is gen-

erated) is the far more complex composed system VFS (FlashFS (. . . (MTD)))—omitting

the intermediate layers for brevity.

As one of the consequences, a key feature of the theory should be that re�nement

remains compositional with respect to submachines. Speci�cally, it must be possible to

replace AFS in its context VFS (_) by the concrete FlashFS (. . . (MTD)) without com-

promising the correctness of the whole system with respect to the top-level POSIX speci-

�cation even in the presence of crashes.

The point made by the example is formally captured by the following theorem (proved in

Section 11.3 in this chapter on page 133).

11.3. Crash-Aware Machines 131

Theorem (Compositionality under crashes). A submachine with crashes can be substituted
in a context, A v C implies M (A) v M (C) (and similarly for the other combinations of
white/black box machines).

Generally, while the white box semantics M is adequate, it is not very convenient to

directly verify such machines. The proofs need to refer to the intermediate states of the

operations arising from the �ne-grained semantics (cf. Figure 11.2). We therefore seek ways

to switch from a white box to a black box view whenever possible, because a formal proof

for the latter has to consider signi�cantly less states. Under certain conditions called “crash

neutrality” this switch is indeed possible, as expressed by the following theorem (proved

in Section 11.6 on page 141).

Theorem (Reduction). M (X) ≡ M (X) if X is crash neutral and M has RAM state only.

The intuition behind this reduction is subsumption of crash behavior: Crashes in an in-

termediate state s1 taken from the system’s execution are mapped to a di�erent state s2 that

can be recovered alike. Since there may be more possibilities to recover s2 in comparison

to s1 but not less, it is su�cient to consider a crash in the state s2 only. Crash neutrality is a

criterion that guarantees that accessible candidate states s2 exist that can always be taken

from the black box semantics: Intuitively, the criterion says that a partial execution of an

operation can always be extended towards a complete one without altering the outcome

of crash-recovery. The construction relies on nondeterministic errors as exhibited by the

submachine X according to (6.2) to ensure that such completions are always possible, and

on the fact that in the state of all implementation components M is stored in main memory

and will therefore be arbitrary after a crash anyway.

11.3 Crash-Aware Machines

This section de�nes crash-aware machines and submachine composition in relation to the

concepts of the previous sections. It is stated how re�nement can in principle be estab-

lished. Proof obligations for the general case are postponed to Section 11.5 and for some

special cases to Section 11.6.

De�nition 11.6 (Data type ASM with crash behavior). A data type ASM with crash be-

havior M = (x : St, Init, {Op}j∈J , Cr) has an additional predicate Cr : St× St→ Bool de-

scribing possible state transitions triggered by a power cut. Immediately afterwards (and

only then) a designated operation Rec = Op
rec

with index rec ∈ J is called implicitly in

order to restore a consistent state.

We de�ne the semantics of machines M in terms of a modi�ed atomic semantics JOpK
of operations, which in turn refers to a potentially crashing atomic semantics JpK of pro-

grams shown in De�nition 11.7 below.

The white box semantics JpK exposes crashes in each intermediate state of the exe-

cution of a program. It incorporates in addition to complete behaviors those successor

states s′ that can be generated from a partial execution (s, · · · , s′) o

9
I where the remaining

interval I is discarded.

The black box semantics JpK takes its states just from the regular atomic one. Speci�-

cally, the second clause includes immediate crashes (s, s) that happen before the program

is even started, whereas the third clause includes �nal states of p.

132 Chapter 11. Crash-Safe Refinement

De�nition 11.7 (Crashing program semantics).

JpK = JpK ∪ {(s, s′) | ∃ I . (s, · · · , s′) o

9
I |= p}

JpK = JpK ∪ {(s, s) | s ∈ St} ∪ {(s, s′) | (s, s′) ∈ JpK}

such that s, s′ 6= ⊥ is required for each occurrence in the de�nition.

Remark. Since the black box semantics is an artifact introduced to express certain facts

within the theory, one could argue that including both possibilities of an immediate crash

and one after fully executing p is redundant: either one might su�ce because when se-

quences of operations Opj1 ; Opj2 are considered as part of runs, it is irrelevant whether the

crash in the intermediate state is generated from the �nal state of Opj1 or the initial state

of Opj2 . We will see that immediate crashes (s, s) lead to a simpler argument later on

(Lemma 11.21), whereas including the �nal states is in fact necessary when submachines

executions are considered in Lemma 11.11.

The lifting to operations Op = (pre, in, p, out) is analogous to De�nition 4.8, except

that the domain JOp K ⊆ Ain × St × (St] St) × Aout of operations now re�ects the

possibly crashed outcomes although starting states are still con�ned to St to capture that

regular operations are prohibited in crashed states. We repeat the complete de�nition:

(i, s, s′, o) ∈ JOpK

⇐⇒

{
(s(in 7→ i), s′) ∈ JpK s(in 7→ i) |= pre

s′ = ⊥ otherwise

such that o = s′(out) if s′ is a regular uncrashed state di�erent from ⊥, otherwise o is

arbitrary.

De�nition 11.8 (Semantics of machines with crashes). The semantics of a machine ex-

hibiting crashes M = (x : St, Init, Cr, {Op}j∈J) is given by the crashing transition system

M = (St, Init,Cr, Rec,−⇀) such that

s
j,i,o−−−⇀ s′ ⇐⇒ (i, s, s′, o) ∈ JOpjK ,

where initialization, crash and recovery are de�ned by

Init = {s ∈ St | s |= Init} (as in De�nition 4.11)

Cr = {(s , s′) | (s, s′) ∈ JCrK} (adding the crash marker)

Rec = JRecK

and Rec = Op
rec

for the special index rec ∈ J .

The regular transition system M that assigns these machines a semantics is given by

embedding De�nition 11.1, i.e., by M := (St] St , Init, −⇀ ∪ (Cr o

9
Rec)).

In Section 11.1 it is assumed that Rec ⊆ St × St is a binary relation on states and here

Rec has no inputs and no outputs so that the typing works out in the above de�nition,

although it makes sense to consider both for a submachine X that is recovered as part of

an outer context. Such an extension is not hard to de�ne but this is not considered here to

keep the presentation simpler.

11.4. Submachines and Modularity 133

steps I M(X) of M(X)

steps I X of the submachine call

OpX

crash

recovery

Figure 11.3: Propagation of a submachine crash to the caller. The fat arrow denotes

the states encountered. At the bottom, a crash occurs in the intermediate submachine

state marked by , which cancels the regular execution and immediately jumps to

the end of the operation in the caller into a state that also recieves the crash marker.

Subsequently, the crash and recovery cycle is triggered as part of the combined M(X)
run.

11.4 Submachines and Modularity

We now discuss submachine composition of crashing machines and discusses how the

compositionality result (Theorem 5.9) can be retained in a very straight-forward way.

De�nition 11.9 (Submachine composition in the presence of crashes). Submachine com-

position M (X) of two machines with crash behavior is de�ned by

M (X) := (mx, xx : StM, StX, InitM ∧ InitX, CrM ∧ CrX, {OpMk}k∈K)

as an extension of De�nition 4.13, additionally combining the crash predicates and de�ning

compound recovery as

RecM(X)() { RecX(); RecM() },

where Rec ≡ Op
rec

so that the submachine is recovered �rst. This means that when RecM

is started, X is up and working, in particular, the invariants of X are reestablished and the

recovery of M can call ordinary operation of X .

The states (xs ⊕ms) = (xs⊕ms) = (xs⊕ms) are identi�ed so that it is irrelevant,

which machine has prompted a crash. This lifts a crash that has ooccured in a (white box)

submachine call to the caller as shown in Figure 11.3: In the intermediate grey state marked

by of the submachine execution subsequent computation is prevented, hence this state is

taken as the outcome of OpX. The crash marker is propagated to the combined white state

in the interval I M(X) of the caller. With the same mechanism, the surrounding M operation

is also aborted. The subsequent transition picks up the resulting state, applies the crash

predicate and calls the recovery operation (the transition is broken down into two steps

here).

Theorem 11.10 (Compositionality in the presence of crashes).
Let C ∈ {C , C } and A ∈ {A , A }. Then A v C implies M (A) v M (C) and M (A) v M (C).

Proof. The proof reconsiders the extraction of a submachine execution from the steps of a

program in Lemma 4.22 and the high-level steps from Section 5.3 in turn. We show which

arguments uphold and where additional cases arise due to power cuts. The critical parts

are related to the extraction of a submachine execution from the context.

134 Chapter 11. Crash-Safe Refinement

Lemma11.11 (Submachine execution with crashes). For a composed system M (X) a partial
white box execution I X

1
⊕ I M

1

o

9
I X
2
⊕ I M

2
, j

1

j
2

, i
1
i
2
, o

1
o

2
|= p which discards the second part implies

the existence of I X
1

′ such that I X
1

′ ∈ execsXτ (j
1

, i
1
, o

1
) where I X

1

′
(k) = I X

1
(k) for all states k

including and after the last submachine call and the states before this call are equal in both
intervals.

The lemma ensures that for an intermediate crash in the supermachine there is a way

to adapt the execution of the submachine so that I X
1

′
.last carries a crash marker.

Proof. By Lemma 4.22, I X
1

o

9
I X
2

is a submachine execution, which can be split into its con-

stituents according to Lemma 4.23, speci�cally, I X
1
∈ execsX (j

1

, i
1
, o

1
). We replace the last

submachine call in j
1

by a crashed one. When X is a white box machine, we therefore take

an empty remainder I in De�nition 11.7 for the call OpXjk . When X is a black box machine,

it can also crash after completion of the operation as discussed alongside De�nition 11.7.

All steps after k are stutter transitions, which preserve the crashed state.

Purpose of Step 1 is to �x execution fragments I Ck ∈ execsCτ (jk, ik, ok) for the subma-

chine C of the concrete system M (C). The interval I Ck records the submachine calls in

the k-th step of the global interval executing some program pj belonging to the called M

operation in that step.

We adapt characterization (5.3) in the high-level proof Step 1 in Section 5.3 with a case

for crash and recovery:

s
j,i,o−−−→ s′ ⇐⇒

∃ I C, I M, j, i, o.

I C ⊕ I M, j, i, o |= pj, if s 6= ⊥, s(in 7→ i) |= prej

I C ⊕ I M o

9
· · · , j.., i.., o.. |= pj, for a supermachine crash

I C ⊕ I M, j, i, o |= prec, if s carries a crash marker

I C = I M = (⊥), otherwise

(?)

where (I C ⊕ I M).�rst = s(in 7→ i), s′ := (I C ⊕ I M).last, and o := s′(out) when s′ 6= ⊥ in the

regular case as before. The �rst line captures submachine crashes, too, when the last state

of the combined interval s′ is already crash-marked.

The two additional cases (?) in the second and third line deal with crashes. The sec-

ond line mirrors the white box semantics of the surrounding surrounding operation: from

De�nition 11.7, there is a dropped remainder .. so that only the pre�x I C ⊕ I M is executed.

In this case, the successor state s′ := (I C ⊕ I M).last of the transition is lifted to a crash

marker. The third line executes a recovery operation, in which case the initial state of the

intervals are a�ected by a power cut, i.e., we have (s, (I C⊕ I M).�rst) ∈ CrM(C). In the second

case, Lemma 11.11 ensures that the extracted interval I C can be mapped to an execution I C′

of C that also has a crashed marker at the end.

Step 1 subsequently concatenates the I Ck to an C run I C∗ = I C
1

o

9
I C
2

o

9
· · ·. We must show

that this composition is well-de�ned, i.e., the respective last state I Ck .last coincides with the

�rst state I Ck+1
.�rst of the subsequent interval. The only critical case is to pair crash-marked

states, which is provisioned by taking the modi�ed I Ck
′

from Lemma 11.11.

Step 2 remains una�ected. In Step 3, substitution of submachine calls by Lemma 5.6

must treat crashed states analogously to divergence. Finally, in Step 4 we must pay atten-

tion to remove the extra crash markers introduced by Lemma 11.11 to re�t the abstract

interval onto the program.

11.5. General Proof Methods 135

11.5 General Proof Methods

Re�nement A v C for two machines follows from Theorem 11.3 for transition systems by

a forward simulation R. The initialization, applicability, and correctness conditions are the

same as in Theorem 5.4. However, for white box machines, the recovery condition cannot

be expressed directly in the weakest-precondition calculus, which cannot reason about

intermediate states that are generated by the white box semantics of programs JpK . Simply

substituting the de�nitions gives for the general case the following unwieldy criterion as

a starting point to develop a proof strategy:

JRK o

9
JOpCj K o

9
JCrCK o

9
JRecCK ⊆ JOpAj K o

9
JCrAK o

9
JRecAK o

9
JRK. (11.1)

Note that the inputs and outputs of the operations are suppressed here to simplify the

presentation.
1

There are a number of special cases of the di�erent combinations of re�nement be-

tween black and white box machines that are worth considering. Immediate results are

(without proof):

Proposition 11.12. A v A always holds, since every crashed outcome of the black box
semantics is contained in the white box one (cf. De�nition 11.7).
This means we can take the more �ne grained white box machine as a speci�cation of the

corresponding coarse grained black box machine.

Proposition 11.13. Instead of proving A v C it is su�cient to prove A v C , by transitivity
of re�nement and the previous proposition.
This con�rms the intuition that one can regard abstract machines as atomic if desired.

The next three sections discuss three speci�c combinations:

For the most general and complex case, a white box re�nement A v C , formula (11.1)

can be expressed as a safety property using temporal program logics as described in Sec-

tion 11.5.2.

Purely black box re�nements A v C can of course be proved using weakest precondi-

tion calculus. In that case, a separate condition about recovery that is independent of the

preceding operation is su�cient as shown below in Lemma 11.16. Such re�nements are

subject to Section 11.5.3.

Ultimately, we are interested in proving re�nements of the form A v C (X) as out-

lined in the Examples 11.4 and 11.5 in Section 11.2: An abstract speci�cation A is re�ned

to the system composed of an implementation part C and a submachine speci�cation X.

Section 11.6 demonstrates a veri�cation strategy for this case, which is used in the Flashix

project, building on the results for black box re�nements.

11.5.1 Breaking down Crash Re�nement

The �rst step to break (11.1) down is to characterize pairs of abstract and concrete states

that are recovered correctly as required by the re�nement condition, i.e., the ones that

are passed through into underlined part in (11.1) so that R holds for the outcome. Correct

recovery for a re�nement A v C is formally speci�ed by the semantic judgement

as vP cs ⇐⇒ {(as , cs)} o

9
CrC o

9
RecC ⊆ CrA o

9
RecA o

9
P (11.2)

1

Formally, inputs and outputs are lifted over relational composition by de�ning, e.g.,

JRK o

9
JOpjK = {(i, as, cs′, o) | ∃ cs. (as, cs) ∈ JRK and (i, cs, cs′, o) ∈ JOpjK}.

136 Chapter 11. Crash-Safe Refinement

run of A as as′
CrA o

9
RecA

run of C cs cs′
CrC o

9
RecC

vP P

Figure 11.4: Correct recovery for as and cs establishes the diagram shown by con-

structing the fat arrow at the top.

over states as and cs of the two machines. It is parametrized (implicitly) by the two ma-

chines and by a condition P ⊆ ASt × CSt that generalizes the postcondition JRK of (11.1)

and guarantees that as and cs can be crash-recovered in lockstep to some states as′ and cs′

that satisfy (as′, cs′) ∈ P . The commuting diagram for correct recovery is illustrated by

Figure 11.4. It establishes the fat arrow at the top as well as the relation P on the right.

Proposition 11.14 (Correct recovery). For a re�nement between two machines A v C

correct recovery from two states ax, cx and a desired postcondition P : StA× StC → Bool can
be proved as follows:

correct-recovery(ax
1
, cx

1
, P) :=

∀ cx
2
. CrC(cx

1
, cx

2
)

→ 〈|RecC(; cx
2
)|〉
(
∃ ax

2
. CrA(ax

1
, ax

2
) ∧ 〈RecA(; ax

2
)〉 P(ax

2
, cx

2
)
)
.

This formula introduces the states ax
2
, cx

2
that are the outcomes of applying the crash

predicates such that for each crash transition of the concrete system there must be a corre-

sponding abstract one. The �nal requirement is that from these two states, the systems can

recover to a state where the condition P holds, encoded by weakest precondition modalities

similarly to the correctness condition for regular re�nement in Theorem 5.4.

We use the predicate correct-recovery from Proposition 11.14 as a building block

for the syntactic recovery conditions in the later sections. The remaining di�culty will

therefore be how to determine the intermediate states ax
1

and cx
1

from the black or white

box semantics of the operations in which the crash and subsequent recovery is started.

11.5.2 Temporal Logic Proofs

The highly expressive logic RGITL [145] features a calculus that can reason about the

intermediate states of the �ne-grained semantics I |= p of programs. Besides temporal

logic operations such as � (“always”) and ♦ (“eventually”), the logic supports existential

path quanti�er, written E x. ϕ, that binds variables x to new values throughout an interval:

I |= E x. ϕ ⇐⇒ there is a sequence of values a such that I(x 7→ a) |= ϕ.

We’ll use existential path quanti�cation to characterize partial executions of the white

box semantics and we can encode the re�nement proof obligation (11.1) as follows.

Proposition 11.15 (Recovery). The recovery condition of any crash safe re�nement A v C

11.6. Crash Neutrality and Reductions 137

is encoded by the syntactic proof obligation:

R(ax
0
, cx

0
), (E cx. cx = cx

0
∧ [OpC]cx ∧ ♦ cx = cx

1
) (11.3)

` ∃ ax
1
. (E ax. ax = ax

0
∧ [OpA]ax ∧ ♦ ax = ax

1
)

∧ correct-recovery(ax
1
, cx

1
, R)

Starting initially with the states ax
0

and cx
0
, two executions are determined. The an-

tecedent �xes a trace where [OpC]cx executes on the variables cx that are initially equal

to cx
0

and eventually, in an intermediate state, they are equal to cx
1
. In the consequent,

we have to �nd a state ax
1

taken sometime from the abstract execution [OpA]ax . The �nal,

condition correct-recovery(ax
1
, cx

1
, R) ensures that these states can be recovered back

to R (see Proposition 11.14).

Proof obligation (11.3) is hardly practical. Related work discussed in Section 11.7 ad-

dresses the general case by specialized calculi. The next two sections describe two com-

plementary techniques to prove crash-safe re�nement in a simple way.

11.5.3 Black Box Re�nements

Purely black box re�nements A v C just refer to the atomic semantics of programs and

thus it is possible to derive proof obligations based on weakest-precondition modalities. It

is then straight-forward to separate the crash and subsequent recovery from the preceding

operation, so that a crash and its recovery can be proved in isolation. Hence, it su�ces to

prove correct-recovery(ax, cx, R) (cf. Proposition 11.14) for all states with R(ax, cx) in

addition to the regular forward simulation conditions. Spelled out in full, we have:

Lemma 11.16. For a black box re�nement A v C the following simple, syntactic recovery
proof obligation is su�cient, in addition to the ones for standard forward simulation as given
in Theorem 5.4 in Section 5.2.

R(ax
1
, cx

1
) ∧ CrC(cx

1
, cx

2
) isolated recovery (11.4)

` 〈|RecC(; cx
2
)|〉 ∃ ax

2
. CrA(ax

1
, ax

2
) ∧ 〈RecA(; ax

2
)〉 R(ax

2
, cx

2
)

Proof Sketch. The reason why we can a�ord to split o� crash and recovery completely from

the correctness condition of forward simulation (Theorem 5.4) of the preceding operations

is that we have the strong guarantee that R holds, even after a crashed execution of JOpAj K
resp. JOpCj K .

The sequent (11.4) is similar to the correctness condition for regular operations, as

for every outcome of the concrete recovery after a given crash, there must be a state ax
to which the abstract system can mirror the crash and subsequently recovery (again, the

variables in R(ax, cx) in the postcondition refer to the �nal state after the transition).

11.6 Crash Neutrality and Reductions

The approach presented in this section permits to verify re�nements A v C (X) by tran-

sitivity using the intermediate black box system C (X). The results of this section are suf-

�cient criteria that imply C (X) v C (X), which is established in two steps.

• Crash-neutrality ensures that the black and white box semantics coincide, i.e., for a

crash neutral machine X ≡ X holds. In the Flashix �le system, all abstract interme-

diate layers satisfy this criterion.

138 Chapter 11. Crash-Safe Refinement

• Crash neutrality for composed system C (X) then follows, if C is an implementation

level machine (to be made precise).

As a consequence, this scheme propagates one step upwards the re�nement hierarchy. It

can be lifted from the hardware level MTD (which is crash neutral) to every intermediate

re�nement layer by proving the simple condition for crash neutrality over just speci�-

cation level machines. As a consequence, we always have black box re�nements and the

weakest-precondition based veri�cation method of Section 11.5.3 applies.

The idea behind crash neutrality is based on subsumption of crash/recovery behavior,

written as s1 v s2, which ensures that a crash and subsequent recovery in the state s1 can

be simulated from s2 too with exactly the same outcome. State s1 is therefore irrelevant for

the analysis:

s1 v s2 ⇐⇒ for all s′ : (s1, s′) ∈ Cr o

9
Rec =⇒ (s2, s′) ∈ Cr o

9
Rec

Notation s1 v s2 intentionally resembles the one of correct recovery (11.2), as it is an

instance of as1 vP cs2 for taking the same machine for both the abstract and concrete,

and setting the correspondence P for the outcome to equality. Note that v is re�exive.

We say that s1 is crash equivalent to s2 when the subsumption criterion holds in both

directions.

Crash neutrality ensures that each intermediate state taken from the execution of a

program of a white box machine is crash equivalent to some �nal state already contained

in the black box semantics.

De�nition 11.17 (Crash neutrality). A machine M is crash neutral, if partially executed

operations produce states only whose crash behavior is subsumed by some �nal states of

the atomic semantics. For each operation Opj , input i, dropped output o1, initial state s, and

intermediate state s1:

(i, s, s1, o1) ∈ JOpjK =⇒ there is s2, o2. (i, s, s2, o2) ∈ JOpjK and s1 v s2,

or suggestively expressed by

JOpjK o

9
JCrK o

9
JRecK ⊆ JOpjK o

9
JCrK o

9
JRecK,

again ignoring some mismatches between the domains of the relations as in (11.1).

Note that the right hand side of the set inclusion refers to the regular atomic semantics

of operations JOpjK—we require a complete execution of the operation, not just an atomic

crash JOpjK that might happen right at the start the operation, too. This means that De�-

nition 11.17 is a stronger criterion than (11.1):

Lemma 11.18 (Reduction). If M is crash neutral then M v M and hence M ≡ M by
Proposition 11.12.

Proof. From De�nition 11.17 and (11.1) when R is taken as the identity relation.

So far, we have no easy way to demonstrate that a machine is crash neutral. We now de-

rive suitable syntactic proof obligations for black box machines M . There are two possibil-

ities for the constituent (s, s′) ∈ JOpjK according to De�nition 11.7. The case where JOpjK

11.6. Crash Neutrality and Reductions 139

is executed fully is trivial, because that maps directly to the right hand side of the set in-

clusion. Therefore, it remains to show that for each initial state s, there is some state s′

such that (s, s′) ∈ JOpjK that subsumes s. Hence, for M , De�nition 11.17 is equivalent to

JCrK o

9
JRecK ⊆ JOpjK o

9
JCrK o

9
JRecK. (11.5)

(again suppressing the in- and outputs of Opj). The semantic criterion of crash neutrality

can be proved as follows.

Lemma 11.19 (Crash neutrality for blackbox ASMs.). M is crash neutral when each opera-
tion Opj has at least one nondeterministic execution that can be masked completely by a crash
and the subsequent recovery.

prej(in, x), x
0

= x ` 〈Opj(in; x, out)〉 correct-recovery(x
0
, x, (=)) crash neutral run

where the desired correspondence for recovering from x
0
and x is that the outcomes are

equal (=). When the crash alone is su�cient to mask the e�ect of the operation (which is
often the case), this simpli�es even further to

prej(in, x), Cr(x, x′) ` 〈Opj(in; x, out)〉 Cr(x, x′) (11.6)

Proof. Directly from the semantics. The precondition may be assumed because divergence

of the operation is �ltered out by JOpjK in De�nition 11.17.

The latter condition (11.6) illustrates well what it means for a machine to be crash

neutral: Regardless of the initial state x, there is always a possibility that the operation

does nothing that remains visible after a crash. For the case study, this speci�cally includes

all operations that leave no trace on the �ash storage medium, i.e., RAM operations are

always masked by a crash by choosing the Cr predicate appropriately to model which part

of the state is supposed to be in main memory.

For example, consider the MTD model of the hardware interface in Chapter 10: As dis-

cussed previously in Example 11.4, the �ash hardware may sporadically refuse to write

data at all. This single run is su�cient for crash neutrality. It is not required that all hard-

ware errors are masked by a crash.

Complementarily, RAM state is characterized by setting CrM(mx,mx′) ≡ true for an

implementation level machine M i.e., CrM = MSt × MSt. It follows that (the M part)

of such states are all trivially crash equivalent. For compound state xs ⊕ ms of M (X) we

therefore have:

Proposition 11.20 (Composition of crash subsumption). When CrM = MSt ×MSt for a
system M (X) then (xs ⊕ms) v (xs′ ⊕ms′) ⇐⇒ xs v xs′.

The next result is central: We can lift crash neutrality through a re�nement hierar-

chy up to the topmost level by proving crash neutrality for every abstract speci�cation

machine. As a consequence of Lemma 11.18, we can therefore switch to the black box

semantics for every proof of crash safe re�nement.

Lemma 11.21 (Propagation of crash neutrality). If X is crash neutral, all operations of
M (X) terminate within their respective precondition, and CrM(mx,mx′) ≡ true, then M (X)
is also crash neutral.

140 Chapter 11. Crash-Safe Refinement

I |= p · · · s1 s2 · · ·

s′
2

s′
3

s′Cr o

9
Rec

Cr o

9
Rec

v v

Figure 11.5: Crash subsumption for states of an execution I = (· · · , s1, s2, · · ·) of a

program p. The dotted fat arrows denote forward propagation of the location where

the crash needs to is considered, i.e., from the state s1 of the initial execution to an

alternate future s′
2
, s′

3
which subsumes the crash in s1. The fat arrow towards the

recovered state s′ the one considered by the black-box-semantics, where the dashed

thin arrows amount to white box crash recovery.

As a consequence of Lemma 11.18, we have M (X) ≡ M (X). Note that Lemma 11.21 can

potentially be extended to any combination of white/black box machines, although we’ll

keep the presentation to the special case we’re interested in.

The argument propagates an intermediate crash in the middle of an M(X) program p
towards the end of its execution over the steps of the completion as shown in Figure 11.5.

Given an intermediate state s = xs⊕ms (for example s1 in the �gure) that is split disjointly

into the X and M components, a subsequent step of p is either an assignment that modi�es

ms only, or it is a submachine call. The modi�cation done by the assignment is masked

by the crash anyway, since CrM can result in an arbitrary M state: All states of M are crash

equivalent by Proposition 11.20. Crash neutrality of the submachine permits to propagate

the X crash over a call, justifying that it doesn’t matter whether the crash happens before

or after the call.

Proof. Considering each operation Op = (pre, in, p, out) of M(X) in isolation and an ar-

bitrary, �xed pair of states (s, s′) in the white box semantics that is generated by De�ni-

tion 11.7 as I1 o

9
I2 |= p for a �nite I1 = (s, · · · , s1) and some dropped remainder I2. Existence

of an alternative future computation I ′
2

must be shown such that I1 o

9
I ′
2
|= p and crash &

recovery can be done in I ′
2
.last instead of s1 with the same outcome.

Furthermore, one can safely assume that I2 is nonempty, otherwise the execution is

already at the end of p and I2 = I ′
2

= (s1) as the common state is collapsed by interval

concatenation I1 o

9
I ′
2
.

We determine an alternate successor state s′
2

from the �rst step (s1, s2) of I2 by discern-

ing the program statement executed. The intention is that s′
2

subsumes crashes in s1. The

step (s1, s′2) then gives the �rst one of I ′
2
. The process is repeated similar to the diagonal-

ization in the proof of Theorem 5.3 or the construction in Proposition 4.5.

The assumption that all operations of M terminate within their respective precondition

is crucial for two reasons: On one hand, the interval I ′
2

is guaranteed to be �nite (otherwise

it does not give a �nal state I ′
2
.last subsuming s′). On the other hand, each submachine call

that is necessary to complete the execution of p will not give ⊥, i.e., regardless of what

happens, X is always called within its own precondition satis�ed.

We discern the cases that determine s′
2

and argue that s1 v s′
2
.

11.7. Related Work 141

• If the �rst step (s1, s2) = (xs1⊕ms1, xs2⊕ms2) of I2 is a submachine call OpXj (e; xx, z),

i.e., (JeK(ms1), xs1, xs2, o) ∈ JOpXK, then (11.5) provides an alternative successor

xs′
2

such that xs′
2
v xs2. We extend the partial run with s′

2
:= (xs′

2
,ms′

2
) for

ms′
2

:= ms1(z 7→ o) which satis�es De�nition 4.14, i.e., (s1, s′2) |= OpXj (e; xx, z).

Crashes in the combined state xs′
2
⊕ms′

2
thereby subsume the ones in xs1 ⊕ms1 by

Proposition 11.20.

• Otherwise, the �rst transition (s1, s2) of I2 leaves the state of X unchanged, as it can

only be modi�ed indirectly by submachine calls. We extend the partial run with

s′
2

:= s2 i.e., the next step of the program is executed. The states s1 and s2 are crash

equivalent because the M crash is unrestricted and the X state is unchanged.

Remark. Since p has terminating executions only, by Lemma 4.4 it is adequate to use the

least �xpoint semantics I1 o

9
I2 |=↓ p. However, the associated induction principle does

not help with the proof: Since the proof constructs an alternative future I ′
2

we’re leaving

the original trace, speci�cally, pre�xes of the I2 from the original derivation mismatches

the current partial extension constructed so far. This speci�cally means that the inductive

hypothesis for q of a sequential compositions p; q will not be usable, because the sub-

interval for q can only start with states contained in I2 but not with a di�erent one of the

alternate execution I ′
2
.

The following theorem summarizes the results of this section:

Theorem 11.22 (Crash reduction for ASMs). M (X) ≡ M (X) holds, when

CrM(mx,mx′) ≡ true unrestricted crash

preMk(in, xx,mx) ` 〈|OpMk(in; out)|〉 true termination

preXj (in, xx), Cr(xx, xx′) ` 〈OpXj (in; xx, out)〉 Cr(xx, xx′) X is crash neutral

Proof. From Lemmas 11.18—11.21.

11.7 Related Work

The technology for reasoning about power cuts and more generally about system crashes

caused by external events is fairly new (at the time of writing) and has been explored

only recently in the context of non-trivial examples. The same idea underlies all of the

approaches described below: A crash aborts the current execution in an intermediate state

and is followed by a recovery operation. Some technical di�erences lie in the mechanism

how a crash is produced as part of the semantics of programs and how recovery of nested

components is addressed. In practice, the proof e�ort is con�ned by several observations

regarding atomicity of the e�ect of a crash.

11.7.1 Modeling Power Cuts with Exceptions

Marić and Sprenger [104] observe that it is su�cient to consider crashes only when the

persistent state is changed. They argue that a suitable model of the interface to the hard-

ware either persists a write operation successfully, or the possible outcomes of a crashed

write can be abstracted to an atomic but possible nondeterministic e�ect. A crash is mod-

eled by throwing an exception to abort the current execution. Nested crashes and recovery

are integrated into the exception mechanism in terms of handlers that are called when the

142 Chapter 11. Crash-Safe Refinement

call stack is unwound. The authors observe similarly to our approach that crashes can be

reduced to hardware errors, i.e., their hardware model has a similar schema as our MTD:

{ body } or { throw EIO }

Since the calculus implemented by KIV does not support exceptions, we have opted for

the more direct approach using error return codes, although semantically, the approach is

actually quite similar: Exceptions are propagated to their handler using special markings

(see e.g. [87]) that resemble our crashed states s .

As a downside of modeling crashes with exceptions it can be argued that the veri�ca-

tion engineer must do this explicitly by adding exception handlers, leaving some room for

introducing inadequacies, whereas in the approach presented here, adequacy depends on

the semantic de�nitions only.

The application considered in [104] focuses on a storage manager that provides relia-

bility through redundancy.

11.7.2 Separation Logic with Crash Conditions

The fully veri�ed �le system FSCQ for conventional magnetic disks is veri�ed using the

Crash Hoare Logic (CHL) framework [33, 34], which is explained in more detail in Chen’s

recent thesis [32]. CHL is an extension of Hoare Logic where each part of the program

is annotated with a crash condition that speci�es the state after a crash. CHL considers

assertions for programs p of the form

{P} p {Q}{S},

for a precondition P , postcondition Q and crash condition S. For an uncrashed execution

of p an Q must be established in the �nal state as usual.. For a crashed execution, all

intermediate states must satisfy S, which is realized in the rule for sequential composition:

the crash condition of p must imply the crash condition of a compound p; q resp. that of

the surrounding procedure.

Persistent and volatile state is kept disjoint: The former is modeled by a deep embed-

ding of separation logic into the Coq prover [20], whereas the latter is represented shal-

lowly in the logic. Crash conditions S are con�ned to the peristent state, which provides a

canonical speci�cation of the e�ect of a crash.

This reasoning e�ectively determines a temporal invariant ∀ s.(s, s′) ∈ Cr =⇒ s′ |= S
that must hold in each state s = I(k) of intervals I |= p. This mirrors the correct recovery

condition (11.2) when p is taken as the concrete operation and S is the fragment dealing

with the abstract level. In our simple model based on transition systems, a crash condition S
could potentially be introduced into the recovery obligation in Theorem 11.3 just right

before CrA and CrC to modularize the formula.

That a programs p is subject to recovery by a program r are written as p ./ r . The

introduction rule

{P} p {Q}{S} {S} r {R}{S}
{P} p ./ r {Q ∨ R}

chains the crash condition S to the precondition of the recovery program, which estab-

lishes R in its �nal state and maintains the same crash condition so that it can be restarted

11.7. Related Work 143

after crashes during recovery itself. This mirrors the embedding of crashing transition

systems into regular ones in De�nition 11.1.

Introduction of recovery is intended to be con�ned to the top-level operations of a sys-

tem.
2

There is no rule to combine recovered programs in CHL in the calculus, although

one can certainly implement recovery procedures in terms of several subroutines. Fur-

thermore, attaching recovery to internal operations as suggested in [32, Figure 4-7] can be

used to document or assert the relation between a part of the �le system and the intended

recovery subroutine, which is then called for the whole system. This coincides with Def-

inition 11.9 of combined recovery for submachine compositon in Section 11.4. However,

the di�erence is that we prove crash safety for submachines in isolation, whereas in FSCQ,

the whole crash condition is lifted bottom-up, considering recovery only at the top-level.

CHL is based on a variant of separation logic that partitions the state into “logical ad-

dress spaces”, which can be seen as multiple disjoint (named) heaps that can be referred to

in speci�cations of pre-/post- and crash conditions. CHL is mechanized in the Coq theorem

prover. The authors report good results in terms of modularization and proof automation.

Similarly, Ntzik et al. [120] de�ne a separation logic calculus for reasoning about sys-

tems/programs that exhibit crashes. The work is embedded into the views framework [45]

to o�oad some parts of the proofs for the correctness of the calculus. Correctness of a pro-

gram is written S ` {P} p {Q}, which corresponds to {P} p {Q}{S} in the CHL approach.

The separation logic assertion P and Q describe the persistent and the durable state

separately. States s = (v, d) is consequently partitioned into a volatile part v and a durable

part d, and the relational semantics of atomic statements a is lifted as follows

JaK = JaK
∪ {((v, d), (

, d′)) | d′ |= S}
∪ {((

, d), (

, d))}

where crashed states are marked by a special volatile part

. The �rst clause re�ects the

normal execution of a. The second clause introduces a crashed persistent state satisfying

the (given) recovery condition S. The third line propagates crashes to the end of the pro-

gram text, which amounts to aborting the current execution. The precise de�nition of how

a crash is triggered and propagated can be found in the accompanying technical report.
3

A recoverable program is written [p], where r recovers p de�nes a recovery program r
for p, corresponding to p ./ r in CHL, although the latter does not regard this as a program

again. The calculus provides introduction and elimination rules for [_] around programs.

It is possible to have di�erent recovery operations for di�erent parts of the program and

recovery can be nested as stated in [120], whereas in [32] this is not permitted. Exploiting

this feature in a proof amounts to making the assumption that the operating system or

runtime environment maintains the stack of recovery operations somehow in a durable

way.
4

This assumption is adequate for certain classes of systems, for example, services

running under the supervision of the operating system.

The authors demonstrate their approach with a proof sketch of the ARIES recovery

algorithm that is used in database systems. In their example, the recovery condition S is

simply a (disjunctive) enumeration of all possible intermediate states. This corresponds

2

Personal communication with the author of [32].

3

Available at http://hdl.handle.net/10044/1/26153.

4

Personal communication with the authors of [120].

http://hdl.handle.net/10044/1/26153

144 Chapter 11. Crash-Safe Refinement

to the nondeterministic choices that the abstract speci�cations in our approach make for

error handling. The approach in [120] does not consider hierarchical systems, a fact that

the authors acknowledge in their conclusion.

One di�erence between the two separation logic approaches and our formalism is that

we do not presuppose the use of a particular logic to encode assertions about states. This

gives more freedom to the engineer, while at the same time possible opportunities for a

more streamlined proof system are given up.

Another minor di�erence is that the recovery condition is computed dynamically by

symbolic execution in our approach and does not have to be given explicitly. In practice,

we have to make sure that a corresponding abstract layer captures relevant intermediate

states of the corresponding implementation anyway (as enforced by the crash neutrality

condition), the question is simply whether these are given as a disjunctive formula or as

additional choices of a nondeterministic program.

However, our formalization puts more emphasis on a global picture in terms of the

semantics of the whole system as a set of runs. Arguably, this exposes the e�ect of a crash

more explicitly and provides means to study the di�erent degrees of atomicity, i.e., the

white box and black box views.

The assumption that a stack of recovery operations is maintained as persistent data

in [120] just re�ects di�erent view points arising by the respective case studies: goal of

this work is to provide a robust �le system, whereas Ntzik et al. [120] assume one and

consider the application level. There is no fundamental di�erence, though: restriction to

a single top-level recovery operation in [120] models our approach if desired; conversely,

we could encode the stack of recoveries explicitly.

11.7.3 Model Checking

Koskinen and Yang [96] explore fully automatic techniques to certify existing programs as

crash safe. Their correctness criterion is based on the principle that a crashed run should

correspond to another normal run of the same program: Recovered programs should not in-
troduce behaviors that were not present in the original (uncrashed) program [96, Section 3.1].

The bene�t of this approach is that no extra work is required to e.g. annotate a given

program with a speci�cation.

The main conceptual di�erence to our work is that Koskinen and Yang [96] look at a

single execution of a program. Upon a crash the program is simply restarted, assuming

that it will try to recover its persistent data structures (the authors instrumented some

of the example programs by hand to do this). While it is discussed, how repeated crashes

during recovery can be handled, the paper essentially focuses on what could be compared

to a single transition in the ASM model.

In [96, Section 2] the authors observe that crash-recoverability cannot be expressed

in the temporal logics typically supported by the model checkers. We bypass this limita-

tion by using the highly expressive logic RGTIL [145], which permits one to arbitrarily

mix programs, weakest precondition modalities and temporal operators at the expense of

automation (cf. Section 11.5.2).

The paper is based on an experimental tool called Eleven82 that is evaluated with

several production quality data base systems. The promising results show that the tool

produces answers as expected by the authors, in particular, several de�ciencies regarding

crash safety are successfully found.

11.7. Related Work 145

Bornholt et al. [21] consider di�erent crash consistency models from observing the

crash behavior of existing �le systems. They are able to check the guarantees made by

existing �le systems in practice using the Ferrite tool.

11.7.4 Relation to Transactions

Recovery from failure has been studied quite a bit in the context of transactions. How-

ever, we are not aware of an approach that supports a uniform way to specify unexpected

crashes or that integrates into re�nement.

The main di�erence is that we have to consider crashes at each program location,

whereas rollback of transactions is triggered explicitly, see for example Hoare’s work on

compensable transactions [85]. Freytag et al. [62] use a specialized predicate transformer

semantics to study crashes, but their approach is very speci�c to databases and too re-

stricted for our purpose.

11.7.5 Other Approaches

In [148] a high-level modeling language speci�cally designed for �le systems is described.

Examples cover sophisticated optimizations such as reordering of writes and versioning.

However, the modeling language is not intended for an actual implementation of a �le

system. The optimizations that can be described with this language are beyond the scope

of this thesis.

The temporal logic conditions of Section 11.5.2 can be veri�ed for example in Dynamic

Trace Logic [23].

The interrupt operator of CSP is similar to our semantic de�nition of a crash regarding

the possibility to abort a running operation: Process P4iQ denotes that P executes until

an (external) event i occurs, after which P is discarded and Q is started. The operator

originates from [84] and is further explored in [106]. In [134], a trace-based semantics is

given that is equivalent to our white-box semantics of programs JpK .

Chapter 12

Dealing with Power Cuts

Summary. The concern of power cut safety spans the whole re�nement tower: every

layer must deal with it. For the overall system’s ability to recover from such events,

it is crucial that the measures implemented at each level work together well. This

chapter details some of the intricate aspects that arise in this regard and outlines the

challenges towards a coherent, working approach.

Publications: This chapter is based on [54, 123].

Contents

12.1 Summary and Technical Rundown . 148

12.2 High-Level Crash Recovery . 150

12.3 Recovery in the Flash File System . 151

12.4 Related Work . 154

This chapter describes how crash safety is realized by the cooperation of the components

presented in the Chapters 7 to 10. Each layer addresses a speci�c aspect of power cut safety

that is naturally associated with the concepts it realizes. The general pattern considers

re�nements A v C (X), where C (X) is an implementation level machine which takes

the white box crash semantics as explained in Example 11.5. The speci�cation A is atomic

and therefore takes the black box semantics as explained in Example 11.4 and so is the

submachine X as an abstract speci�cation of the subcomponent used by C.

A systematic description of the models is given by instantiating the re�nement theory

for crash safety of Chapter 11, i.e., by de�ning the crash predicates and recovery opera-

tions. For a machine M with state x, we write

crash (M) ϕ(x, x′)

to de�ne the crash transitions CrM from unprimed to primed states by a formula ϕ. The re-

covery operations OpM
rec

are introduced analogously to regular ones with the name recovery

pre�xed by the respective machine

M_recovery(; out, err)

body

In addition to the description of the models, it will also be outlined how submachines X

are proved to be crash neutral, so that we can switch to the black box semantics for their

supermachines, i.e., to exploit that C (X) ≡ C (X) by Theorem 11.22.

The remainder of this chapter is structured as before. A brief technical overview will

be given for the bene�t of the big picture, before the problems and solutions for crash

tolerance on the individual layers are explained.

148 Chapter 12. Dealing with Power Cuts

12.1 Summary and Technical Rundown

Similarly to the presentation of the models and re�nements for the functionality, this sec-

tion gives an overview of the di�erent e�ects of power cuts on each layer and the respective

approaches to deal with these.

The speci�cation of crash behavior of the formal POSIX model from Section 7.6 is

brie�y repeated. A crash leaves the directory tree tree and the �le store fs untouched but

destroys the registry of open �les oh, i.e., oh′ is arbitrary. The recovery operation reini-

tializes oh and deletes all orphaned �les, i.e., the ones that were already unlinked from the

tree but were still referenced by open �le handles at the time of a crash:

crash (POSIX) tree′ = tree ∧ fs′ = fs

posix_recover()

oh := ∅
fs := fs \ orphans(tree, fs)

The requirement induced is twofold: The implementation must work hard to achieve atom-

icity of operations, because the model POSIX is a black box machine, and the implemen-

tation must be able to determine the set of orphaned �les and maintain it correctly.

In the implementation, two focal points determine the global strategy for power cut

safety: 1. redundancy of the RAM index and 2. transactional writes. Aspects that are some-

what disconnected from the major strategy but equally important are free space manage-

ment and garbage collection in the journal layer, and incremental commit of the B
+

tree,

which are both complicated by power cuts.

It should be commented that this technical rundown is not presented alongside the

models of the re�nement hierarchy but instead by the concepts that need to be addressed.

This stems from the fact that power cut safety is a cross cutting concern involving multiple

layers to address a particular aspect.

Redundancy of the RAM Index and Orphaned Files. Within the �ash �le system

core, the major concern is to demonstrate redundancy of the RAM index, i.e., that it can be

recovered fully from the outdated version on �ash by applying all the modi�cations found

in the log as expressed by the recovery invariant (9.2) in Section 9.4.

However, the presence of orphans complicates the matter. In the implementation, these

are recorded explicitly in two sets ro,� : Set〈Key〉 (RAM orphans and flash orphans), con-

taining the keys of the inodes that correspond to �les without hard links in the RAM

index ri resp. the �ash index �. The recovery invariant must be adapted to remove these.

invariant (FFS) ri \\ ro = replay(log,� \\ fo, fs), (12.1)

i.e., the resulting ram index is the current one stripped of all obsolete �les. Recovery starts

by removing those orphans that had been committed with the �ash index. The double

backslash \\ signi�es that it is not su�cient to merely remove the inode keys stored in ro
resp. fo but also the keys of all of their data nodes storing the VFS pages of the �les’ con-

tents. Hence, power cut recovery is directly linked to maintaining orphaned �les. Although

there are algebraic speci�cations for \\ and recover to simplify the reasoning, these must

be realized by ASM operations in the implementation, too.

The practical bene�t of pushing this property into the �le system core is that a crash

doesn’t leak through the interface. In other words, all the complexity of handling power

12.1. Summary and Technical Rundown 149

end start

…

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

Figure 12.1: Detecting partially written nodes and groups.

cuts properly is pushed down into the FFS core and lower layers, speci�cally, the VFS

component that calls the FFS at runtime does not have to worry at all about crashes. In the

formal development this manifests in a trivial crash predicate for AFS which speci�es the

FFS core: the state remains una�ected apart from deleting the orphaned �les as required

by the top-level POSIX model.

Transactional Writes. The �ash �le system core relies on the capability of its jour-

nal subcomponent to write multiple nodes within transactions that take e�ect atomically

wrt. hardware errors and power cuts, as speci�ed in Section 9.2. This feature is realized

jointly by the implementation of the journal and the persistence layer. The former is re-

sponsible for grouping nodes, whereas the latter is responsible to making individual node-

writes atomic.

Grouping is achieved by start resp. end �ags that are stored in the nodes on �ash. The

�rst node of a group has the start �ag set, whereas the last one has the end �ag set. A

singleton group, for example, sets both �ags. With this mechanism, it is possible to detect

groups of nodes that are not complete.

Atomicity at the level of individual nodes is achieved somewhat similarly. The on-�ash

encoding of nodes surrounds the actual data by a header and a trailer. It can be recognized

whether the trailer of a node has been persisted completely, and only then the node makes a

contribution to the �le system’s state. Otherwise, the node is discarded, potentially leading

to a partial group as an e�ect.

The mapping of the data structures of the two layers is depicted in Figure 12.1. At the

bottom lies a logical erase block that stores a contiguous sequence of bytes. In the middle,

three group nodes as stored by the journal are shown, that are abstracted to their payload

in the journal at the top. In the �gure, a power cut has happened so that some of the bytes

could not be transferred to the storage medium. The jagged border of the grey part that

has been written signi�es that it is unknown how many bytes have been persisted. In the

persistence layer this causes a corrupt trailer of the last node, which is then dropped. The

journal detects that this group was partially written, which is then correctly discarded to

undo a top-level operation.

This chapter will not detail the model, which has been published in [54] including

additional concepts such as garbage collection.

150 Chapter 12. Dealing with Power Cuts

12.2 High-Level Crash Recovery

This section describes the e�ect of a power cut at the level of VFS and AFS, speci�cally, how

the requirement imposed by POSIX is realized at that level. The speci�cation is actually

trivial. A crash leaves the AFS data structures untouched but erases knowledge about the

open �le handles oh which are stored in RAM. This mirrors the POSIX counterpart shown

above.

crash (VFS(AFS)) dirs′ = dirs ∧ �les′ = �les (and oh′ arbitrary)

The recovery operation simply discards the orphaned �les and reinitializes oh:

afs_recover()
dirs := dirs \ orphans(dirs,�les)
�les := �les \ orphans(dirs,�les)

vfs_recover()
afs_recover()
oh := ∅

The set of orphans selects those inode numbers that have no links pointing to them:

orphans(dirs,�les) := {ino ∈ dom(dirs,�les) | links(ino, dirs) = ∅}

Note that since the eviction protocol of Section 8.4 applies to directories too, there may

temporarily be directories that are unlinked from the tree, and consequentially these have

to be removed as well.

This can immediately be mapped to POSIX provided that determining the number of

links coincides: For directories, the abstraction

dirs(ROOT_INO, tree)(dirs′) for dirs′ = dirs \ orphans(dirs,�les)

is upheld by the fact that dirs uniquely determines the domain of the directory store,

more speci�cally, it gives a tight upper bound for the directories: a directory that is no

longer reachable from the root of the tree must not be allocated in dirs′. For �les, deletion

distributes through the abstraction relation files (cf. Section 7.6 and 8.8):

files(fs \ orphans(tree, fs)) = files(fs) \ orphans(dirs,�les).

The study of crash and recovery is completed by an argument why the operations of

AFS are crash neutral, so that the above conditions are su�cient by Theorem 11.22. For

most operations this is trivial due to the nondeterministic error handling by pattern (6.2):

such AFS operation can fail without changing the state.

However, there is one operation that does not �t this pattern, namely afs_evict(ino)
(shown in Figure 8.5), which takes a single inode number ino and deletes it from the respec-

tive store dirs or �les provided it has no more links. The reason why afs_evict is special

is that it must not fail as discussed in Section 8.4: The operation that had unlinked the �le

or directory denoted by ino has already taken e�ect. We therefore need the full generality

of Lemma 11.19, which permits to mask the e�ect of afs_evict by a subsequent crash and

recovery.

To prove that afs_evict(ino) is crash-neutral when links(ino, dirs) = ∅, after in-

stantiating Lemma 11.19 to the respective crash predicate and operation, it remains to be

shown that

�les \ orphans(dirs,�les) ⊆ �les \ {ino} \ orphans(dirs,�les),

12.3. Recovery in the Flash File System 151

i.e., deleting this particular ino by afs_evict subsumes the crash before its invocation.

This holds since links(ino, dirs) = ∅ implies ino ∈ orphans(dirs,�les).

Before we progress to the more complex lower layers it should be emphasized that

integration of power cut safety at this level of abstraction was fairly easy, which can be

taken as an indication that the choice of abstraction is right: It achieves to split o� the

e�ort from the complex VFS implementation; the reason is of course that AFS does not

discern between persistent and volatile state.

12.3 Recovery in the Flash File System

We �rst describe how recovery is realized in the �ash �le system core when orphans are

disregarded. In the event of a crash, the RAM state is lost, whereas the persistent state

consisting of the �ash store, the log, and the �ash index is kept (cf. Figure 9.1):

crash (FFS) fs′ = fs ∧ log′ = log ∧ �′ = � (12.2)

The recovery invariant states that this is not a problem. It is always possible to reconstruct

the RAM index from the other three data structures:

invariant (FFS) ri = replay(log,�, fs).

As replay is an algebraic function, it cannot serve as an implementation of the recovery

operation in the �ash �le system. Recovery is therefore given by a procedure fs_recover()
(not shown) with the same e�ect and we prove the correspondence

` 〈|fs_recover(fs, log,�; ri)|〉 ri = replay(log,�, fs).

The algebraic function replay is speci�ed recursively over the log by two cases

replay([],�, fs) := �

replay(adr + log, ri, fs) := replay(log, replayone(adr, fs[adr], ri), fs) (12.3)

For an empty log, the result is simply the �ash index �. Otherwise, the node fs[adr] at the

�rst address in the log is inspected by an operation replayone and integrated as necessary

into the RAM index ri built up so far and the replay recurses.

12.3.1 Incremental Justi�cation of Recovery

The approach due to Schierl et al. [147] to maintain the recovery invariant will be shown

brie�y. It is a prerequisite to understanding how orphans are maintained in the subsequent

section.

An immediate consequence of (12.3) is that replay distributes over the catenation of

two log lists log
1
++ log

2
, where replaying the second log is started in the RAM index that

is the result of applying the entries of the �rst list:

replay(log
1
++ log

2
,�, fs) = replay(log

2
, replay(log

1
,�, fs), fs) (12.4)

This means that one can reason about how subparts of the log are recovered, which pro-

vides a lever to maintain the recovery invariant incrementally. For instance, the FFS op-

erations fs_create and fs_unlink as shown in Figure 9.3 and Figure 9.4 append three

152 Chapter 12. Dealing with Power Cuts

entries to the log, one for the parent directory, one for the �le to be created or unlinked,

and one for the directory entry, resulting in three new addresses adr1, adr2, and adr3 where

the new nodes have been stored, i.e., the new log will be log′ := log ++ [adr1, adr2, adr3]
for three updates to the �ash store fs′ := fs[adr1 7→ nd1, adr2 7→ nd2, adr2 7→ nd2]. Using

(12.4) to unwind the log backwards from the end, we just have to make sure that replayone

coincides with the updates to the RAM index to store these new addresses. For instance,

replaying an inode discerns whether the link count is zero, in which case the �le is to

be removed. Otherwise, the index is updated with the key from the node (cf. (9.6)) to the

address found in the log:

replayone(adr, inodenode(key, · · · , nlink, · · ·), ri) := (12.5){
ri[key 7→ adr] nlink 6= 0

ri − key nlink = 0

Instantiating (12.4) with log
1

:= log, fs := fs′, and log
2

:= [adr1, adr2, adr3] shifts the new
entries to the outer recovery, which can then be broken down by its recursive de�nition.

The observant reader may have noticed that (12.4) works for taking the same fs twice

on the right hand side of the equation. We have ri = replay(log
1
,�, fs) from the old

invariant but we need ri = replay(log
1
,�, fs′) for the bigger fs′ by unfolding (12.4) for the

new state. However, it is easy to see from (12.3) that replay is robust against extensions

of fs by fresh addresses not contained in the log.

We remark on two aspects.

• Maintaining the recovery invariant in a non-incremental fashion is not feasible. The

strategy crucially depends on the availability of a concrete, �nite log
2

for which

replay can be compared to the outcome of the concrete operation that had pro-

duced the entries stored in log
2
. The trick employed here is to transform the proof

obligation correct recovery (Proposition 11.14) into an invariant.

• It is also important that the groups of addresses are written atomically. Replaying for

instance the partial group [adr1, adr2] where the last address is left out would lead

to an inconsistent state (for fs_create we have a dangling directory entry when the

target �le does not exist).

Crash neutrality of the journal layer Section 9.2 is trivial: all operations, including

commit, follow the error speci�cation pattern (6.2) and can fail without any e�ect. The

index machine is also crash neutral: It modi�es the memory data structure ri only which

is erased by the crash (12.2).

12.3.2 Maintaining Orphaned Files

We have already seen in the Sections 7.6 and 8.4 that not all �les must be referenced by

the directory tree any more, as it is possible to only refer to a �le’s content via an open �le

handle. In the abstract world, these are easy to determine just by collecting them from the

state, and one can specify them for the �le system’s core as well (as a set of inode keys):

orphans(ri, fs) = {inodekey(ino) ∈ ri | fs[ri[inodekey(ino)]].nlink = 0}, (12.6)

This implicitly assumes that the nlink �eld stores the correct value, namely the number of

hard-links to that particular �le identi�ed by ino. However, computing this set on-the-�y

12.3. Recovery in the Flash File System 153

is infeasible: the implementation would have to traverse the entire index, which in general

may be large and therefore such a scan could be quite time-consuming.

The solution, of course, is to store and update the set explicitly. There must be two

versions: one that lives in main memory and matches the RAM index (RAM orphans), and

one that is written to �ash and matches the outdated �ash index (flash orphans). These are

given by two state variables

state vars (FFS) ro : Set〈Key〉
spec vars (journal) fo : Set〈Key〉

While the version ro in RAM is made an implementation level data structure of the �nal

system, the on-�ash version fo is still kept as auxiliary state. The reason is that the latter

must somehow be encoded down to the bytes of the hardware, and it is therefore main-

tained by the lower layers of the re�nement hierarchy. The corresponding invariants state

that the two variables re�ect the correct sets respectively:

invariant (FFS) ro = orphans(ri, fs)

invariant (journal) fo = orphans(�, fs)

The second invariant is trivially established from the �rst at the time of the commit, which

sets � := ri and fo := ro. The �rst one is more intricate: As ro is updated alongside the

index ri by normal operations, one has to connect the nlink �eld of the nodes (referred to

by (12.6)) to the allocation and deallocation of the directory entries (not shown).

Crash speci�cation (12.2) of the journal is extended to preserve the set of �ash orphans

crash (index/journal) · · · ∧ fo′ = fo

The operations unlink, rmdir, close, and rename must be adapted to update the set ro
when the last reference to an inode is dropped, i.e., they now include code of the form

if nd.nlink = 0 then ro := ro ∪ {key}

In the presence of orphans, the full recovery invariant reads as

invariant (FFS) ri \\ ro = replay(log,� \\ fo, fs),

Let’s try to re-establish the proof principle of Section 12.3 based on the simple splitting

principle (12.4). We consider the simple case of an operation that writes a single node nd
identi�ed by key to a (fresh) address adr . For the sake of the argument, assume that this

node corresponds to a freshly orphaned �le. Let the primed versions

ri′ = ri[key 7→ adr] fs′ = fs[adr 7→ nd]

ro′ = ro ∪ {key} log′ = log ++ [adr]

denote the resulting state. The RAM modi�cations are shown on the left, the �ash mod-

i�cations are shown on the right. The �ash index and orphans are unmodi�ed. The (ex-

tended) recovery invariant as shown above is known for the starting state.

154 Chapter 12. Dealing with Power Cuts

We can derive

replay(log′,� \\ fo, fs′)
= replay(log ++ [adr],� \\ fo, fs′) (by assumption)

= replayone(adr, nd, replay(log,� \\ fo, fs)) (by (12.4) and narrowing down fs)

= replayone(adr, nd, ri \\ ro) (recovery invariant)

!
= ri′ \\ ro′ (to be shown)

where the last step represents the commutation that falls out and remains to be shown.

Since we have assumed that the inode referenced by key is an orphan (i.e., nd.nlink = 0),

we can further narrow this down by de�nition (12.5) of replayone:

(ri \\ ro)[key 7→ adr]− key !
= ri \\ (ro ∪ {key})

which holds.

In general, this principle boils down to a lemma of the following form:

replay(log, ri \\ ro, fs) = replay(log, ri, fs) \\ ro

12.3.3 Additional Invariants

In practice, a number of side conditions must be established so that this holds. These must

be maintained as part of the invariants of the system:

• Each address encountered in the log must point to a valid node in the �ash store,

i.e., dom(log) ⊆ dom(fs).

• The types of the keys stored in the nodes fs[adr] for addresses adr in the log must

match the type of the nodes.

• Obviously, the sets of orphans ro and fo may only contain inode keys, and the root

inode is not one of them.

• Each address must not be in the RAM index already, i.e., replayone(adr, nd, ri) has

the precondition adr /∈ ri for the intermediate index that is partially recovered.

The last requirement is actually not straight forward to specify The solution is to cap-

ture all of these requirements by a predicate replaysafe that mirrors the recursion of

replaylog and checks whether the respective conditions are satis�ed before replaying a

particular entry with the RAM index rebuilt so far. The predicate replaysafe is maintained

incrementally just like replaylog.

Furthermore, the operation index_newino shown in Section 9.2 to determine an unused

inode number must be prevented to reuse those in the set of �ash orphans. This require-

ment was not obvious. Note that this can be achieved by never reusing inode numbers,

though.

12.4 Related Work

The speci�cation of recovery of the log in the �le system core has been addressed in related

work by [122], which is in fact based on our model [147]. Their goal is to explore points-

free relational modeling and proofs. They model a simpli�ed version of recovery that does

12.4. Related Work 155

not consider orphans, and restricts the log to the deletion of �les only (but not creation).

This bypasses many of the problems outlined in Section 12.3, as it becomes possible to

state recovery in a closed, non-recursive form. The recovery just deletes all entries in the

log, as dependencies between operations recorded in the sequential log are nonexistent.

In comparison to UBIFS, we have not employed multiple journals, i.e. separate sequen-

tial logs for di�erent kinds of data. UBIFS separates inodes and directory entries from data

pages as they have di�erent access patterns. While the former two types of nodes must be

written mostly synchronously, data pages are cached (by the Linux kernel) for some time

before they are written to disk. Multiple journals come with the downside that recovering

the sequential ordering of the nodes during recovery is complex and requires additional

concepts such as sequence numbers.

Chapter 13

Summary and Discussion

Summary.This section and discusses the results of this thesis and the Flashix project.

The theoretical results and their in�uence on the modeling and veri�cation are sum-

marized. Statistics about the development e�ort are presented and we outline the

lessons learned from the project.

Contents

13.1 Theoretical Results . 157

13.2 Practical Results . 159

13.3 Statistics and Development E�ort . 159

13.4 Lessons Learned . 160

13.1 Theoretical Results

We have de�ned a re�nement theory for data type ASMs with submachines (Chapter 49,

which respect information hiding, and can recover from power failures. The theory has

been a key to enable modular and incremental development of the �ash �le system case

study. The theory links explicit observations which permit to reason about the systems’

evolution and behavior in time to compositional reasoning to enable a modular develop-

ment. The theoretical contribution is thereby a de�nition of re�nement A v C between

systems that permits to replace the abstract speci�cation A by its concrete implementa-

tion C within any context C, as expressed by the �rst central result (Chapter 5):

Theorem 5.9 (Compositionality).

A v C =⇒ M(A) v M(C).

The technical achievement behind this theorem is that it is based on the expressive
Abstract State Machine formalism. As a consequence, many concerns needed to be ad-

dressed, such as potential divergence of operations, correct handling of preconditions, and

most importantly submachine calls. The proofs for Theorem 5.9 explain how observations

are threaded through the computation alongside the interactions between the submachine

and its context. The outcome is a system model that is fully recursive: submachines and

contexts are de�ned using the same formalism.

The theory is extended by explicit modeling constructs to specify the e�ect of power

cuts and other system crashes that are triggered by events not under the control of the

program (Chapter 11). It is shown how veri�cation of crash safety can be integrated seam-

lessly with a re�nement based approach, preserving its nice aspects of incremental and

modular developments. Moreover, on the technical side, the introduction of power cuts

and crashes does not a�ect the proofs for functional correctness, i.e., regular (uncrashed)

158 Chapter 13. Summary and Discussion

executions of the system are preserved by the theory so that the well known principle of

forward simulation applies.

Central to the theory are two views of the crash behavior of a system. The white box

crashing semantics of machines M captures how a system is a�ected by a power cut in

practice. This semantics is thereby adequate to study implementation level components

which will eventually run as part of the �nal �ash �le system. It is contrasted by the black

box crashing semantics M that abstracts the degree of atomicity where crashes are trig-

gered. This view justi�es to treat the operations speci�cation level machines atomically.

Three composition patterns are discussed that naturally arise from the di�erent system

compositions in a re�nement chain and the substitution of abstract machines by their con-

crete counterpart at runtime. Purely white box machines M (X) correspond to the running

code. A white box context with an abstract black box submachine M (X) corresponds to the

machines in the re�nement hierarchy. Purely black box machines M (X) are independent

of the intermediate states of a computation and consider crashes in between completed

operations only. These are of particular interest because standard weakest-precondition

calculus can be used to reason about their properties. For the formulation of the di�erent

patterns it was crucial that there is a well de�ned central place to consider the degree of

atomicity of systems component at the operations of their interface.

It is demonstrated that the compositionality result previously proved for regular ma-

chines transfers to the crash semantics without much need to adapt the proof. This is

summarized by the second result:

Theorem 11.10 (Compositionality in the presence of crashes).

Let C ∈ {C , C } and A ∈ {A , A },
then A v C implies M (A) v M (C) and M (A) v M (C).

While white box machines M are adequate to describe implementation level machines,

there is a high e�ort associated with the corresponding re�nement proofs. The reason is

that there is a high number of intermediate states. It is desired to reduce the veri�cation

e�ort to those states which are actually relevant to the study of power cuts. A direct obser-

vation is that transitions that a�ect the in-memory state only are irrelevant. This notion

has been formalized by a de�nition of subsumption of crash behavior.

With abstract models of the re�nement hierarchy, however, the partitioning into volatile

and persistent state is less clear. Key to the generalization of this observation was the in-

troduction of the formal criterion of crash neutrality, which provides a means to study the

subsumption of crashes for speci�cation level machines. The result of this approach is the

third result that reduces the states that are relevant for power cut analysis signi�cantly:

Theorem 11.22 (Crash reduction).

M (X) ≡ M (X) if X is crash-neutral and M has RAM state only.

The technical achievement behind this result propagates crash neutrality from the sub-

machine to its context by simple conditions. As all of the models in the Flashix �le system

are crash neutral by construction, we were able to conduct the veri�cation using standard

weakest precondition veri�cation technology.

Summary. The methodology presented in this thesis gives a uniform way to specify

functional correctness as well as crash tolerance of systems by re�nement. Proof principles

for the general case and several specialized cases are derived for the veri�cation. Central

to the theory is compositionality, which permits one to break down the development into

individual pieces, so that complexity can be introduced incrementally and modularly.

13.2. Practical Results 159

13.2 Practical Results

The practical contribution of this thesis lead to the development of a running �le system

for �ash memory, which is functionally correct, power cut safe. It moreover implements

modern strategies to e�ciently deal with the characteristics of the underlying storage

hardware, which di�ers signi�cantly from traditional magnetic disks.

There is a large gap between the representation of a POSIX compliant �le system as

abstract tree and the low level representation in terms of the blocks and bytes of �ash

memory. A number of concepts were modeled abstractly in this thesis as summarized be-

low. Working out separation of concerns so that they can be captured abstractly potentially

clari�es how existing �le system implementations work should work internally.

A formal model of the POSIX interface for �le system operations describes the expected

behavior of compliant �le systems (Chapter 7). It is on one hand highly abstract, which is

re�ected in its concise presentation. On the other hand, it does not give in to conceptual

simpli�cations. Instead, it tries to be as faithful to the POSIX standard as possible, which

results for instance in �le access through handles, the support for hard-links, orphaned

�les, and proper handling of errors. As the Flashix �le system adheres to this established

speci�cation, it can be integrated directly into the existing software landscape, providing

a veri�ed and better structured alternative to existing solutions such as UBIFS.

Based on the modular re�nement theory, this thesis demonstrates how an implemen-

tation of the POSIX model can be developed so that all generic concerns can be separated

from implementation speci�c concepts (Chapter 8). The result is a modular architecture

that simpli�es the speci�cation and proofs. The decoupling of the system into the Virtual

File System (VFS) and the Abstract File System (AFS) speci�cation lends itself to reuse

of the components. Moreover, since the interface between VFS and AFS re�ects the cor-

responding counterpart of Linux, it becomes possible to take this as a starting point for

other approaches: Related work [8] takes up the AFS model for the speci�cation of BilbyFS,

which runs as part of the Linux kernel.

At the heart of Flashix is the Flash File System core component that realizes the main

strategies to deal with the characteristics of �ash memory (Chapter 9). It is based on a high-

level and abstract model of the central data structures, namely the index and the journal

and ties them together to provide a �le system implementation that adheres to the AFS

speci�cation.

Summary. The presented models of the Flashix �le system contribute to the develop-

ment of veri�ed software systems, by describing complex �le system concepts abstractly

and by ultimately providing a runnable implementation that can be used as a storage so-

lution today. This result underpins the claim that the chosen development approach is

practical and scales to large and realistic problem sizes.

13.3 Statistics and Development E�ort

To get an impression of the size of the Flashix project, some statistical data is given. The

overall development done in KIV comprises of 18 layers as shown in Figure 2.2, of which

eight are compiled into the running code, whereas the remaining 10 layers are abstract

ones. At the time of writing there are approximately 15 thousand lines (kLoC) of speci�ca-

tion code, which is partitioned into setting up the algebraic data types (about a third), the

160 Chapter 13. Summary and Discussion

remaining larger part is ASM code. The generated Scala code consists of roughly 7 kLoC. It

corresponds almost directly to the KIV implementation models. The C code is in the order

of 13kLoC as it needs to be augmented by explicit memory management and an encoding

of algebraic data types as C data structures.

The integration of the C code with the FUSE library takes approximately 700 lines

of code. In addition three standard tools are provided, namely mkfs (90 lines) to format

an MTD device with the base layout of Flashix, mount (145 lines), which hooks up the

�le system into the directory structure of Linux, and fsck which currently dumps some

information and statistics of the on-�ash data structures (the tool is currently not capable

to check consistency as the name would suggest). The small size of these tools stems from

the fact that they are just frontends for the generated code. For example, the mkfs utility

calls a format operation that is part of the formal development.

In total, 9 re�nements have been veri�ed, leading to some 3000 theorems and helper

lemmas to automate the veri�cation and to prove di�cult facts about the correspondence

of the models (roughly half of these by the author).

The overall net e�ort of the development is about 6 person years. For the speci�c mod-

els presented in this thesis, we estimate that it took two months setting up the POSIX spec-

i�cation, which includes the time to understand the requirements imposed by the standard

and the time to settle for a design that is abstract enough but does not leave out essential

concepts. A similar e�ort was spent in developing the initial versions of the VFS model

and the AFS speci�cation (where the latter could be based on the existing model [147] of

the �ash �le system). However, as explained below, these numbers do not re�ect the con-

tinuous maintenance of the models in response to changes made necessary by integration

with the rest of the re�nement hierarchy.

Initial development of the core model of the �ash �le system took about six month.

Adapting the existing speci�cations to the layers above and below was a signi�cant e�ort

that is di�cult to measure separately.

Conducting the proofs presented here took approximately two months for the re�ne-

ment of POSIX to VFS. The initial proof of functional correctness for the �ash �le system

core was straight forward, except for the interplay between the deletion of �les and hard

links.

13.4 Lessons Learned

In our opinion, the �le system challenge is interesting for the reason that a wide conceptual

gap must be bridged. Abstractly, the �le system is described as a tree indexed by paths,

whereas the hardware interface is based on erase blocks and bytes. The strategies we have

taken from the Linux VFS and UBIFS to map between these interfaces deal with many

di�erent concepts.

Starting Middle Out and Throw-Away Models

Development of the Flashix �le system has started out with the central model [147] of the

core concepts. This model has served as an anchor-point to incrementally develop the rest

of the model hierarchy. Thus, we used a middle-out approach. Subsequent development

took place at the level of POSIX and MTD to determine the boundary interfaces of the

system. The rest of the development followed incrementally.

On several occasions we have introduced models into the re�nement hierarchy to clar-

13.4. Lessons Learned 161

ify concepts but later on decided not to keep these. For example, the additional invariants

in Section 12.3.3 for the �ash �le system core that are needed for correct recovery in the

presence of orphans were determined by an abstract reformulation of the problem. We

have extended the AFS model duplicating its state with one version roughly correspond-

ing to the outdated �ash index, linked by a list of log entries to the two stores dirs and �les
(AFS + recovery in Figure 2.2). Hence, it was possible to study the problem at a high of ab-

straction and with a representation of state that is much more amenable to formal proofs.

After these invariants had been determined, they could be restated at the level of the �ash

�le system (it was unfortunately not possible to transfer the results directly in terms of

the re�nement).

At the end, these intermediate models were not kept because they introduce additional

maintenance e�ort, see the comments on change management below.

The Need for Abstraction

Capturing the di�erent concepts that are relevant in the development of a veri�ed �le

system at the right degree of abstraction proved to be a major design challenge. Not all of

these concepts have a direct counterpart in the implementation level models. For example,

the abstract log of the �ash �le system model in Chapter 9 is represented implicitly in the

implementation only.

When designing a component that lies somewhere in the middle of the re�nement

hierarchy, there are two con�icting goals:

Abstraction: From the client’s perspective, the interface should be easy to use. In a

formal context it means that not only the should operations capture the problem domain

well and map to the conceptual operations expected from the interface, but also that the

formal model of the interface should be as abstract as possible to facilitate reasoning and

proofs about using the interface.

Realization: Conversely, when an interface abstracts away many technical details of

the implementation, the conceptual gap to the implementation becomes large. It may be

challenging to satisfy the requirements expressed by its speci�cation, e.g. elaborate code

for error recovery to mask irregularities during operation.

The sweet spot lies in interfaces that capture as much of the problem domain as possi-

ble without leaking implementation details. This means that in particular the state space

of speci�cations should be simple but complete in the sense that potential redundancy

is already introduced as auxiliary state. An instance of such auxiliary state is shown in

Section 8.2. Abstract �les and directories explicitly store the number of hard-links in the

AFS model (�eld nlink) in and similarly the number of entries (size) and subdirectory

(nsubdirs) of a directory. This permits one to prove on the abstract level invariants for

these as shown in Section 8.7. The re�nement proof that links AFS to its implementation

makes these invariants available on the concrete level as well, see for instance [140].

Prerequisite to de�ning suitably abstract models are strong abstraction capabilities of

the used tools, which has been observed before by Baumann et al. [17]. KIV supports arbi-

trary user-de�ned data types (given suitable axioms), which was for example exploited to

abstract the pointer structure to an algebraic tree and to abstract the sparse pages of �les

to streams (see Section 8.8). Capturing the �le identi�ers referenced from the POSIX direc-

tory tree as multisets instead of sets (Section 7.5) is another example where the freedom

to choose an appropriate data structure was helpful.

Sometimes we could have taken bene�t from a stronger typing system in the logic of

162 Chapter 13. Summary and Discussion

specification client

implementation

ease of use

ease of
realization

effect of a change

Figure 13.1: Con�icting design goals for the speci�cation of intermediate interfaces,

balancing concerns of use and implementation. Changes to requirements and models

tend to propagate through the hierarchy in both directions.

the tool, such as predicative subtypes [136]. With predicative types small invariants can

often be expressed in a concise way as part of the type (e.g., arrays of a �xed length),

reducing for example the number of explicit preconditions and assumptions for lemmas.

Furthermore, proofs required for correct type checking can be separated from the main

argument, which potentially simpli�es the latter.

Dealing with Change

Finding a good speci�cation of an intermediate interface is hard in the sense that design

decisions and in particular changes a�ect the layers above and below a given intermediate

layer as shown Figure 13.1. To satisfy both the client and the implementer of such an

interface, compromises may be involved and in the light of new insights about the problem

such interfaces evolve. Consequences of changes to a component and its speci�cation tend

to propagate through the re�nement hierarchy both upwards and downwards and other

layers have to be adapted to cope (denoted by the fat arrow in the �gure).

There is a �ne balance between the possibility to satisfy the contract of an interface

at all and to make its use feasible and one can never get it right in the �rst place. Once

the general decomposition of a system has been worked out the task of �ne tuning and

aligning all of the di�erent parts becomes the dominating development e�ort.

The major source of changes stems from error handling strategies and dealing properly

with power cuts. We estimate that between one third and half of the e�ort of the project

can be related to just these two aspects.

Here the elaborate dependency management provided by the KIV system (see e.g. [130])

was of invaluable help: Proofs are cached in binary format so that it is possible to track

which changes invalidate which proofs, or vice-versa, which proofs are una�ected by a

particular change. Moreover, revalidating proofs is done on-demand, which admits refac-

toring speci�cations without the immediate need to reconsider large parts of the veri�ca-

tion. KIV supports to replay previous proof attempts in order to reuse parts of the veri�-

cation after a change or even in a di�erent part of the development. In the course of this

project, the procedure has been automated further, for instance checking and revalidating

a whole subcomponent is just a single click now. Nevertheless, improved tool support for

incremental refactoring of models is something we could bene�t from in the future.

We note in this context that proof automation is not the limiting factor. The provers

that exist today are certainly capable of dealing with the veri�cation of large scale software

systems. In our opinion, providing the right abstraction capabilities and streamlining the

development work�ow are much more important aspects.

13.4. Lessons Learned 163

First-Class Support for Modeling Concepts

The re�nement theory and approach to power cuts developed in this thesis provides ex-

plicit modeling constructs for machines, submachines, operations with preconditions, crash

speci�cations and recovery. As already discussed, these concepts could have been encoded

in some form or the other (Section 4.6.3, Section 11.7.1). However, we are convinced that

such encodings obscure the intentions (cf. the observation about control state ASMs in [28,

Section 3.1]), and impede maintenance of the models.

Furthermore, proofs that can be carried out at the semantic level such as the compo-

sitionality in Section 5.3 or the reduction in Section 11.6 are harder or not possible with

such encodings.

With respect to tool support, we have added data type like machines including their

crash predicates and recovery as a speci�cation mechanism to the KIV theorem prover. As

a consequence, the proof obligations for forward simulation (Theorem 5.4), crash recov-

ery (Lemma 11.16), and crash neutrality (Theorem 11.22) are generated automatically and

adjusted whenever the models change. This lead to a signi�cant boost in productivity.

Chapter 14

Conclusions and Outlook

Conclusions

Flashix is the �rst �le system for �ash memory that is proven functionally correct and

both power cut safe. This thesis contributes a large part to its development, both on the

theoretical side as well as the practical side.

The success of the project is based on 1) the incremental and modular approach that

seamlessly integrates the veri�cation of functional correctness as well as crash tolerance

and 2) �nding the right levels of abstraction at which �le system concepts are modeled.

Development of veri�ed software is an exercise in design, much more so than develop-

ment of unveri�ed software. It depends on the right choice of abstractions, modules and

data structures whether veri�cation is feasible at all. Complexity arises most in the inter-
action between di�erent parts of the system. Local changes tend to have global impact.

Outlook

Currently, Flashix is not en par with the performance of existing �le systems. The reason

is not that its internal strategies and data structures are ine�cient. Instead, it lacks two

features that let the �le system appear to be much faster:

Write-back caching is a technique to defer writing data to �ash memory. Instead, writes

are cached in main memory of time and �ushed to the storage medium asynchronously (in

the background). As a consequence, the latency of operations as it is visible to the user of

a �le system shrinks dramatically. From the perspective of formal veri�cation, write-back

caching is problematic when power cuts are considered. Even specifying what the correct

behavior of a �le system should be is unclear, initial approaches in e.g. [32] are based on

rewriting the history of the whole system.

Concurrency of internal operations is a prerequisite to o�oad work into background

operations. Extending the veri�cation to a concurrent setting is a signi�cant undertak-

ing, in particular when the top-level operations should be thread-safe. At the same time,

there are research opportunities to make concurrency veri�cation scale to large scale sys-

tems. We have already taken care to make the semantics in this thesis compatible with the

temporal logic RGITL [145] supported by KIV.

A major concern for the integration of new features such as write-back caches and

concurrency is how much of the existing veri�cation can be reused. The focus therefore

shifts from the incremental development of one re�nement hierarchy towards extending

a given development.

Bibliography

[1] Intel �ash �le system core reference guide, version 1. Technical Report 304436001, Intel

Corporation, 2004.

[2] Open NAND Flash Interface Speci�cation. Intel Corporation et al., 2013. URL http://www.

onfi.org/specifications.

[3] The Open Group Base Speci�cations Issue 7, IEEE Std 1003.1, 2013 Edition. The IEEE and

The Open Group, 2013. URL http://pubs.opengroup.org/onlinepubs/9699919799/.

[4] OMG Uni�ed Modeling Language
TM

, Version 2.5. The Object Management Group (OMG),

2015. URL http://www.omg.org/spec/UML/.

[5] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[6] J.-R. Abrial. Modeling in Event-B: system and software engineering. Cambridge University

Press, 2010.

[7] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin: an open

toolset for modelling and reasoning in Event-B. Software Tools for Technology Transfer
(STTT), 12(6):447–466, 2010.

[8] S. Amani and T. Murray. Specifying a realistic �le system. In Proc. of the Workshop on Models
for Formal Analysis of Real Systems, pages 1–9, 2015.

[9] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor, J. Beeren, Y. Nagashima,

J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray, G. Klein, and G. Heiserer. Cogent: Verifying

high-assurance �le system implementations. In Proc. of Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 175–188. ACM, 2016.

[10] K. Arkoudas, K. Zee, V. Kuncak, and M. C. Rinard. Verifying a �le system implementation.

In Proc. of the International Conference on Formal Engineering Methods (ICFEM), volume 3308

of LNCS, pages 373–390. Springer, 2004.

[11] M. Nicolosi Asmundo. Consistent composition of Abstract State Machine models. PhD thesis,

University of Catania, Italy, 2002.

[12] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses, D. Sannella, and A. Tar-

lecki. CASL: the common algebraic speci�cation language. Theoretical Computer Science
(TCS), 286(2):153–196, 2002.

[13] R.-J. Back. Correctness preserving program re�nements: proof theory and applications, volume

131 ofMathematical Center Tracts. Mathematical Centre, Amsterdam, The Netherlands, 1980.

[14] R.-J. Back and J. von Wright. Trace re�nement of action systems. In Proc. of Concurrency
Theory (CONCUR), volume 836 of LNCS, pages 367–384. Springer, 1994.

[15] J. Barnes, R. Chapman, R. Johnson, J. Widmaier, D. Cooper, and B. Everett. Engineering

the Tokeneer enclave protection software. In Proc. of the International Symposium on Secure
Software Engineering (ESSoS). IEEE, 2006.

[16] C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Formal veri�cation of a microkernel

used in dependable software systems. In Proc. of Computer Safety, Reliability, and Security
(SAFECOMP), volume 5775 of LNCS, pages 187–200. Springer, 2009.

[17] C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Lessons learned from microkernel

veri�cation–speci�cation is the new bottleneck. In Proc. of Software and Systems Modeling

http://www.onfi.org/specifications
http://www.onfi.org/specifications
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.omg.org/spec/UML/

168 Bibliography

(SSV), volume 102 of EPTCS, pages 18–32. Elsevier, 2012.

[18] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. Acta
Informatica, 1(3):173–189, 1972.

[19] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A successful application of B

in a large project. In Proc. of Formal Methods (FM), volume 1708 of LNCS, pages 369–387.

Springer, 1999.

[20] Y. Bertot and P. Castéran. Coq’Art: Interactive theorem proving and program development.
Springer, 2004.

[21] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak, and X. Wang. Specifying and

checking �le system crash-consistency models. In Proc. of Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 83–98. ACM, 2016.

[22] S. Brookes. Full abstraction for a shared variable parallel language. In Proc. of Logic in
Computer Science (LICS), pages 98–109. IEEE, 1993.

[23] R. Bubel, C. C. Din, R. Hähnle, and K. Nakata. A Dynamic Logic with traces and coinduction.

In Proc. of Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX),
volume 9323 of LNCS, pages 307–322. Springer, 2015.

[24] R. Burstall. Some techniques for proving correctness of programs which alter data structures.

Machine Intelligence, (7):23–50, 1972.

[25] A. Butter�eld and A. Ó. Catháin. Concurrent models of �ash memory device behaviour. In

Proc. of the Brazilian Symposium on Formal Methods (SBMF), volume 5902 of LNCS, pages

70–83. Springer, 2009.

[26] A. Butter�eld, L. Freitas, and J. Woodcock. Mechanising a formal model of �ash memory.

Science of Computer Programming (SCP), 74(4):219–237, 2009.

[27] E. Börger. The ASM re�nement method. Formal Aspects of Computing (FAC), 15(2):237–257,

2003.

[28] E. Börger and J. Schmid. Composition and submachine concepts for sequential ASMs. In

Proc. of Computer Science Logic (CSL), volume 1862 of LNCS, pages 41–60. Springer, 2000.

[29] E. Börger and R. F. Stärk. Abstract State Machines—A method for high-level system design and
analysis. Springer, 2003.

[30] E. Börger, A. Cisternino, and V. Gervasi. Ambient Abstract State Machines with applications.

Journal of Computer and System Sciences (JCSS), 78(3):939–959, 2012.

[31] A. Cau and B. Moszkowski. ITL—Interval Temporal Logic. Software Technology Re-

search Laboratory, De Montfort University, Leicester, England, 2015. URL http://www.

antonio-cau.co.uk/ITL/.

[32] H. Chen. Certifying a crash-safe �le system. PhD thesis, Massachusetts Institute of Technol-

ogy, Cambridge, MA, United States, 2016.

[33] H. Chen, D. Ziegler, A. Chlipala, M. F. Kaashoek, E. Kohler, and N. Zeldovich. Specifying

crash safety for storage systems. In Proc. of the Workshop on Hot Topics in Operating Systems
(HotOS). USENIX Association, 2015.

[34] H. Chen, D. Ziegler, A. Chlipala, N. Zeldovich, and M. F. Kaashoek. Using Crash Hoare Logic

for certifying the FSCQ �le system. In Proc. of the Symposium on Operating Systems Principles
(SOSP). ACM, 2015.

[35] S. Cheng, J. Woodcock, and D. D’Souza. Using formal reasoning on a model of tasks for

FreeRTOS. Formal Aspecpts of Computing (FAC), 27(1):167–192, 2014.

[36] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and

S. Tobies. VCC: A practical system for verifying concurrent C. In Proc. of Theorem Proving
in Higher Order Logics (TPHOLs), volume 5674 of LNCS, pages 23–42. Springer, 2009.

[37] R. Cox, M. F. Kaashoek, and R. T. Morris. Xv6, a simple Unix-like teaching operating system,

2014. URL http://pdos.csail.mit.edu/6.828/2014/xv6.html.

http://www.antonio-cau.co.uk/ITL/
http://www.antonio-cau.co.uk/ITL/
http://pdos.csail.mit.edu/6.828/2014/xv6.html

Bibliography 169

[38] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. Steps in modular speci�cations for

concurrent modules. In Proc. of Mathematical Foundations of Programming Semantics (MFPS),
pages 3–18. Elsevier, 2015. Invited Tutorial Paper.

[39] K. Damchoom and M. Butler. Applying event and machine decomposition to a �ash-based

�lestore in Event-B. In Proc. of the Brazilian Symposium on Formal Methods (SBMF), volume

5902 of LNCS, pages 134–152. Springer, 2009.

[40] K. Damchoom, M. Butler, and J.-R. Abrial. Modelling and proof of a tree-structured �le

system in Event-B and Rodin. In Proc. of the International Conference on Formal Engineering
Methods (ICFEM), volume 5256 of LNCS, pages 25–44. Springer, 2008.

[41] W.-P. de Roever and K. Engelhardt. Data re�nement: model-oriented proof methods and their
comparison. Cambridge University Press, 1998.

[42] J. Derrick and E. Boiten. Re�nement in Z and Object-Z. Springer, 2001.

[43] V. Diekert and G. Rozenberg. The Book of Traces. World Scienti�c, 1995.

[44] E. W. Dijkstra. A constructive approach to the problem of program correctness. BIT Numer-
ical Mathematics, 8(3):174–186, 1968.

[45] T. Dinsdale-Young, L. Birkedaland P. Gardner, M. Parkinson, and H. Yang. Views: composi-

tional reasoning for concurrent programs. In Proc. of Principles of Programming Languages
(POPL), pages 287–300. ACM, 2013.

[46] S. Divakaran, D. D’Souza, A. Kushwah, P. Sampath, N. Sridhar, and J. Woodcock. Re�nement-

based veri�cation of the FreeRTOS scheduler in VCC. In Proc. of the International Conference
on Formal EngineeringMethods (ICFEM), volume 9407 of LNCS, pages 170–186. Springer, 2015.

[47] S. Divakaran, D. D’Souza, P. Sampath, N. Sridhar, and J. Woodcock. A theory of re�nement

for ADTs with functional interfaces. Technical Report 2015-04, Indian Institute of Science,

Bangalore, India, 2015.

[48] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann,

J. Beekman, M. Payer, and V. Paxson. The matter of Heartbleed. In Proc. of the Internet
Measurement Conference (IMC), pages 475–488. ACM, 2014.

[49] G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, A. Schierl, and W. Reif. Flashix web pre-

sentation and models. Institute of Software and Systems Engineering, Augsburg University,

Germany, 2009–2016. URL http://isse.de/flashix.

[50] G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. A formal model of a Virtual

Filesystem Switch. In Proc. of Software and Systems Modeling (SSV), volume 102 of EPTCS,

pages 33–45. Elsevier, 2012.

[51] G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. Veri�cation of a Virtual Filesys-

tem Switch. In Proc. of Veri�ed Software: Theories, Tools, Experiments (VSTTE), volume 8164

of LNCS, pages 242–261. Springer, 2013.

[52] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular re�nement for submachines of

ASMs. In Proc. of Alloy, ASM, B, TLA, VDM, and Z (ABZ), volume 8477 of LNCS, pages 188–

203. Springer, 2014.

[53] G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV—Overview and VerifyThis

competition. Software Tools for Technology Transfer (STTT), 17(6):677–694, 2015.

[54] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a veri�ed �ash �le system: transac-

tions & garbage collection. In Proc. of Veri�ed Software: Theories, Tools, Experiments (VSTTE),
volume 9593 of LNCS, pages 73–93. Springer, 2015.

[55] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular, crash-safe re�nement for ASMs

with submachines. Science of Computer Programming (SCP), 2016. In Print.

[56] R. Farahbod, V. Gervasi, and U. Glässer. CoreASM: An extensible ASM execution engine.

Fundamenta Informaticae, 77(1-2):71–104, 2007.

[57] M. A. Ferreira, S. S. Silva, and J. N. Oliveira. Verifying Intel �ash �le system core speci�cation.

In Proc. of the VDM/Overture Workshop, pages 54–71, England, 2008. University of Newcastle

http://isse.de/flashix

170 Bibliography

upon Tyne.

[58] I. Filipović, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.

Theoretical Computer Science (TCS), 411(51-52):4379 – 4398, 2010.

[59] R. W. Floyd. Assigning meanings to programs. Mathematical Aspects of Computer Science,
19(19-32):1, 1967.

[60] L. Freitas, J. Woodcock, and A. Butter�eld. POSIX and the Veri�cation Grand Challenge: A

roadmap. In Proc. of the International Conference on Engineering Complex Computer Systems
(ICECCS), pages 153–162. IEEE, 2008.

[61] L. Freitas, J. Woodcock, and Z. Fu. POSIX �le store in Z/Eves: An experiment in the veri�ed

software repository. Science of Computer Programming (SCP), 74(4):238–257, 2009.

[62] J. C. Freytag, F. Cristian, and B. Kähler. Masking System Crashes in Database Application

Programs. In Proc. of Very Large Data Bases (VLDB), pages 407–416. ACM, 1987.

[63] A. Galloway, G. Lüttgen, J. T. Mühlberg, and R. I. Siminiceanu. Model-Checking the Linux

Virtual File System. In Proc. of Veri�cation, Model Checking, and Abstract Interpretation (VM-
CAI), volume 5403 of LNCS, pages 74–88. Springer, 2009.

[64] P. H. B. Gardiner and C. Morgan. A single complete rule for data re�nement. Formal Aspects
of Computing (FAC), 5(4):367–382, 1993.

[65] P. Gardner, G. Ntzik, and A. Wright. Local reasoning for the POSIX �le system. In Proc.
of the European Symposium on Programming (ESOP), volume 8410 of LNCS, pages 169–188.

Springer, 2014.

[66] A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based language and a simula-

tion engine for Abstract State Machines. Journal of Universal Computer Science (J.UCS), 14

(12):1949–1983, 2008.

[67] G. Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39(2),

1934.

[68] G. Gentzen. Untersuchungen über das logische Schließen II. Mathematische Zeitschrift, 39

(3), 1935.

[69] T. Gleixner, F. Haverkamp, and A. Bityutskiy. UBI—Unsorted Block Images, 2006. URL

http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf.

[70] S. Glesner. A proof calculus for natural semantics based on greatest �xed point semantics.

In Proc. of Compiler Optimization meets Compiler Veri�cation (COCV), volume 132 of EPTCS,

pages 73–93. Elsevier, 2005.

[71] A. Groce, G. Holzmann, R. Joshi, and R-G. Xu. Putting �ight software through the paces with

testing, model checking, and constraint-solving. In Proc. of Constraints in Formal Veri�cation
(CFV), 2008.

[72] Y. Gurevich. Evolving algebras 1993: Lipari guide. In Speci�cation and Validation Methods,
pages 9–36. Oxford University Press, 1995.

[73] Y. Gurevich. Sequential abstract-state machines capture sequential algorithms. ACM Trans-
actions on Computational Logic (TOCL), 1(1):77–111, 2000.

[74] D. Harel, J. Tiuryn, and D. Kozen. Dynamic Logic. MIT Press, 2000.

[75] J. Hatcli�, G. T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew Parkinson. Behav-

ioral interface speci�cation languages. ACM Computing Surveys, 44(3):16:1–16:58, 2012.

[76] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. Setty, and

B. Zill. IronFleet: proving practical distributed systems correct. In Proc. of the Symposium on
Operating Systems Principles (SOSP), pages 1–17. ACM, 2015.

[77] J. He, C. A. R. Hoare, and J. W. Sanders. Data re�nement re�ned. In Proc. of the European
Symposium on Programming (ESOP), pages 187–196. Springer, 1986.

[78] M. Heisel. Speci�cation of the UNIX �le system: A comparative case study. In Proc. of
Algebraic Methodology and Software Technology (AMAST), volume 936 of LNCS, pages 475–

http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

Bibliography 171

488. Springer, 1995.

[79] M. Heisel, W. Reif, and W. Stephan. A dynamic logic for program veri�cation. In Proc. of Log-
ical Foundations of Computer Science (LFCS), volume 363 of LNCS, pages 134–145. Springer,

1989.

[80] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[81] W. H. Hesselink and M. I. Lali. Formalizing a hierarchical �le system. Formal Aspects of
Computing (FAC), 24(1):27–44, 2012.

[82] C. A. R Hoare. An axiomatic basis for computer programming. Communications of the ACM,

12(10):576–580, 1969.

[83] C. A. R. Hoare. Proof of correctness of data representation. Acta Informatica, 1(4):271–281,

1972.

[84] C. A. R. Hoare. The verifying compiler: A grand challenge for computing research. Journal
of the ACM, 50(1):63–69, 2003.

[85] C. A. R Hoare. Compensable Transactions. volume 9 of NATO Security through Science Series
- D: Information and Communication Security, pages 116–134. IOS Press, 2007.

[86] C. A. R Hoare et al. Communicating Sequential Processes. Prentice Hall, 1985.

[87] M. Huisman and J. Jacobs. Java program veri�cation via a hoare logic with abrupt termi-

nation. In Proc. of Fundamental Approaches to Software Engineering (FASE), pages 284–303.

Springer, 2000.

[88] A. Hunter. A brief introduction to the design of UBIFS, 2008. URL http://www.linux-mtd.

infradead.org/doc/ubifs_whitepaper.pdf.

[89] B. Jacobs and J. Rutten. A tutorial on (co) algebras and (co) induction. Bulletin—European
Association for Theoretical Computer Science (EATCS), 62:222–259, 1997.

[90] C. Jones and J. Woodcock. Editorial to the mondex special Issue. Formal Aspecpts of Com-
puting (FAC), 20(1):1–3, 2008.

[91] R. Joshi and G. J. Holzmann. A mini challenge: build a veri�able �lesystem. Formal Aspects
of Computing (FAC), 19(2):269–272, 2007.

[92] E. Kang and D. Jackson. Formal modelling and analysis of a �ash �lesystem in Alloy. In Proc.
of Abstract State Machines, B, and Z (ABZ), volume 5238 of LNCS, pages 294–308. Springer,

2008.

[93] G. Keller, T. Murray, S. Amani, L. O’Connor, Z. Chen, L. Ryzhyk, G. Klein, and G. Heiser. File

systems deserve veri�cation too! ACM Operating Systems Review, 48(1):58–64, 2014.

[94] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K. Engel-

hardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal veri�cation

of an operating-system kernel. Communications of the ACM, 53(6):107–115, 2010.

[95] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and G. Heiser. Com-

prehensive formal veri�cation of an OS microkernel. Transactions on Computer Systems
(TOCS), 32(1):1–70, 2014.

[96] E. Koskinen and J. Yang. Reducing crash recoverability to reachability. In Proc. of Principles
of Programming Languages (POPL), pages 97–108. ACM, 2016.

[97] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: A veri�ed implementation

of ML. ACM SIGPLAN Notices, 49(1):179–191, 2014.

[98] M. I. Lali. File system formalization: revisited. International Journal of Advanced Computer
Science, 3(12):602–606, 2013.

[99] L. Lamport. Specifying systems: the TLA+ language and tools for hardware and software en-
gineers. Addison-Wesley, 2002.

[100] X. Leroy. Formal veri�cation of a realistic compiler. Communications of the ACM, 52(7):

107–115, 2009.

http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

172 Bibliography

[101] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

[102] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu. A Study of Linux �le system

evolution. ACM Transactions on Storage (TOS), 10(1):3:1–3:32, 2014.

[103] N. Lynch and F. Vaandrager. Forward and Backward Simulations – Part I: Untimed systems.

Information and Computation, 121(2):214–233, 1995.

[104] O. Marić and C. Sprenger. Veri�cation of a transactional memory manager under hardware

failures and restarts. In Proc. of Formal Methods (FM), volume 8442 of LNCS, pages 449–464.

Springer, 2014.

[105] J. Mauro and R. McDougall. Solaris internals: core kernel components. Prentice Hall, 2001.

[106] A. A. McEwan and J. Woodcock. Unifying theories of interrupts. In Proc. of Unifying Theories
of Programming (UTP), volume 5713 of LNCS, pages 122–141. Springer, 2010.

[107] B. Meyer. Applying ‘design by contract’. Computer, 25(10):40–51, 1992.

[108] C. Morgan and B. Sufrin. Speci�cation of the UNIX �ling system. Transactions on Software
Engineering, 2:128–142, 1984.

[109] W. Mostowski. A case study in formal veri�cation using multiple explicit heaps. In Proc.
of Formal Techniques for Distributed Systems (FORTE), volume 7892 of LNCS, pages 20–34.

Springer, 2013.

[110] B. Moszkowski. Reasoning about digital circuits. PhD thesis, Stanford University, CA, United

States, 1983.

[111] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem: reusable engineering of

real-world semantics. ACM SIGPLAN Notices, 49(9):175–188, 2014.

[112] J. T. Mühlberg and G. Lüttgen. Verifying compiled �le system code. Formal Aspecpts of
Computing (FAC), 24(3):375–391, 2012.

[113] M. Najafzadeh. The analysis and co-design of weakly-consistent applications. PhD thesis,

Université Pierre et Marie Curie, France, 2016.

[114] M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro. The CISE tool: proving

weakly-consistent applications correct. In Proc. of Principles and Practice of Consistency for
Distributed Data (PaPoC). ACM, 2016.

[115] K. Nakata and T. Uustalu. Trace-Based coinductive operational semantics for While. In Proc.
of Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of LNCS, pages 375–390.

Springer, 2009.

[116] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the veri�cation of heap-manipulating

programs. ACM SIGPLAN Notices, 45(1):261–274, 2010.

[117] M. Nicolosi Asmundo and E. Riccobene. Consistent integration for sequential Abstract State

Machines. In Proc. of Abstract State Machines, Advances in Theory and Practice (ASM), volume

2589 of LNCS, pages 324–340. Springer, 2003.

[118] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains, part i.

Theoretical Computer Science (TCS), 13(1):85–108, 1981.

[119] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-order logic.
Springer, 2002.

[120] G. Ntzik, P. da Rocha Pinto, and P. Gardner. Fault-tolerant resource reasoning. In Proc. of the
Asian Symposium on Programming Languages and Systems (APLAS), volume 9458 of LNCS,

pages 169–188. Springer, 2015.

[121] L. O’Connor-Davis, G. Keller, S. Amani, T. Murray, G. Klein, Z. Chen, and C. Rizkallah. CDSL

version 1: Simplifying veri�cation with linear types. Technical report, NICTA, Sydney, Aus-

tralia, 2014.

[122] J. N. Oliveira and M. A. Ferreira. Alloy meets the algebra of programming: A case study.

IEEE Transactions on Software Engineering, 39(3):305–326, 2013.

Bibliography 173

[123] J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Formal speci�cation of an erase

block management layer for �ash memory. In Proc. of Hardware and Software: Veri�cation
and Testing (HVC), volume 8244 of LNCS, pages 214–229. Springer, 2013.

[124] J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Crash-safe re�nement for a

veri�ed �ash �le system. Technical Report 2014-02, University of Augsburg, Germany, 2014.

[125] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Crash consistency. Communications of the ACM, 58(10):46–51, 2015.

[126] M.-L. Potet and Y. Rouzaud. Composition and re�nement in the B-method. In Proc. of the B
Conference, volume 1393 of LNCS, pages 46–65. Springer, 1998.

[127] V. R. Pratt. Semantical consideration on Floyd-Hoare logic. In Proc. of the Symposium on
Foundations of Computer Science (SFCS), pages 109–121. IEEE, 1976.

[128] V. R. Pratt. The pomset model of parallel processes: Unifying the temporal and the spatial. In

Proc. of Concurrency Theory (CONCUR), volume 197 of LNCS, pages 180–196. Springer, 1984.

[129] G. Reeves and T. Neilson. The Mars Rover Spirit FLASH anomaly. In Proc. of the Aerospace
Conference, pages 4186–4199. IEEE, 2005.

[130] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured speci�cations and interactive

proofs with KIV. In Automated Deduction—A Basis for Applications, volume II, pages 13–39.

Kluwer, 1998.

[131] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. of Logic
in Computer Science (LICS), pages 55–74. IEEE, 2002.

[132] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and P. Sewell. SibylFS: formal

speci�cation and oracle-based testing for POSIX and real-world �le systems. In Proc. of the
Symposium on Operating Systems Principles (SOSP). ACM, 2015.

[133] C. Rizkallah. Veri�cation of program computations. PhD thesis, Saarland University, Germany,

2015.

[134] A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concurrency. Prentice

Hall, 1997.

[135] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured �le

system. ACM Transactions on Computer Systems (TOCS), 10(1):26–52, 1992.

[136] J. Rushby, S. Owre, and N. Shankar. Subtypes for speci�cations: predicate subtyping in PVS.

IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

[137] G. Schellhorn. Veri�cation of Abstract State Machines. PhD thesis, University of Ulm,

Germany, 1999. URL https://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/

staff/schellhorn/publications. English translation, original title Veri�kation Abstrakter
Zustandsmaschinen.

[138] G. Schellhorn. Veri�cation of ASM re�nements using generalized forward simulation. Jour-
nal of Universal Computer Science (J.UCS), 7(11):952–979, 2001.

[139] G. Schellhorn. ASM Re�nement and generalizations of forward simulation in data re�ne-

ment: a comparison. Journal of Theoretical Computer Science (TCS), 336(2–3):403–435, 2005.

[140] G. Schellhorn. ASM re�nement preserving invariants. Journal of Universal Computer Science
(J.UCS), 14(12):1929–1948, 2008.

[141] G. Schellhorn. Completeness of fair ASM re�nement. Science of Computer Programming
(SCP), 76(9):756–773, 2009.

[142] G. Schellhorn, K. Stenzel, D. Haneberg, W. Reif, B. Tofan, G. Ernst, and J. Pfähler. A prac-
tical course on KIV. Institute of Software and Systems Engineering, Augsburg University,

Germany. URL http://isse.de/kiv/documentation.pdf.

[143] G. Schellhorn, J. Derrick, and H. Wehrheim. A sound and complete proof technique for lin-

earizability of concurrent data structures. ACM Transactions on Computational Logic (TOCL),
15(4):31:1–31:37, 2014.

https://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/staff/schellhorn/publications
https://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/staff/schellhorn/publications
http://isse.de/kiv/documentation.pdf

174 Bibliography

[144] G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif. Development of a veri�ed �ash

�le system. In Proc. of Alloy, ASM, B, TLA, VDM, and Z (ABZ), volume 8477 of LNCS, pages

9–24. Springer, 2014. Invited Paper.

[145] G. Schellhorn, B. Tofan, G. Ernst, J. Pfähler, and W. Reif. RGITL: A temporal logic frame-

work for compositional reasoning about interleaved programs. Annals of Mathematics and
Arti�cial Intelligence (AMAI), 71:1–44, 2014.

[146] G. Schellhorn, G. Ernst, J. Pfähler, and W. Reif. A relational encoding for a clash-free subset

of ASMs. In Proc. of Alloy, ASM, B, TLA, VDM, and Z (ABZ), volume 9675 of LNCS, pages

237–243. Springer, 2016.

[147] A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif. Abstract speci�cation of the UBIFS

�le system for �ash memory. In Proc. of Formal Methods (FM), volume 5850 of LNCS, pages

190–206. Springer, 2009.

[148] M. Sivathanu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Jha. A Logic of File Sys-

tems. In Proc. of File and Storage Technologies (FAST). USENIX Association, 2005.

[149] R. F. Stärk and S. Nanchen. A complete logic for Abstract State Machines. Journal of Universal
Computer Science (J.UCS), 7(11):981–1006, 2001.

[150] A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c Journal of
Mathematics, 5:285–309, 1955.

[151] P. Taverne and C. Pronk. RAFFS: Model checking a Robust Abstract Flash File Store. In

Proc. of the International Conference on Formal Engineering Methods (ICFEM), volume 5885 of

LNCS, pages 226–245. Springer, 2009.

[152] B. Tofan. Compositional Concurrent Program Veri�cation with RGITL. PhD thesis, Augsburg

University, Germany, 2014.

[153] H-W. Tseng, L. Grupp, and S. Swanson. Understanding the impact of power loss on �ash

memory. In Proc. of the Design Automation Conference (DAC), pages 35–40. ACM, 2011.

[154] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. ACM SIGPLAN Notices,
42(1):97–108, 2007.

[155] S. Wang. Certifying checksum-based logging in the RapidFSCQ crash-safe �lesystem. Mas-

ter’s thesis, Massachusetts Institute of Technology, Cambridge, MA, United States, 2016.

[156] D. A. Wheeler. How to prevent the next Heartbleed, 2015. URL http://www.dwheeler.com/

essays/heartbleed.html.

[157] N. Wirth. Program development by stepwise re�nement. Communications of the ACM, 14

(4):221–227, 1971.

[158] J. Woodcock. The veri�ed software repository. Marktoberdorf Summer School Lecture

Notes, 2008.

[159] J. Woodcock and J. Davies. Using Z: Speci�cation, Proof and Re�nement. Prentice Hall, 1996.

[160] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal Methods: Practice and

Experience. ACM Computing Surveys, 41(4):1–36, 2009.

[161] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking to �nd serious

�le system errors. In Proc. of Operating Systems Design and Implementation (OSDI), pages

273–288. USENIX Association, 2004.

[162] S. Zenzaro. Onmodularity in Abstract State Machines. PhD thesis, Pisa University, Italy, 2016.

[163] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge. Understanding the robustness of SSDs un-

der power fault. In Proc. of File and Storage Technologies (FAST), pages 271–284. USENIX

Association, 2013.

http://www.dwheeler.com/essays/heartbleed.html
http://www.dwheeler.com/essays/heartbleed.html

Appendix A

Model Summary

This appendix gives a summary of the formal models in terms of their interfaces, the con-

cepts addressed, and their internal state.

AFS

POSIX requirements

VFS

AFS + recovery

index abstract journal

transact. journal

persistence interface

B+ tree

Flash independent
concepts and models

High-level concepts
of flash file systems

Flash file system

mapping/WL

logical blocks

driver spec.

write buffer

encoding abstract blocks

IO interface

encoding

erase block-
management

transition
to bytes

Legend:

Implementation

Specification Interface

Refinement

POSIX

Chapter 7

State

t : Tree
fs : Fid 7→ FileData

oh : Nat 7→ Handle

Concepts

• paths, �le handles

• �les, directories

• hard links, orphans

• access permissions

Interface

posix_create(path,md; err)
posix_link(from, to; err)
posix_unlink(path; err)
posix_rename(from, to; err)
posix_mkdir(path,md; err)
posix_rmdir(path; err)
posix_readmeta(path;md, err)
posix_writemeta(path,md; err)
posix_readdir(path; names, err)
posix_open(path,mode; fd, err)
posix_close(fd; err)
posix_read(fd; buf , len, err)
posix_write(fd, buf ; len, err)
posix_truncate(path; len, err)

176 Appendix A. Model Summary

Virtual File System (VFS)

Chapter 8

State

oh : Nat 7→ Handle

Concepts

• generic vs. �ash speci�c aspects

• stepwise path lookup

• pagewise read/write

Interface

see POSIX

Internal

vfs_walk(path; ino, err)
vfs_putino(ino)
vfs_may_*(ino; inode, dent, · · · , err)

Abstract File System (AFS)

Chapter 8

State

dirs : Ino 7→ Dir

�les : Ino 7→ File

Concepts

• �les, directories, pages

• hard links, orphans

• bookkeeping of sizes and counters

Interface

afs_lookup(ino; dent, err)
afs_iget(ino; inode, err)
afs_create(md; inode, dent, err)
afs_link(dent; pinode, cinode, dent′, err)
afs_unlink(; inode, dent, err)
afs_rename(; pinode; cinode, dent,

pinode′, cinode′, dent′, err)
afs_mkdir(md; inode, dent, err)
afs_rmdir(; inode, dent, err)
afs_write_inode(; inode, err)
afs_readdir(inode; names, err)
afs_readpage(inode; page, err)
afs_writepage(inode, page; err)
afs_truncate(inode; len, err)
afs_evict(ino)

Appendix A. Model Summary 177

Flash File System Core (FFS)

Chapter 9

State

ro : Set〈Key〉

Concepts

• out-of-place updates

• garbage collection

• logging, crashes, recovery

Interface

see AFS

Internal

fs_commit(; err)
fs_recover()
fs_garbage_collect()

Journal Speci�cation

Chapter 9

State

fs : Address 7→ Node

log : List〈Address〉
fo : Set〈Key〉

Interface

jnl_get(adr; nd, err)
jnl_appendn(nd1, .., ndn; adr1, .., adrn, err)

Index Speci�cation

Chapter 9

State

ri,� : Key 7→ Address

Interface

idx_lookup(key; adr, exists)
idx_store(key, adr)
idx_remove(key)
idx_dentries(key; keys)
idx_trunc(key, n)
idx_newino(; key)

	Introduction
	Software Development and Formal Methods
	File Systems and the POSIX Standard
	Flash Memory
	Research Challenges
	Approach and Methodology
	Contributions of this Thesis

	The Flashix File System
	High-Level Description
	From Paths to Bytes
	POSIX—The Specification
	VFS + AFS: Generic Concepts
	Flash Specific Concepts
	Transactional Journal
	B+ Tree Index
	Persistence Layer
	Erase Block Management and Hardware Model

	The Verification Perspective
	Assumptions
	Guarantees

	The Practical Perspective
	Integration, Running Code, and Validation
	Performance

	Summary of Related Work
	Existing Flash File Systems
	Formal Approaches

	Background
	Algebraic Specifications
	Abstract State Machines
	Sequent Calculus
	Refinement of State-Based Systems
	Separation Logic
	The Verification System KIV

	Hierarchical Components
	Semantics of Programs
	Data-Type like Abstract State Machines
	Submachine Composition
	Calculus
	Extracting Submachine Runs
	Related Work
	Trace Semantics
	Reactive Systems
	Abstract State Machines
	B and Event-B

	Modular Refinement
	Trace Refinement
	Forward simulation
	Submachine Refinement
	Related Work
	Data Refinement
	ASM Refinement
	Guards versus Preconditions

	Discussion and Outlook

	Models in Flashix
	POSIX Model
	State
	Path Lookup and Tree Modifications
	Operations
	Preconditions and Error Handling
	Invariants
	Orphans and Power Cuts
	Related Work

	Virtual File System
	Data Model and Abstract File System Interface
	State
	Structural Operations
	Deletion
	File Truncation
	Reading and Writing
	Invariants
	Verification
	Abstraction to POSIX
	Refinement Proofs

	Related Work

	Flash File System Internals
	General Strategy
	Specification of the Journal and the Index
	Regular Operations
	Commit and Recovery
	Garbage Collection
	Invariants
	Verification
	Abstraction to AFS
	Refinement Proofs

	Related Work

	Hardware Model
	State
	Operations
	Power Cuts
	Related Work

	Crash-Safe Refinement
	A Simple Model
	Atomicity of Crashes
	Crash-Aware Machines
	Submachines and Modularity
	General Proof Methods
	Breaking down Crash Refinement
	Temporal Logic Proofs
	Black Box Refinements

	Crash Neutrality and Reductions
	Related Work
	Modeling Power Cuts with Exceptions
	Separation Logic with Crash Conditions
	Model Checking
	Relation to Transactions
	Other Approaches

	Dealing with Power Cuts
	Summary and Technical Rundown
	High-Level Crash Recovery
	Recovery in the Flash File System
	Incremental Justification of Recovery
	Maintaining Orphaned Files
	Additional Invariants

	Related Work

	Summary and Discussion
	Theoretical Results
	Practical Results
	Statistics and Development Effort
	Lessons Learned

	Conclusions and Outlook
	Bibliography
	Model Summary

