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Dynamical mean-field theory for correlated electrons
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Electronic correlations strongly influence the properties of
matter. For example, they can induce a discontinuous tran-
sition from conducting to insulating behavior. In this paper
basic terms of the physics of correlated electrons are ex-
plained. In particular, I describe some of the steps that led
to the formulation of a comprehensive, non-perturbative
many-body approach to correlated quantum many-body
systems, the dynamical mean-field theory (DMFT). The
DMFT becomes exact in the limit of high lattice dimensions
(d →∞) and allows one to go beyond the investigation of
simple correlationmodels and thereby better understand,
and even predict, the properties of electronically correlated
materials.

1 Introduction

The average of a product of quantities usually differs
from the product of the averages of the individual quan-
tities: 〈AB〉 = 〈A〉〈B〉. The difference is, by definition, due
to correlations. Correlations are therefore effects which
go beyond the results obtained by factorization approxi-
mations such as Hartree-Fock theory.

Correlations are the essence of nature and also oc-
cur frequently in everyday life. Persons in an elevator or
in a car are strongly correlated both in space and time,
and it would be quite inadequate to describe the situa-
tion of a person in such a case within a factorization ap-
proximation where the influence of the other person(s)
is described by a static mean-field, i.e., by a structureless
cloud. For the same reason two electrons occupying the
same narrow d or f orbital (which must have opposite
spin due to Pauli’s exclusion principle) are also strongly
correlated since the effect of the Coulomb interaction be-
tween the electrons is enhanced by the spatial confine-

ment. This is the case for many elements in the periodic
table. Electrons therefore occupy narrow orbitals in nu-
merous materials with partially filled d and f electron
shells, such as the transition metals vanadium (V) and
nickel (Ni) and their oxides, or rare–earth metals such as
cerium (Ce).

The importance of interactions between electrons in
a solid had been realized already at the outset of mod-
ern solid state physics, after de Boer and Verwey [1] had
drawn attention to the surprising properties of materi-
als with incompletely filled 3d-bands, such as NiO. This
prompted Mott and Peierls [2] to conjecture that theoret-
ical explanations of these properties need to include the
electrostatic interaction between the electrons.

Correlation effects can cause profound quantitative
and qualitative changes of the physical properties of elec-
tronic systems compared to the non-interacting case. In
particular, the interplay between the spin, charge, and or-
bital degrees of freedom of the correlated d and f elec-
trons with the lattice degrees of freedom leads to a wealth
of correlation and ordering phenomena, which include
heavy fermion behavior [3], high temperature supercon-
ductivity [4], colossal magnetoresistance [5], Mott metal-
insulator transitions [6], and Fermi liquid instabilities [7].
Such properties make materials with correlated electrons
interesting not only for fundamental research but also
for future technological applications, e.g., for the con-
struction of tools such as sensors and switches and, more
generally, for the development of electronic devices with
novel functionalities [8].
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1.1 Modeling of interacting electrons

The simplest model for interacting electrons in a solid
is the one-band Hubbard model, which was introduced
independently by Gutzwiller, Hubbard und Kanamori
[9–11]. In this model the interaction between the elec-
trons is assumed to be purely local, i.e., very strongly
screened. The Hamiltonian consists of two terms, the ki-
netic energy Ĥkin and the interaction energy Ĥint (here
and in the following operators are denoted by a hat):

Ĥ =
∑

Ri ,R j

∑

σ
ti j ĉ+

iσĉ jσ+U
∑

Ri

n̂i↑n̂i↓ (1)

where ti j is the hopping amplitude, U is the local Hub-
bard interaction, ĉ+

iσ(ĉiσ) are creation (annihilation) op-
erators of electrons with spin σ at site Ri , and n̂iσ =
ĉ+

iσĉiσ. The Hubbard interaction can also be written as

U D̂ where D̂ = ∑
Ri D̂i , with D̂i = n̂i↑n̂i↓, is the num-

ber operator of doubly occupied sites of the system. The
Fourier transform of the kinetic energy

Ĥkin = ∑

k ,σ
εk n̂kσ (2)

involves the dispersion εk and the momentum distribu-
tion operator n̂kσ. A schematic picture of the Hubbard
model is shown in Fig. 1. A particular site of this lattice
model can either be empty, singly occupied or doubly
occupied. In particular, for strong repulsion U double
occupations are energetically unfavorable and are there-
fore suppressed. In this situation the local correlation
function 〈n̂i↑n̂i↓〉 must not be factorized since 〈n̂i↑n̂i↓〉 =
〈n̂i↑〉〈n̂i↓〉. Otherwise correlation phenomena are elimi-
nated from the start. Therefore Hartree-Fock-type mean-
field theories are insufficient to explain the physics of
electrons in the paramagnetic phase at strong interac-
tions.

The Hubbard model looks deceptively simple. How-
ever, the competition between the kinetic energy and the
interaction leads to a complicated many-body problem,
which is impossible to solve analytically, except in dimen-
sion d = 1 [12]. The Hubbard model provides the basis for
most of the theoretical research on correlated electrons
during the last decades.

2 Approximation schemes for correlated
electrons

Theoretical investigations of quantum-mechanical ma-
ny-body systems are faced with severe technical prob-
lems, particularly in those dimensions which are most

Figure 1 (online color at: www.ann-phys.org) Schematic illustra-
tion of interacting electrons in a solid in terms of the Hubbard
model. The ions appear only as a rigid lattice (here represented
as a square lattice). The electrons, which have a mass, a negative
charge, and a spin (↑ or ↓), are quantumparticles whichmove from
one lattice site to the next with a hopping amplitude t . The quan-
tum dynamics thus leads to fluctuations in the occupation of the
lattice sites as indicatedby the time sequence.When twoelectrons
meet on a lattice site (which is only possible if they have opposite
spin because of the Pauli exclusion principle) they encounter an
interactionU . A lattice site can either be unoccupied, singly occu-
pied (↑ or ↓), or doubly occupied.

interesting to us, i. e., d = 2,3. This is due to the com-
plicated dynamics and, in the case of fermions, the non-
trivial algebra introduced by the Pauli exclusion princi-
ple.

In view of the fundamental limitations of exact ana-
lytical approaches one might hope that, at least, mod-
ern supercomputers can provide detailed numerical in-
sights into the thermodynamic and spectral properties of
fermionic correlation models. However, since the num-
ber of quantum mechanical states increases exponen-
tially with the number of lattice sites L, numerically exact
solutions of the Hubbard model and related models are
limited to relatively small systems of the order of L ∼ 20.
This shows very clearly that there is a great need for ana-
lytically based non-perturbative approximation schemes
[13], which are applicable for all input parameters.

2.1 Mean-field theories

In the theory of classical and quantum many-body sys-
tems an overall description of the properties of a model
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is often obtained within a mean-field theory. Although
the term is frequently used it does not have a very pre-
cise meaning, since there exist several quite different
methods to derive mean-field theories. One construction
scheme is based on a factorization of the interaction, as
in the case of the Weiss mean-field theory for the Ising
model, or Hartree-Fock theory for electronic models. The
decoupling implies a neglect of fluctuations (or, rather, a
neglect of the correlation of fluctuations; for details see
[14]) and thereby reduces the original many-body prob-
lem to a solvable problem where a single spin or parti-
cle interacts with a mean field. Another, in general unre-
lated construction scheme makes use of the simplifica-
tions that occur when some parameter is assumed to be
large (in fact, infinite), e.g., the length of the spins S, the
spin degeneracy N , the number Z of nearest neighbors
of a lattice site (the coordination number), or the spatial
dimension d .1 Investigations in this limit, supplemented,
if possible, by an expansion in the inverse of the large
parameter2, often provide valuable insight into the fun-
damental properties of a system even when this parame-
ter is not large. One of the best-known mean-field theo-
ries obtained in this way is the Weiss mean-field theory
for the Ising model [15, 16]. This is a prototypical “single-
site mean-field theory”, which becomes exact not only in
the limit Z →∞ or d →∞, but also for an infinite-range
interaction. This mean-field theory contains no unphys-
ical singularities and is applicable for all values of the in-
put parameters, i.e., coupling parameters, magnetic field,
and temperature.

2.2 Gutzwiller-Brinkman-Rice theory

Another useful approximation scheme for interacting
quantum many-body systems makes use of variational
wave functions [17–23]. Starting from an appropriate
many-body trial wave function the energy expectation
value is calculated and minimized with respect to some
variational parameters. Although variational wave func-

1 For regular lattices both a dimension d and a coordination num-
ber Z can be defined. In this case d and Z can be used alterna-
tively as an expansion parameter. However, there exist other lat-
tices, such as the Bethe lattice, which cannot be associated with a
physical dimension d although a coordination number Z is well-
defined.

2 In three dimensions (d = 3) one has Z = 6 for a simple cubic
lattice, Z = 8 for a bcc lattice, and Z = 12 for an fcc-lattice. The
parameter 1/Z is therefore quite small already in d = 3.

tions usually yield only approximate results, they have
the advantage of being physically intuitive, and that they
can be custom tailored to a particular problem. Further-
more, they can be used even when standard perturbation
methods fail or are inapplicable.

For the analytic investigation of the model, Gutzwiller
[9] proposed a very simple variational wave function,
now referred to as “Gutzwiller wave function”. It intro-
duces correlations into the wave function for non-inter-
acting particles via a purely local correlation factor in real
space, which is constructed from the double occupation
operator D̂ as

|ΨG 〉 = g D̂ | FS〉 (3a)

=∏

Ri

[1− (1− g )D̂i ] | FS〉, (3b)

where | FS〉 is the wave function of the non-interacting
fermions (Fermi sea) and g is a variational parameter

with 0 ≤ g ≤ 1. The projector g D̂ globally reduces the
amplitude of those spin configurations in | FS〉 with too
many doubly occupied sites. The limit g = 1 describes
the non-interacting case, while g → 0 corresponds to
the strong-correlation limit. Gutzwiller introduced a fur-
ther approximation [24], referred to the “Gutzwiller ap-
proximation”, which allows one to calculate the corre-
sponding ground state energy. In this approach expecta-
tion values are calculated by counting the classical sta-
tistical weights of different spin configurations in the
non-interacting wave function. Therefore the Gutzwiller
approximation corresponds to a semi-classical approx-
imation where spatial correlations are neglected. Sub-
sequently Brinkman and Rice [25] observed that in the
case of a half-filled band the results of the Gutzwiller ap-
proximation describe a transition at a finite interaction
strength Uc to a localized state, where lattice sites are
singly occupied. This “Brinkman-Rice transition” there-
fore corresponds to a correlation induced (Mott) metal-
insulator transition. The results of the Gutzwiller approxi-
mation describe a correlated, normal-state fermionic sys-
tem at zero temperature, whose momentum distribution
has a discontinuity q at the Fermi level which is reduced
compared to the non-interacting case (q < 1), just as in
a Landau Fermi liquid. Brinkman and Rice [25] argued
that its inverse can be identified with the effective mass
of Landau quasiparticles, q−1 = m∗/m > 1, which di-
verges at a critical value of the interaction Uc . They also
extracted the Fermi liquid parameters F a

0 and F s
1 as well

as [26] F s
0 as a function of the Hubbard U , and found that

F s
0 > 0, implying a reduced compressibility, while F a

0 < 0,
leading to an enhanced spin susceptibility. In a review
article on superfluid 3He, Anderson and Brinkman [27]

                                           3



Re
vi
ew

Ar
tic
le

                                      

later noted that these theoretical results resemble the ex-
perimentally measured properties of normal liquid 3He.
Thus they argued that the properties of 3He are deter-
mined by the incipient localization of the particles at
the liquid-solid transition, i.e., that 3He is “almost local-
ized” rather than “almost ferromagnetic” as concluded
within paramagnon theory [28]; similar conclusions were
reached by Castaing and Nozières [29].

2.3 From the Gutzwiller approximation to infinite spatial
dimensions

At this point I will briefly digress to describe how this
observation by Anderson and Brinkman [27] led me to
the investigation of correlated fermions. In 1982 I was a
postdoc of Peter Wölfle at the Max-Planck Institute for
Physics and Astrophysics, the Heisenberg Institute, in
Munich. For the past three years I had enjoyed a won-
derful and highly productive collaboration with Peter, es-
pecially on Anderson localization in disordered systems
and spin relaxation in normal liquid 3He. I was now look-
ing for a new research topic for my habilitation thesis.
During that time Bill Brinkman from Bell Laboratories
visited the Technical University of Munich and met with
Peter Wölfle. They also discussed about the Brinkman-
Rice transition for the Hubbard lattice model and its pos-
sible connection with normal liquid 3He. Peter told me
about the discussion and suggested to me to study this
topic more deeply. He got me interested immediately. I
analyzed the quasiclassical counting of electronic spin
configurations underlying the Gutzwiller approximation,
worked out a connection with Fermi liquid theory, and
showed that the Gutzwiller-Brinkman-Rice theory was
not only in qualitative but even in good quantitative
agreement with the experimentally measured properties
of normal liquid 3He [30]. The results of the Gutzwiller ap-
proximation clearly looked mean-field like (this is one of
the reasons why the results, while obtained for the Hub-
bard lattice model, have a much wider range of appli-
cability [30])3. As discussed in Sect. 2.1 mean-field the-

3 Important questions concerning this approach are: Why should
liquid 3He be describable by a lattice model at all? And why by a
model with a band filling of exactly n = 1? How important is the
existence of an actual localization transition for the description
of the properties of 3He? They were addressed and clarified in a
subsequent study together with Peter Wölfle and Phil Anderson
where we investigated a Gutzwiller-Hubbard lattice-gas model
with variable density [31].

ories can be constructed in several different ways. There-
fore I asked myself whether it was possible to derive the
results of the Gutzwiller approximation in a controlled
way, e.g., by employing conventional methods of quan-
tum many-body theory in some yet to be determined
limit. An opportunity to investigate this problem came
in 1986 when Walter Metzner, a student of physics at the
Technical University of Munich, asked me for a research
topic for his diploma thesis. I suggested to him to cal-
culate the ground-state energy of the one-dimensional
Hubbard model with the Gutzwiller wave function using
many-body perturbation theory. Walter quickly showed
that expectation values of the momentum distribution
and the double occupation may be expressed as power
series in the small parameter g 2 − 1, where g is the cor-
relation parameter in the Gutzwiller wave function (3).
The coefficients of the expansions are determined by di-
agrams which are identical in form to those of a con-
ventional Φ4 theory. However, lines in a diagram do not
correspond to one-particle Green functions of the non-
interacting system, G0

i j ,σ(t ), but to one-particle density

matrices, g 0
i j ,σ = 〈ĉ+

iσĉ jσ〉0 = limt→0− G0
i j ,σ(t ). A brilliant

investigation of the analytic properties of these coeffi-
cients by Walter made it possible to determine these co-
efficients to all orders in d = 1. Thus we were able to cal-
culate the momentum distribution and the double occu-
pation, and thereby the ground state energy of the Hub-
bard chain, exactly in terms of the Gutzwiller wave func-
tion [32, 33]4. By the same method Florian Gebhard, also
a diploma student of mine at that time, succeeded in
analytically calculating [36, 37] four different correlation
functions in d = 1 in terms of the Gutzwiller wave func-
tion. Our result for the spin–spin correlation function ex-
plicitly showed that in the strong coupling limit g = 0
the Gutzwiller wave function describes spin correlations
in the nearest-neighbor, isotropic Heisenberg chain ex-
tremely well5.

4 By a remarkable generalization of this technique Marcus Kollar
was later able to calculate the momentum distribution and dou-
ble occupation of the Hubbard model in terms of the Gutzwiller
wave function in d = 1 even for finite magnetization [34]. At the
same time he solved the recursion relation for the momentum
distribution [33] in closed form. Thus we found that off half filling
this variational wave function predicts ferromagnetism for strong
interactions, in contrast to the exact result obtained for nearest-
neighbor hopping [35].

5 Haldane [38] and Shastry [39] independently proved that the
Gutzwiller wave function with g = 0 is, in fact, the exact solution

4                                                            



                               
Review

Article

Walter and I now wanted to extend the calculations
to higher dimensions. But it soon became clear that ana-
lytic calculations to all orders in the power series in g 2−1
are then no longer possible. To gain insight into the be-
havior of the coefficients in dimensions d > 1 we per-
formed the necessary sums over the internal momenta
by Monte-Carlo integration. When Walter had computed
the lowest-order contribution to the correlation energy
for d = 1 up to d = 15 we were in for a surprise. Namely,
the plot of the results as a function of d (Fig. 2) showed
that for large d the value of this diagram converged to a
simple result which could also be obtained by assuming
the momenta carried by the lines of a diagram to be in-
dependent. When summed over all diagrams this approx-
imation gave exactly the results of the Gutzwiller approx-
imation [32, 33]. Thus we had derived the Gutzwiller ap-
proximation in a controlled, diagrammatic way. In view
of the random generation of momenta in a typical Monte-
Carlo integration over the momenta of a general diagram
we argued that the assumption of the independence in
momentum space is correct in the limit of infinite spatial
dimensions (d →∞).

2.3.1 Lattice fermions in high dimensions

By studying the Hubbard model with the Gutzwiller wave
function Walter and I had found that diagrammatic cal-
culations greatly simplify in the limit d →∞. Apparently
this limit was not only useful for the investigation of spin
models [15], but also in the case of lattice fermions. To
better understand this point we analyzed the diagrams
involved in the calculation of expectation values in terms
of the Gutzwiller wave function in more detail. It turned
out that in the limit d → ∞ diagrams collapse in posi-
tion space [43, 44], i.e., only local contributions remain6.
In particular, the diagrams contributing to the proper
self-energy are purely diagonal in d =∞. The reason be-
hind this collapse can be understood as follows. The one-
particle density matrix may be interpreted as the ampli-
tude for transitions between site Ri and R j . The square
of its absolute value is therefore proportional to the prob-

of the spin-1/2 antiferromagnetic Heisenberg chain with an ex-
change interaction which falls off as 1/r 2; it is also identical [38]
to the one-dimensional version of Anderson’s “resonating valence
bond" (RVB) state [40–42].

6 In other words, momentum conservation at a vertex of a skeleton
diagram becomes irrelevant in the limit d →∞, implying that the
momenta carried by the lines of a graph are indeed independent.

Figure 2 Value of the second-order diagram shown in the insert
computed numerically for several spatial dimensions d , normal-
ized by the value for d = 1, v(1) = (2/3)(n/2)3, where n is
the density. In the limit of high dimensions the normalized val-
ues v(d)/v(1) approach the constant 3n/4. As discussed in the
text this result can also be obtained directly within a diagram-
matic approximation which yields the results of the semiclassical
Gutzwiller approximation; from [33].

ability for a particle to hop from R j to a site Ri . In the
case of nearest-neighbor sites Ri , R j on a lattice with
coordination number Z this implies | g 0

i j ,σ |2∼ O (1/Z ).

For nearest-neighbor sites Ri , R j on a hypercubic lattice
(where Z = 2d) one therefore finds for large d

g 0
i j ,σ ∼O

( 1�
d

)
. (4)

The general distance dependence of g 0
i j ,σ in the large-d

limit is derived in Refs. [45, 44].
For non-interacting electrons at T = 0 the expectation

value of the kinetic energy is given by

E 0
kin =−t

∑

〈Ri ,R j 〉

∑

σ
g 0

i j ,σ. (5)

On a hypercubic lattice the sum over the nearest neigh-
bors leads to a factor O (d). In view of the 1/

�
d depen-

dence of g 0
i j ,σ it is necessary to scale the NN-hopping am-

plitude t as

t → t∗�
d

, t∗ = const., (6)

since only then does the kinetic energy remain finite for
d → ∞. The same result is obtained in a momentum-
space formulation. 7

7 This is seen, for example, by calculating the density of states
(DOS) of non-interacting particles. For nearest-neighbor hop-
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A scaling of the microscopic parameters of the Hub-
bard model with d is only needed in the kinetic energy.
Namely, since the interaction term is purely local, it is in-
dependent of the spatial dimension of the system and
hence need not be scaled. Altogether this implies that
only the Hubbard Hamiltonian with a scaled kinetic en-
ergy

Ĥ =− t∗�
d

∑

〈Ri ,R j 〉

∑

σ
ĉ+

iσĉ jσ+U
∑

Ri

n̂i↑n̂i↓ (7)

has a non-trivial d → ∞ limit where both terms, the ki-
netic energy and the interaction, are of the same order of
magnitude in d .8

2.3.2 Simplifications of many-body perturbation theory

The drastic simplifications of diagrammatic calculations
in the limit d → ∞ allowed us to calculate expectation
values of the kinetic energy and the Hubbard interac-
tion in terms of Gutzwiller-type wave functions exactly
[43,44]. The result was found to be identical to the saddle
point solution of the slave-boson approach to the Hub-
bard model by Kotliar and Ruckenstein [47]; for a brief
review see [48]9.

ping on a d-dimensional hypercubic lattice εk has the form
εk =−2t

∑d
i=1 coski (here and in the following we set Planck’s

constant ħ, Boltzmann’s constant kB , and the lattice spac-
ing equal to unity). The DOS corresponding to εk is given by
Nd (ω) = ∑

k δ(ħω− εk ). This is just the probability density for
finding the valueω= εk for a random choice of k = (k1, . . . ,kd ).
If the momenta ki are chosen randomly, εk is the sum of d many
independent (random) numbers−2t coski . The central limit
theorem then implies that in the limit d →∞ the DOS is given

by a Gaussian, i.e., Nd (ω)
d→∞−→ 1

2t
�
πd

exp
[
−

(
ω

2t
�

d

)2]
.

Only if t is scaled with d as in (6) one obtains a non-trivial
DOS N∞(ω) in d = ∞ [46, 43] and thus a finite kinetic energy
E 0

kin = 2L
∫EF
−∞ dωN (ω)ω = −2Lt∗2N∞(EF ), where L is the

number of lattice sites.
8 By “non-trivial limit” I mean that the competition between
the kinetic energy Ĥkin and the interaction Ĥint, expressed by
[Ĥkin, Ĥint], should remain finite in the limit d →∞. In the case
of the Hubbard model it would be possible to employ a scaling
of the hopping amplitude as t → t∗/d , t∗ = const., but then
the kinetic energy would be reduced to zero for d →∞, making
the resulting model uninteresting (but not unphysical) for most
purposes. For a more detailed discussion see Sect. 3 of [14].

9 Calculations with the Gutzwiller wave function in the limit of
large dimensions were cast into an optimal form by Florian Geb-

Walter and I now wanted to understand to what ex-
tent the simplifications discovered in diagrammatic cal-
culations with the Gutzwiller wave function in the limit
d → ∞ would carry over to general many-body calcula-
tions for the Hubbard model. For this purpose we eval-
uated the second-order diagram in Goldstone perturba-
tion theory [52] which determines the correlation energy
at weak coupling [43]. Due to the diagrammatic collapse
in d =∞ calculations were again found to be much sim-
pler. Namely, the nine-dimensional integral in d = 3 over
the three internal momenta reduces to a single integral
in d =∞, implying that in d =∞ the calculation is sim-
pler than in any other dimension. More importantly, the
numerical value obtained in d = ∞ is very close to that
in the physical dimension d = 3, and therefore provides
an easily tractable, quantitatively reliable approximation
(see Fig. 3).

Figure 3 Correlation energy E (2)
c of the Hubbard model in second-

order perturbation theory in U , e2 = E (2)
c /(2U 2/ | ε0 |), vs. den-

sity n for lattice dimensions d = 1,3,∞. Here | ε0 | is the kinetic
energy forU = 0 and n = 1; from [43].

These results clearly showed that microscopic calcu-
lations for correlated lattice fermions in d = ∞ dimen-
sions were useful and very promising. Walter’s and my
enthusiasm about these results was shared by the col-
leagues whom we had told about our results early on, and

hard [49]. His approach has the advantage that all results in
d =∞ are obtained without the calculation of a single diagram.
It was later generalized by him and collaborators to multi-band
Hubbard model, eventually leading to a “Gutzwiller density func-
tional theory” which can be used to describe the effect of correla-
tions in real materials [50, 51].

6 www.ann-phys.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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who had immediately started to employ this new con-
cept themselves. Hence only a few weeks after our paper
[43] had appeared in print, Müller-Hartmann [53] proved
that in infinite dimensions only on-site interactions re-
main dynamical, that the proper self-energy becomes

momentum independent10, Σ(k ,ω)
d→∞= Σ(ω), and that

typical Fermi liquid features are preserved [54]. Further-
more, Schweitzer and Czycholl [55] demonstrated that
practical calculations become much simpler in high di-
mensions also for the periodic Anderson model11. Shortly
thereafter Brandt and Mielsch [56] obtained the exact so-
lution of the Falicov-Kimball model for large dimensions
and finite temperatures by mapping the lattice problem
onto a solvable atomic problem in a generalized time-
dependent external field12. They also noted that such a
mapping is, in principle, also possible for the Hubbard
model.

3 Dynamical mean-field theory for correlated
lattice fermions

The limit of high spatial dimensions d or coordination
number Z provides the basis for the construction of a
comprehensive mean-field theory for lattice fermions de-
scribed by Hubbard-type models, consisting of a kinetic
energy and a purely local interaction, which is diagram-
matically controlled and whose free energy has no un-
physical singularities. The construction is based on the
scaled Hamiltonian (7) and the simplifications in the
many-body perturbation theory discussed above. Since

10 The one-particle Green function (“propagator”)G0
i j ,σ(ω) of the

non-interacting system obeys the same 1/
�

d dependence as the
one-particle density matrix g 0

i j ,σ (see (4)). This follows directly

from g 0
i j ,σ = limt→0− G0

i j ,σ(t ) and the fact that the scaling
properties do not depend on the time evolution and the quantum
mechanical representation. The Fourier transform ofG0

i j ,σ(ω)
also preserves this property. For this reason the same results as
those obtained in the calculation with the Gutzwiller wave func-
tion hold: All connected one-particle irreducible diagrams collapse
in position space, i.e., they are purely diagonal, in d =∞.

11 A more detailed presentation of the simplifications which occur
in the investigation of Hubbard-type lattice models or the t − J
model [58, 59] in high dimensions can be found in [23].

12 Alternatively, it can be shown that in the limit Z → ∞ the dy-
namics of the Falicov-Kimball model reduces to that of a non-
interacting, tight-binding model on a Bethe lattice with coordina-
tion number Z = 3 which can thus be solved exactly [57].

the self-energy is momentum independent but retains
the full many-body dynamics (in contrast to Hartree-
Fock theory where it is merely a static potential) the re-
sulting theory is mean-field-like and dynamical, and can
thus describe genuine correlation effects.

The self-consistency equations of this dynamical
mean-field theory (DMFT) for correlated lattice fermions
can be derived in different ways. Nevertheless, all deriva-
tions make use of the fact that in the limit of high spatial
dimensions Hubbard-type models reduce to a dynami-
cal single-site problem, where the d-dimensional lattice
model is effectively described by the dynamics of the cor-
related fermions on a single site which is embedded in a
bath provided by the other fermions. This is illustrated
in Fig. 4. The first derivation of the single-site action
and the self-consistency equations of the DMFT was pre-
sented by Václav Janiš [60]. He had generalized the coher-
ent potential approximation (CPA) for non-interacting,
disordered systems13 to lattice fermion models with lo-
cal interactions and local self-energy, such as the Falicov-
Kimball and Hubbard model in the limit d =∞, by con-
structing the corresponding free energy functional (for
details see [60, 61, 23, 14]). Before Václav and I could
start with the numerical solution of the self-consistency
equations [61] I received a preprint by Georges and
Kotliar [63] in July 1991 where they formulated the DMFT
by mapping the lattice problem onto a self-consistent
single-impurity Anderson model. This mapping was also
employed by Jarrell [64]. The DMFT equations derived
within the CPA approach and the single-impurity ap-
proach, respectively, are identical. Nevertheless it is the
Anderson-impurity formulation which was immediately
adopted by the community since it makes contact with
the well-established many-body theory of quantum im-
purities and Kondo problems [65], and for whose so-
lution efficient numerical codes such as the quantum
Monte-Carlo (QMC) method [66] had been developed al-
ready in the 1980’s. For this reason the single-impurity
based derivation of the DMFT immediately became the
standard approach. The self-consistent DMFT equations
are given by14

13 For non-interacting electrons in the presence of local disorder the
CPA becomes exact in the limit d , Z →∞ [62].

14 A detailed discussion of the single-impurity based formulation of
the DMFT and of the derivation of the self-consistency equations
is presented in the review by Georges, Kotliar, Krauth, and Rozen-
berg [67]; for an introductory presentation see the article by Gabi
Kotliar and myself [68].
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   d or Z

d=3, Z=12

time

dynamical
mean field

Figure 4 (online color at: www.ann-phys.org) In
the limit Z → ∞ the Hubbard model effectively
reduces to a dynamical single-site problem, which
may be viewed as a lattice site embedded in a dy-
namical mean field. Electrons may hop from the
mean field onto this site and back, and interact
on the site as in the original Hubbard model (see
Fig. 1). The local propagator G(ω) (i.e., the return
amplitude) and the dynamical self-energy Σ(ω) of
the surrounding mean field play the main role in
this limit. The quantumdynamics of the interacting
electrons is still described exactly.

(i) The local propagator Gσ(iωn) which is expressed
by a functional integral as

Gσ(iωn)

=− 1

Z

∫∏

σ
Dc∗

σDcσ[cσ(iωn)c∗
σ(iωn)]exp[−Sloc] (8)

with the partition function

Z =
∫∏

σ
Dc∗

σDcσ exp[−Sloc] (9)

and the local action

Sloc =−
∫β

0
dτ1

∫β

0
dτ2

∑

σ
c∗
σ(τ1)G−1

σ (τ1 −τ2)cσ(τ2)

+ U
∫β

0
dτc∗

↑ (τ)c↑(τ)c∗
↓ (τ)c↓(τ), (10)

and where Gσ is the effective local propagator (also called
“bath Green function”, or “Weiss mean field”)15 which is
defined by a Dyson-type equation

Gσ(iωn) = [[Gσ(iωn)]−1 +Σσ(iωn)]−1, (11)

(ii) and the lattice Green function

Gk σ(iωn) = 1

iωn −εk +μ−Σσ(iωn)
(12)

which, after performing a lattice Hilbert transform, leads
to the local Green function

Gσ(iωn)

=
∑

k
Gk σ(iωn) =

∞∫

−∞
dε

N (ω)

iωn −ε+μ−Σσ(iωn)
(13)

=G0
σ(iωn −Σσ(iωn)). (14)

15 In principle, the local functionsGσ(iωn ) and Σσ(iωn ) can both
be viewed as a “dynamical mean field” acting on particles on a
site, since they all appear in the bilinear term of the local action
(10).

In Eq. (13) the ionic lattice on which the electrons move
is seen to enter only through the DOS of the non-inter-
acting electrons. Equation (14) illustrates the mean-field
character of the DMFT-equations particularly clearly:
The local Green function of the interacting system is
given by the non-interacting Green function with a renor-
malized energy iωn −Σσ(iωn), which corresponds to the
energy iωn measured relative to the energy of the sur-
rounding dynamical fermionic bath, i.e., the energy of
the mean field Σσ(iωn).

These are self-consistent equations of the DMFT16

which can be solved iteratively: Starting with an initial
value for the self-energy Σσ(iωn) one obtains the lo-
cal propagator Gσ(iωn) from (13) and thereby the bath
Green function Gσ(iωn) from (11). This determines the
local action (10) which is needed to compute a new value
for the local propagator Gσ(iωn) from (8) and, by employ-
ing the old self-energy, a new bath Green function Gσ,
and so on. In spite of the fact that the solution can be
obtained self-consistently there remains a complicated
many-body problem which is generally not exactly solv-
able.

It should be stressed that although the DMFT corre-
sponds to an effectively local problem, the propagator
Gk (ω) is a momentum-dependent quantity. Namely, it
depends on the momentum through the dispersion εk of
the non-interacting electrons. However, there is no addi-
tional momentum-dependence through the self-energy,
since this quantity is strictly local within the DMFT.

16 A generalization of the DMFT equations for the Hubbard model
in the presence of local disorder was derived in [69]. In contrast
to the Hubbard model spinless fermions with nearest-neighbor
repulsion and local disorder can be treated analytically in the limit
d , Z →∞ for all input parameters [70, 71].

8 www.ann-phys.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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3.1 Solution of the DMFT self-consistency equations

The dynamics of the Hubbard model remains compli-
cated even in the limit d → ∞ due to the purely local
nature of the interaction. Hence an exact, analytic eval-
uation of the self-consistent set of equations for the local
propagator Gσ or the effective propagator Gσ(iωn) is not
possible. A valuable semi-analytic approximation is pro-
vided by the iterated perturbation theory (IPT) [63,72,67].
Exact evaluations are only feasible when there is no cou-
pling between the frequencies. This is the case, for exam-
ple, in the Falicov-Kimball model [56, 73].

Solutions of the general DMFT self-consistency equa-
tions require extensive numerical methods, in particular
quantum Monte Carlo techniques [64, 74, 75, 67, 76, 77],
the numerical renormalization group [78–80], exact diag-
onalization [81–83] and other techniques.

It quickly turned out that the DMFT is a powerful tool
for the investigation of electronic systems with strong
correlations. It provides a non-perturbative and thermo-
dynamically consistent approximation scheme for finite-
dimensional systems which is particularly valuable for
the study of intermediate-coupling problems where per-
turbative techniques fail [84, 67, 85, 68, 76].

In the following I shall discuss applications of the
DMFT to problems involving electronic correlations. In
particular, I will address the Mott-Hubbard metal-insula-
tor transition, and explain the connection of the DMFT
with band-structure methods – the LDA+DMFT scheme
– which is the first comprehensive framework for the ab
initio investigation of correlated electron materials.

4 The Mott-Hubbard metal-insulator
transition

The correlation driven transition between a paramag-
netic metal and a paramagnetic insulator, referred to as
“Mott-Hubbard metal-insulator transition (MIT)”, is one
of the most intriguing phenomena in condensed mat-
ter physics [86–88]. This transition is a consequence of
the quantum mechanical competition between the ki-
netic energy of the electrons and their local interaction
U . Namely, the kinetic energy prefers the electrons to be
mobile (a wave effect) which leads to doubly occupied
sites and thereby to interactions between the electrons (a
particle effect). For large values of U the doubly occupied
sites become energetically very costly. The system may
reduce its total energy by localizing the electrons. Hence
the Mott transition is a localization-delocalization tran-

sition, demonstrating the particle-wave duality of elec-
trons [68].

Mott-Hubbard MITs are, for example, found in tran-
sition metal oxides with partially filled bands near the
Fermi level. For such systems band theory typically pre-
dicts metallic behavior. A famous example is V2O3 doped
with Cr [89]. In particular, in (V0.96Cr0.04)2O3 the metal-
insulator transition is of first order below T = 380 K, with
discontinuities in the lattice parameters and in the con-
ductivity [89]. However, the two phases remain isostruc-
tural.

Making use of the half-filled, single-band Hubbard
model the Mott-Hubbard MIT was studied intensively in
the past [10, 90, 86–88]. Important early results were ob-
tained by Hubbard [90] within a Green function decou-
pling scheme, and by Brinkman and Rice [25] who em-
ployed the Gutzwiller variational method as described
in Sect. 2.2. Hubbard’s approach yields a continuous
splitting of the band into a lower and upper Hubbard
band, but cannot describe quasiparticle features. By con-
trast, the Gutzwiller-Brinkman-Rice approach [30] gives
a good description of the quasiparticle behavior, but
cannot reproduce the upper and lower Hubbard bands.
In the latter approximation the MIT is signalled by the
disappearance of the quasiparticle peak. To solve this
problem the DMFT has been extremely valuable since
it provided detailed insights into the nature of the Mott-
Hubbard MIT for all values of the interaction U and tem-
perature T [67, 91, 68].

4.1 DMFT and the three-peak structure of the spectral
function

The spectral function A(ω) = − 1
π ImG(ω + i 0+) of the

correlated electrons monitors the approach of the Mott-
Hubbard MIT upon increase of the interaction17; here
I follow the discussion of [68, 92]. The change of A(ω)
obtained within the DMFT for the one-band Hubbard
model (1.1) at T = 0 and half filling (n = 1) as a function
of the Coulomb repulsion U (measured in units of the
bandwidth W of non-interacting electrons) is shown in
Figs. 5 and 6. While Fig. 5 is a schematic plot of the evolu-
tion of the spectrum when the interaction is increased,
Fig. 6 shows actual numerical results obtained by the
NRG [78, 92].

17 In the following we only consider the paramagnetic phase, i.e,
magnetic order is assumed to be suppressed (“frustrated”).
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Figure 5 (online color at: www.ann-phys.org) Schematic plot of
the evolution of the spectral function (“density of states”) of the
Hubbard model in the paramagnetic phase at half filling. a) Non-
interacting case, b) forweak interactions there is only little transfer
of spectral weight away from the Fermi energy, c) for strong inter-
actions a typical three-peak structure emerges which consists of
coherent quasiparticle excitations close to the Fermi energy and
incoherent lower and upper Hubbard bands, d) above a critical in-
teraction thequasiparticle peak vanishes and the system is insulat-
ing, with two well-separated Hubbard bands remaining; after [68].

While at small U the system can be described by
coherent quasiparticles whose DOS still resembles that
of the free electrons, the spectrum in the Mott insula-
tor state consists of two separate incoherent “Hubbard
bands” whose centers are separated approximately by
the energy U . The latter originate from atomic-like ex-
citations at the energies ±U /2 broadened by the hop-
ping of electrons away from the atom. At intermedi-
ate values of U the spectrum then has a characteris-
tic three-peak structure as in the single-impurity Ander-
son model, which includes both the atomic features (i.e.,
Hubbard bands) and the narrow quasiparticle peak at
low excitation energies, near ω= 0. This corresponds to a
strongly correlated metal. The structure of the spectrum
(lower Hubbard band, quasiparticle peak, upper Hub-
bard band) is quite insensitive to the specific form of the

−2.0 −1.0 0.0 1.0 2.0
ω/W

0.0

0.5

1.0

1.5

A
(ω

)*
W

Figure 6 Numerical calculationof the evolution of theT = 0 spec-
tral function of the one-band Hubbard model with a semi-elliptic
(“Bethe”) DOS for interaction values U /W = 0,0.2,0.4, . . . ,1.6
(W : band width) calculated with the numerical renormalization
group. At the critical interactionUc2/W � 1.47 the metallic solu-
tion disappears and the Mott gap opens; from [92].

DOS of the non-interacting electrons. At T = 0 the width
of the quasiparticle peak vanishes for U → Uc2(T ). The
“Luttinger pinning” of the quasiparticle peak at ω= 0 [54]
is clearly observed. On decreasing U , the transition from
the insulator to the metal occurs at a lower critical value
Uc1, where the gap vanishes.

It should be noted that the three-peak structure of the
spectrum discussed here originates from a lattice model
(the Hubbard model) with only one type of electron. This
is in contrast to the single-impurity Anderson model
whose spectrum shows very similar features which are,
however, due to two types of electrons, namely the local-
ized electron at the impurity site and the itinerant con-
duction electrons [65]. The DMFT can explain that in the
Hubbard model the same electrons provide both the lo-
cal moments and the electrons which screen these mo-
ments.

At finite temperatures the thermodynamic transition
line Uc(T ) corresponding to the Mott-Hubbard MIT is
found to be of first order. It is associated with a hysteresis
region in the interaction range Uc1 <U <Uc2, where Uc1

and Uc2 are the values of the interaction at which physi-
cal solutions corresponding to insulating and metallic be-
havior, respectively, no longer exist [67, 78, 93–95, 91, 92].
The high precision MIT phase diagram by Blümer [91]
is shown in Fig. 7. The hysteresis region terminates at
a second-order critical point. At higher temperatures
the transition changes into a smooth crossover between
metallic and insulating behavior.

10 www.ann-phys.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 7 (online color at: www.ann-phys.org) Mott-
Hubbard MIT phase diagram showing the metallic
phase and the insulating phase, respectively, at temper-
atures below the critical end point, as well as a coexis-
tence region; from [91].

The slope of the phase transition line is seen to be neg-
ative down to T = 0, which implies that for constant in-
teraction U the metallic phase can be reached from the
insulator by decreasing the temperature T , i.e., by cool-
ing. This anomalous behavior (which corresponds to the
Pomeranchuk effect [96, 97] in 3He, if we associate solid
3He with the insulator and liquid 3He with the metal)
can be easily understood from the Clausius-Clapeyron
equation dU /dT = ΔS/ΔD. Here ΔS is the difference
between the entropy in the metal and in the insulator,
and ΔD is the difference between the number of dou-
bly occupied sites in the two phases. Within the single-
site DMFT there is no exchange coupling J between the
spins of the electrons in the insulator, since the scaling
(6) implies J ∝ −t 2/U ∝ 1/d → 0 for d → ∞. Hence
the entropy of the macroscopically degenerate insulat-
ing state is Sins = kB ln 2 per electron down to T = 0.
This is always larger than the entropy Smet ∝ T per elec-
tron in the Landau Fermi-liquid describing the metal, i.e.,
ΔS = Smet −Sins < 0. At the same time the number of dou-
bly occupied sites is lower in the insulator than in the
metal, i.e., ΔD = Dmet−Dins > 0. The Clausius-Clapeyron
equation therefore implies that the phase-transition line
T vs. U has a negative slope down to T = 0. However,
this result is an artifact of the single-site approximation
on which the DMFT is built. In reality a finite exchange
coupling between the electrons will lead to a vanishing
entropy of the insulator at T = 0. Since the entropy of
the insulator vanishes faster than linearly with the tem-
perature, the difference ΔS = Smet − Sins will eventually
become positive, whereby the slope also becomes posi-
tive at lower temperatures18. This is indeed observed in

18 Here we assume that the metal remains a Fermi liquid, and the
insulator stays paramagnetic down to the lowest temperatures.

cluster DMFT calculations [98]. Since ΔS = 0 at T = 0 the
phase boundary must eventually terminate at T = 0 with
infinite slope.

In correlated electronic systems with strong disorder,
such as binary alloys Ax B1−x , Mott-Hubbard physics as
the one discussed above can take place even off half fill-
ing. Namely, if the binary alloy disorder is sufficiently
strong, the non-interacting band splits into an upper
and lower alloy subband, respectively. Krzysztof Byczuk
and collaborators showed that for filling factors x or
1− x these alloy subbands are then half filled, such that
above a critical value of the interaction strength the sys-
tem becomes a Mott insulator, with a correlation gap at
the Fermi level [99, 100]. Even if the disorder does not
cause band splitting characteristic features of the Mott-
Hubbard MIT, such as the hysteretic behavior, survive.
In this case one observes the competition between Mott
physics and Anderson localization [101, 102].

5 Theory of electronic correlations in materials

5.1 The LDA+DMFT approach

The Hubbard model is able to explain basic features of
the phase diagram of correlated electrons, but it cannot
account for the detailed physics of real materials. Indeed,
realistic approaches must incorporate the explicit elec-
tronic and lattice structure of the systems.

For a long time the electronic properties of solids
were investigated by two essentially separate commu-
nities, one using model Hamiltonians in conjunction
with many-body techniques, the other employing den-
sity functional theory (DFT) [103, 104]. The DFT and
its local density approximation (LDA) are ab initio ap-
proaches which do not require empirical parameters as
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input, and which proved to be highly successful tech-
niques for the calculation of the electronic structure of
real materials [105]. However, in practice DFT/LDA is
severely restricted in its ability to describe strongly cor-
related materials such as f -electron systems and Mott
insulators. Here, the model Hamiltonian approach is
more powerful since there exist systematic theoretical
techniques to investigate the many-electron problem
with increasing accuracy. Nevertheless, the uncertainty
in the choice of the model parameters and the tech-
nical complexity of the correlation problem itself pre-
vent the model Hamiltonian approach from being a flex-
ible enough tool to study real materials. The two ap-
proaches are therefore largely complementary. In view of
the individual power of DFT/LDA and the model Hamil-
tonian approach, respectively, a combination of these
techniques for ab initio investigations of real materi-
als is clearly desirable. One of the first successful at-
tempts in this direction was the LDA+U method [106,
107], which combines LDA with a static, i.e., Hartree-
Fock-like, mean-field approximation for a multi-band
Anderson lattice model. This method is a very useful tool
in the study of long-range ordered, insulating states of
transition metals and rare-earth compounds. However,
the paramagnetic metallic phase of correlated electron
systems clearly requires a treatment that includes dy-
namical effects, i.e., the frequency dependence of the
self-energy. Here the recently developed LDA+DMFT ap-
proach has led to significant progress in our under-
standing of correlated electron materials [108–117, 68].
LDA+DMFT is a computational scheme which merges
electronic band structure calculations in the local den-
sity approximation (LDA) with many-body physics due
to the local Hubbard interaction and Hund’s rule cou-
pling terms and then solves the corresponding correla-
tion problem by DMFT. In 1999 Vladimir Anisimov from
the Institute for Metal Physics in Ekaterinburg (Russia)
and I started our collaboration on the development of the
LDA+DMFT approach. Karsten Held, then a doctoral stu-
dent of mine in Augsburg, took a leading role in this col-
laborative research and was the first author of our review
of the LDA+DMFT method [113] for the Psi-k network,
the international forum for cooperations in the field of
electronic structure calculations.

As in the case of the simple Hubbard model the many-
body model constructed within the LDA+DMFT scheme
consists of two parts: a kinetic energy which describes
the specific band structure of the uncorrelated electrons,
and the local interactions between the electrons in the

same orbital as well as in different orbitals19; for details
see [112–117]). This complicated many-particle problem
with its numerous energy bands and local interactions
is then solved within DMFT, usually by the application
of quantum Monte-Carlo (QMC) techniques. By con-
struction, LDA+DMFT includes the correct quasiparticle
physics and the corresponding energetics. It also repro-
duces the LDA results in the limit of weak Coulomb in-
teraction U . More importantly, LDA+DMFT correctly de-
scribes the correlation induced dynamics near a Mott-
Hubbard MIT and beyond. Thus, LDA+DMFT and re-
lated approaches [118, 119] are able to account for the
physics at all values of the Coulomb interaction and dop-
ing.

5.2 Spectral function of correlated electrons in real
materials

Transition metal oxides are an ideal laboratory for the
study of electronic correlations in solids. Among these
materials, cubic perovskites have the simplest crystal
structure and therefore provide a good starting point
for the investigation of more complex systems. Typically,
the 3d states in those materials form comparatively nar-
row bands with width W ∼2–3 eV, which leads to strong
Coulomb correlations between the electrons. Particularly
simple are transition metal oxides with a 3d1 configu-
ration since, among others, they do not show a compli-
cated multiplet structure.

Photoemission spectra provide a direct experimental
tool to study the electronic structure and spectral prop-
erties of electronically correlated materials. In particular,
spectroscopic studies of strongly correlated 3d1 transi-
tion metal oxides [6, 120–123] find a pronounced lower
Hubbard band in the photoemission spectra which can-
not be explained by conventional band structure theory.

5.2.1 (Sr,Ca)VO3: a simple test material

A particularly simple correlated material which allows
one to discuss the application of the LDA+DMFT ap-
proach in an exemplary way is the transition metal ox-
ide SrVO3 [121, 124]. In this material the energy band at
the Fermi energy is occupied by only one 3d electron per

19 It is then necessary to take into account a double counting of
the interaction, since the LDA already includes some of the static
contributions of the electronic interaction.
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atom. One starts by calculating the electronic band struc-
ture within LDA. SrVO3 has a purely cubic crystal struc-
ture with one vanadium iron per unit cell. The cubic sym-
metry of the crystal field splits the fivefold degenerate 3d
orbital into a threefold degenerate t2g orbital and an en-
ergetically higher lying twofold degenerate eg orbital. In
the simplest approximation only the local interaction be-
tween the electrons in the t2g orbitals is included. By em-
ploying a variant of the LDA it is possible to compute the
strength of the local Coulomb repulsion (U � 5.5 eV) and
the exchange-interaction (“Hund’s coupling”) J � 1.0 eV.
The correlated electron model defined in this way is then
solved numerically within the DMFT.

Figure 8 shows the results for SrVO3 together with the
corresponding experimental data [125]. The local den-
sity of states of the occupied states can be measured
by photoemission spectroscopy (PES). The correspond-
ing density of states for the unoccupied states can be
obtained by X-ray absorption spectroscopy (XAS). The
spectra show clear signs of correlations, namely the exis-
tence of a lower and an upper Hubbard band at energies
−1.5 eV and +2.5 eV relative to the Fermi energy EF , as
well as a pronounced maximum at the Fermi energy due
to quasiparticle excitations. It should be noted that the
maxima in the vicinity of the Fermi energy in the left and
right part of the figure, respectively, both originate from
the quasiparticle maximum and represent occupied (left)
and unoccupied (right) quasiparticle states. Also shown
are the results for the related compound CaVO3 which
is orthorhombically distorted due to the smaller Ca ion.
It had long been thought that CaVO3 is considerably
stronger correlated than SrVO3. However, the experimen-
tal data which are seen to be quite similar in both sys-

tems disprove this view [125]. The reasons for the simi-
larity of the two spectra can be explained in detail within
the LDA+DMFT approach [121].

The structure of the spectral function with its three
maxima clearly shows that both SrVO3 and CaVO3 are
strongly correlated metals. Although the DMFT had pre-
dicted such a behavior for the Hubbard model (see
Sect. 5.1.) it was not clear whether this approximation
would be able to provide an accurate description of real
materials in three dimensions. Now we know that the
three-peak structure not only occurs in single-impurity
Anderson models but also in three-dimensional corre-
lated bulk matter. Obviously the DMFT is able to give a
correct explanation of the physical processes which lead
to this characteristic structure.

Investigation methods based on the DMFT have
proved to be a conceptual breakthrough in the realistic
modeling of electronic, magnetic and structural proper-
ties of transition metals and their oxides as well as mate-
rials with f electrons [112–117, 68]. But it will take con-
siderable further developments until it is possible to de-
scribe even complex correlated systems and predict their
properties. In particular, the interface between the two
main components of the LDA+DMFT approach – the
band structure theory and many-body theory – need to
be improved. A further important goal is the realistic cal-
culation of the free energy of correlated solids and of mi-
croscopic forces. In parallel, the numerical tools for the
solution of the complicated DMFT equations have to be
continuously improved to be able to investigate materi-
als with many energy bands and strong local interactions
at very low temperatures.

Excitation energy E – EF in eV

Figure 8 (online color at: www.ann-phys.org)
Comparison of the calculated, parameter-free
LDA+DMFT(QMC) spectra of SrVO3 (solid line)
and CaVO3 (dashed line) with experiment. Left:
Bulk-sensitive high-resolution PES (SrVO3: cir-
cles; CaVO3: rectangles). Right: XAS for SrVO3

(diamonds) and Ca0.9Sr0.1VO3 (triangles) [126].
Horizontal line: experimental subtraction of the
background intensity; after [125].
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6 Kinks in the dispersion of strongly correlated
electron systems

The LDA+DMFT approach also allows one to compute k-
resolved spectral functions. The necessary input is a LDA-
calculated Hamiltonian and the LDA+DMFT self-energy
at real frequencies. The k-resolved spectral function
A(k ,ω) calculated for SrVO3 within LDA+DMFT shows
two incoherent Hubbard bands and a dispersive quasi-
particle band [127], which is determined by the max-
ima of A(k ,ω). Overall the quasiparticle band is quite
well described by the LDA dispersion provided the latter
is renormalized by a constant factor m�/m = 1.9. This
effective mass renormalization also agrees with ARPES
experiments [128]. However, close to the Fermi energy
the LDA+DMFT band structure is found to deviate sig-
nificantly from a renormalized LDA band structure. In
fact, the frequency dependence of the self-energy indi-
cates that the actual Fermi liquid regime is restricted
to a rather narrow range of energies extending from
−0.2eV to 0.15eV. In this low-energy regime the quasipar-
ticle mass is larger than 1.9 and corresponds to a value
m�

lowE /m ≈ 3. The crossover from m�
lowE to m� is con-

nected with a rapid crossover in the slope of the effective
dispersion relation Ek , which is clearly visible as a “kink”.
What is the physical origin of this unexpected feature?

The effective dispersion relation Ek defines the en-
ergy and crystal momentum of one-particle excitations
in a solid. For most k values Ek is a rather slowly vary-
ing function. Kinks are therefore quite extraordinary
and carry valuable information about interactions in a
many-body system. It is well-known that kinks may arise
from the coupling between excitations (e.g., quasiparti-
cles and phonons)20, or from the hybridization of dif-
ferent types of fermionic excitations (e.g., d and f elec-
trons). However, the computation of the k-resolved spec-
tral function A(k ,ω) of SrVO3 by DMFT discussed here
[127] does not include phonons at all, and involves only
t2g electrons. Therefore the above mentioned coupling
mechanisms do not apply.

20In systems with strong electron-phonon coupling the electronic
dispersion routinely shows kinks at 40–60 meV below the Fermi
level. When kinks were detected in the electronic dispersion of
high-temperature superconductors at 40–70 meV below the Fermi
level, they were therefore taken as evidence for phonon [129, 130]
or spin-fluctuation based [131, 132] pairing mechanisms. But kinks
are also found in the electronic dispersion of various other metals,
at binding energies ranging from 30 to 800 meV [133–135], raising
fundamental questions about their origins.

Figure 9 (online color at: www.ann-phys.org) Local propagator
and self-energy for a strongly correlated system at half filling in
the paramagnetic phase. (a) Correlation-induced three-peak spec-
tral function A(ω) =−ImG(ω)/πwith dips at±Ω= 0.45 eV. (b)
Corresponding real part of the propagator, −ReG(ω), with mini-
mum andmaximum at±ωmax inside the central spectral peak. (c)
Real part of the self-energy with kinks at±ω∗ (circles), located at
the points of maximum curvature of ReG(ω), (ω∗ = 0.4ωmax =
0.03 eV); after [136].

An explanation of the origin of the kink observed
in the momentum-resolved spectral functions of SrVO3

[127] was provided by Krzysztof Byczuk, Marcus Kol-
lar, Karsten Held, Yi-Feng Yang, Igor Nekrasov, and my-
self [136]. We identified a purely electronic mechanism
which leads to kinks in the electron dispersion of strongly
correlated electron systems in quite a general way. Our
theory applies to strongly correlated metals whose spec-
tral function shows well separated Hubbard subbands
and central peak as found, for example, in SrVO3 or
CaVO3 (see Sect. 5.2.1). As will be explained below the
origin of these kinks can be traced to the physics which is
already described by the one-band Hubbard model (1.1),
and the DMFT at T = 0 is an appropriate tool for the so-
lution of this many-body problem [136].

The effective dispersion relation Ek of the one-par-
ticle excitation is determined by the singularities of the
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propagator G(k ,ω) = (ω + μ − εk − Σ(k ,ω))−1, which
give rise to peaks in the spectral function A(k ,ω) =
−ImG(k ,ω)/π. Here εk is the bare dispersion relation,
and Σ(k ,ω) is the self-energy which, in general, is k de-
pendent. If the damping given by the imaginary part of
Σ(k ,ω) is not too large, the effective dispersion Ek is then
determined by the expression

Ek +μ−εk −ReΣ(k ,Ek ) = 0. (15)

Any kink in Ek which does not originate from εk must
therefore be due to changes in the slope of ReΣ(k ,ω).

The DMFT self-consistency equations can be used to
express the self-energy (where now Σ(k ,ω) ≡ Σ(ω)) as a
function of G(ω); for details see [136]. As shown in Fig. 9
kinks in the slope of ReΣ(ω) appear at a new small en-
ergy scale which emerges quite generally for a three-peak
spectral function A(ω). Indeed, the Kramers-Kronig rela-
tions imply that Re[G(ω)] is small near the dips of A(ω)
located at ±Ω. Therefore Re[G(ω)] has a maximum and
a minimum at ±ωmax inside the central spectral peak
(Fig. 9b). This directly leads to kinks in ReΣ(ω) (Fig. 9c).

The Fermi liquid regime terminates at the kink en-
ergy scale ω� ∼ωmax, which cannot be calculated within
Fermi liquid theory itself. Namely, it is determined by
ZFL and the non-interacting DOS, e.g., ω� = 0.41ZFLD,

where D is an energy scale of the non-interacting system
such as half the bandwidth. One of the most surprising
results of the investigations of [136] is the observation
that it is possible to provide a fully analytic description
of excitation frequencies which lie outside the Landau-
Fermi-liquid regime but still within the central peak of
the spectral function [136]. Above ω� the dispersion is
given by a different renormalization with a small offset,
Ek = ZCPεk +const, where ZCP is the weight of the central
peak of A(ω). The difference in the slope of the disper-
sions in the two energy ranges leads to the kink as is seen
in Fig. 10.

The energy scale ω∗ involves only the bare band struc-
ture which can be obtained, for example, from band
structure calculations, and the Fermi liquid renormaliza-
tion ZFL = 1/(1−∂ReΣ(0)/∂ω) ≡ m/m∗ known from, e.g.,
specific heat measurements or many-body calculations.
It should be noted that since phonons are not involved in
this mechanism, ω� shows no isotope effect. For strongly
interacting systems, in particular those close to a metal-
insulator transition, ω� can become quite small.

The theory described above explains the kinks in the
slope of the dispersion as a direct consequence of the
electronic interaction. The same mechanism may also
lead to kinks in the low-temperature electronic specific

Figure 10 (online color at: www.ann-phys.org) Kinks in the dis-
persion relation Ek of the Hubbard model on a cubic lattice with
interactionU = 3.5 eV, bandwidthW ≈ 3.46 eV, n = 1, implying
a Fermi-liquid renormalization factor ZFL = 0.086. The intensity
plot represents the spectral function A(k ,ω). Close to the Fermi
energy the effective dispersion (white dots) follows the renormal-

ized band structure Ek = ZFLεk (light line). For |ω| > ω� the
dispersion has the same shape but with a different renormaliza-
tion, Ek = ZCPεk − c sgn(Ek ) (dark line). Here ω� = 0.03 eV,
ZCP = 0.135, and c = 0.018 eV are all calculated from ZFL and
εk (black line). A subinterval of Γ-R (white frame) is plotted on the
right, showing kinks at±ω� (arrows); after [136].
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heat [137]. The kinks have also been linked to maxima
in the spin susceptibility [138]. Additional kinks in the
electronic dispersion may arise from the coupling of elec-
trons to bosonic degrees of freedom, such as phonons or
spin fluctuations. Recent experiments [139] have found
evidence for kinks in Ni(110) at an energy which is com-
patible with that obtained within the framework dis-
cussed above.

7 Summary and outlook

Over the last two decades the DMFT has developed into
a powerful method for the investigation of electronic
systems with strong correlations. It provides a compre-
hensive, non-perturbative and thermodynamically con-
sistent approximation scheme for the investigation of
finite-dimensional systems (in particular for dimension
d = 3), and is particularly useful for the study of problems
where perturbative approaches are inapplicable. For this
reason the DMFT has now become the standard mean-
field theory for fermionic correlation problems. The gen-
eralization of this approach and its applications is cur-
rently a subject of active research. Here non-local gen-
eralizations of the DMFT play a major role. They will
make it possible to study and explain even short range
correlation effects which occur on the scale of several
lattice constants. This also includes investigations which
go beyond homogeneous systems and consider the influ-
ence of internal and external inhomogeneities such as
surfaces, interfaces, thin films and multi-layered nanos-
tructures [140–145]. An improved understanding of cor-
relation effects in thin films and multi-layered nanostruc-
tures is particularly desirable in view of the novel func-
tionalities of these structures and their possible applica-
tions in electronic devices.

The investigation of correlation phenomena in the
field of cold atoms in optical lattices is another intrigu-
ing field of current research. Within a short time it led to
the development of a versatile toolbox for the simulation
and investigation of quantum mechanical many-particle
systems [146–153]. While for electrons in solids the Hub-
bard model with its purely local interaction is a rather
strong assumption, this model describes cold atoms in
optical lattices very accurately since the interaction be-
tween the atoms is indeed extremely short ranged. Here
the DMFT has once again proved to be extremely useful.
Experiments with cold atoms in optical lattices can even
access the quality of the results of the DMFT. The results
obtained in this way show that the DMFT indeed leads to
reliable results even for finite dimensional systems [152].

The study of models in non-equilibrium within a suit-
able generalization of the DMFT [154–162] has become
another fascinating new research area which can be ex-
pected to explain, and even predict, the results of time-
resolved spectroscopic experiments.

Above all the connection of the DMFT with con-
ventional methods for the computation of electronic
band structures has led to a conceptually new theoret-
ical framework for the realistic modeling of correlated
materials. In 10 to 15 years from now DMFT-based ap-
proaches can be expected to be as successful and stan-
dardized as the presently available density functional
methods. The development of a comprehensive theoret-
ical approach which allows physicists to quantitatively
understand and predict correlation effects in materials,
ranging from complex anorganic materials all the way to
biological systems, is one of the great challenges for the-
oretical physics.
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