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Abstract. We study graphene with an adsorbed spin texture, where the
localized spins create a periodic magnetic flux. The latter produces gaps in
the graphene spectrum and breaks the valley symmetry. The resulting effective
electronic model, which is similar to Haldane’s periodic flux model, allows us to
tune the gap of one valley independently from that of the other valley. This leads
to the formation of two Hall plateaux and a quantum Hall transition. We discuss
the density of states, optical longitudinal and Hall conductivities for nonzero
frequencies and nonzero temperatures. A robust logarithmic singularity appears
in the Hall conductivity when the frequency of the external field agrees with the
width of the gap.
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1. Introduction

Transport properties of neutral graphene are characterized by a semimetallic behavior with a
point-like Fermi surface at two valleys. This can be changed by external electric fields in gated
graphene to a more classical transport with a circular Fermi surface or by an external magnetic
field that opens gaps in the spectrum [1, 2]. The latter leads to the formation of Hall plateaux
in the Hall conductivity. Another possibility is to introduce a gap either by chemical doping
(e.g. with hydrogen [3]) or in bilayer graphene with a double gate [4]–[9]. Chemical doping
is an interesting direction for modifying graphene because it leads to a rich field with new
properties. Although a standard technique for semiconductors, it has been applied to graphene
only recently ([3], [9]–[15]). As a special case of chemical doping, one can use atoms that carry
a spin to create a spin texture on graphene. These localized spins alter the transport properties
of graphene significantly. This will be discussed in this paper.

The quantum Hall effect in graphene was observed in a number of experiments, cf [1, 2].
It is usually associated with the presence of an external homogeneous magnetic field that
separates the electronic spectrum into Landau levels. Without an external magnetic field, each
valley of the honeycomb spectrum provides a quantum Hall step [17]. However, the system is
time-reversal invariant. This implies that the Hall conductivity vanishes, since the contribution
of the two valleys to the Hall conductivity cancel each other. A magnetic flux, however, can cure
this problem by breaking the time-reversal invariance. A possible way to observe the quantum
Hall effect is by introducing a periodic magnetic flux. This was suggested by Haldane [16]: a
staggered magnetic flux, in combination with nearest- and next-nearest neighbor hopping and a
staggered potential on the honeycomb lattice, creates two Hall plateaux with Hall conductivities
σxy = ±e2/h. The periodic magnetic field leads to a staggered flux with zero net flux in each
unit cell. It affects the hopping matrix elements by creating a phase factor that enables us to
change the signs of the Hall conductivities of each node independently by changing the magnetic
field strength. The effects of the staggered potential and staggered magnetic flux can also be
understood in terms of symmetry breaking: the Brillouin zone (BZ) has a sixfold energetic
degeneracy due to the vanishing energy at the corners of its hexagonal structure. A staggered
potential breaks the inversion symmetry [16, 17] but preserves the sixfold energetic degeneracy,
because all six corners acquire the same gap. The staggered magnetic flux, however, reduces the
sixfold degeneracy to a threefold degeneracy (i.e. it provides inter-valley symmetry breaking)
because it affects the gap of the two Dirac nodes differently.

The importance of sublattice and inter-valley symmetry breaking in graphene for
applications has been widely recognized. Recently, the effect of the broken inversion symmetry
in graphene was addressed in the context of topological [18] and anomalous thermoelectric [19]
transport, as well as valley-dependent optoelectronics [20].

Systematic doping of graphene with noncarbon atoms has become a realistic opportunity
to modify substantially the properties of the material ([3], [21]–[23]). A particular case is
doping with atoms that carry a spin. Then the spin of the itinerant electrons interact with
the localized spin of the noncarbon atoms. This has two effects: (i) the hopping rate of the
itinerant electrons is modified and depends on the spin orientation; and (ii) the coupling between
the localized spins is affected by the interaction with the itinerant electrons, leading to a
renormalized interaction between the localized spins. The latter is known as double-exchange
interaction [24]–[26] in contrast to the usual exchange interaction of itinerant electrons. While
the exchange interaction supports antiferromagnetic order, the double-exchange interaction
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Figure 1. Spinor atoms on a unit cell of graphene. Tilted spin textures can
provide an effective staggered magnetic flux [27]–[29].

favors ferromagnetic ordering. This is because the itinerant electrons are blocked by the
antiferromagnetic order of the localized spins, whereas they can move in a ferromagnetically
ordered background. Thus ferromagnetic order is favored, since the motion of the itinerant
electrons lowers the energy of the ferromagnetic system. Then the competition between
exchange and double-exchange interaction creates spin configurations with tilted spins [25, 26].

In this paper, we propose a model that is based on a honeycomb lattice, where one sublattice
is occupied by localized spins. This leads to an effective hopping parameter with a Berry phase
and reflects the equivalence of the spin texture with an effective periodic magnetic flux in the
tight-binding model. It is similar but slightly different from Haldane’s periodic flux model. The
inter-valley symmetry is lifted by introducing only a next-nearest-neighbor hopping on one
sublattice and a staggered magnetic flux. This choice is motivated by the fact that graphene on
a substrate can adsorb atoms only on one side. In this case, the adsorbed atoms occupy only
next-nearest neighbor-sites on the honeycomb lattice, i.e. they occupy one sublattice. Such a
possibility was experimentally observed for hydrogen on graphene [3]. As a result, the adsorbed
atoms modify the overlap integrals on their sublattice and may even create an additional next-
nearest-neighbor hopping. Moreover, if the adsorbed atoms have a magnetic moment, these
moments can form a localized spin texture due to double exchange [24]–[26]. It is known that
such spin structures provide an effective Berry phase for the electron hopping rate [27]–[29].
The latter has the same effect as a periodic (staggered) flux, where the flux depends on the tilting
angle of the localized spins (figures 1 and 2).

2. The model: electronic hopping on a spin texture

We consider localized S = 1/2 spins on a graphene lattice, where the latter is assumed to be
flat. As a reference system, we choose a basis of eigenspins oriented in the z-direction with
the lattice in the x–y-plane. In other words, the z-component of the localized spin 1/2 operator
satisfies Sz

|±〉 = ±|±〉. In terms of Pauli matrices Eσ = (σx , σy, σz), this reads

σzs± = ±s±, (1)

with the two-component spinor basis {s+, s−}. In general, a spin state can have a local
orientation, such that it is an eigenstate to En j · Eσ with the three-dimensional (3D) unit
vector En j = (sin θ cos φ, sin θ sin φ, cos θ). The matrix of the spin operator En j · Eσ reads in the
z-oriented basis

En j · Eσ =

(
cos θ j eiφ j sin θ j

eiφ j sin θ j − cos θ j

)
,
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Figure 2. Spin texture on the triangular sublattice with fixed tilting angles (all
x–y projected spins have the same length) and x–y rotation angels with multiples
of 2π/3. The + (–) signs indicate a positive (negative) magnetic flux through the
corresponding (up or down) triangle, whose value is determined by equation (4).

and

s j = En j · Eσ s+ = eib j

(
cos θ j

eiφ j sin θ j

)
.

Here the tilting angle θ j and the x–y rotation angle φ j refer to the change in the quantization
direction, relative to the spin state s+.

Then the electronic Hamiltonian on a honeycomb lattice must describe the interaction
of the electronic spin with the localized spins. This leads to a spin-dependent hopping
amplitude [27]–[29],

H=

∑
<i, j>

Hi j c
†
i c j + h.c., (2)

with

Hi j = tsi · s j = teiai j cos(θi j/2), (3)

and electronic creation (annihilation) operators c†
i (c j ). The Berry phase ai j is given as [29]

sin ai j = −
sin(θi/2) sin(θ j/2) sin(φi − φ j)

cos(θi j/2)
, (4)

which implies ai j = −a j i . (It should be noticed that relation (4) means that ai j is the solid angle
spanned by si , s j and the z-axis [29].) The phase ai j vanishes for vanishing tilting angles θi , θ j

(i.e. for ferro- or antiferromagnetic states) and for φi = φ j (i.e. when the spin projections on
the x–y-plane are parallel. Equation (3) gives us the general expression for the hopping of the
electrons in graphene with an additional spin texture, where the latter is characterized by the
tilting angles and x–y rotation angles. If we assume a specific configuration of localized spins,
the corresponding quantization axis of the spin s j is fixed by the angles θ j and φ j . A special
case, where all angles θi j between next-nearest-neighbor spins and all tilting angles θ j are equal
(except for an irrelevant sign change of θi j for different pairs i, j), is depicted in figure 2.
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This is similar to the situation on the Kagomé lattice in [29]. Moreover, the angles φ j are
rotating by 2π/3 on the lattice such that their differences in the expression of the phase ai j in
equation (4) are ±2π/3 for next-nearest neighbors. This implies a global renormalization of the
hopping rate t → tcosθi j and a Berry phase that changes only its sign from lattice bond to lattice
bond.

2.1. The tight-binding model on the honeycomb lattice

We begin with the tight-binding Hamiltonian of monolayer graphene (i.e. for a honeycomb
lattice) and return to the effect of the spin texture later. Then in Fourier space, we can write for
the Hamiltonian matrix in sublattice representation

H = h1σ1 + h2σ2 + h3σ3, (5)

where the off-diagonal Pauli matrices describe the hopping between the two sublattices. The
diagonal Pauli matrix term with h3 describes processes on the same sublattice that can include
next-nearest-neighbor tunneling. The eigenvalues of the Hamiltonian are

E± = ±Ek = ±

√
h2

1 + h2
2 + h2

3. (6)

Specifically for the honeycomb lattice, we have for the nearest-neighbor terms

h1 = −t
3∑

i=1

cos(ai · k), h2 = −t
3∑

i=1

sin(ai · k), (7)

with the basis vectors of the honeycomb lattice ai given by

a1 = a (0, −1) , a2,3 =
a

2

(
±

√
3, 1

)
, (8)

where a denotes the lattice constant. In the absence of a gap, i.e. for h3 = 0, the spectrum defined
in equation (6) vanishes at nodal points whose positions in the Fourier space are given by the
vectors

b±

1 =
4π

3
√

3a
(±1, 0) , b±

2 =
2π

3
√

3a

(
−1, ±

√
3
)

, b±

3 =
2π

3
√

3a

(
1, ±

√
3
)
. (9)

Assuming a uniform gap, i.e. h3 = m, the Hamiltonian defined in equation (5) can be
approximated in the vicinity of the nodal points by the Hamiltonian of a massive Dirac fermion

H ≈ vk1σ1 + vk2σ2 + mσ3, (10)

where v =
√

3ta/2 = 1 denotes the Fermi velocity of electrons. With this, the eigenvalues read

E± = ±Ek ≈ ±

√

k2 + m2. (11)

Now we include the spin texture, described by the modified hopping term of equation (3),
by the phase variable φr,r′ which is the Berry phase of equation (4). Using a spin texture, as
shown in figure 2, we obtain a Berry phase φ, which is the same for all three next-nearest-
neighbor vectors c j ( j = 1, 2, 3 (cf figure 3)),

c1 =
√

3a (1, 0) , c2,3 =

√
3a

2

(
−1, ±

√
3
)
, (12)
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Figure 3. Magnetic flux through the graphene unit cell corresponding to the
potential equation (14). Arrows indicate second-neighbor hopping processes and
φ0 = h/e is the flux quantum.

because the tilting angle is fixed and the x–y rotation angle of the spins is ±2π/3 between
next-nearest-neighbor sites. Then the next-nearest-neighbor hopping term reads

χr,r′ = t ′

3∑
j=1

(
e−iφδr,r′−c j + eiφδr,r′+c j

)
, (13)

where t ′ is the renormalized hopping parameter of equation (3). This hopping term is combined
with a uniform gap to give in real space with sublattice co-ordinates r

h3;r,r′ = M δr,r′ + χr,r′, (14)

for the third term in equation (5). For the diagonal term, M represents a potential contribution
of the doping atoms on the sublattice (i.e. there is a potential difference of 2M between the two
sublattices) and t ′ is the contribution of the doping atoms on the next-nearest-neighbor hopping
term. After Fourier transformation, we obtain h3

h3 = M + χk = M + 2t ′

3∑
i=1

cos (ci · k − φ). (15)

The term h3σ3 in H of equation (5) opens a gap in the dispersion
√

h2
1 + h2

2 + h2
3 if it is nonzero

at the nodal points (valleys) of
√

h2
1 + h2

2. Since h3 is also k dependent, it can vary the gap
independently for the two valleys. It can be adjusted such that the gap parameters have different
signs or the gap vanishes at one valley but provides a gap at the other valley. For instance, with
φ = −π/4 (according to the relation of equation (4), this corresponds to a spin-tilting angle
θ ≈ 1.365 in figure 2) and M = 3t ′(1 +

√
3)/

√
2 this term vanishes at the nodal points b+

1 and
b±

2 and remains nonzero at the nodal points b−

1 and b±

3 . The magnetic flux through a unit cell is
shown in figure 3 and the related spectrum is presented in figure 4.

This model is similar to the periodic flux model introduced by Haldane [16]. However,
the spin texture leads to some differences. In table 1, we compare the gap-opening term h3 of
the spin-texture model with the corresponding term in Haldane’s model.

New Journal of Physics 13 (2011) 035023 (http://www.njp.org/)

http://www.njp.org/


7

Table 1. Comparison of Haldane’s model with our model in terms of the
symmetry-breaking quantity h3. The vector c j connects next-nearest-neighbor
sites. The summation runs either over both sublattices (

∑AB
j ) or only over

sublattice A (
∑A

j ). The definition of the variables of Haldane’s model are those
of [16].

Haldane’s model Spin-texture model

h3: M − χ ′

k M + χk

χ ′

k: 2t2 sin φ
∑AB

j sin(k · c j ) 2t ′
∑A

j cos(k · c j − φ)

-2π/(3√3) 

2π/(3√3) k1

0 k2

 0

0.5

 1

1.5

 2

2.5

 3

Figure 4. Upper band of the full spectrum of the tight-binding Hamiltonian with
the nonuniform gap defined in equations (7) and (15).

Below we will examine how the broken valley symmetry affects the transport properties.
For this purpose, we focus on φ = −π/4 and compare the results with gapless graphene
(M = t ′

= 0) and with graphene with uniform gap (M 6= 0, t ′
= 0).

3. The density of states (DOS)

The density of states (DOS) is the imaginary part of the single-particle Green’s function

ρ(E) = −Im Tr2
1

π

∫
BZ

(
H − E + i0+

)−1 d2k

�BZ
. (16)

Here, the operator Tr2 acts on the pseudospinor space and the momentum integral is taken over
the BZ of the honeycomb lattice, whereas �BZ denotes its volume.

For the low-energy model of equation (10), the DOS can be evaluated explicitly when the
integration over the BZ is replaced by one over a circular area with radius λ,

ρ(E) = Im
∫ λ

0

(
1

E − Ek − i0+
+

1

E + Ek − i0+

)
k

dk

2π 2
, (17)
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Figure 5. DOS of the full tight-binding model is evaluated. Solid (red) line
corresponds to gapless graphene; dashed (black) line is the DOS of the model
with uniform gap (|h3| = m = 0.4t , t ′

= 0); dotted (blue) line represents the DOS
of the model for nonuniform gap (t ′

6= 0) with the same m. The inset shows the
same curves for small energies. The van Hove singularity for gapless graphene
lies at the hopping energy E = t . The shifting of the positions of the van Hove
singularity as well as the change in the slopes at low energies should be noticed
upon a change of the parameters m and t ′.

which gives after integration in the limit λ → ∞

ρ(E) =
E

2π
[2(E − |m|) − 2(−E − |m|)] . (18)

This means that there are no states with nonzero energy for −|m|6 E 6 |m|, where m is
the effective gap determined by the value of h3 at the gapped valley. For the case of gapless
graphene, i.e. for M = t ′

= 0, equation (18) reduces to

ρ(E) =
E

2π
[2(E) − 2(−E)] =

|E |

2π
. (19)

The evaluation of the DOS for the model with the full spectrum and both uniform and
nonuniform gap (i.e. with |h3| = m) can be performed numerically, since the integration has
to be carried out over the whole BZ. The DOS of graphene for different gap realizations is
shown in figure 5. For small energies, the DOS of gapless graphene shown as a (red) solid curve
exhibits a linear behavior of the single Dirac cone model predicted by equation (19) (note the
inset of figure 5). The DOS of the gapped model shown as a (black) dashed line is zero for
energies smaller than the gap m and experiences a jump from zero to a finite value (|m|/2π in
the linear limit) at the energy E = m. The DOS of the model with the nonuniform gap depicted
as a (blue) dotted line in figure 5 demonstrates an intermediate behavior in comparison to the
other models. On the one hand, it behaves linearly for energies smaller than the gap m. But
the slope of the linear asymptote is only half of the corresponding value of gapless graphene,
since the number of preserved Dirac cones in the BZ is half the number of Dirac cones of the
gapless model. On the other hand, the DOS also reveals a discontinuous behavior at E = m
where the energy becomes sufficient to allow electrons to tunnel through the potential barrier
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of 2m that separates the valence band from the conductivity band. The position of van Hove
singularity-related peaks in the DOS reveals dependence on the gap m and for m = 0 lies at the
next-neighbor hopping energy E = t , as can be seen from figure 5.

4. Optical conductivities

Within the linear response approach, the conductivity tensor for Hamiltonian H is given by the
Kubo formula. Then we obtain the conductivity at inverse temperature β [30],

σµν(ω) =
i

h̄
lim
α→0

∫
BZ

∑
l,l ′=0,1

〈k, l| jµ|k, l ′
〉〈k, l ′

| jν|k, l〉
1

Ek,l −Ek,l ′

fβ(Ek,l ′) − fβ(Ek,l)

Ek,l −Ek,l ′ + ω − iα

d2k

�BZ
, (20)

where fβ(E) = 1/(1 + exp(β(E − EF))) the Fermi–Dirac distribution at the inverse temperature
β, EF is the Fermi energy, and ω is the frequency of the external field. |k, l〉 is the eigenstate
of H with eigenvalue Ek,l = (−1)l Ek . The index l refers to the upper (l = 0) and lower (l = 1)
band, respectively. Moreover, the current operator reads

jµ = ie[H, rµ], jµ = e
∂ H

∂kµ

. (21)

For the off-diagonal matrix elements with l ′
6= l, we obtain from the Hamiltonian in equation (5)

〈k, l| jµ|k, l ′
〉〈k, l ′

| jν|k, l〉 =
pµ,a pν,b

E2
k

(
E2

k δab − hahb

)
+ (−1)liεabc

pµ,a pν,bhc

Ek
,

pν,a =
∂ha

∂kν

.

(22)

The low-energy (Dirac) Hamiltonian, defined in equation (10) with ha = ka (a = 1, 2) and
h3 = m, gives the following expression for the current tensor,

〈k, l| jµ|k, l ′
〉〈k, l ′

| jν|k, l〉 = e2

[
δµν −

kµkν

E2
k

+ (−1)liεµν3
m

Ek

]
. (23)

In case of the low-energy approximation, the integration over the BZ can be approximated by
a circular area with radius λ. The longitudinal conductivity (µ = ν) is real due to the diagonal
expression in equation (23). On the other hand, for the Hall conductivity, where µ 6= ν, the
matrix element is complex,

〈k, l| jµ|k, l ′
〉〈k, l ′

| jµ|k, l〉 = e2
E2

k − k2
µ

E2
k

,

〈k, l| jµ|k, l ′
〉〈k, l ′

| jν|k, l〉 = −e2 kµkν − (−1)l iεµν3m Ek

E2
k

.

(24)

From the Kubo formula of equation (20), we then obtain for the real part of the conductivity

σ ′

µµ(ω) =
e2

h̄

∫ λ

0

E2
k + m2

8E3
k

[ fβ(Ek) − fβ(−Ek)] [δ(ω − 2Ek) + δ(ω + 2Ek)] k dk. (25)

Finally, taking spin and valley degeneracy into account (factor 4) and sending λ → ∞, we
obtain [31, 32]

σ ′

µµ(ω) =
πe2

2h

(
1 +

(2m)2

ω2

)
[ fβ(ω/2) − fβ(−ω/2)] [2(ω − 2m) + 2(−ω − 2m)], (26)
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which can be expressed as a function of three dimensionless variables as

σ ′

µµ(ω) =
πe2

2h
f (βm, βµ, βω). (27)

Hence, the longitudinal optical conductivity vanishes for |ω| < 2|m| and is nonzero for |ω|>
2|m|. For zero temperature, the Fermi functions can be replaced by Heaviside step functions
limβ→∞ fβ(±ω) = 2(±ω) and we obtain the ac-conductivity the well-known result [31, 32]

σ ′

µµ(ω) =
πe2

2h
, (28)

for frequencies within the electronic bands. This value has been found to be very robust and
barely dependent on the temperature or quality of the sample.

One of the motivations for this work was to study the Hall conductivity in case of a broken
valley symmetry, where we have a gapped and a gapless valley. Using the off-diagonal current
tensor of equation (24), the integration over the BZ is approximated again by the low-energy
Hamiltonian. For a uniform gap (i.e. for t ′

= 0), the rotational symmetry of the problem is
restored and therefore the contribution of kµkν in the off-diagonal current tensor vanishes. Thus,
after sending the cut off λ → ∞, we get

σµν(ω) = −εµν3
e2

h̄

m

4π

∫
∞

|m|

[
fβ(E) − fβ(−E)

] (
1

ω − 2E − i0+
−

1

ω + 2E − i0+

)
dE

E
. (29)

For |EF|6 |m| and T = 0, the integral gives

σ ′

µν(ω) = εµν3
m

4πω
log

∣∣∣∣ 2m + ω

2m − ω

∣∣∣∣ . (30)

At frequency ω = 2m, there is a logarithmic divergence in the Hall conductivity. For large
frequencies, ω, this expression approaches zero, while for any nonzero gap and ω → 0, it
approaches the constant value that depends only on the sign of m,

σ ′

12 ≈
m

4π |m|

e2

h̄
=

sgn(m)

2

e2

h
. (31)

These are the well-known Hall plateaux of Dirac fermions ±e2/h [17]. This result implies for
two valleys with gap parameters m and m ′ [16]

σ ′

12 ≈
[
sgn(m) − sgn(m ′)

] e2

2h
. (32)

5. Discussion and conclusions

An evaluation of the DOS (equation (16)), the longitudinal conductivity and the Hall
conductivity (equations (20) and (22)) are performed numerically for the full tight-binding
spectrum. The results are presented in figures 5–7 as a function of energy (DOS) or as functions
of frequency (conductivities) for nonzero temperatures. We compare the situation without spin
texture (t ′

= 0), both for the gapless case m = 0 and the uniform gap m 6= 0 and the situation
with spin texture (t ′

6= 0). In the latter, we fix the Berry phase by φ = −π/4 and the uniform gap
parameter by M = 3t ′(1 +

√
3)/

√
2 and call this the asymmetric valley, whereas the case t ′

= 0
is the symmetric valley.
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Figure 6. Real part of the longitudinal optical conductivity at half-filling for
T = 0 K and m = 0.4t in units of e2/h. Here, we show optical conductivities
for (a) gapless graphene (red solid line); (b) the model with uniform gap (black
dashed line); (c) the model with nonuniform gap (blue dotted line). The inset
shows the same curves for small frequencies. Positions of the van Hove related
peaks coincide with those of the DOS if one relates frequencies to the energies
from figure 5 by ω = 2E .

DOS. The effect of the periodic magnetic flux, as described by h3 in equation (15), is
reflected by the DOS in figure 5. There is either a full gap (symmetric valleys) or a gapless DOS
(asymmetric valley). The DOS of the asymmetric valley has a reduced slope in comparison with
the case where both valleys are gapless (M = t ′

= 0), since only one valley contributes at low
energies. The position of the van Hove singularity depends on the parameters M , t ′ and moves
to higher energies as we switch on M and t ′.

Longitudinal conductivity. The behavior of the longitudinal optical conductivity in figure 6
for M = t ′

= 0 reproduces the constant universal value σ ′

µµ = πe2/2h at low frequencies. At
higher frequencies, it increases due to the van Hove singularity, just like the DOS. This is also
the case for M 6= 0, where the gap for t ′

= 0 leads to a vanishing conductivity for frequencies
less than the gap width 1 = 2m and jumps to higher values than the gapless conductivity at
ω = 2m. For the asymmetric valleys, the conductivity behaves similarly, with the conductivity
reduced by a factor 1/2 inside the gap though.

Hall conductivity. The form of h3 in equation (15) allows us to change the gap parameter
at the two valleys separately. This means that the Hall conductivities of the two valleys either
subtract each other (for sgn(h3,1) = sgn(h3,2)) or add each other (for sgn(h3,1) = −sgn(h3,2)),
when h3, j is the gap parameter at valley j (cf equation (32)). The reason is that the Hall
conductivities can be evaluated at each gapped valley separately, using the low-energy result
of equation (31). Thus, for the asymmetric valleys, where one valley is gapped and the other
is gapless, we have only a contribution of e2 sgn(m)/2h from the gapped valley. This is what
we see at low frequencies in figure 7. Moreover, there is a logarithmic singularity at ω = 2m. It
is not related to the van Hove singularity but appears when the frequency of the external field
reaches the gap energy. Apparently, the optical Hall conductivity increases dramatically as the
states at the edge of the gap start to contribute to transport [33]. The position of this singularity
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Figure 7. Real part of the optical Hall conductivity at half-filling for T = 0, 30
and 300 K in units of e2/h. Numerical results calculated for the full tight-binding
model (dots and crosses) and compared with the low-energy approximation of
equation (30) (red solid line).

is quite robust and only determined by the gapwidth, in contrast to the parameter-dependent
position of the van Hove singularity. In particular, the properties of the optical Hall conductivity
do not change over a wide range of temperatures (cf figure 7). This remarkable effect can be
used to measure the gap within a transport measurement. This offers an alternative to other
methods of measuring spectral properties through transport properties [34].

Our transport calculation is based on the assumption that the spin texture is rigid and
translationally invariant on one sublattice. This is not realistic because a 2D structure cannot
have a stable order. Consequently, there will always be fluctuations, similar to the geometric
fluctuations of the graphene sheet itself in the form of ripples [35]. Spin fluctuations, although
with long-ranged correlations at low temperatures, lead to fluctuations in the effective magnetic
flux experienced by the electrons in our model. These fluctuations appear as a σ3 term in
the Hamiltonian of equation (5), whereas fluctuations due to ripples are associated with σ1,2

terms [36, 37]. Therefore, ripples may not affect the gap structure in our model, in contrast
to spin fluctuations. If the latter are strong, it is possible that the effective gap, relevant to the
transport properties, will be closed [38]. This may lead to a vanishing Hall conductivity. On the
other hand, weak spin fluctuations may not close the gap such that the transport properties are
only weakly affected. In particular, the Hall conductivity is very robust against fluctuations, as
our result for thermal fluctuations in figure 7 demonstrates.

Recent experiments for sublattice-symmetry breaking by hydrogen atoms in graphene have
revealed that the gap formation is not a problem even when ripples and defects are present [3].
Since the gap in our model is also created by sublattice-symmetry breaking (due to next-nearest-
neighbor hopping t ′), we expect a similar robustness of the gap here. The main effect of the spin
texture is to break the valley symmetry. For this to be seen, it is probably sufficient to have some
anisotropy in a fluctuating spin texture.

There are several other possible mechanisms for a gap formation such as boundary effects,
electron–phonon interaction, Coulomb interaction and spin–orbit coupling. They may not be
relevant here because of their weakness in comparison with the next-nearest-neighbor hopping
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created by the doping atoms. This view is supported by a number of experiments on pristine
graphene [1, 2], where no gap was observed.

In conclusion, we have suggested a possible valley symmetry breaking by a periodic
magnetic flux. The latter is generated by doping of the graphene sheet with spin 1/2 atoms. The
periodic flux opens gaps at both valleys whose values can be controlled independently. However,
in contrast to a homogeneous magnetic field, it does not create Landau levels. Consequently, at
most, two Hall plateaux can be observed. Our calculations have revealed that a gap 1 = 2|m|

in both valleys creates the usual Hall plateaux with σ12 = e2/h when the gap parameter has
opposite signs at the two valleys but a vanishing Hall conductivity if the signs of m are equal.
The Hall conductivity is σ12 = e2/2h if one valley is gapped and the other is gapless. Moreover,
the optical Hall conductivity has a logarithmic singularity when the frequency of the external
microwave field reaches the gap energy. This singularity is very robust and should be visible
even at room temperature. Therefore, it can be used for an accurate determination of the gap by
measuring the optical properties of graphene.
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