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Abstract. We study the electronic states of graphene in piecewise constant
potentials using the continuum Dirac equation appropriate at low energies and
a transfer matrix method. For superlattice potentials, we identify patterns of
induced Dirac points that are present throughout the band structure and verify
for the special case of a particle–hole symmetric potential their presence at
zero energy. We also consider the cases of a single trench and a p–n junction
embedded in neutral graphene, which are shown to support confined states. An
analysis of conductance across these structures demonstrates that these confined
states create quantum interference effects, which evidence their presence.
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1. Introduction

Graphene, a single layer of carbon atoms laid out in a honeycomb lattice, is one of the most inter-
esting electronic systems to become available over the last few years [1, 2]. It differs from con-
ventional two-dimensional electron gas (2DEG) systems in that the low-energy physics is gov-
erned by a Dirac Hamiltonian rather than the more common form for semiconductors, charac-
terized by an effective mass and a band gap. Because of graphene’s unusual properties, the pos-
sibility of exploiting it for nanoscale applications has become an area of intense investigation.

Nanophysics in graphene may be investigated in systems with very small physical size
scales, such as quantum dots7 or quantum rings [3]–[8]. More commonly, manipulation at the
nanoscale is accomplished by the application of electric fields via gate geometries, subjecting
the system to potentials varying on a very short length scale. Much recent work has focused on
nanotubes [9], on p–n junctions [10]–[14] and on p–n–p junctions [15, 16], whose behavior
in graphene is distinct from that of conventional 2DEGs because of the absence of a gap in
the spectrum. Very recently, studies of graphene in superlattice potentials have demonstrated
the possibility of ‘band structure engineering’ of graphene [17, 18]. In particular, for 1D
superlattices [19, 20], effective potentials may be designed by which the number of Dirac points
at the Fermi energy can be artificially manipulated [21]–[26].

In this work, we study graphene systems in the presence of 1D potentials that are piecewise
constant. Our approach models graphene in terms of the Dirac equation, which is valid for
potentials that vary slowly on the lattice scale and for which intervalley scattering may be
ignored. The allowed energy states for such systems may be found by a transfer matrix method
described below. For a 1D superlattice, such problems are reminiscent of dynamical systems
with periodically varying parameters. We find that the resulting band structure generically
supports a collection of Dirac points at a variety of energies. Dirac points generally appear at
energies satisfying ε ≡ Ed/h̄vF = nπ (E is electron energy, d superlattice period and vF Fermi
velocity) for n an integer, at ky = 0, where ky is the momentum perpendicular to the superlattice
axis. For particle–hole symmetric potentials, several Dirac points may appear at ε = 0 for non-
vanishing values of ky [21]–[27]. Generically, other Dirac points are present for ε, ky 6= 0.

7 See, for example, [31] and references therein.
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We also study geometries with a single p or n region, or with a p–n junction region,
embedded in a neutral graphene background. We refer to these as a single trench geometry
and an embedded p–n junction, respectively. The trench geometry supports solutions which
are localized perpendicular to the trench, and are extended along them [16, 28], at energies
where the electron states are evanescent in the neutral graphene for a given ky 6= 0. These states
disperse as a function of ky such that a finite number of them cross zero energy. The embedded
p–n junction supports localized solutions as well, which may be interpreted in terms of a pair
of overlaid trench spectra. If the two trenches are particle–hole conjugates, the individual trench
spectra cross zero energy at the same value of ky; however, because of tunneling between the
trenches, these become avoided crossings rather than Dirac points. At large ky , the gaps at the
avoided crossings may be quite small.

Finally, we consider transport across these systems within the Landauer formalism, for
which the transfer matrix method is easily adapted to yield the conductance of the system. We
demonstrate that the conductance has distinctive signatures indicative of the confined states
which may be contained at non-vanishing ky for a given embedded structure.

This paper is organized as follows. In section 2, we express the problem of a Dirac particle
in a periodic potential in terms of a path-ordered product, and find the band structure of the
simplest case of alternating positive and negative potential regions. Section 3 develops the
transfer matrix method for handling more general piecewise constant potentials. In section 4,
we apply the method for computing the spectrum of localized solutions in trench and embedded
p–n junction geometries. Section 5 applies the results of the transfer matrix calculations to
compute the conductance of these systems. Finally, we conclude with a summary in section 6.

2. Periodic potential

In the vicinity of a Dirac point at the wavevector K , we write the wavevector k = K +1k, and
the two-component wavefunction as ψ ≡ eiK ·x(u/v). Assuming a scalar potential V (x) that is
independent of the coordinate y, the wavefunction φ = (u/v)may be chosen as an eigenstate of
the Hamiltonian H̃ = e−iK ·x H eiK ·x ,

H̃ =

(
V (x) h̄vF(−i∂x + iq)

h̄vF(−i∂x − iq) V (x)

)
, (1)

where q =1ky . The eigenvalue equation for φ may then be recast in matrix form as ∂xφ =

M(x) φ, where

M(x)=

(
−q iκ(x)

iκ(x) q

)
(2)

and

κ(x)=
E − V (x)

h̄vF

. (3)

The solution is(
u(x)

v(x)

)
= P exp

(∫ x

0
dx ′M(x ′)

)(
u(0)

v(0)

)
, (4)

where P denotes the path ordering operator, which places smaller values of x to the right.
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We presume V (x)= V (x + d) is periodic, in which case the Bloch condition becomes(
u(d)

v(d)

)
= eiθx

(
u(0)

v(0)

)
, (5)

where θx is the Bloch phase. This leads to the condition

det[3− eiθx ] = 0, (6)
where

3= P exp

(∫ d

0
dx M(x)

)
. (7)

Note that M†
= −σ x Mσ x , where σ x is the Pauli matrix, and that Tr M = 0. Since det(3)= 1,

the eigenvalues of 3 are given by ζ =
1
2 T ±

√
T 2 − 4, where T = Tr (3). The energy bands,

where the Bloch condition can be satisfied, correspond to the regime |T |6 2. For |T |> 2, the
wavefunctions grow exponentially and are not normalizable. The mathematical structure here
is common to a variety of problems involving linear equations with periodic coefficients [29],
such as the classical mechanics setting of a pendulum with periodically varying length.

For a continuous periodic function V (x), the path-ordered exponential is not analytically
tractable. However, many of the essential features are reproduced by considering a piecewise
constant V (x) of the form

V (x)=

{
lV1 if 06 x < d1,

lV2 if d1 6 x < d1 + d2.
(8)

Piecewise constant potentials in graphene have been studied previously [22, 24, 28] by appealing
directly to matching conditions for wavefunctions, which produce results equivalent to those of
our formulation. For the present approach, we have3=3231, where3 j = exp(M j d j), where
the matrices M j ( j = 1, 2) are as in equation (2), with κ j ≡ (E − V j)/h̄vF in the off-diagonal
elements. The period of V (x) is d1 + d2. We then have

3 j = cosα j · I+
sinα j

α j
· M j d j , (9)

with α j = d j

√
κ2

j − q2. The resulting trace is

T = 2 cosα1 cosα2 + 2 d1d2 (q
2
− κ1κ2) ·

sinα1 sinα2

α1 α2

. (10)

This condition is consistent with that for allowed energy states obtained via wavefunction
matching [22]. The Bloch condition is satisfied when |T |6 2. It is convenient to define the
dimensionless quantities

ε = (E − 〈V 〉) ·
d1 + d2

h̄vF

, (11)

ω =
1
2(V1 − V2) ·

d1 + d2

h̄vF

, (12)

where 〈V 〉 = (d1 V1 + d2 V2)/(d1 + d2) is the average potential. We also define the dimensionless

wavevector θy = q (d1 + d2). When V is constant, one finds that T = 2 cos
√
ε2 − θ 2

y , and the

Bloch condition is satisfied provided |E − V |> h̄vF|q|. This, of course, is the condition that the
energy E lies within the Dirac cone.
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Figure 1. Contour plot of T = Tr (3) for d1 = d2 and ω =
13
2 π . Red regions

correspond to T > 2 and olive regions to T <−2. The energy bands are
identified by the blue regions, where |T |< 2.

Next, consider V1 6= V2, but with q = 0. The trace is then T = 2 cos ε, and there are allowed
states at all energies. The Bloch condition is satisfied marginally when ε = nπ , corresponding
to the touching of two energy bands that disperse with q , to the vanishing of a band gap as
q → 0. Indeed, this result holds for arbitrary V (x), since M(x)= κ(x) σ x in this case; hence
[M(x),M(x ′)] = 0 and the path ordering is superfluous.

Now consider the case d1 = d2. The spectrum then exhibits a particle–hole symmetry
relative to E = 〈V 〉. When E = 〈V 〉, ε = 0, we have

T = 2 +

2θy sin 1
2

√
ω2 − θ 2

y√
ω2 − θ 2

y

2

. (13)

Clearly, T > 2, with the marginal condition T = 2 pertaining when

θy = ±

√
ω2 − 4π 2n2 , (14)

where n is an integer, as well as a solution at θy = 0. Since q is real, there is a maximum allowed
value for n,

nmax =

[ ω
2π

]
, (15)

where the brackets indicate the greatest integer function. Thus, two new Dirac points open up
each time ω increases by 2π , and there are 2nmax + 1 Dirac points, including the one at θy = 0.
Similar results have previously been obtained by other methods [24]–[26]. (See for example
figures 4 and 5 of [24].)

In figures 1 and 2, we plot the contours of the function T (ε, θy) for ω =
13
2 π for d1 = d2

and d1 =
2
3 d2, respectively. Note the particle hole symmetry present in the former case, which
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Figure 2. Contour plot of T = Tr (3) for ω =
13
2 and d1 =

2
3d2.

is broken when d1 6= d2. Note also the band touchings at ε = nπ for θy = 0 in both cases. In
figure 3, we again plot the band structure as in figure 1, but showing the high-energy structure
as well. At energy scales |ε| � 1, the spectrum may be understood as the intersection of the
two Dirac cones |ε +ω|> θy and |ε−ω|> θy . The presence of a spectrum with such bands and
gaps can lead to highly non-trivial behavior in transport through such structures [24].

As a limiting case of the model, consider d2 → 0 with V2d2 = −h̄vF�0 finite. The potential
is then

V (x)=�0 ·
h̄vF

d
>

{
1 −

∞∑
n=−∞

δ
( x

d
− n

)}
, (16)

a Dirac comb with a uniform compensating background. The trace in this case is given by

T = 2 cos�0 cosα− 2 sin�0 sinα ·

(ε−�0

α

)
, (17)

where α =

√
(ε−�0)

2 − θ 2
y . This limit is distinguished by the fact that all the Dirac points of

T (ε, θy) lie along the line θy = 0, as shown in figure 4.

3. Transfer matrices and Landauer conductance through potential slabs

Consider a piecewise constant potential V (x), as depicted in figure 5, in which V = V j over a
slab of width d j , with j = 1, . . . , N . We presume the slabs are bounded by pristine regions of
graphene with V = 0, and we label these outer regions 0 and N + 1.

Wavevectors k j for each of the slabs may be defined by the relations

E

h̄vF

= σ0 k0 =
V j

h̄vF

+ σ j k j , (18)
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Figure 3. Contour plot of T = Tr (3) for ω0 =
13
2 π and d1 = d2.

Figure 4. Contour plot of T = Tr (3) in the d2 → 0 limit with �0 ≡

−V2d2/h̄vF =
3
5π held constant.

where each k j > k0 is non-negative. Here, σ j = ±1 is a binary variable in each slab that
indicates whether the energy E is above (n-type) or below (p-type) the Dirac point, which occurs
at E = V j . We take σ0 = σN+1 and V0 = VN+1 = 0.
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Figure 5. Transport through a series of potential slabs. The potential V (x) is
piecewise constant, given by V j in the j th slab.

In each region j , the solution to the Dirac equation,

−ih̄vF σ · ∇ψ + V jψ = Eψ, (19)

is either propagating or evanescent. Due to translation invariance in the y-direction, we are
free to fix the wavevector q along this axis; all solutions include a factor eiqy . The local Fermi
wavevector k j in each region is related to the local density by n j = k2

j/4π , and the sign of the
carrier charge is −σ j .

If k j > q, the wavefunction in slab j propagates as a plane wave along the x-direction as
well. The solution is of the form

ψ j(x)=

{
A j
√

2

(
1

σ j eiθ j

)
eik j x cos θ j +

B j
√

2

(
1

−σ j e−iθ j

)
e−ik j x cos θ j

}
eik j y sin θ j , (20)

where θ ∈
[
−

π

2 ,
π

2

]
. Matching the y dependence gives us the condition

q = k j sin θ j if k j > q. (21)

To solve for the wavefunction everywhere, we must match the value of each component of ψ(x)
at the boundaries between slabs. Accordingly, from equation (20), we define the matrix

M j =

( 1
√

2
1

√
2

1
√

2
σ j eiθ j −

1
√

2
σ j e−iθ j

)
, (22)

which we shall invoke soon. Free propagation across a slab is described by the transfer matrix

K j =

(
eik j d j cos θ j 0

0 e−ik j d j cos θ j

)
. (23)

If k j < q, the solution in slab j has an evanescent (pure exponential) behavior along the
x-axis,

ψ j(x)=

A j

 cos
(
ϕ j

2

)
iσ j sin

(
ϕ j

2

)
 ek j x cotϕ j + B j

 sin
(
ϕ j

2

)
iσ j cos

(
ϕ j

2

)
 e−k j x cotϕ j

 eik j y cscϕ j , (24)
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where ϕ j ∈
[
−

π

2 ,
π

2

]
. Momentum conservation along y requires

q = k j cscϕ j if k j 6 q. (25)

For the evanescent slabs, we define

M j =


cos
(
ϕ j

2

)
sin
(
ϕ j

2

)
iσ j sin

(
ϕ j

2

)
iσ j cos

(
ϕ j

2

)
, (26)

and free propagation across an empty slab is described by

K j =

ek j d j cotϕ j 0

0 e−k j d j cotϕ j

. (27)

The equations guaranteeing continuity of the wavefunction at the slab boundaries are

M j−1

AR
j−1

BR
j−1

= M j

AL
j

BL
j

 . (28)

Here, the superscripts R and L refer to the right and left boundaries of the slab. They are related,
within a given slab, by the free propagation transfer matrix,AR

j

BR
j

= K j

AL
j

BL
j

 . (29)

We can now compute the transfer matrixM for a general configuration of slabs, which is
defined by the relationAL

N+1

BL
N+1

=M

 AR
0

BR
0

 . (30)

In terms of the previously defined quantities, the total transfer matrix is

M= M−1
N+1(MN KN M−1

N ) · · · (M1 K1 M−1
1 )M0. (31)

The recurring matrices Q j = M j K j M−1
j may be parameterized by θ j and χ j = kd cos θ j for

a propagating region and by ϕ j and ω j = kd cotϕ j for an evanescent region, as detailed in
the appendix. As is well known, the transfer matrix relates data on the left to data on the right
of a given region. Incoming and outgoing flux amplitudes are related by the S-matrix,

(
AN+1

B0

)
=

S︷ ︸︸ ︷(
t

r

r ′

t ′

) (
A0

BN+1

)
. (32)

Appealing to the unitarity of S, we then have

M11 = t∗−1, M12 = r ′ t ′−1, (33)

M21 = −t ′−1 r, M22 = t ′−1 . (34)

As discussed in more detail below, the dimensionless two-terminal Landauer conductance, in
units of e2/h per spin channel, is given by

T = |t |2 = |M11|
−2. (35)
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4. Localized solutions of embedded geometries

We first consider situations where the outer regions contain evanescent waves, so the
wavefunction is localized within the slabs. In this case, we must have B0 = 0 and AN+1 = 0, if
cotϕ > 0, which requiresM11 = 0; for the case cotϕ < 0, we must have A0 = 0 and BN+1 = 0,
leading to M22 = 0. This condition defines the 1D dispersion E(q), where q = k0 cscϕ0 =

k j sin θ j .

4.1. Single trench

For the single-trench geometry, the existence of localized wavefunctions has been noted
previously in [28]. For completeness and later discussion, we explain how they arise in the
present formulation. For a single trench of width d, the conditionM11 = 0 is

cosϕ0 cos θ1 cosχ1 + ( sin θ1 − σ0 σ1 sinϕ0) sinχ1 = 0 (36)

or

cosϕ0 cosϕ1 coshω1 + (1 − σ0 σ1 sinϕ0 sinϕ1) sinhω1 = 0. (37)

The condition M22 = 0 is obtained by reversing the sign of χ1 or ω1. We now define the
dimensionless potential ν ≡ V d/h̄vF, energy ε ≡ σ0k0d = ν + σ1k1d and wavevector θy = qd.
The eigenvalue condition is then F(ε, ν, θy)= 0, where

F(ε, ν, θy)= (θ 2
y − ε (ε− ν)) ·

sinχ1

χ1

+
√
θ 2

y − ε2 cosχ1 (38)

and

χ1 =

√
(ε− ν)2 − θ 2

y . (39)

This form for F holds for either sign of q and is extended to the regime (ε− ν)2 < θ 2
y via

analytic continuation. If we search for eigenvalues at ε = 0, we obtain the condition

χ1

(ν2 −χ2
1 )

1/2
= − tanχ1, (40)

a graphical analysis of which shows a new root emerging each time ud passes through nπ .8

Thus, there are [ν/π ] solutions with ε = 0 that lie at finite values of θy . In figure 6, for example,
we have ν = 14 and thus there are [14/π ] = 4 bands that cross ε = 0 at finite θy .

4.2. Embedded junction

Consider next the case of an embedded junction with a double step,

V (x)=


l0 if x < 0,

lV1 if 06 ax < d1,

lV2 if d1 6 x < d1 + d2,

l0 if d1 + d2 6 x .

(41)

8 Note that this equation can be inferred by setting ε = 0 in equation (7) of [28].
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Figure 6. Energy bands for a single trench of width d and potential V =

14 h̄vF/d. The hatched region depicts the Dirac cones in the bulk. Solid lines
show dispersions for bands of localized states in the gap between the upper and
lower Dirac cones.

When V1 and V2 are of opposite sign, this corresponds to a p–n junction embedded in
neutral graphene. We define ε = σ0k0(d1 + d2), θy = q(d1 + d2) and ν j = V j(d1 + d2)/h̄vF. We
furthermore define x j ≡ d j/(d1 + d2), so x1 + x2 = 1. Applying the transfer matrix formalism,
we once again arrive at an eigenvalue condition F(ε, ν1, ν2, x1, θy)= 0, this time with

F(ε, ν1, ν2, x1, θy)= x1(θ
2
y − ε (ε− ν1)) ·

sinχ1

χ1

· cosχ2 + x2(θ
2
y − ε (ε− ν2)) · cosχ1 ·

sinχ2

χ2

+

[
x1x2(θ

2
y − (ε− ν1)(ε− ν2)) ·

sinχ1

χ1

·
sinχ2

χ2

+ cosχ1 cosχ2

]
·

√
θ 2

y − ε2, (42)

where

χ j = x j

√
(ε− ν j)

2 − θ 2
y , (43)

and where we continue to express energies and wavevectors as dimensionless quantities. As
with the single trench case, the expression for F is analytically continued to the regimes where
(ε− ν j)

2 < θ 2
y .

Generally speaking, when two semi-infinite undoped regions are separated by a sequence
of doped slabs, in addition to the Dirac cones in the bulk, one obtains localized subbands with
energies lying within the gap between the upper and lower Dirac cones. The wavefunctions
for these subband states are localized within the slabs. In figure 6, we plot the Dirac cones
and subband dispersions for the case of a single strip of width d with potential V = 14 h̄vF/d.

New Journal of Physics 12 (2010) 123020 (http://www.njp.org/)

http://www.njp.org/


12

Figure 7. Energy bands for a p–n junction embedded in neutral graphene. Both
p and n regions have width d , with V1 = −V2 = 14 h̄vF/d . The hatched region
depicts the Dirac cones in the bulk. Solid lines show dispersions for bands of
localized states in the gap between the upper and lower Dirac cones.

In figures 7 and 8, we investigate the case of a p–n junction embedded in neutral graphene,
where both p and n regions have the same width d , and again we choose V = ±14 h̄vF/d for
purposes of illustration. Apparently, E = 0 always lies within a gap between subbands. Note
that the parameters of the p–n junction are such that the spectum is particle–hole symmetric.

The subband structure of a general p–n junction can be understood in terms of the simple
diagram in figure 9. In the figure, we sketch the three Dirac cones for the undoped bulk
region (black lines), the p-type slab (blue lines, V1d1/h̄vF = 12) and the n-type slab (red lines,
V2d2/h̄vF = −7). For the purpose of generality, we consider a system that has no particle–hole
symmetry. Outside the black hatching, there are no bulk states. In regions I and III, there are
localized states living along the p-trench. Similarly, in regions I and II, there are localized
states living along the n-trench. In region I, there can be resonant tunneling between the p and
n trenches, and the localized states live in both trenches. In region IV, which lies outside all
three Dirac cones, there can be no states. In figure 10, we plot the subband structure for this
p–n junction, with equal thicknesses of the p and n regions, superimposing on those curves
the results for the individual single barrier problems. A comparison with the sketch in figure 9
reveals the basic physics of the energy spectrum. One may see the confined states associated
with each of the two trenches, one set dispersing up and the other down. These confined states
admix where they are degenerate for the individual trenches, leading to anticrossings. In the
case where the two trenches are equal and opposite (e.g. figures 7 and 8), this leads to a set of
anticrossings around zero energy, rather than the extra Dirac points one finds in the superlattice
case.
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Figure 8. Low-energy detail for the embedded p–n junction from figure 7,
showing that E = 0 always lies within a gap between subbands.

We conclude this section with a few remarks. Since the presence of localized solutions
appears because there is effectively a gap in the spectrum of neutral graphene as a function of
kx when q ≡ kyd is non-vanishing and fixed, allowing evanescent solutions outside the trench
regions, it is clear that localized solutions will be present even if the potential varies smoothly,
rather than in the piecewise constant way we have studied. Secondly, it is interesting to note that
the very narrow bands at large q for the superlattice spectra (e.g. figures 1 and 2) approximately
follow the energies of bound states in the individual trenches making up the superlattice, so
that this region of the spectrum may be understood as arising from localized trench states that
are weakly coupled together. It is also interesting to note that the avoided crossings of the
embedded p–n junction evolve into Dirac points when many of these are joined together to
form a superlattice.

5. Two-probe Landauer conductance

In this section, we consider transmission through a slab geometry for the more general case
where the graphene leads are doped. Consider the geometry of figure 5. Define a vertical
( ŷ-directed) surface 6 somewhere to the right of the N th slab. The current across that surface
will be the sum of three contributions. Firstly, there will be carriers injected from the left side,
with chemical potential µL, moving at angle θ ∈

[
−

1
2π,

1
2π
]
, which make it past the slabs with

probability T (E, θ). These are all right-movers. Secondly, there will be carriers from the right
lead, with chemical potential µR, moving at an angle θ ∈

[
1
2π,

3
2π
]
. Because of this range of θ ,

all these are left-movers. Finally, with probability R′(E, θ), each of these left-moving carriers
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Figure 9. The bulk Dirac cones for V = 0 are hatched in black. Localized states
in the p trench (V1 = 12h̄vF/d) are present in regions I and III. Localized states
in the n-trench (V2 = −7h̄vF/d) are present in regions I and II.

reflects off the barrier region, scattering into a state with θ ′
= π − θ . Putting all this together,

I6 = L6 n̂6 ·

∫
∞

−∞

dE >N (E)
∫ π/2

−π/2

dθ

2π

{
T (E, θ) J(E, θ) f (E −µL)

+
[

J(E, π + θ)+ R(E, π + θ) J(E,−θ)
]

f (E −µR)
}
, (44)

where L6 is the length of the surface and N (E) is the density of states,

N (E)=
g |E |

2π h̄2v2
F

, (45)

and g = 4 accounts for spin and valley degeneracy. J(E, θ) is given by

J(E, θ)= −evF sgn(E) (x̂ cos θ + ŷ sin θ). (46)

We take n̂6 = x̂. Unitarity of the S-matrix yields T (E, θ)+ R(E, π + θ)= 1. Expanding in the
difference µL −µR, we obtain at T = 0

I6 =
e2

πh
V 〈T (EF)〉

g |EF|

h̄vF

L y, (47)

where V = (µL −µR)/e is the voltage drop. The average transmission coefficient is defined as

〈T (E)〉 =

∫ π/2

0
dθ T (E, θ) cos θ. (48)
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Figure 10. Subband structure and bulk Dirac cones for the p–n junction with
d1 = d2 = d and V1 = 12h̄vF/d, V2 = −7h̄vF/d, shown in black. Superimposed
in blue and red are the subband structures for the individual V1 and V2 barriers,
respectively.

The carrier density at zero temperature is n = gk2
F/4π , so the Fermi energy is EF = h̄vFkF =

h̄vF

√
4πn/g. Thus,

I (V )=
e2

πh
〈T (EF)〉 (4πgn)1/2 L y V . (49)

Defining the effective channel number,

Nc =
g

π
kFL y = (4gn/π)1/2 L y, (50)

the two-terminal Landauer conductance becomes

G =
I

V
= Nc ×

e2

h
〈T (EF)〉. (51)

Expressed in a convenient set of units, the resistance is

R = G−1
=

h

Nc e2
× 〈T (EF)〉

−1

= 0.114 k� · 〈T (EF)〉
−1

· n̄−1/2
· L̄−1

y , (52)

where n̄ is the dimensionless carrier density (in the leads) in units of 1012 cm−2 and L̄ y is the
length of the barrier region in units of microns.

For a single trench of width d1 and carrier density n1 embedded between graphene leads of
carrier density n0, we haveM= M−1

0 Q1 M0, where Q j ≡ M j K j M−1
j and

ReM11 = coshω1, (53)

ImM11 = σ0 σ1 sinhω1 tanϕ1 sec θ0 − sinhω1 secϕ1 tan θ0. (54)
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Figure 11. Average transmission coefficient across a single trench of width
d1 = 100 nm as a function of density n1 (in units of 1012 cm−2). From top to
bottom: n0 = 1, 2, 3, 4, 5 and 20 (×1012 cm−2). Negative densities correspond to
a p-type (hole-doped) trench.

Here we have assumed that k1 < q, so the trench contains evanescent solutions, but by a simple
analytic continuation our result also holds for the k1 > q case.

For an embedded junction consisting of two consecutive slabs (n1, d1) and (n2, d2), the
total transfer matrix isM= M−1

0 Q1 Q2 M0, resulting in

ReM11 = coshω1 coshω2 + sinhω1 sinhω2 (secϕ1 secϕ2 − σ1 σ2 tanϕ1 tanϕ2), (55)

ImM11 = σ0 σ1 sec θ0 sinhω1 tanϕ1 coshω2 + σ0 σ2 sec θ0 coshω1 sinhω2 tanϕ2

− tan θ0 (coshω1 sinhω2 secϕ2 + secϕ1 secϕ1 coshω2). (56)

In figure 11, we plot the average transmission coefficient 〈T (EF)〉 as a function of the density
n1 for a single trench with d1 = 100 nm, for several different values of the lead density n0.
There are three features worth noting. Firstly, there is a non-zero transmission even when
n1 = 0, due to the presence of evanescent solutions within the trench [30]. Secondly, there
is (obviously) perfect transmission when n1 = n0. Thirdly, the transmission falls off rapidly
as n1 → 0, and is smooth for 0< n1 < n0, which is a regime where the carriers in both
regions are of the same sign, yet total internal reflection can occur at the interface, with
the critical angle given by sin θ c

0 = |n1/n0|
1/2. Finally, when n1 > n0 or when the carriers

in the leads and the trench are of opposite sign, one observes quantum oscillations in the
transmission, due to constructive and destructive interference effects from scattering at the
walls of the trench.
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Figure 12. Average transmission coefficient across an embedded p–n junction
with d1 = d2 = 50 nm as a function of density n1 = −n2 (in units of 1012 cm−2).
From top to bottom: n0 = 1, 2, 3, 4, 5 and 20 (×1012 cm−2).

It is interesting to compare figure 11 with the results in [11], which reports the measured
conductance through an electrostatically defined trench potential in a wide graphene ribbon as
a function of the gate voltage defining the trench. As in our results, the experiments indicate
a rapidly falling conductance when n1 has the same sign as n0, as n1 approaches zero, and
after passing through zero one observes oscillations due to quantum interference. A prominent
difference is the absence in the experimental results of a rising background around which
these oscillations occur. In our model, this appears because the density of states in the trench
increases as |n1| increases. It is likely that the difference between our theoretical results and
those observed in [11] are due to the relatively smooth potential induced by the remote gates
in the experiment. In particular, this can yield relatively large ‘depletion’ regions between the
trench and the graphene leads, which may dominate the resistance of the device and overwhelm
the increase in conductance related to the trench density of states. In principle, one could model
the device as a series of piecewise constant potentials and use the transfer matrix method we
have developed to obtain a more quantitatively accurate model.

In figure 12, we plot 〈T (EF)〉 as a function of n1 for an embedded p–n junction with
d1 = d2 = 50 nm and n2 = −n1. For such a symmetric junction, the average transmission is
symmetric under n1 → −n1. The step-like features present in the transmission here represent
scattering effects due to the localized solutions and the avoided crossings in their dispersions,
as discussed in the previous section. Thus, the bound states support an (in principle) measurable
signature in conductance through the system.

6. Summary

In this paper, we have studied the spectra of and transport properties through graphene in
the presence of several piecewise constant potentials. We demonstrated that these may be
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investigated in a straightforward manner using a transfer matrix approach [27, 28]. For the case
of superlattice potentials, we demonstrated that exact solutions of the Dirac equation generically
contain Dirac points centered at zero energy for particle–hole symmetric potentials [25, 26],
and that these are special cases of Dirac points that appear throughout in the band structure of
superlattice potentials. We also considered the cases of a single trench and an embedded p–n
junction in neutral graphene, both of which may support confined states at large enough values
of ky , the momentum along the translationally invariant direction. An analysis of conductance
through these structures shows quantum interference effects, which may be interpreted as
signatures of these bound states, in principle allowing these unique features of graphene
nanostructures to be seen experimentally.

Note added: While this manuscript was in the final stages of preparation, a manuscript by
Barbier, Vasilopoulos and Peeters appeared [27] that also considers the effect of a superlattice
on monolayer graphene and the emergence of additional Dirac points. We are grateful to F M
Peeters for subsequently alerting us to the substantial previous work that he and his collaborators
have contributed to the subject of Dirac subband spectra and transport in the presence of 1D
potentials [21]–[23]. We are also grateful to Y P Bliokh for drawing our attention to [24], which
also addresses subband formation in the presence of a superlattice structure.
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Appendix

We define Q = M K M−1 for a given slab. Within a propagating slab, we have

Q =

(
cosχ + sinχ tan θ iσ sinχ sec θ

iσ sinχ sec θ cosχ − sinχ tan θ

)
, (A.1)

with χ = kdcos θ , while for a non-propagating slab, we have

Q =

(
coshω + sinhω secϕ iσ sinhω tanϕ

iσ sinhω tanϕ coshω− sinhω secϕ

)
, (A.2)

with ω = kd cotϕ. These expressions are useful in constructing the transfer matrix for a series
of slabs, which is given in equation (31).

References

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Molitor F, Huefner M, Jacobsen A, Pioda A, Stampfer C, Ensslin K and Ihn T 2009 arXiv:0904.1364
[4] Luo T, Iyengar A, Fertig H and Brey L 2009 Phys. Rev. B 80 165310
[5] Abergel D S L, Apalkov V M and Chakraborty T 2008 arXiv:0806.2854
[6] Bahamon D A, Pereira A L C and Schulz P A 2008 arXiv:0812.2001

New Journal of Physics 12 (2010) 123020 (http://www.njp.org/)

http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/RevModPhys.81.109
http://arxiv.org/abs/0904.1364
http://dx.doi.org/10.1103/PhysRevB.80.165310
http://arxiv.org/abs/0806.2854
http://arxiv.org/abs/0812.2001
http://www.njp.org/


19

[7] Potas P, Guclu A D and Hawrylak P 2009 arXiv:0908.3693
[8] Wurm J, Wimmer M, Baranger H and Richter K 2010 Semicond. Sci. Technol. 25 034003
[9] Novikov D S 2005 Phys. Rev. B 72 235428

[10] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[11] Young A and Kim P 2009 Nat. Phys. 5 222
[12] Cheianov V V, Fal’ko V and Altshuler B 2007 Science 315 1252
[13] Zhang L M and Fogler M M 2008 Phys. Rev. Lett. 100 116804
[14] Beenakker C 2008 Rev. Mod. Phys. 80 1337
[15] Velasco J, Liu G, Bao W and Lau C N 2009 arXiv:0907.3366
[16] Pereira J M, Mlinar V, Peeters F M and Vasilopoulos P 2006 Phys. Rev. B 74 045424
[17] Pletikosic I, Kralj M, Pervan P, Brako R, Coraux J, N’Diaye A, Busse C and Michely T 2009 Phys. Rev. Lett.

102 056808
[18] Tiwari R and Stroud D 2009 arXiv:0901.4780
[19] Esmailpour A, Abedpour N, Asgari R and Tabar M R R 2008 arXiv:0809.4578
[20] Park C, Son Y-W, Yang L, Cohen M L and Louie S G 2008 Nano Lett. 8 2920
[21] Pereira J M Jr, Peeters F M and Vasilopoulos P 2007 Appl. Phys. Lett. 90 132122
[22] Barbier M, Peeters F M, Vasilopoulos P and Pereira J M Jr 2008 Phys. Rev. B 77 115446
[23] Barbier M, Peeters F M and Vasilopoulos P 2009 Phys. Rev. B 80 205415
[24] Bliokh Y P, Freilikher V, Savel’ev S and Nori F 2009 Phys. Rev. B 79 075123
[25] Brey L and Fertig H 2009 Phys. Rev. Lett. 103 046809
[26] Park C, Son Y-W, Yang L, Cohen M L and Louie S G 2009 Phys. Rev. Lett. 103 046808
[27] Barbier M, Vasilopoulos P and Peeters F M 2010 arXiv:1002.1442
[28] Yampolksii Y, Savelev S and Nori N 2008 New J. Phys. 10 053024
[29] Arnold V I 1973 Ordinary Differential Equations (Cambridge, MA: MIT Press) p 28
[30] Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
[31] Wurm J, Rycerz A, Adagideli I, Wimmer M, Richter K and Baranger H U 2009 Phys. Rev. Lett. 102 056806

New Journal of Physics 12 (2010) 123020 (http://www.njp.org/)

http://arxiv.org/abs/0908.3693
http://dx.doi.org/10.1088/0268-1242/25/3/034003
http://dx.doi.org/10.1103/PhysRevB.72.235428
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1038/nphys1198
http://dx.doi.org/10.1126/science.1138020
http://dx.doi.org/10.1103/PhysRevLett.100.116804
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://arxiv.org/abs/0907.3366
http://dx.doi.org/10.1103/PhysRevB.74.045424
http://dx.doi.org/10.1103/PhysRevLett.102.056808
http://arxiv.org/abs/0901.4780
http://arxiv.org/abs/0809.4578
http://dx.doi.org/10.1021/nl801752r
http://dx.doi.org/10.1063/1.2717092
http://dx.doi.org/10.1103/PhysRevB.77.115446
http://dx.doi.org/10.1103/PhysRevB.80.205415
http://dx.doi.org/10.1103/PhysRevB.79.075123
http://dx.doi.org/10.1103/PhysRevLett.103.046809
http://dx.doi.org/10.1103/PhysRevLett.103.046808
http://arxiv.org/abs/1002.1442
http://dx.doi.org/10.1088/1367-2630/10/5/053024
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1103/PhysRevLett.102.056806
http://www.njp.org/

	1. Introduction
	2. Periodic potential
	3. Transfer matrices and Landauer conductance through potential slabs
	4. Localized solutions of embedded geometries
	4.1. Single trench
	4.2. Embedded junction

	5. Two-probe Landauer conductance
	6. Summary
	Acknowledgments
	Appendix
	References

