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The quantum version of the Bochkov–Kuzovlev identity is derived on the basis of the
appropriate definition of work as the difference of the measured internal energies of
a quantum system at the beginning and the end of an external action on the system
given by a prescribed protocol. According to the spirit of the original Bochkov–Kuzovlev
approach, we adopt the ‘exclusive’ viewpoint, meaning that the coupling to the external
work source is not counted as part of the internal energy. The corresponding canonical
and microcanonical quantum fluctuation theorems are derived as well, and are compared
with the respective theorems obtained within the ‘inclusive’ approach. The relations
between the quantum inclusive work w, the exclusive work w0 and the dissipated work
wdis, are discussed and clarified. We show by an explicit example that w0 and wdis are
distinct stochastic quantities obeying different statistics.

                                                                                  

1. Introduction

One of the main objectives of non-equilibrium thermodynamics is the study of
the response of physical systems to applied external perturbations. Around the
middle of the last century, major advancements were obtained in this field with
the development of linear-response theory by several authors, among which we
mention Callen & Welton [1], Green [2] and Kubo [3]. This theory inspired by the
works of Einstein [4] on the Brownian movement and of Johnson [5] and Nyquist
[6] on noise in electrical circuits, established that, under certain circumstances,
the linear response to small perturbations is determined by the equilibrium
fluctuations of the system. In particular, the linear-response coefficients are
proportional to two-point correlation functions for Hamiltonian systems [3], as
well as for stochastic, generally non-equilibrium systems [7]. In principle, an
infinite hierarchy of higher order fluctuation–dissipation relations connects the
nth order response coefficients to (n + 1)-point correlation functions.
In contrast, fluctuation theorems are compact relations that provide

information about the complete nonlinear response. Accordingly, fluctuation–
dissipation relations of all orders can be derived therefrom. Bochkov & Kuzovlev
[8,9] were the first to put forward one such complete nonlinear fluctuation
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theorem. These authors noticed that, for a classical system, their general
fluctuation theorem implies the following extremely simple non-equilibrium
identity:

〈e−bW0〉 = 1, (1.1)

where W0 is the work done on the system by the external perturbation during
one specific realization thereof, 〈·〉 denotes the average over many realizations of
the same perturbation and b = (kBT )−1, with T being the initial temperature
of the system and kB being Boltzmann’s constant. Owing to the properties
of convexity of the exponential function, an almost immediate consequence of
equation (1.1), is the second law of thermodynamics in the form 〈W0〉 ≥ 0; i.e.
when a system is perturbed from an initial thermal equilibrium, on average, it
can only absorb energy.
The works of Bochkov & Kuzovlev [8,9] have recently re-gained a great deal

of attention, after Jarzynski [10] derived, within the framework of classical
mechanics, a salient result similar to equation (1.1),

〈e−bW 〉 = e−bDF , (1.2)

which, in contrast to equation (1.1), allows the extraction of an equilibrium
property of the system, i.e. its free energy (difference) F , from non-equilibrium
fluctuations of work W . Evidently, the definitions of work adopted by Jarzynski
[10] and Bochkov & Kuzovlev [8,9] (denoted here, respectively, as W and W0)
do not coincide. The relationships between these two work definitions and
the corresponding non-equilibrium identities, equations (1.1) and (1.2), were
discussed in a very clear and elucidating manner in Jarzynski & Horowitz [11]
and Jarzynski [12], which, for the sake of clarity, we shall summarize below.
Let us express the time-dependent Hamiltonian of the driven classical system

as the sum of the unperturbed system Hamiltonian H0 and the interaction energy
stemming from the coupling of the external time-dependent perturbation X(t) to
a certain system observable Q,

H (q, p; t)=H0(q, p)− X(t)Q(q, p). (1.3)

We restrict ourselves to the simplest case of a protocol governed by
a single ‘field’ X(t) coupling to the conjugate generalized coordinate Q.
Generalization to several fields Xi(t) coupling to different generalized coordinates
Qi is straightforward.
The definition of workW , according to Jarzynski [10], stems from an inclusive

viewpoint, where one counts the term X(t)Q as being a part of the system internal
energy. By contrast, the definition of workW0, according to Bochkov & Kuzovlev
[8,9], belongs to an exclusive viewpoint where instead, this interaction term is
not counted as part of the energy of the system. More explicitly, if q0, p0 is a
certain initial condition that evolves to qf , pf in a time tf − t0, according to the
Hamiltonian evolution generated by H , then the two different definitions of work
become

W
.=H (qf , pf ; tf )− H (q0, p0; t0) (1.4)

and
W0

.=H0(qf , pf )− H0(q0, p0). (1.5)
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It is important to stress that Bochkov & Kuzovlev [8,9] only obtained
equation (1.1) in the classical case, notwithstanding the fact that they developed
a quantum version of their theory, as well. This difficulty is related to the
fact that work was identified by Bochkov & Kuzovlev [8,9] with the quantum
expectation of a pretended work operator, given by the difference of final and
initial Hamiltonian in the Heisenberg representation. To be more clear, if the
quantum Hamiltonian reads

H (t)=H0 − X(t)Q, (1.6)

where now H ,H0 and Q are Hermitian operators, the work operator was defined
by Bochkov & Kuzovlev [8,9] as1

W0
.=HH

0 (tf )− H0, (1.7)

where the superscript ‘H’ denotes the Heisenberg picture. A similar approach was
also employed within the inclusive viewpoint, with work defined as [13]

W =HH(tf )− H0. (1.8)

As pointed out clearly by some of us before with the work by Talkner et al.
[14], the Jarzynski equality (1.2) cannot be obtained on the basis of the work
operator (1.8). Likewise, the Bochkov–Kuzovlev identity (1.1) cannot be obtained
on the basis of equation (1.7). It is by now clear that the impossibility of extending
the classical results (1.1) and (1.2) on the basis of quantum work operators (1.7)
and (1.8), respectively, is related to the fact that work characterizes a process,
rather than a state of the system, and consequently cannot be represented by an
observable that would yield work as the result of a single projective measurement.
In contrast, energy must be measured twice in order to determine work, once
before the protocol starts and a second time immediately after it has ended.
The difference of the outcomes of these two measurements then yields the work
performed on the system in a particular realization [14].
In this paper, we will adopt the exclusive viewpoint of Bochkov & Kuzovlev

[8,9], but use the proper definition of work as the difference between the
outcomes of two projective measurements of H0, to obtain the quantum version of
equation (1.1). Indeed, we will develop the theory of quantum work fluctuations
within the exclusive two-point measurements viewpoint in great generality. In §2,
we study the characteristic function of work. In §§3 and 4, we derive the exclusive
versions of the Tasaki–Crooks quantum fluctuation theorem [15–17], and of the
microcanonical quantum fluctuation theorem [18], respectively. Section 5 closes
the paper with some remarks concerning the relationships between the inclusive
work, the exclusive work and the dissipated work.

2. Characteristic function of work

As mentioned in §1, work is properly defined in quantum mechanics as the
difference of the energies measured at the beginning and the end of the protocol,
i.e. at times t0 and tf > t0, respectively. According to the exclusive viewpoint
1Bochkov & Kuzovlev [8] defined the ‘operator of energy absorbed by the system’ E =
∫tf
t0
X(t)QH(t) dt, where QH(t) is the operator Q in the Heisenberg representation. It is not difficult

to prove that E coincides with W0 in equation (1.7).
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which we adopt here, this energy is given by the unperturbed Hamiltonian H0.
Let en and |n, l〉 denote the eigenvalues and eigenvectors of H0,

H0|n, l〉 = en |n, l〉. (2.1)

Here, n is the quantum number labelling the eigenvalues of H0 and l denotes
further quantum numbers needed to specify uniquely the state of the system,
in case of degenerate energies. A measurement of H0 at time t0 gives a certain
eigenvalue en , while a subsequent measurement of H0 at time tf gives another
eigenvalue em , so that

w0 = em − en . (2.2)

Evidently, w0 is a stochastic variable owing to the intrinsic randomness entailed in
the quantummeasurement processes and possibly in the statistical mixture nature
of the initial preparation. In the following, we derive the statistical properties
of w0, in terms of its probability density function (pdf), and the associated
characteristic function of work.
Let the system be prepared at time t < t0 in a certain state described by the

density matrix r(t0). We further assume that the perturbation X(t) is switched
on at a time t0. At the same time, the first measurement of H0 is performed, with
outcome en . This occurs with probability

pn =
∑

l

〈n, l|r(t0)|n, l〉 =TrPnr(t0), (2.3)

where Pn is the projector onto the eigenspace spanned by the eigenvectors
belonging to the eigenvalue en ,

Pn =
∑

l

|n, l〉〈n, l|, (2.4)

and Tr denotes the trace over the Hilbert space. According to the postulates of
quantum mechanics, immediately after the measurement, the system is found in
the state

rn =
Pnr(t0)Pn

pn
. (2.5)

For times t > t0, the system evolves according to

rn(t)=Ut,t0rnU
†
t,t0
, (2.6)

with Ut,t0 denoting the unitary time-evolution operator obeying the Schrödinger
equation governed by the full time-dependent Hamiltonian (equation (1.6))

ih̄vtUt,t0 =H (t)Ut,t0 , Ut0,t0 = 1. (2.7)

At time tf , the second measurement of H0 is performed, and the eigenvalue em is
obtained with probability

p(m|n)=TrPmrn(tf ). (2.8)

Therefore, the probability density to observe a certain value of work w0 is given by

p0tf ,t0(w0)=
∑

m,n

d(w0 − [em − en])p(m|n)pn . (2.9)
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We use the superscript ‘0’ throughout this paper to indicate the exclusive
viewpoint. The same symbols without the superscript ‘0’ denote the respective
quantities within the inclusive viewpoint.
The Fourier transform of the probability density of work gives the characteristic

function of work

G0
tf ,t0
(u)=

∫
dw0p

0
tf ,t0
(w0) e

iuw0 , (2.10)

which allows quick derivations of fluctuation theorems and non-equilibrium
equalities. Performing calculations analogous to those reported by Talkner et al.
[18], we find the characteristic function of work in the form of a two-point quantum
correlation function

G0
tf ,t0
(u)=Tr eiuHH

0 (tf ) e−iuH0 r̄(t0)≡ 〈 eiuHH
0 (tf ) e−iuH0〉, (2.11)

where r̄(t0) is defined as

r̄(t0)=
∑

n

pnrn =
∑

n

Pnr(t0)Pn , (2.12)

and the superscript ‘H’ stands for the Heisenberg representation, i.e.

HH
0 (tf )=U

†
tf ,t0

H0Utf ,t0 . (2.13)

This exclusive-work characteristic function G0
tf ,t0

should be compared with the
inclusive-work characteristic function Gtf ,t0 that is obtained when looking at the
difference w of the outcomes En(t0) and Em(tf ) of measurements of the total
time-dependent Hamiltonian H (t). In this case, one obtains [14,18]

Gtf ,t0(u)=Tr eiuH
H(tf ) e−iuH0 r̄(t0)≡ 〈 eiuHH(tf ) e−iuH0〉. (2.14)

The difference lies in the distinct fact that HH
0 (tf ) appears in the exclusive

approach in place of the full HH(tf ).

(a) Reversed protocol

Next, consider the reversed protocol

X̃(t)=X(tf + t0 − t), (2.15)

which consecutively assumes values as if time was reversed. Let H̃ (t) be the
resulting Hamiltonian,

H̃ (t)=H0 − X̃(t)Q. (2.16)

The characteristic function of work now reads

G̃0
tf ,t0
(u)=Tr eiuH̃H

0 (tf ) e−iuH0 r̄(t0)≡ 〈 eiuH̃H
0 (tf ) e−iuH0〉, (2.17)

where
H̃H
0 (tf )= Ũ

†
tf ,t0

H0Ũtf ,t0 (2.18)

and Ũtf ,t0 is the time-evolution operator generated by H̃ (t),

ih̄vt Ũt,t0 = H̃ (t)Ũt,t0 , Ũt0,t0 = 1. (2.19)

                                                                   



296               

Assuming that the Hamiltonian H (t) is invariant under time reversal i.e.2

QH (t)Q−1 =H (t), (2.20)

where Q is the antiunitary time-reversal operator [20], the time-evolution
operators associated to the forward and backward protocols are related by the
following important relation (see appendix A):

Ut0,tf =U
†
tf ,t0

= QŨtf ,t0Q
−1. (2.21)

In §3, we will derive the quantum version of equation (1.1) and its associated work
fluctuation theorem. This will be accomplished by choosing the initial density
matrix to be a Gibbs canonical state. In §4, we will, instead, assume an initial
microcanonical state.

3. Canonical initial state

For a system staying at time t0 in a canonical Gibbs state,

r(t0)= r̄(t0)=
e−bH0

Z0
, (3.1)

where Z0 =Tr e−bH0 and r̄(t0) coincides with r(t0) because the latter is diagonal
with respect to the eigenbasis of H0 (see equation (2.12)). Plugging equation (3.1)
into equation (2.11), we obtain

G0
tf ,t0
(b; u)=

Tr eiuH
H
0 (tf )e−iuH0e−bH0

Z0
, (3.2)

where for completeness we have listed the dependence upon b among the
arguments of G0

tf ,t0
. The quantum version of equation (1.1) immediately follows

by setting u = ib,

〈e−bw0〉 =G0
tf ,t0
(b; ib)=

Tr e−bHH
0 (tf )

Z0
=
Tr e−bH0

Z0
= 1, (3.3)

where in the third equation we have used equation (2.13), the cyclic property of
the trace and the unitarity of the time-evolution operator: U †

tf ,t0
Utf ,t0 = 1.

Moreover, we find the following important relation between G0
tf ,t0

and G̃0
tf ,t0

(see

appendix B):

G0
tf ,t0
(b; u)= G̃0

tf ,t0
(b;−u + ib). (3.4)

2Here, we assume that the Hamiltonian does not depend on any odd parameter, e.g. a magnetic
field. Treating that case is straightforward and amounts to reversing the sign of the odd parameter
on the right-hand side of equation (2.20), see [19].
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By means of inverse Fourier transform, the following quantum Bochkov–Kuzovlev
fluctuation relation between the forward and backward work pdfs is obtained:

p0tf ,t0(b;w0)

p̃0tf ,t0(b;−w0)
= ebw0 . (3.5)

This must be compared with the quantum Tasaki–Crooks relation that is obtained
within the inclusive viewpoint [17],

ptf ,t0(b;w)

p̃tf ,t0(b;−w)
= eb(w−DF), (3.6)

where, in contrast to equation (3.5), the term DF = −b−1[ln Tr e−bH (t) −
ln Tr e−bH0], appears.

(a) Remarks

Equations (3.3) and (3.5) constitute original quantum results that do not
appear in the works of Bochkov & Kuzovlev [8,9]. In the classical case, they
found a fluctuation theorem similar to equation (3.5) reading

P[Q(t);X(t)]
P[3Q̃(t); 3X̃(t)]

= exp
[

b

∫ tf

t0

dtX(t)Q̇(t)

]

, (3.7)

where P[Q(t);X(t)] is the probability density functional to observe a certain
trajectory Q(t) given a certain protocol X(t). Here, Q(t) is a shorthand notation
for Q(q(q0, p0, t), p(q0, p0, t)), see equation (1.3), where (q(q0, p0, t), p(q0, p0, t))
is the evolved initial condition q0, p0 at some time t ∈ [t0, tf ], for a certain protocol
X(t). The symbol 3 denotes the parity of the observable Q under time reversal
(assumed to be equal to 1 in this paper). The symbol ‘∼’ denotes quantities
referring to the reversed protocol. The classical probability of work p

cl,0
tf ,t0
(W0) is

obtained from the Q-trajectory probability density functional P[Q(t);X(t)] via
the formula

p
cl,0
tf ,t0
(W0)=

∫
DQ(t)P[Q(t);X(t)]d

[

W0 −
∫ tf

t0

dtX(t)Q̇(t)

]

, (3.8)

where the integration is a functional integration over all possible trajectories,
such that

∫tf
t0
dtX(t)Q̇(t)=W0. With this formula, one finds from equation (3.7)

the exclusive version of the classical Crooks fluctuation theorem for the work
probability densities [11]

p
cl,0
tf ,t0
(b;W0)= p̃

cl,0
tf ,t0
(b;−W0)e

bW0 . (3.9)

Notably, a quantum version of equation (3.7) does not exist because: ‘· · · in the
quantum case it is impossible to introduce unambiguously a [· · · ] probability
functional’ [9]. It is only by giving up the idea of true quantum trajectories
and embracing instead the two-point measurement approach that the quantum
exclusive fluctuation theorem equation (3.5) can be obtained, and has been
obtained here, for the first time. For protocols that run in the presence of multiple
measurements quantum fluctuation theorems of the form of equation (3.7) yet
exist [21].
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4. Microcanonical initial state

Next, we consider an initial microcanonical state of energy E , that can formally
be expressed as

r(t0)= r̄(t0)=
d(H0 − E)

U0(E)
, (4.1)

wherein U0(E)=Tr d(H0 − E). Actually, one has to replace the singular
Dirac function d(x) by a smooth function sharply peaked around x = 0, but with
infinite support. A normalized Gaussian with arbitrarily small width serves this
purpose well.
With this choice of initial condition, the characteristic function of work reads

G0
tf ,t0
(E ; u)=

Tr eiuH
H
0 (tf ) e−iuH0d(H0 − E)

U0(E)

=
Tr eiu[HH

0 (tf )−E]d(H0 − E)

U0(E)
, (4.2)

where, for completeness, we listed the dependence upon E among the arguments
of G0

tf ,t0
. By applying the inverse Fourier transform, we obtain

p0tf ,t0(E ;w0)=
Tr d(HH

0 (tf )− E − w0)d(H0 − E)

U0(E)
. (4.3)

Likewise, for the reversed protocol,

p̃0tf ,t0(E ;w0)=
Tr d(H̃H

0 (tf )− E − w0)d(H0 − E)

U0(E)
(4.4)

is found.
We then find the following relation between the forward and backward work

probability densities (see appendix C):

U0(E)p
0
tf ,t0
(E ;w0)= U0(E + w0)p̃

0
tf ,t0
(E + w0;−w0). (4.5)

Then, the quantum microcanonical fluctuation theorem reads, within the
exclusive viewpoint,

p0tf ,t0(E ;w0)

p̃0tf ,t0(E + w0;−w0)
=

U0(E + w0)

U0(E)
. (4.6)

This must be compared with the quantum microcanonical fluctuation theorem,
obtained within the inclusive viewpoint [18],

ptf ,t0(E ;w)

p̃tf ,t0(E + w;−w)
=

Uf (E + w)

U0(E)
. (4.7)

The difference lies in the fact that within the exclusive viewpoint, the
density of states at the final energy E + w0 is determined by the unperturbed
Hamiltonian, i.e. U0(E + w0)=Tr d(H0 − (E + w0)), whereas it results from the
total Hamiltonian in the inclusive approach: Uf (E + w)=Tr d(H (tf )− E − w).
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Equation (4.7) was first obtained within the classical framework by Cleuren
et al. [22]. It is not difficult to see that equation (4.6) holds classically
as well.

(a) Remarks

Just as for equation (3.5), this equation (4.6) is a new result that was not
reported before by Bochkov & Kuzovlev [8,9]. It is very interesting to notice,
however, that those authors already put forward a classical fluctuation theorem
for the microcanonical ensemble, which can be recast in the form [9]

P[I (t);X(t);E]
P[−3Ĩ (t); 3X̃(t);E + W0]

=
U0(E + W0)

U0(E)
, (4.8)

where P[I (t);X(t);E] is the probability density functional to observe a certain
trajectory I (t) given a certain protocol and an initial microcanonical ensemble
of energy E . Here,

I (t)= Q̇(q(q0, p0, t), p(q0, p0, t)) (4.9)

denotes the current. By functional integration, the classical microcanonical
theorem for the pdf of work,

p
cl,0
tf ,t0
(E ,W0)

p̃
cl,0
tf ,t0
(E + W0,W0)

=
U0(E + W0)

U0(E)
, (4.10)

is obtained from equation (4.8) in the same way as equation (3.5) follows from
equation (3.7). However, the quantum version of equation (4.8) does not exist,
and the derivation of the quantum microcanonical fluctuation theorem (4.6) is
indeed only possible if the two-point measurement approach is adopted.
The fluctuation relations of equations (4.6) and (4.7) can be further expressed

in terms of entropy, according to the rules of statistical mechanics. Following
Gibbs [23], two different prescriptions are found in textbooks to obtain the
entropy associated with the microcanonical ensemble,

s(E)= kB lnU(E)=Tr d(H − E) (4.11)

and

S(E)= kB lnF(E)=Tr q(H − E). (4.12)

The two definitions coincide for large systems with short-range interactions
among their constituents, but may substantially differ if the size of the
system under study is small. By now it is clear that, of the two,
only the second—customarily called ‘Hertz entropy’—is the fundamentally
correct one [24–31].3 Using the microcanonical expression for the temperature

3It is interesting to notice that Einstein was well aware of the works of Hertz [28,29], which he
praised as excellent (‘vortrefflich’) [32].
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kBT (E)= (vS(E)/vE)−1 = F(E)/U(E), we can re-express the quantum micro-
canonical Bochkov–Kuzovlev fluctuation relation in terms of entropy and
temperature as

p0tf ,t0(E ;w0)

p̃0tf ,t0(E + w0;−w0)
=

T0(E)

T0(E + w0)
e[S0(E+w0)−S0(E)]/kB , (4.13)

where the subscript ‘0’ in T and S denotes that these quantities are calculated
for the unperturbed Hamiltonian H0. Likewise, adopting the inclusive viewpoint,
one obtains

ptf ,t0(E ;w)

p̃tf ,t0(E + w;−w)
=

T0(E)

Tf (E + w)
e[Sf (E+w)−S0(E)]/kB , (4.14)

where the subscript ‘f ’ in T and S denotes that these quantities are calculated
for the total final Hamiltonian H (tf ).4

5. Discussion

We derived the quantum Bochkov–Kuzovlev identity as well as the quantum
canonical and microcanonical work fluctuation theorems within the exclusive
approach, and have elucidated their relations to the original works of Bochkov &
Kuzovlev [8,9]. The extension of the corresponding classical theorems to the
quantum regime is only possible due to the proper definition of work as a two-time
quantum observable. We close with the following comments:5

— For a cyclic process, X(tf )=X(t0), inclusive- and exclusive-work
fluctuation theorems coincide. However, in no way is it true that the
exclusive approach of Bochkov & Kuzovlev, adopted here, is restricted
to cyclic processes, as some authors have suggested [13,34,35]. As stressed
in §1, the difference of the two approaches originates from the different
definitions of work, and is not related to whether the process under study
is cyclic or not.

— Within the inclusive approach, it is natural to define the dissipated work as
wdis =w − DF [36,37]. Then, the Jarzynski equality (1.2) can be rewritten
as 〈e−bwdis〉 = 1. This might make one believe that the exclusive work w0
coincides with the dissipated work wdis. This, though, would be generally
wrong. The dissipated work wdis is a stochastic quantity whose statistics,
given by pdistf ,t0

(wdis)= ptf ,t0(wdis + DF), in general does not coincide with

the statistics of exclusive work w0, given by p0tf ,t0(w0). See appendix D for
a counterexample. Only for a cyclic process, for which DF = 0, does the
dissipated work wdis coincide with the inclusive work w, which in turn
coincides with the exclusive work w0.

4If instead of the microcanonical ensemble (4.1), the modified microcanonical ensemble 9(t0)=
q(E − H0)/[Tr q(E − H0)] [33] is used as the initial equilibrium state, then the fluctuation theorem
assumes the same form as in equation (4.14), but without the ratio of temperatures [18].
5Similar remarks were made also within the classical framework by Jarzynski [12].
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Appendix A. Derivation of equation (2.21)

The time-evolution operator Ũt,t0 can be expressed as a time-ordered product [38],

Ũtf ,t0 = lim
N→∞

e−iH̃ (tN )t e−iH̃ (tN−2)t · · · e−iH̃ (t1)t, (A 1)

where t = (tf − t0)/N and tn = t0 + nt, for n = 0, . . . ,N (note that tN = tf ). Owing
to equation (2.15) and (2.16), H̃ (t)=H (tf + t0 − t), then

Ũtf ,t0 = lim
N→∞

e−iH (t1)t e−iH (t2)t · · · e−iH (tN )t. (A 2)

Therefore,

QŨtf ,t0Q
−1 = lim

N→∞
Q e−iH (t1)tQ−1Q e−iH (t2)tQ−1 . . . Q e−iH (tN )tQ−1, (A 3)

where we inserted Q−1Q = 1, N − 1 times. Owing to the property (2.20) and the
antilinearity of Q,

Q e−iH (t)tQ−1 = eiH (t)t. (A 4)

Using this equation, we find

QŨtf ,t0Q
−1 = lim

N→∞
eiH (t1)t eiH (t2)t · · · eiH (tN )t (A 5)

= lim
N→∞

[e−iH (tN )t · · · e−iH (t2)t e−iH (t1)t]† (A 6)

=U
†
tf ,t0

=Ut0,tf . (A 7)

In a similar way, we also obtain

Utf ,t0 = QŨ
†
tf ,t0

Q−1. (A 8)

Appendix B. Derivation of equation (3.4)

According to equation (2.11), the characteristic function reads

G0
tf ,t0
(b; u)=

TrU †
tf ,t0

eiuH0Utf ,t0 e
−iuH0 e−bH0

Z0
. (B 1)

Using equations (A 7) and (A 8), we obtain

G0
tf ,t0
(b; u)=

TrQŨtf ,t0Q
−1 eiuH0QŨ

†
tf ,t0

Q−1 e−iuH0 e−bH0QQ−1

Z0
,

where we have inserted QQ−1 = 1 at the right-hand side. By multiplying
equation (A 4) by Q−1 from the left and by Q from the right, we have
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(replacing t with u)
Q−1 eiH (t)uQ = e−iH (t)u∗

; (B 2)

therefore,

G0
tf ,t0
(b; u)=

TrQŨtf ,t0 e
−iu∗H0Ũ

†
tf ,t0

eiu
∗H0 e−bH0Q−1

Z0
. (B 3)

The antilinearity of Q implies, for any trace class operator A,

TrQAQ−1 =TrA†. (B 4)

Therefore,

G0
tf ,t0
(b; u)=

Tr e−bH0 e−iuH0Ũtf ,t0 e
iuH0Ũ

†
tf ,t0

Z0
. (B 5)

Using the cyclic property of the trace finally leads to

G0
tf ,t0
(b; u)=

Tr Ũ †
tf ,t0

ei(−u+ib)H0Ũtf ,t0 e
−i(−u+ib)H0 e−bH0

Z0
(B 6)

= G̃0
tf ,t0
(b;−u + ib). (B 7)

Appendix C. Derivation of equation (4.5)

According to equation (4.3), the microcanonical exclusive-work pdf reads

p0tf ,t0(E ;w0)=
Tr d(HH

0 (tf )− E − w0)d(H0 − E)

U0(E)
(C 1)

=
TrU †

tf ,t0
d(H0 − E − w0)Utf ,t0d(H0 − E)

U0(E)
. (C 2)

Employing equation (A 7) and (A 8), we obtain

U0(E)p
0
tf ,t0
(E ;w0)=TrQŨtf ,t0Q

−1d(H0 − E − w0)QŨ
†
tf ,t0

Q−1d(H0 − E)QQ−1,

(C 3)
where we have inserted QQ−1 = 1 at the end. As the Dirac delta function is a real
function, we have

Q−1d(H0 − E)Q = d(H0 − E) (C 4)

because H0 is assumed to be invariant under time reversal. Then,

U0(E)p
0
tf ,t0
(E ;w0)=TrQŨtf ,t0d(H0 − E − w0)Ũ

†
tf ,t0

d(H0 − E)Q−1. (C 5)

Using equation (B 4), we obtain

U0(E)p
0
tf ,t0
(E ;w0)=Tr d(H0 − E)Ũtf ,t0d(H0 − E − w0)Ũ

†
tf ,t0
. (C 6)

Thanks to the cyclic property of the trace, one finally arrives at

U0(E)p
0
tf ,t0
(E ;w0)=Tr Ũ †

tf ,t0
d(H0 − E)Ũtf ,t0d(H0 − E − w0) (C 7)

= U0(E + w0)p̃
0
tf ,t0
(E + w0;−w0). (C 8)
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Appendix D. Comparison between dissipated-work and exclusive-work
probability density functions

In this appendix, we provide an example that shows that the dissipated work
wdis and the inclusive work w0 are distinct stochastic quantities with different
statistical properties. To this end, we show that their pdfs may have different
first and second moments. We consider a driven quantum harmonic oscillator of
unit mass and unit angular frequency,

H (t)=
p2

2
+

q2

2
− X(t)q. (D 1)

For simplicity, we assume t0 = 0, X(t0)= 0, and we chose units in such a way that
h̄ = 1. Let |n, t〉 denote the instantaneous eigenvectors of H (t) corresponding to
the instantaneous eigenvalues En(t)= (n + 1/2)− X 2(t)/2.

(a) The probability density of dissipated work

The pdf of inclusive work, corresponding to an initial canonical state, is

pt,0(w)=
∑

mn

d(w − m + n + X 2(t)/2)|amn |2e−b(n+1/2)

Z (0)
, (D 2)

where Z (0)=
∑

n e
−b(n+1/2) is the initial partition function, and |anm|2 are

the probabilities to make a transition between two eigenstates of the total
Hamiltonian

|amn |2 = |〈m, t|Ut,0|n, 0〉|2, (D 3)

where we have set t0 = 0 and tf = t. According to Talkner et al. [39,40], the mean
value and the variance of the inclusive-work pdf (D 2) are given by

〈w〉 =
∫
dx x pt,0(x)= L(t)−

X 2(t)

2
(D 4)

and

〈Dw2〉 =
∫
dx[x − 〈w〉]2pt,0(x)= 2UL(t), (D 5)

where U =
∑

n(n + 1/2) e−b(n+1/2)/Z0 is the initial average energy, and6

L(t)=
C (t)2

2
+

[S(t)− X(t)]2

2
, (D 6)

where

S(t)=
∫ t

0
dsX(s) sin(t − s) and C (t)=

∫ t

0
dsX(s) cos(t − s). (D 7)

6In Talkner et al. [39,40], L is given as L(t)= |
∫t
0 dsḟ (s) e

is |2, where f = −X/
√
2. It is a matter of

elementary calculus to check that this expression coincides with equation (D 6).
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The partition function of work at the final time t is Z (t)= Z (0) ebX2(t)/2;
therefore, the free-energy difference DF = −b−1 lnZ (t)/Z0 is given by
DF = −X 2(t)/2 [39]. Hence, the dissipated work is

wdis =w +
X 2(t)

2
. (D 8)

Accordingly, the dissipated work pdf is

pdist,0(wdis)= pt,0(w)= pt,0

(

wdis −
X 2(t)

2

)

=
∑

mn

d(wdis − m + n)|amn |2e−b(n+1/2)

Z (0)
. (D 9)

It immediately follows that

〈wdis〉 =
∫
dx x pdist,0(x)= L(t) (D 10)

and

〈Dw2dis〉 =
∫
dx[x − L(t)]2pdist,0(x)= 2UL(t). (D 11)

Note that, as it should be, 〈wdis〉 ≥ 0.

(b) The probability density of exclusive work

The exclusive-work pdf is given by

p0t,0(w0)=
∑

mn

d(w0 − m + n)|a0mn |2 e−b(n+1/2)

Z (0)
, (D 12)

where |a0mn |2 denotes the probability to make a transition between two states of
the unperturbed Hamiltonian

|a0mn |2 = |〈m, 0|Ut,0|n, 0〉|2. (D 13)

It is known [41,42] that the transition probabilities |amn |2 depend on the time
t at which the second measurement is performed, via the function L(t), that
is the |amn |2 are of the form |amn |2 = fnm[L(t)], for certain functions fnm that
need not be specified here. Using Wigner functions to calculate the transition
probabilities as in Campisi [41], we notice that the transition probabilities |a0mn |2
are obtained from the same expression as of |amn |2, with the only difference that
L(t) is replaced by

L0(t)=
C 2(t)

2
+

S2(t)

2
, (D 14)

that is |a0mn |2 = fnm[L0(t)]. Therefore, the exclusive-work pdf (D 12) is obtained
from the dissipated-work pdf (D 9) simply by replacing L(t) with L0(t). It follows
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immediately that

〈w0〉 =
∫
dx x p0t,0(x)= L0(t) (D 15)

and

〈Dw20〉 =
∫
dx[x − L0(t)]2p0t,0(x)= 2UL0(t). (D 16)

Note that, as expected, 〈w0〉 ≥ 0.
For the specific protocol

X(t)= 2 sin(t), (D 17)

we find
L(t)− L0(t)= t sin(2t), (D 18)

which is apparently different from zero, except for integer multiples of p/2.
Thus, for any duration t of the protocol (D 17) that is not an integer multiple
of p/2, L0 6= L. Accordingly, the first and second moments of pdist,0 and p0t,0
differ, meaning that wdis and w0 are distinct stochastic variables with different
statistical properties.
It should be stressed that analogous results are found also for a classical

driven harmonic oscillator. The statistics of dissipated work and of exclusive work
generally differ, this fact holds true both quantum mechanically and classically.
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