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Abstract The method presented in [13] by Bernhard Möller to derive poin-
ter algorithms has been shown well-applicable and easy-to-use in several
various examples.

We present the derivation of different pointer algorithms on lists from their
functional specification. The intention of this paper is to show the advantages
of the method on a number of medium-sized examples on the one hand. On
the other hand we point out also problems and tasks to be solved to achieve
a complete framework for the derivation of pointer algorithms working on
inductively defined data structures.

1 Introduction

Basically there are two different ways to come to a correct algorithm. Either you
give a possible candidate together with a specification and have to prove that the
algorithm fulfills all requirements of the specification. Or one starts from the spec-
ification and tries to transform it into an executable algorithm using correctness-
preserving transformations only. The first method sometimes is more intuitive, be-
cause this is the way programming works since its beginning. Nevertheless there are
several disadvantages. Evidently, the work to be done is doubled. First one has to
provide a specification. This normally evolves from several stages of a round trip
process between the customer and the software engineer. The developer then has to
provide an implementation that often contains errors or does not fit the specification
in all points. At the end of this process in a formal software development process the
programmer has to prove that his implementation meets the specification. The dif-
ferences between these two methods are comparable to the ones of parser generators
versus hand-made parser code. If the grammar changes only little we have an auto-
matic procedure to create a new program that parses the language described. This
is also the intention of transformational program development. If the specification
is changed, one hopes that big parts of the derivation process can be automatically
or semi-automatically replayed. The other advantage is that all proofs of properties
of the system can be done on the specification side. If only correctness-preserving
transformation rules are used one can be sure that the properties also hold for the
implementation.

In this paper we are focusing on transformational program development and the
correctness of pointer algorithms. Note, that we are only interested in algorithms
that really alter the pointer structure. The other ones, like e.g. elem to determine
if a list contains a given element, can be treated the same way (see Sec. 3.2). But
these algorithms are much easier. We will show how this works on the previously
mentioned function elem. Normally these types of functions are tail-recursive and
do not demand for any strange side-conditions holding on the pointer structure like
for example reachability constraints.



This paper also should serve as a programme for what are the problems and
what has to be done to achieve a complete framework for the derivation of pointer
algorithms. Our goal is on the one hand side to provide a concise algebraic toolbox
to describe and calculate with pointer structures but on the other hand not to lose
sight of practical applicability.

The paper is structured as follows: Section 2 presents some changes and im-
provements of the original pointer algebra defined by Möller. In Section 3 several
standard algorithms on singly-linked lists are derived from functional specifications.
Section 4 investigates which sort of abstract patterns evolved from the derivations
and how they can be transformed into an imperative form. Problems and future
tasks to deal with are pointed out in Section 5. Here also some ideas for future
research are noted. Section 6 closes with a short summary.

2 Detailed observations of pointer algebra

This section makes some critical remarks, minor improvements and shows more
detailed derivations and proofs of the pointer algebra presented in [13] by Möller.
The goal here is not to question the whole framework presented. On the contrary,
it has been proved to be widely applicable and not too complex to be only of
theoretical interest. So we want to improve the whole building to come to a well
based calculus.

Subsections 2.1 and 2.2 give a short overview of the method. The reader that is
well up in this calculus might skip these sections. For further details the reader is
referred to the cited paper.

2.1 Pointer structures

In our model a pointer structure P = (s, P ) consists of a store P and a list of entries
s. The entries of a pointer structure are addresses A that form starting points of the
modeled data structures. We assume a distinguished element � ∈ A representing
a terminal node (e.g. null in C or nil in Pascal). A store is a family of relations
(more precisely partial maps) either between addresses or between addresses and
node values Nj such as Integer or Boolean. Each relation represents a selector on
the records like e.g. head and tail for lists with functionality A → Nj respectively
A → A.

Each abstract object implemented by pointer structures is represented by a
pointer structure (n, P ) with a single entry n ∈ A which represents the entry point
of the data structure such as for example the root node in a tree. For convenience
we introduce the access functions

ptr(n,L) = n sto(n,L) = L

The relation between abstract and concrete levels is established by a partial ab-
straction function as described in [11]. An example of an abstraction function for
singly-linked lists is:

list(p) = if ptr(p) = � then []
else p.head : list(p.tail)

The exact definition of operators used here are given in Section 2.2. Given an ab-
straction function F , the pointer implementation fp of a given functional operation
f is now specified by the equation f(F (p)) = F (fp(p)).
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To derive a pointer implementation fp from this specification one tries to transform
the expression f(F (p)) by equational reasoning into an expression F (E) such that
E does not contain the abstraction function. Then we can define fp by setting
fp(p) = E. We will see several examples of this methodology more exactly in Section
3. Certainly we will not use nondeterministic or intuitively senseless functions as
abstractions. So in the following we only will use reasonable abstraction functions.

Definition 1. An abstraction function is called reasonable if equality of the reach-
able parts of two pointer structures implies equal abstractions.

An improved and more detailed definition of reasonable can be found in 2.3.

2.2 Operations

We want to give only the necessary definitions of operations used in this paper. More
of them and proofs can be found in [13]. The following operations on relations all
are canonically lifted to families of relations. Algorithms on pointer structures stand
out for altering links between elements. Such modification has to be modeled in the
calculus as well. We use an update operator | (pronounced ”onto”) that overwrites
relation S by relation R:

Definition 2. R | S def⇔ R ∪ dom(R) ./ S

Here we have used the domain restriction operator ./ which is defined as L ./ S =
S ∩ (L × N) to select a particular part of S ⊆ P(M × N). The update operator
takes all links defined in R and adds the ones from S that no link starts from in R.
To be able to change exactly one pointer in one explicit selector we define a sort of
“mini-store” that is a family of partial maps defined by:

Definition 3. (x k→ y) def⇔
{
{(x, y)} for selector k
∅ otherwise

}
It is clear that overwriting a pointer structure with links already defined in it does
not change the structure. This leads to

Lemma 1. S ⊆ T ⇒ S | T = T (Annihilation)

To have a more intuitive notation leaned on traditional programming languages, we
introduce the following selective update notation:

Definition 4. For selector k of type A → A
(n, P ).k := (m,Q) def⇔ (n, (n k→ m) | Q)

which overwrites Q with a single link from n to m at selector k. Selection is per-
formed the same way:

Definition 5. k of type A → A : (n, P ).k def⇔ (Pk(n), P )

k of type A → Nj : (n, P ).k def⇔ Pk(n)
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To have the possibility to insert new (unused) addresses into the data structure we
define the newrec operator. The operator newrec((n,L), ki 7→ xi) alters the pointer
structure (n,L) to have a new record previously not in (n,L) and each selector ki

pointing to xi. So for example newrec((n,L), head 7→ 3, tail 7→ �) returns a pointer
structure (m,K) with m a new address previously not used in (n,L) and store K
consisting of L united with two new links (m head→ 3) and (m tail→ �).

2.3 Refinement of reasonability

As described above, the connection between concrete and abstract level of reasoning
is achieved using abstraction functions. It is necessary to demand reasonable ab-
straction functions that avoid magically constructed abstract objects. Demanding
reasonable abstraction functions prevents for example the use of random generators
or similar in the abstraction process. For some tasks to be solved in this context see
Section 5.1.

The notion of reasonable abstraction functions is not wrongly defined but in
our eyes not general enough. Although there was no need for such an improved
version of reasonability in all the example derivations, there maybe applications in
the future where one needs this form. The refined version presented here also is
much more intuitive.

In the original paper an abstraction function F is called reasonable if equality of
the parts of a store reachable from two pointer structures implies that F provides
the same abstract objects from both pointer structures. Formally:

from(p) = from(q) ⇒ p ∼F q

The stronger variant now does not demand that the whole store reachable from p
or q is equal, but only the part that is reachable via selectors used in the definition
of F . So we not only need a stronger version of from but also variants of the
operations from is based on:

Definition 6. fromF (m,L) = (m, reachF (m,L) ./ L)
reachF (m,L) = [L]∗F (m)

[L]F =
⋃

k∈KF

Lk

Here KF are all the selectors k used by the abstract object created by F . Note
that this also includes selectors that are not directly mentioned in F . For example
an abstraction function for doubly-linked lists only uses the next selectors. But
the data structure itself also consists of a previous selector. So exactly these two
selectors are in KF for doubly-linked lists. As we have parameterized all needed
operations by the abstraction function, it is evident which selectors are used. The
new definition now is:

Definition 7 (reasonable (new)). F is reasonable if

fromF (p) = fromF (q) ⇒ p ∼F q

The thus improved calculus can now be used to achieve a more local reasoning
about pointer structures by only observing the really used selectors of a record.

2.4 Simplification of newrec

Another part of the calculus that can be improved is newrec This operation is used
to allocate new (unused) records in a pointer structure. The newrec operation is

4



defined as relation between a pair consisting of the original pointer structure and
a tuple of new values for all the selectors used and, on the other hand, the new
pointer structure. But the entry of the original pointer structure is never used in
the relational definition of newrec. So we can simplify the signature to

newrec ∈ S × V ⇔ P

and adjust the definition respectively. This new version already was successfully
used in [8] to derive imperative insertion algorithms into lists and trees.

2.5 An important rule

As we will see in Section 3, a rule used in almost all derivations is the proposition

F ((p.k := q′).k) = F (q′) (1)

for reasonable F and some preconditions. But reasonableness is not the only pre-
condition that has to hold. As we want to derive correct pointer algorithms, we have
to know under which conditions simplifications are valid and transformations can
be used. Otherwise the transformations would not be correct. Therefore we have to
investigate exactly which preliminaries have to hold to be able to apply the rule.
We first mention some auxiliary lemmas that we will need (The reader interested
in the proofs is referred to [13]).

Lemma 2. Let F be reasonable

1. q 0 ptr(p) ⇒ (p.k := q).k ∼F q
2. ptr(p) ∈ noreach(q) ⇒ q 0 ptr(p)

Additionally we repeat the definition of the predicate norea that also will play a
rôle in rule (1) whereas noreach(p) def⇔ recs(p) \ reach(p).

Definition 8. fp ∈ norea⇔ ∀(p, q) ∈ fp. noreach(p) ⊆ noreach(q)

Note, that p in the index of f has nothing to do with the variable p. It only shows,
that fp is a pointer implementation of algorithm f . In contrast to the normal order
of a proof we start here with the consequence of the rule and derive and sum up
which preliminaries we needed. Afterwards we state the complete lemma. We will
denote a possible result of application of fp on q by q′, so q′ ∈ fp(q) which is
equivalent to (q, q′) ∈ fp. We assume L = sto(p) = sto(q) and calculate:

Proof.

F ((p.k := q′).k) = F (q′)

⇔ {[ definition of ∼F ]}

(p.k := q′).k ∼F q′

⇐ {[ F reasonable and Lemma 2.1 ]}

q′ 0 ptr(p)

⇐ {[ Lemma 2.2 ]}

ptr(p) ∈ noreach(q′)

⇐ {[ fp ∈ norea ]}

ptr(p) ∈ noreach(q)
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Since p and q have the same store, recs(p) = recs(q) holds and therefore ptr(p) ∈
recs(q). So we only have to investigate under which conditions ptr(p) is not in
reach(q). We distinguish two cases which require different preconditions:

Case 1: ptr(q) is reachable from p (i.e. ptr(q) ∈ reach(p)). Then we can show by
idempotence of reach (see [9]):

ptr(p) ∈ reach(q)
⇒ ptr(p) ∈ reach(p)
⇒ p cyclic

So if we demand acyclicity of p in this case ptr(p) 6∈ reach(q) will hold.
Case 2: ptr(q) is not reachable from p (i.e. ptr(q) 6∈ reach(p)).

ptr(p) 6∈ reach(q)
(∗)⇐ ptr(p) ∩ reach(q) ⊆ {�}
⇐ reach(p) ∩ reach(q) ⊆ {�}
⇔ ¬sharing(ptr(p), ptr(q), L)

This shows that in this case the precondition ¬sharing(ptr(p), ptr(q), L) will
establish the needed properties. Certainly the step marked by (∗) only holds if
ptr(p) 6= � which should be the case. Otherwise the assignment p.k := q′ would
be undefined, as � can not be dereferenced.

Now we can give the complete rule:

Lemma 3. Let L = sto(p) = sto(q), q′ ∈ fp(q) and assume the following precondi-
tions hold:

1. F is reasonable
2. fp ∈ norea
3. ptr(p) 6= �

4. acyclic(p)

5. ¬sharing(ptr(p), ptr(q), L)

Then F ((p.k := q′).k) = F (q′) holds.

3 Derivations

In this section we show several derivations of algorithms on lists. They serve as
the basis for further research and demonstrate which sorts of pattern arise in this
context to be used for classification of algorithms. The restriction to list processing
functions is not as severe as it sounds on the first sight. As we have shown in [8],
different pointer structures like for example trees only use some more selectors that
can be handled by case distinction.

3.1 Preliminaries

As our goal is the derivation of algorithms on lists, we need an abstraction function
that establishes the connection between the pointer structure level and the object
level. We will use the naturally defined function list from Section 2.1. Additionally
we also need two little lemmas to be used in the derivations which will be given
here without proofs. The interested reader may have a look into [13].

Lemma 4. Let p = (m,L), q = (n,L′), r = (m,L′) and j : A → Ni, k : A → A

1. (p.k := q).j = r.j
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2. q 0 recs(S) ⇒ S | q ∼F q

We will use the two C-like operators && and || that represent sequential conjunction
and disjunction, respectively:

Definition 9. The sequential logical operators && and || are defined by:

B&&C = if B thenC else false

B ||C = if B then true elseC

3.2 Observational functions

At first we show that functions that do not alter the pointer structure are relatively
easy to derive. This is because there is no need to reason about complex properties
of the pointer structure. Such observational functions just return certain informa-
tion about the data structure. So there also no abstraction function shows up on
the pointer algorithm side of the specification. The example we use is elem that
determines if an element is a member of a list or not. We will use Haskell [3] like
notation to denote functional algorithms. A functional specification is given by:

elem a [] = false
elem a (x:xs) = a==x || elem a xs

Applying the method of [13] we use the equation

elemp a p = elem a list(p)

to specify a pointer implementation elemp of elem. Here and in the sequel we will
use p as an abbreviation for the pointer structure (m,L). As elem is defined by
case distinction, a pointer algorithm can be derived from the specification by also
reasoning about the following two cases.

Case m = �:
elem a list(p)

= {[ unfold definition of list and elem ]}

false

So the only possible choice is elemp a (�, L) = false. The second case works almost
the same way:

Case m 6= �:
elem a list(p)

= {[ unfold definitions of list and elem ]}

a == p.head || elem a list(p.tail)

= {[ fold with spec. of elemp ]}

a == p.head || elemp a p.tail

By putting both cases together we achieve the following pointer algorithm:

elemp a (m,L) = ifm == � then false
else a == Lhead(m) || elemp a p.tail

As this function is completely tail-recursive, we simply can apply a standard trans-
formation scheme to get an imperative form of elemp.
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elemp a (m,L) = ifm == � then false
else if a == Lhead(m) then true

else elemp a p.tail
l [ See [16], Chapter 7.1 (p.329) 2

elemp a (m,L) = var vm = m
while vm 6= �&& a 6= vm.head do vm := vm.tail
if vm == � then false

else true

Additionally we treated the store implicitly and wrote vm.tail to achieve a more
C-like syntax.

3.3 Standard derivations

We have seen in the previous example that the method resembles in the deriva-
tion the case by case definition of the functional algorithm. As we want to derive
list-processing functions from a functional specification, all of them are recursively
defined and therefore need a termination case. This gives us the possibility to show
once and for all the transformation for functions working on a list argument using
the empty list as termination case. So assume that f c [] = [] is one part of the
definition of function f. Here c could stand for several curried arguments or none
and plays no essential rôle in the derivation process of the termination case. Under
the condition ptr(p) = � we are able to calculate:

f c list(p)

= {[ unfold definition of list ]}

f c []

= {[ unfold definition of f ]}

[]

= {[ fold definition of list ]}

list(p)

So we can choose fp c p = p to be the implementation for the case ptr(p) = �.
Another standard termination case is to return a second list argument from the

parameter list. So assume there is a line f c [] ys = ys in the definition of f .
Then the derivation looks like:

f c list(p) list(q)

= {[ unfold definition of list ]}

f c [] list(q)

= {[ unfold definition of f ]}

list(q)

So choose fp c (�, n, L) = (n,L). In both cases the order of the arguments does not
matter. This means that we are also able to handle definition like

f c xs [] = xs
f c [] ys d = ys

with c and d representing arbitrary arguments.
2 The rule in [16] was given wrongly. A corrected derivation can be found in Appendix A.

8



3.4 Insert into sorted lists

As a first algorithm really changing the pointer structure we want to derive a func-
tion, that inserts an element a into a sorted list:

insert a [] = [a]
insert a (x:xs) = if a ≤ x then a:(x:xs)

else x: insert a xs

Possible pointer implementations are given by the specification

list(insertp a p) = insert a list(p)

We now can derive a pointer algorithm from the specification by reasoning over two
cases.

Case m = �:
insert a list(p)

= {[ unfold definitions of list and insert ]}

[a]

= {[ choose r ∈ newrec(p, (head 7→ a, tail 7→ �)) ]}

[r.head]

= {[ list(r.tail) = [] and [a] = a : [] ]}

r.head : list(r.tail)

= {[ fold definition of list ]}

list(r)

So choose insertp a (�, L) = newrec((�, L), (head 7→ a, tail 7→ �)).

Case m 6= �:
insert a list(p)

= {[ unfold definitions of list and insert ]}

if a ≤ p.head then a : (p.head : list(p.tail))
else p.head : insert a list(p.tail)

= {[ fold with spec. of insertp; Choose r ∈ insertp a (Ltail(m), L) ]}

if a ≤ p.head then a : (p.head : list(p.tail))
else p.head : list(r)

= {[ set s = q.tail := r and Lemma 4.1 ]}

if a ≤ p.head then a : (p.head : list(p.tail))
else s.head : list(r)

= {[ Lemma 3 ]}

if a ≤ p.head then a : (p.head : list(p.tail))
else s.head : list(s.tail)

= {[ fold with definition of list (2 times) ]}

if a ≤ p.head then a : list(p)
else list(s)

= {[ choose t ∈ newrec(L, (head 7→ a, tail 7→ p)) ]}
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if a ≤ p.head then t.head : list(t.tail)
else list(s)

= {[ fold with definition of list ]}

if a ≤ p.head then list(t) else list(s)

= {[ if propagation ]}

list(if a ≤ p.head then t else s)

In summary we have derived the pointer algorithm:

insertp a (m,L) = if m == �
then newrec((m,L), (head 7→ a, tail 7→ (�, L)))
else if a ≤ Lhead(m)

then newrec((m,L), (head 7→ a, tail 7→ (m,L)))
else p.tail := insertp a (Ltail(m), L)

which can be simplified by melting the two first branches to:

insertp a (m,L) = if m == � || a ≤ Lhead(m)
then newrec((m,L), (head 7→ a, tail 7→ (m,L)))
else p.tail := insertp a (Ltail(m), L)

3.5 Delete first occurrence of an element in a list

In this section we derive a function, that deletes only the first occurrence of an
element in a list:

del a [] = []
del a (x:xs) = if a==x then xs

else x: del a xs

Possible pointer implementations are given by the following specification:

list(delp a p) = del a list(p)

where p = (m,L) as before.
We again can derive a pointer algorithm from the specification by reasoning over

two cases. The first case is covered by the sample in Section 3.3. For the second
case we calculate:

Case m 6= �:
del a list(p)

= {[ unfold definitions of list and del ]}

if a == p.head then list(p.tail)
else p.head : del a list(p.tail)

= {[ fold with spec. of delp; Choose r ∈ delp a (Ltail(m), L) ]}

if a == p.head then list(p.tail)
else p.head : list(r)

= {[ set s = p.tail := r and Lemma 4.1 ]}

if a == p.head then list(p.tail)
else s.head : list(r)

= {[ Lemma 3 ]}
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if a == p.head then list(p.tail)
else s.head : list(s.tail)

= {[ fold with definition of list ]}

if a == p.head then list(p.tail) else list(s)

= {[ if propagation ]}

list(if a == p.head then p.tail else s)

So we have derived the pointer algorithm:

delp a (m,L) = if m == � then (�, L)
else if a == Lhead(m)

then p.tail
else p.tail := delp a (Ltail(m), L)

3.6 Delete all occurrences of an element in a list

An extension of the previously derived deletion algorithm is a function, that that
deletes all occurrences of an element in a list:

delete a [] = []
delete a (x:xs) = if a==x then delete a xs

else x: delete a xs

Possible pointer implementations are given by the following specification:

list(deletep a p) = delete a list(p)

We derive a pointer algorithm from the specification by reasoning over two cases.
Again we can refer to Section 3.3 for the first case. The second is:

Case m 6= �:
delete a list(p)

= {[ unfold definitions of list and delete ]}

if a == p.head then delete a list(p.tail)
else p.head : delete a list(p.tail)

= {[ fold with spec. of deletep; Choose r ∈ deletep a (Ltail(m), L) ]}

if a == p.head then list(r)
else p.head : list(r)

= {[ set s = p.tail := r and Lemma 4.1 ]}

if a == p.head then list(r)
else s.head : list(r)

= {[ Lemma 3 ]}

if a == p.head then list(r)
else s.head : list(s.tail)

= {[ fold with definition of list ]}

if a == p.head then list(r) else list(s)

= {[ if propagation ]}

list(if a == p.head then r else s)
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So we have derived the pointer algorithm:

deletep a (m,L) = if m == � then (�, L)
else if a == Lhead(m)

then deletep a (Ltail(m), L)
else p.tail := deletep a (Ltail(m), L)

3.7 Mix two lists

In this section we want to derive a function, that shuffles the elements of two lists
element by element:

mix [] ys = ys
mix (x:xs) ys = x:mix ys xs

Possible pointer implementations are given by the specification:

list(mixp(m,n,L)) = mix list(p) list(q)

where p = (m,L) and q = (n,L).
The first case is handled in the second part of Section 3.3. The second case works

the same as in the derivations before.

Case m 6= �:
mix list(p) list(q)

= {[ unfold definitions of list and mix ]}

p.head : mix list(q) list(p.tail)

= {[ fold with spec. of mixp; Choose r ∈ mixp(n,Ltail(m), L) ]}

p.head : list(r)

= {[ set s = p.tail := r and Lemma 4.1 ]}

s.head : list(r)

= {[ Lemma 3 ]}

s.head : list(s.tail)

= {[ fold with definition of list ]}

list(s)

So we have derived the pointer algorithm:

mixp(m,n,L) = if m == � then (n,L)
else p.tail := mixp(n,Ltail(m), L)

3.8 Merge two sorted lists

In this section we want to derive a merge function, that merges two sorted lists into
an also sorted one:

merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) = if x ≤ y then x:merge xs (y:ys)

else y:merge (x:xs)
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Possible pointer implementations are given by the following specification:

list(mergep(m,n,L)) = merge list(p) list(q)

where p = (m,L) and q = (n,L).
Here we have to distinguish three cases because merge has two ways of termina-

tion. But both are instances of the sample derivation presented in Section 3.3. The
third case is not as easy as in the derivations before because all the work has to be
done twice, once in each branch.

Case m 6= � and n 6= �:
merge list(p) list(q)

= {[ unfold definitions of list (2 times) and merge ]}

if p.head ≤ q.head then p.head : merge list(p.tail) list(q)
else q.head : merge list(p) list(q.tail)

=
{[

fold with spec. of mergep; Choose r ∈ mergep(Ltail(m), n, L)
and s ∈ mergep(m,Ltail(n), L)

]}
if p.head ≤ q.head then p.head : list(r)

else q.head : list(s)

= {[ set t = p.tail := r and u = q.tail := s and Lemma 4.1 ]}

if p.head ≤ q.head then t.head : list(r)
elseu.head : list(s)

= {[ Lemma 3 ]}

if p.head ≤ q.head then t.head : list(t.tail)
elseu.head : list(u.tail)

= {[ fold with definition of list (2 times) ]}

if p.head ≤ q.head then list(t) else list(u)

= {[ if propagation ]}

list(if p.head ≤ q.head then t elseu)

So we have derived the pointer algorithm:

mergep(m,n,L) =
if m == �

then (n,L)
else if n == � then (m,L)

else if Lhead(m) ≤ Lhead(n)
then p.tail := mergep(Ltail(m), n, L)
else q.tail := mergep(m,Ltail(n), L)

3.9 Filter on lists

Now we want to derive a destructive filter function:

filter c [] = []
filter c (x:xs) = if c x then x:filter c xs

else filter c xs

Here c is a predicate that rules which elements remain in the list. The pointer
algorithms filterp are specified by the following equation:

list(filterp c p) = filter c list(p)

13



The first case of the derivation follows again from the observation in Section 3.3.
The second case is:

Case m 6= �:
filter c list(p)

= {[ unfold definitions of list and filter ]}

if c(p.head) then p.head : filter c list(p.tail)
else filter c list(p.tail)

= {[ fold with spec. of filterp; Choose r ∈ filterp c (Ltail(m), L) ]}

if c(p.head) then p.head : list(r)
else list(r)

= {[ set s = p.tail := r and Lemma 4.1 ]}

if c(p.head) then s.head : list(r)
else list(r)

= {[ Lemma 3 ]}

if c(p.head) then s.head : list(s.tail)
else list(r)

= {[ fold with definition of list ]}

if c(p.head) then list(s) else list(r)

= {[ if propagation ]}

list(if c(p.head) then s else r)

So the pointer algorithm derived is:

filterp c (m,L) = if m == � then (�, L)
else if c(Lhead(m))

then p.tail := filterp c (Ltail(m), L)
else filterp c (Ltail(m), L)

3.10 Splitting a list

Now we want to derive a simultaneous destructive filter function, that partitions
the list into two lists. One of these consisting of all elements of the original list
satisfying a predicate c.

split c [] = ([],[])
split c (x:xs) = let (as,bs) = split c xs

in if c x then (x:as,bs)
else (as,x:bs)

To give a specification of splitp we additionally need a (reasonable) abstraction
function pairlist, that gets a pointer structure consisting of two entries and returns
the pair of lists starting at these two entries:

pairlist(m,n,L) = (list(m,L), list(n,L))

The pointer algorithms splitp can now be specified by the following equation:

pairlist(splitp c p) = split c list(p)

14



where p is defined the same as before. The case m == � is similar to the one in
Section 3.3 and therefore left out here. We can choose splitp c (�, L) = (�, �, L).
The second case is

Case m 6= �:
split c list(p)

= {[ unfold definitions of list and split ]}

let (as, bs) = split c list(p.tail)
in if c(p.head) then (p.head : as, bs)

else (as, p.head : bs)

= {[ fold with spec. of splitp; Choose q ∈ splitp c (Ltail(m), L) ]}

let (as, bs) = pairlist(q)
in if c(p.head) then (p.head : as, bs)

else (as, p.head : bs)

= {[ let (u, v,M) = q ⇒ as = list(u,M), bs = list(v,M) ]}

if c(p.head) then (p.head : list(u,M), list(v,M))
else (list(u,M), p.head : list(v,M))

= {[ set r = p.tail := (u,M) and s = p.tail := (v,M) and Lemma 4.1 ]}

if c(p.head) then (r.head : list(u,M), list(v,M))
else (list(u,M), s.head : list(v,M))

= {[ Lemma 3 ]}

if c(p.head) then (r.head : list(r.tail), list(v,M))
else (list(u,M), s.head : list(s.tail))

= {[ fold with definition of list (twice) ]}

if c(p.head) then (list(r), list(v,M))
else (list(u,M), list(s))

= {[ (v,M) 0 m and (u,M) 0 m and twice Lemma 4.2 ]}

if c(p.head) then (list(r), list(v, sto(r)))
else (list(u, sto(s)), list(s))

= {[ fold with definition of pairlist (twice) ]}

if c(p.head) then pairlist(ptr(r), v, sto(r))
else pairlist(u, ptr(s), sto(s))

= {[ if propagation ]}

pairlist(if c(p.head) then (ptr(r), v, sto(r)) else (u, ptr(s), sto(s)))

So we have derived the pointer algorithm splitp breaking a list into two parts
whereas the elements of the first satisfying predicate c:

splitp c (m,L) = if m == � then (�, �, L)
else let (u, v,M) = splitp c (Ltail(m), L)

in if c(Lhead(m))
then (m, v, (m tail→ u) |M)
else (u,m, (m tail→ v) |M)
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4 Patterns

After deriving several standard algorithms over lists in Section 3 we now investigate
what has to be done to achieve imperative versions of all these recursive ones.
Therefore we study what sort of function patterns resulted from the transformations.

4.1 Singly linear-recursive functions

Most of the derived functions like e.g. cat (see [8]), insert or del have exactly one
linear recursive call to itself. So all the other alternatives H0, . . . ,Hn do not include
an application of F . The generalized pattern looks like this:

F (x) = if C0(x) then if C1(x) then . . . if Cn(x) thenΦ(F (K(x)), E(x))
elseHn(x)

...
elseH1(x)

elseH0(x)

The transformation pattern derived in [8] is only usable for rather simple recursive
algorithms having only one terminating branch. If we increase the complexity of
treated algorithms only little, for example by considering del that deletes the first
element from a list, the scheme is not usable anymore. However we are able to
bring algorithms using alternatives H0 to Hn as in the previously described general
pattern into a form the Paterson-Hewitt scheme is applicable and so derive a more
sophisticated pattern. The original scheme is

F (x) ≡ if B(x) thenφ(F (K(x)), E(x))
elseH(x)

l [ Conditions
F (x) ≡ var vx = x

if B(x) then whileB(K(vx)) do vx = K(vx)
ψk(ptr(E(x)), ptr(E(vx)),H(K(vx)))

elseH(x)

With abbreviations si = ptr(E(Ki(x))) the conditions are

∀i ∈ {0, . . . , n0} : ptr(z) = si = si−1 ∨ (si 6= si−1 ∧ (si−1, si) ∈ sto(z))

To bring the general pattern into the right form we need the sequential logical
operators of Definition 9. We now prove a simple rule, that allows us to bring
a singly recursive function with several alternatives into the form the Paterson-
Hewitt transformation scheme needs. The simplest case is a sequential conjunction
with two arguments:

F (x) = if B(x) && C(x) thenK(x)
elseL(x)
l [ normalization of condition

F (x) = if B(x) then if C(x) thenK(x)
elseL(x)

else if false thenK(x)
elseL(x)
l [ elimination of condition

F (x) = if B(x) then if C(x) thenK(x)
elseL(x)

elseL(x)
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This rule can be applied iteratively and if we choose a case distinction between all
alternatives H0 . . .Hn as L(x) we get immediately:

F (x) = if C0(x) then if C1(x) then . . . if Cn(x) thenΦ(F (K(x)), E(x))
elseHn(x)

...
elseH1(x)

elseH0(x)
l

F (x) = if C0(x) &&C1(x) . . .&&Cn(x) thenΦ(F (K(x)), E(x))
else if ¬C0(x) thenH0(x)

elsif ¬C1(x) thenH1(x)
...

elsif ¬Cn−1(x) thenHn−1(x)
elseHn(x)

Which has by abbreviations

B(x) = C0(x) &&C1(x) && . . .&&Cn(x)
H(x) = if ¬C0(x) thenH0(x)

elsif ¬C1(x) thenH1(x)
. . .

elsif ¬Cn−1(x) thenHn−1(x)
elseHn(x)

the form of Scheme 4.1.

Example: Transformation of del

We show at the example of del how the transformation scheme can be used to
derive pointer algorithms of singly recursive functions with several alternative cases.
In Section 3 we have derived a pointer algorithm that meets the specification of del.
By simple transformations we can bring this function into the right form to be able
to apply the extended Paterson-Hewitt scheme.

delp a p = ifm 6= � then ifm.head 6= a then p.tail := delp a (m.tail, L)
else p.tail

else (�, L)
l [ Previously proven scheme

delp a p = ifm 6= � && m.head 6= a then p.tail := delp a (m.tail, L)
else ifm == � then (�, L)

else (m.tail, L)
l [ P.H.

delp a p = var va = a
var vm = m
var vL = L
if m 6= � && m.head 6= a then

while vm.tail 6= � && vm.tail.head 6= a
do (va, vm, vL) := (va, vm.tail, vL)

Ψtail(m, vm, if vm.tail == � then (�, L) else (vm.tail.tail, L))
elsifm == � then (�, L)

else (m.tail, L)

17



Some simplification and elimination of unchanged variables yields the following
algorithm:

delp a p = var vm = m
if m 6= � ∧m.head 6= a then

while vm.tail 6= � ∧ vm.tail.head 6= a do vm := vm.tail

if vm.tail == � then (m, (vm tail→ �) | L)
else (m, (vm tail→ vm.tail.tail) | L)

elsifm == � then (�, L)
else (m.tail, L)

Although this worked pretty well, the scheme can not be used to get an iterative
variant of algorithms that change more than one link of the pointer structure. Here
additional work has to be done to reach a higher level of abstraction.

4.2 Multiple linear-recursive functions

Functions that call themselves in distinct branches using different parameters de-
pending on the situation like e.g. merge have the following form: This is a special

F (x) = if C0(x) then . . . if Cn(x) then if B(x) then Φ(F (K0(x)), E0(x))
else Φ(F (K1(x)), E1(x))

else Hn(x)
...

else H0(x)

Figure1. Most general function pattern

case of singly recursive functions if we defer the test B(x) inside the evaluation of
Φ using the conditional operator ? : known from several programming lan-
guages as abbreviation. Note, that this transformation is only valid if B(x) does
not have any side effects.

Φ(F (B(x) ? K0(x) : K1(x)), B(x) ? E0(x) : E1(x))

So here the same task as in Section 4.1 has to be treated. Again we need a pattern
that supports the transformation of algorithms that change more than one link.

4.3 Mixed functions

Some functions like e.g. delete or filter not only call themselves in a linear
recursive way but also tail-recursively in an other branch. The former mimics the
scan through the structure and the latter overlooks some linked addresses. The
abstract form here is:

F (x) = if C0(x) then . . . if Cn(x) then if B(x) thenΦ(F (K(x)), E(x))
elseF (K(x))

elseHn(x)
...

elseH0(x)

This is the most general pattern. If we choose B(x) = true we get the scheme
described in Section 4.1. As the pattern from Section 4.2 is a special case of the
singly recursive one, the big task is to find a transformation pattern for such mixed
function schemes that change several links.
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5 Open Problems and questions

In this section we deal with some problems and questions arising from the previous
observations. This includes also ideas for improvement and tasks to work on.

5.1 Non-intuitive abstraction functions

The demand for reasonable abstraction functions does not avoid functions that are
defined non-intuitively. So think for example about an abstraction function list′ for
lists that skips every second address linked by the tail selector:

list′(p) = if ptr(p) = � then []
else p.head : skip(p.tail)

skip(p) = if ptr(p) = � then []
else list′(p.tail)

The reason to derive destructive algorithms rather than copying ones is the demand
for implementations that save as much memory as possible. So there should be a
condition that marks for example list as the abstraction function (for singly-linked
lists) with better memory performance than list′. Clearly to be comparable the
functions have to produce the same data type and use the same selectors. We will
call such abstraction functions related. Then they can be ordered by observing the
reachable parts needed to produce the same abstract object.

Definition 10. Let F and G be related reasonable abstraction functions. Then we
define an order by:

F v G
def⇔ [∀p, q. F (p) = G(q) ⇒ reachF (p) ⊆ reachG(q)]

(here we also have to use the previously defined refined version of reach to only
include the selectors used by the abstraction function).

We think that this is a reasonable condition that should hold for abstraction
functions if we want to derive algorithms with least amount of memory used. It is
not clear if there are rules that have to be fulfilled by an abstraction function to be
contained in such a minimal set.

5.2 More sophisticated data structures

In [8] we have shown that algorithms on trees are not as different to list processing
functions as it seems on first sight. By coding the treatment of more than one
selector into a case distinction we were able to derive an algorithm for insertion
into a tree. It seems that this is a generally applicable method to deal with data
structures based on several selectors.

Another question is about doubly-linked data structures like lists that have a
link to the successor and the predecessor or cyclic lists. Similarly there are trees
that support links to the parent nodes. The question now is, if it is possible to code
the doubly-linkedness into the abstraction function and so derive a corresponding
algorithm from the same specification. Or is it possible to add an extra condition to
the derivation process that cares for all these things? To treat cyclic lists for exam-
ple maybe one can use the more sophisticated abstraction function clist that uses
the standard abstraction function list for lists but previously applies an auxiliary
function that manages the cycles:

clist(p) def⇔ list(breakcycle(p))

This would avoid huge extra effort for deriving such algorithms and make the frame-
work more general.
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5.3 Red and green algorithms

To be able to reason about the memory usage of pointer algorithms we define two
different types of algorithms.

Definition 11. Algorithms that preserve referential transparency by doing neces-
sary copying of arguments are called green algorithms.

Definition 12. Algorithms that use destructive updates and so do not preserve
referential transparency are called red algorithms.

By definition it is evident, that there are no algorithms that are both red and green.
If we use the number of copying actions as ordering we can compare implementations
of an algorithm by their space efficiency. So for example the least element among
the red implementation of an algorithm is the one that reuses as much storage as
possible and only copies or allocates new cells if absolutely necessary. This mostly
is the intention behind the term destructive implementation of an algorithm. On
the other hand the greatest element of green algorithms copies all needed data and
so the returned data structure is completely new.

The main question here is how to achieve an algorithm of the desired type. There
should be no problem to derive a green algorithm by simple copying the whole data
structure and afterwards call a derived version of the algorithm (green or red) on
the copy. But is there a locally applicable rule that asserts during the derivation
process that the resulting algorithm is a red or green one?

5.4 Composability of solutions

A practically useful derivation framework should be scalable. So we should be able
to compose the simple components we have derived in Section 3 into more complex
ones. The main problem here is aliasing. This notion describes the state of two
different variables pointing to the same address in memory. Take as an example the
function dup that duplicates a list by attaching one to the end of the other. In a
functional programming language the simple property

dup xs = cat xs xs

holds by referential transparency. In our context dup can only be built using cat
if the pointer implementation of cat is a green algorithm as defined above. So
destructive updates destruct also the composability of functions. This implies that
more complex destructive examples have to be transformed as a whole. Here a
case study of deriving a more sophisticated algorithm that is composed of several
operations could give more insight.

Nevertheless, there are cases where we can achieve composable solutions if it is
possible to assure that there is no aliasing. For example in

let a1 = ...
a2 = ...
.. ...
an = ...

in f(a1,a2,...,an)

when each let-variable is used only once and all ai only depend on ak with k<i. So
it is rather impossible to derive a pointer implementation for quick-sort from the
standard functional specification:

qsort [] = []
qsort (a:as) = qsort [x | x<-as, x<=a]

++ [a]
++ qsort [x | x<-as, x>a]
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The reason is the doubled appearance of as on the right side. But we can eliminate
aliasing calculating the two lists in one step:

qsort [] = []
qsort (a:as) = let (xs,ys) = split (<=a) as

xs’ = qsort xs
ys’ = qsort ys

in xs’ ++ [a] ++ ys’

An other solution to single out specifications using aliases maybe to show termina-
tion for the abstraction function. So we can for example show

Lemma 5. acyclic(p) ⇒ list(p) terminates

Proof. We take reachlist as the termination function. Now it is easy to show that

reachlist(p.tail) ⊂ reachlist(p)

which implies that list(p) terminates (For a simple proof in Pointer Kleene Algebra
see [10]).

So we can say that cat terminates exactly if both of its parameters are acyclic
lists and do not share any elements. This definitely is not the case in the previous
definition of dup.

5.5 Efficiency

There are a lot of well-known performance improving techniques for functional
languages. Think for example of an efficient implementation of reverse by using
an aggregation variable or deforestation techniques. The question now is, if this
performance improvement has a direct effect on the resulting pointer algorithm or
if there are similar procedures on the imperative side. But even if this is the case we
believe that the resulting techniques are much more complicated in the imperative
world than in the functional one due to possible side-effects. So the change of worlds
should be deferred as long as possible.

5.6 Iterative versions

As we derive all the algorithms from functional specification and there the only
means of iteration is recursion, all resulting pointer algorithms are defined recur-
sively. Certainly this is not what one wants in an imperative setting. This is because
recursive calls are not very efficient in time and space. Just as there is no control
over the call stack. So stack overflows from unbounded recursions are very likely.

But this is an area where we already made some progress. In [8] we described how
a class of pointer algorithms can be transformed into an imperative version using
the transformation of Paterson and Hewitt. There the type of algorithms scanning
through a data structure to find the place where they have to change exactly one
link is covered. Although functions like insertion into and concatenation of lists
belong to this class it is evident that there are several other forms of algorithms. A
more sophisticated transformation pattern is work in progress and will be presented
soon.
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6 Summary

We have presented a number of list processing algorithms and derived for each a
variant working on pointer structures. Inspecting the resulting patterns we inves-
tigated what has to be done to get a framework that is able to transform all of
this functions into imperative pointer algorithms. Additionally we proposed some
enhancements to the pointer algebra presented by Möller and pointed out problems
and things to do as a sort of working plan for the future.

A Correction of a transformation pattern

In [16] on page 329 the derivation pattern used in Section 3.2 was given wrongly.
The correct scheme is:

f(x) = if B(x) thenH(x)
else if C(x) thenG(x)

else f(K(x))
l

f(x) = vx := x
while¬B(x) &&¬C(x) do vx := K(x)
if B(x) thenH(x) elseG(x)

Proof.

f(x) = if B(x) thenH(x)
else if C(x) thenG(x)

else f(K(x))
l [ Change of branches

f(x) = if B(x) thenH(x)
else if ¬C(x) then f(K(x))

elseG(x)
l [ ¬(B(x) ||C(x)) = ¬B(x) &&¬C(x)

f(x) = if B(x) thenH(x)
else if ¬(B(x) ||C(x)) then f(K(x))

elseG(x)
l [ ¬(B(x) ||C(x)) ∧B(x) = false

f(x) = if ¬(B(x) ||C(x)) then f(K(x))
else if B(x) thenH(x)

elseG(x)
l [ Change of branches

f(x) = if ¬(B(x) ||C(x)) then if B(x) thenH(x)
elseG(x)

else f(K(x))
l [ ¬B(x) &&¬C(x) = ¬(B(x) ||C(x))

f(x) = if ¬(B(x) ||C(x)) then if B(x) thenH(x)
elseG(x)

else f(K(x))
l [ recursion to iteration

f(x) = vx := x
while¬B(x) &&¬C(x) do vx := K(vx)
if B(vx) thenH(vx)

elseG(vx)
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