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1. Introduction

Surfaces with constant mean curvature (cmc) in euclidean 3-space form a classical theme in differential geometry. Like
minimal surfaces, they allow for a one-parameter deformation (the so called associated family) of isometric immersion
preserving the principal curvatures while rotating the second fundamental form α. In higher complex dimensions m � 2, if
f : M → R

n is an isometric immersion of a Kähler manifold,1 the rôle of the mean curvature vector H = traceα is taken over
by the so called pluri-mean curvature which is defined as follows. The complexified tangent bundle T c of M has a parallel
decomposition as T c = T ′ + T ′′ where T ′, T ′′ are the ±i-eigenbundles of the almost complex structure J . Its symmetric
tensor product S2T c splits accordingly:

S2T c = S2T ′ + S2T ′′ + T ′ ⊗ T ′′. (1)

The restrictions of α to these subspaces are called α20,α02,α11 , respectively. The latter component, α11 , is called pluri-mean
curvature since when restricted to any complex curve C ⊂ M , it is the mean curvature vector of f |C .

When α11 is parallel, the immersion f is called of parallel pluri-mean curvature (ppmc), see [2] as a general reference. Such
immersions also have a one-parameter family of isometric deformations fθ which only rotate the second fundamental form
α at every point by a constant angle θ . An important special case happens when fθ = f for all θ ; such ppmc immersions
are called isotropic. Among the cmc surfaces the only example of this type is the round sphere, but there are many other
examples in higher dimensions: the standard embedded Kähler symmetric (also called hermitian symmetric) spaces. In the
present paper we will show that those have the least codimension among all ppmc immersions, with the only possible
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1 A Kähler manifold is a Riemannian manifold with a parallel tensor field J with J 2 = −I (almost complex structure).
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exception when M has a local DeRham factor which is locally isometric to a complex Grassmannian or its noncompact dual,
other than CP

m or CH
m .

2. The pluri-mean curvature

Let M be a Kähler manifold with almost complex structure J . Denote T the tangent bundle of M and T c its complex-
ification. Since J is parallel, so are its eigenspaces T ′ and T ′′ = T ′ corresponding to the eigenvalues i,−i. Thus we have a
parallel decomposition T c = T ′ + T ′′ . For any P , Q ∈ T c we denote by

P ◦ Q = 1

2
(P ⊗ Q + Q ⊗ P )

the symmetrized tensor product. If P = X + Ȳ and Q = U + V̄ , we have

P ◦ Q = X ◦ U + Ȳ ◦ V̄ + X ◦ V̄ + U ◦ Ȳ

which shows the decomposition (1). For any X, Y ∈ T ′ we consider the linear map

XY ∗ : T ′ → T ′, Z 	→ XY ∗ Z = X〈Ȳ , Z〉
where Y ∗ is the linear map Y ∗ = Ȳ T = 〈Ȳ , 〉 ∈ Hom(T ′,C) and where 〈 , 〉 denotes the C-bilinear extension of the Kähler
metric to T c = T ⊗ C. Putting T̂ = Hom(T ′, T ′), we have a parallel bundle isomorphism

T ′ ⊗ T ′′ → T̂ , X ⊗ Ȳ 	→ XY ∗ (2)

which we will use to identify T ′ ⊗ T ′′ with T̂ in the sequel.
On T ′ , the bilinear inner product vanishes, 〈T ′, T ′〉 = 0. Instead we consider the hermitian inner product

(X, Y ) := 〈 X̄, Y 〉 = X∗Y .

For any linear map A : T ′ → T ′ its adjoint map A∗ is defined as usual:

A∗ X, Y ) := (X, AY ).

In particular we have

(XY ∗)∗ = Y X∗.

Now let f : M → R
n be an isometric immersion with normal bundle N and second fundamental form α : S2T → N

which will be linearly extended to S2T c with values in Nc = N ⊗ C. Using the identification (2) we have

S2T c = S2T ′ + S2T ′′ + T̂ . (3)

Let α11 = α|T̂ .

Lemma 2.1. For all X, Y ∈ T ′ , the expression ξ = α(X∗Y + Y ∗ X) is real while η = α(X∗Y − Y ∗ X) is imaginary.

Proof. Recall α(X∗Y ) = α(X, Ȳ ). But α(X, Ȳ ) = α( X̄, Y ) = α(Y , X̄). Hence ξ̄ = ξ and η̄ = −η. �
We will split T̂ = Hom(T ′, T ′) further as T̂ = T̂+ + T̂− where T̂+ and T̂− , respectively, denote the subspaces of hermitian

and antihermitian linear maps. This splitting is parallel, too. If α11 : T̂ → Nc is parallel, the same holds for its restriction
α11+ = α11|T̂+ : T̂+ → N . Thus the image No of α11+ is a parallel subbundle of N .

3. Holonomy

Let M be Kähler and f : M → R
n ppmc. Fix some p ∈ M . Let HolT be the set of all parallel transports τγ along closed

curves (“loops”) γ starting and ending at p. Since the metric and the almost complex structure J are preserved under
parallel transport, HolT is a subset of the unitary group U (T p) on the tangent space at p. Since concatenation of loops
results in composition of the corresponding parallel transports, HolT is a group, a subgroup of Um = U (T p), called holonomy

group. It acts also on T̂ = T ′ ⊗ T ′′ in the obvious way, h(X ⊗ Ȳ ) = h X ⊗ hȲ , as the holonomy group of the vector bundle T̂
preserving the subbundles T̂± . Further we will consider the holonomy group HolNo

of No ⊂ N .

Proposition 3.1. If f : M → R
n is ppmc, there is a surjective group homomorphism φ : HolT → HolNo

such that α11+ : T̂+ → No is
equivariant with respect to φ ,

α11+ ◦ h = φ(h) ◦ α11+ (4)

for all h ∈ HolT .
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Proof. Let h ∈ HolT . Then there is a loop γ at p such that h = τγ . Since α11+ preserves parallel transport, we have

α11+ ◦ τγ = τ o
γ ◦ α11+

where τ o
γ denotes parallel transport in the vector bundle No . Thus there is an element ho ∈ HolNo

with ho = τ o
γ . Now we

obtain the equality

α11+ ◦ h = ho ◦ α11+ (5)

from which we see that ho ∈ HolNo
is determined by h, i.e. independent of the choice of γ (mind that α11+ is surjective onto

No). We put φ(h) = ho . The homomorphism property follows easily from concatenation of loops and the equivariance of α11+
from (5). �

Now suppose that M is locally irreducible as a Riemannian manifold, i.e. it does not split locally as a nontrivial Rieman-
nian product. By the holonomy theorem of Berger and Simons [9,10] we know that HolT ⊃ SUm unless M is locally Kähler
symmetric. Thus our last Proposition 3.1 implies:

Theorem 3.2. Let M be a locally irreducible Kähler manifold of complex dimension m and f : M → R
n a ppmc immersion. Then f has

real codimension � m2 unless f is pluriminimal, i.e. α11 = 0, or M is locally Kähler symmetric.

Proof. If the mean curvature vector H vanishes, f is pluriminimal, see [3]. Thus H is a nonzero parallel section of No which
is fixed under HolNo

. Consider the decomposition of T̂+ into irreducible SUm-modules:

T̂+ ∼= T̂− ∼= um ∼= R ⊕ sum, (6)

where SUm acts trivially on the R-factor and by the adjoint representation on sum . If M is not locally Kähler symmetric,
HolT contains SUm and therefore the decomposition (6) is irreducible also with respect to HolT . Now consider the kernel
of α11+ which is also HolT -module, due to the equivariance (5). If sum ⊂ kerα11+ , then No = RH which is possible only for
m = 1, cf. [6].2 Thus we may assume sum �⊂ kerα11+ , and by irreducibility of sum we have in fact sum ∩ kerα11+ = 0. Thus
the HolT -homomorphism α11+ is injective on sum , and therefore also No contains a holonomy submodule W isomorphic to

sum .3 Since W must be perpendicular to the fixed space of HolNo
containing H , the dimension of No is at least one more

than the dimension of sum which is m2 − 1. Thus codim( f ) � dim No � m2 . �
Remark. There is a distinguished element in T̂+ , the identity I . This is mapped by α11+ onto the mean curvature vector H .
In fact, we have I = ∑

j e je∗
j for any unitary basis (e j) of T ′ , and therefore

α(I) =
∑

j

α
(
e je

∗
j

) =
∑

j

α(e j, e j) = H . (7)

4. Kähler symmetric spaces

Now we consider the remaining case where M is locally irreducibly Kähler symmetric (hermitian symmetric). Thus M
is locally isometric to an irreducible Kähler symmetric space M̂ acted on holomorphically by its transvection group G .
More precisely, at any point p ∈ M̂ , the isotropy group G p = K acts complex linearly in T p M̂ with respect to its complex
structure J p , and K contains the complex unitary scalars S

1 as a central subgroup, generated by J p . In particular, J p ∈ gp =
k ⊂ g and hence the mapping p 	→ J p defines an embedding of M̂ into its transvection Lie algebra g, the so called standard
embedding. This is ppmc with α20 = 0, cf. [7], and since the Cartan decomposition g = p + k agrees with the decomposition
g = T p M̂ + N p M̂ into tangent and normal spaces of M̂ , the codimension of this embedding is the dimension of k.

Now let us consider an arbitrary ppmc immersion f : M → R
n where M can be viewed (at least locally) as an open

subset of M̂ . Again we have T̂+ ∼= T̂− = um , but this time the holonomy group HolT at p is smaller: it is equal to the
isotropy group K (cf. [4,8]). Let q be the complement of k in um , i.e.

T̂+ ∼= um = k + q = R + k′ + q. (8)

2 Here is the argument: Since M is Kähler, we have R(X, Y ) = 0 for all X, Y ∈ T ′ . On the other hand, the Gauss equations yield 〈R(X, Y )Ȳ , X̄〉 =
〈α(X, X̄),α(Y , Ȳ )〉 − 〈α(X, Ȳ ),α(Y , X̄)〉. If α11 is parallel and No = RH , then α(X, Ȳ ) = β(X, Ȳ )H for some parallel bilinear form β . By irreducibility, β is
the metric, α(X, Ȳ ) = 〈X, Ȳ 〉H . Thus

0 = 〈
R(X, Y )Ȳ , X̄

〉 = (|X |2|Y |2 − (X, Y )2)|H|2

which implies either X, Y linear dependent (m = 1) or H = 0 ( f superminimal).
3 The injectivity of α11+ |sum together with (5) shows sum ∼= W as SUm-modules. In particular, the derivative of the Lie group homomorphism φ maps

the Lie algebra of SUm ⊂ HolT injectively into the Lie algebra of HolNo
.
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Table 1

G/K dimum = m2 dim k dim q

1 SUp+q/S(U p × Uq) p2q2 p2 + q2 − 1 (p2 − 1)(q2 − 1)

2 SO2p/U p
(p−1)2

4 p2 p2 (
(p−1)2

4 − 1)p2

3 SOp+2/(SOp × SO2) p2 p(p−1)
2 + 1 p(p+1)

2 − 1

4 Spp/U p
(p+1)2

4 p2 p2 (
(p+1)2

4 − 1)p2

5 E6/(Spin10 · U1) 256 46 210
6 E7/(E6 · U1) 729 79 650

It has been shown by Wang and Ziller [11] that the K -module q is irreducible, and in most cases k′ is irreducible too, thus
(8) is an irreducible decomposition of T̂ with respect to K . As before, α11+ maps the identity map I spanning the R-factor

of T̂+ onto H ∈ No . Thus the K -module kerα11+ must contain k′ or q. But unless M̂ = CP
m or CH

m (where the holonomy
group is Um , a case which was treated in the last section), the dimension of q is much bigger than the one of k′ , see Table 1.

Theorem 4.1. Let M be irreducible and locally isometric to the Kähler symmetric space M̂ = G/K where G is the transvection group
of M̂ and K = K ′ · S

1 the isotropy group, and suppose that the Lie algebra k′ of K ′ is simple. Then every ppmc immersion f : M → R
n

has codimension at least as big as dim k (cf. Table 1). If f is isotropic ppmc, then the codimension is at least 4 + dim k unless f is the
standard embedding.

Remarks.

(1) If f is isotropic ppmc, M is locally symmetric [5].
(2) Any irreducible Kähler symmetric space M̂ = G/(K ′ · S

1) has simple k′ unless it is a complex Grassmannian of higher
rank or its noncompact dual. In this case we will see from the proof that dim k in the theorem has to be replaced by
the minimum of p2 = dimup and q2 = dimuq .

Proof. If kerα11+ contains k′ + q, the space No is one-dimensional (generated by H) which is impossible, see above. Thus
it contains at most one of these two factors, and the other one is mapped isomorphically into No . Since dim q > dim k, we
have codim( f ) � dim No � dim k′ + 1 = dim k.

It remains to prove the claim on isotropic ppmc immersions f : M → R
n . Then the image of α20 is isotropic and per-

pendicular to No , cf. [2]. If α20 = 0 it follows easily that ∇α = 0,4 and moreover that f is the standard embedding [7]. If
α20 �= 0, the dimension of N is at least two more than the one of No and hence � 2 + dim k. Further, the image of ∇α is
perpendicular to that of α, cf. [5]. Thus we obtain at least another two normal dimensions unless ∇α = 0. But the latter
extrinsic symmetric case is well known by [7]; besides the standard embeddings there is only the case of the Grassmannian
of oriented 2-planes

G+
2

(
R

n) = SOn/(SOn−2 × SO2)

with its embedding into the space of symmetric n × n-matrices with trace 0 where the codimension is n − 1 + dim k.
However, G+

2 (Rn) is the 2-sphere for n = 3 and reducible for n = 4 since G+
2 (R4) = S

2 ×S
2 . Thus n � 5 and the codimension

is � 4 + dim k in this case too. �
Table 1 contains the dimensions of the representations (cf. [1], pp. 311–317). We have q = 0 iff G/K = CP

m or its dual.
This happens in No. 1 for p = 1 or q = 1, in Nos. 2 for p = 3, and in Nos. 3 and 4 for p = 1. In No. 2, cases p = 1 and
p = 2, the action of G on G/K is strongly ineffective, i.e. its kernel has positive dimension. In No. 3, for p = 2, the space
G+

2 (R4) = S
2 × S

2 is reducible, for p = 3 we have G+
2 (R5) = SO5/(SO3 × SO2) = Sp2/U2 (cf. No. 4) and for p = 4, the space

G+
2 (R6) = SO6/(SO4 × SO2) = SU4/S(U2 × U2) = G2(C

4) is a complex Grassmannian (No. 1).

5. Reducible Kähler manifolds

Theorem 5.1. Let M be an open subset of a Riemannian product M1 × M2 where Mi (i = 1,2) are mi-dimensional Kähler manifolds
without a flat local DeRham factor. Let f : M → R

n be a ppmc immersion which is not a product of immersions. Then f has codimension
at least 2m1m2 .

Proof. Since our claim is local, we may assume M = M1 × M2 . Let πi : M → Mi be the canonical projection. Put T i =
π∗

i (T Mi) and define T ′
i , T̂ i, T̂ i+ accordingly. We have the parallel decomposition

T̂+ = T̂1+ + T̂2+ + Hom
(
T ′

1, T ′
2

)
. (9)

4 ∇α is symmetric by Codazzi equations, and all of its four components of types 30, 21, 12, 03 are derivatives of α20 or α02 which are zero.
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The holonomy group H i of Mi acts irreducibly on T ′
i . Thus Hom(T ′

1, T ′
2) is irreducible under the action of H1 × H2 . If

Hom(T ′
1, T ′

2) ⊂ kerα11+ , using the interior product structure and the Gauss equations we have for any X ∈ T ′
1 , Y ∈ T ′

2:
〈
α(X, Ȳ ),α( X̄, Y )

〉 = 〈
α(X, Y ),α( X̄, Ȳ )

〉
. (10)

Thus from α(T ′
1, T ′′

2 ) = 0 we obtain α(T ′
1, T ′

2) = 0 and hence α(T1, T2) = 0. This implies the splitting of the immersion
f which was excluded. Hence by irreducibility we may assume Hom(T ′

1, T ′
2) ∩ kerα11+ = 0. Therefore we find a copy of

Hom(T ′
1, T ′

2) inside N0 . Since Hom(T ′
1, T ′

2) has complex dimension m1m2 , the codimension of f (the dimension of N ⊃ No)
is bounded from below by 2m1m2 . �
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