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We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias.
The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking
of reflection symmetry, such that a directed heat current may emerge �ratchet effect�. In particular, we consider
two cases of adiabatically slow driving, namely, �i� periodic temperature modulation of only one lead and �ii�
temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating
harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present
techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics,
which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal
bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied
electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced
thermopower �“ratchet Seebeck effect”�, although no net thermal bias is acting. Moreover, we find that the
relative phase between the two harmonics in scenario �ii� enables steering the net heat current into a direction
of choice.
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I. INTRODUCTION

In recent years, we have witnessed the development of
nanodevices based on molecular wires �1–5�. One of their
essential features is that the electric current through them can
be controlled effectively. One approach to such transport
control is based on conformational changes in the molecule
�6–8�. Another scheme relies on the dipole interaction be-
tween the molecular wire and a tailored laser field �9–13�. A
further approach employs gate voltages acting on the wire
�14–16�. The latter allows a transistorlike control, which has
already been demonstrated experimentally �17–19�. It is
therefore interesting to explore as well the related control of
heat transport.

In general, heat transport through a molecular junction
involves the combined effect of electron as well as phonon
transfer processes. Control of phonon transport is much more
complicated since the phonon number is not conserved. Nev-
ertheless, the field of phononics, i.e., control and manipula-
tion of phonons in nanomaterials, has emerged �20�. This
includes functional devices, such as thermal diodes �21–27�,
thermal transistors �28,29�, thermal logic gates �30�, and
thermal memories �31� based on the presence of a static tem-
perature bias. The corresponding theoretical research has
been accompanied by experimental efforts on nanosystems.
In particular, solid-state thermal diodes have been realized
with asymmetric nanotubes �32� and with semiconductor
quantum dots �33�.

Upon harvesting ideas from the field of Brownian motors
�34–38�—originally devised for particle transport—a classi-
cal Brownian heat engine has been proposed to rectify and
steer heat current in nonlinear lattice structures �39,40�. In
the absence of any static nonequilibrium bias, a nonvanish-
ing net heat flow can be induced by unbiased temporally
alternating bath temperatures combined with nonlinear inter-
actions among neighboring lattice sites. This so obtained di-
rected heat current can be readily controlled to reverse direc-
tion. If, in addition, a thermal bias across the molecule is
applied, a heat current can then be directed even against an
external thermal bias. This setup is therefore rather distinct
from adiabatic and nonadiabatic electron heat pumps, which
involve photon-assisted transmission and reflection processes
in the presence of irradiating photon sources �4,41,42�.

In this work, we investigate the possibility of steering heat
through a molecular junction in the presence of a gating
mechanism. In our model, the bath temperatures of adjacent
leads are subjected to slow time-periodic modulations. Both
the electronic and the phononic heat current are considered,
as is sketched in Fig. 1. A finite directed ratchet heat current
requires breaking reflection symmetry. This can be achieved
by spatial asymmetries in combination with nonequilibrium
fields �34–38� or in a purely dynamical way �43–47�. We
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FIG. 1. Setup of a molecular junction whose electronic level E1

can be gated, while the vibrational frequency �1 is fixed. The lead
temperatures TL�R��t� are subjected to time-periodic modulations.
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focus on an unbiased temporal temperature variation in the
connecting leads. While the prior studies of Refs. �39,40�
deal with classical heat transport across nonlinear lattices,
our focus here is on the of quantum heat-ratchet effect in a
molecular wire system, originating from both phonons and
electrons. Owing to the modulation of temperature in the
connecting leads �see Fig. 1�, our analysis demonstrates the
controllability of the emerging ratchet heat current.

This paper is organized as follows. In Sec. II, we specify
the physical assumptions and introduce our model together
with the basic theoretical concepts for directing heat current
across a short gated molecular junction formed by a har-
monically oscillating molecule. The heat flux is induced by
temperature modulations in the contacting leads. Section III
presents the results for case �i� where the temperature is
modulated in one lead only. We elaborate on pumping heat
against a static thermal bias and consider the resulting ther-
moelectric power. In Sec. IV, we consider case �ii� in which
both lead temperatures are periodically but asymmetrically
modulated. A finite directed heat current emerges from har-
monic mixing of different frequencies, which entails dynami-
cal symmetry breaking. Since the leading order of this heat
current is the third order in the driving amplitude, the overall
rectification is weaker as compared to case �i� where the heat
flux starts out at second order in the driving amplitude. The
latter scheme with its symmetric static parameters, however,
provides a more efficient control scenario. The direction of
the resulting heat current can be readily reversed either by a
gate voltage or by adjusting the relative phase shift within
the harmonic mixing signal for the temperature modulation.
Section V contains a summary and an outlook.

II. PHYSICAL ASSUMPTIONS, MODEL, AND BALLISTIC
HEAT TRANSFER

We consider a molecular junction between two leads,
where a static gate voltage acting on the junction. Heat trans-
port from both electrons and phonons is taken into account.
Since we focus on coherent transport in a short molecular
wire �48–50�, electron-phonon interaction can be ignored.
Moreover, we treat ballistic heat transfer for the electron sys-
tem and the phonon system in the absence of anharmonic
interactions and dissipative intrawire scattering processes.
Then, the heat flux can be obtained in terms of a Landauer-
type expression involving corresponding temperature-
independent transmission probabilities for both the electrons
�51,52� and the phonons �54,55�. The total Hamiltonian can
thus be separated into electron and phonon parts, i.e.,

H = Hel + Hph, �1�

each of which consisting of a wire contribution, a lead con-
tribution, and an interaction term, such that

Hel�ph� = Hwire
el�ph� + Hleads

el�ph� + Hcontacts
el�ph� . �2�

The short molecular wire is modeled as a single energy level
and one harmonic phonon mode only. Then the Hamiltonian
of the wire electron in tight-binding approximation reads as

Hwire
el = E1�1��1� , �3�

where E1 describes the on-site energy of the tight-binding
level, which can be shifted via a gate voltage. The electrons
in the leads are modeled as ideal electron gases, i.e.,

Hleads
el = HL + HR = �

q

�LqcLq
† cLq + �

q

�RqcRq
† cRq, �4�

where clq
† creates an electron in state �lq� of lead l=L,R. The

electron-tunneling Hamiltonian

Hcontacts
el = �

q

�VLqcLq
† c1 + VRqcRq

† c1� + H.c. �5�

establishes the contact between the wire and the leads. This
tunneling coupling is characterized by the spectral density
�l���=2��q�Vlq�2���−�lq�. We assume symmetric coupling
within a wide-band limit such that �l���=�.

The phonon mode is represented by a harmonic oscillator
with the Hamiltonian

Hwire
ph =

P2

2M
+

1

2
M�1

2Q2, �6�

where Q and P denote the position and the momentum op-
erator, respectively, M denotes the atom mass, and �1 is the
characteristic phonon frequency of wire. Following the rea-
soning put forward in Ref. �55�, the two phonon baths and its
bilinear coupling to the wire system are described by

Hleads
ph + Hcontacts

ph = �
l,k
	 plk

2

2ml
+

ml�lk
2

2

xlk −

glQ

ml�lk
�2� , �7�

where xlk , plk , �lk are the position operators, momentum
operators, and frequencies associated with the bath degrees
of freedom; ml are the masses and gl=gL=gR=g represent a
symmetric phonon wire-lead coupling strength for lead
l=L,R. The position and momentum operators can be
expressed in terms of the creation and annihilation
operators for phonons as xlk=
� /2ml�lk�alk

† +alk� and
plk= i
�ml�lk /2�alk

† −alk�.
Henceforth, we assume that the temperature modulations

acting on the baths are always sufficiently slow so that the
leads are always at thermal quasiequilibrium for the molecu-
lar wire. The heat transport then obeys the adiabatic coherent
quantum transport laws, as discussed below �see Eqs. �13�
and �14��.

A. Adiabatic modulation of the lead temperatures

At thermal equilibrium with temperature T=TL=TR with
equal electrochemical potentials 	L=	R=	, the density ma-
trix for the leads reads as 
l�exp�−�Hl

ph+Hl
el−	lNl� /kBTl�,

where Nl=�qclq
† clq is the number of electrons in lead

l=L,R and kBTl denotes the present lead temperature multi-
plied by the Boltzmann constant. To induce shuttling of heat,
we invoke a nonequilibrium situation via an adiabatically
slow temperature modulation Tl�t� in the leads. The latter can
be realized experimentally, for example, by use of a heating/
cooling circulator �57�. Then the expectation values of the
electron and phonon lead operators read as
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�cl�q�
† clq� = f l��q,Tl�t���ll��qq�, �8�

�al�k�
† alk� = nl��k,Tl�t���ll��kk�, �9�

where f l�� ,Tl�t��= �exp���−	l� /kBTl�t��+1�−1 and
nl�� ,Tl�t��= �exp��� /kBTl�t��−1�−1 denote the Fermi-Dirac
distribution and the Bose-Einstein distribution, respectively,
which both inherit a time dependence from the temperature
modulation. This implies a time-scale separation, which is
justified because for laser heating of a metallic system, the
electrons undergo rather fast thermalization �58–61�. The
corresponding relaxation times stem from electron-electron
and electron-phonon interaction and for a typical metal is in
the order of a few fs or ps, respectively �62,63�. The assump-
tion of adiabatically slow temperature modulation requires
that the driving frequency is smaller than the reciprocal of
the larger time scale, i.e., �
 �1 ps�−1=1 THz.

The lead temperatures TL�t� and TR�t� are assumed to vary
time periodically TL�R��t�=TL�R��t+2� /��, where the time
average T0=TL�t�=TR�t� marks the environmental reference
temperature. This implies a vanishing temperature bias

�T�t� � TL�t� − TR�t� = 0. �10�

In the long-time limit, the time-dependent asymptotic heat
current JQ�t�=JQ

el�t�+JQ
ph�t� assumes the periodicity 2� /� of

the external driving field

JQ�t� = JQ�t + 2�/�� . �11�

Henceforth, we focus on the stationary heat current JQ,
which follows from the average over a full driving period:

JQ =
�

2�
�

0

2�/�

JQ�t�dt . �12�

If the lead temperatures are modulated slowly enough �adia-
batic temperature rocking�, the dynamical thermal bias �T�t�
can be viewed as a static bias at time t in the adiabatic limit
�→0. Thus, the asymptotic electron and phonon heat cur-
rents JQ

el�ph��t� can be expressed by the Landauer-type formula
for electron heat flux �51,52� and for the phonon heat flux
�53–56�, such that

JQ
el�t� =

1

2��
�

−�

�

d��� − 	�Tel����f��,TL�t�� − f��,TR�t��� ,

�13�

JQ
ph�t� =

1

2�
�

0

�

d���Tph����n��,TL�t�� − n��,TR�t��� ,

�14�

where Tel��� and Tph��� denote the temperature-independent
transmission coefficients for electrons with energy � and
phonons with frequency � scattered from the left lead to the
right lead, respectively. Note that the two opposite heat
fluxes are not at equilibrium with each other and that the heat
energy transferred by a single electron-scattering process is
�−	 rather than � �41�. The reason for this is the following.
At zero temperature, where the energy levels below Fermi

energy 	 are fully occupied, no heat current is transferred
since no electron can tunnel. At finite temperatures, the tun-
neling process is thermally activated. An electron with en-
ergy � tunneling from left lead to right lead will dissipate to
the Fermi energy level. Therefore, the heat energy trans-
ferred by this electron is �−	.

The electron transmission coefficient Tel��� can be ex-
pressed by the electron Green’s functions �4�

Tel��� = Tr�G†����RG����L� , �15�

where �l= �1��l�1� stems from the tunnel coupling to lead
l=L,R. For the present case of a one-site wire, this operator
is simply a 1�1 matrix, so that the Green’s function reads as

G��� =
�1��1�

� − �E1 − i��
, �16�

where �= 1
2 ��L+�R�.

For a molecular wire with a single level, such as de-
scribed by Eq. �3�, the electron transmission assumes Breit-
Wigner form and reads as �4�

Tel��� =
�2

�� − E1�2 + �2 , �17�

where we have assumed symmetric electron wire-lead cou-
pling such that �=�L=�R.

The phonon transmission coefficient Tph��� is evaluated
following Ref. �55�. As is shown in the Appendix, it assumes
for one phonon mode a Breit-Wigner form as well, i.e., the
temperature-independent phonon transmission probability
reads as

Tph��� =
4�2�2���

��2 − �1
2�2 + 4�2�2���

, �18�

where ����=ae−�/�D. Here �D is the Debye cut-off
frequency of phonon reservoirs in the lead and
a=�g2 /4mM�D

3 incorporates the phonon wire-lead coupling
g=gL=gR.

B. Experimental parameters and physical time scales

In our numerical investigation, we insert the electron
wire-lead tunnel rate �=0.11 eV, which has been used also
to describe electron tunneling between a phenyldithiol
molecule and gold contact �64�. The phonon frequency
�1=1.4�1014 s−1 is typical for a carbon-carbon bond �65�.
For the Debye cut-off frequency of the phonon reservoirs, we
use the value for gold, which is �D=2.16�1013 s−1. The
phonon coupling frequency a=1.04�1015 s−1 is chosen
such that the static thermal conductance assumes the value
50 pWK−1, which has been measured in experiments with
alkane molecular junctions �66�.

These parameters imply physical time scales, which are
worth being discussed. During the dephasing time, electron-
phonon interactions within the wire destroy the electron’s
quantum-mechanical phase. If this time is larger than the
dwell time, i.e., the time an electron spends in the wire, the
electron transport is predominantly coherent �48�. Following
Ref. �48�, we estimate the dwell time by the tunneling tra-
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versal time �����E1−	�2+�2�−1/2, which for our param-
eters is on the order ��5 fs and, thus, much shorter than the
typical electron-phonon relaxation time �dephasing time�,
which is on the order of 1 ps. This implies that the electron-
phonon interaction also does not affect the electron coher-
ence and can be ignored. Another important time scale is the
phonon lifetime for escaping into the corresponding lead and
can be estimated as 1 /a�1 fs. Among the above-mentioned
time scales, the maximum time scale is the electron-phonon
relaxation time, which is in the order of ps. Thus, the regime
of validity of our assumption for adiabatic temperature
modulations is justified when the angular driving frequency
is much slower than the electron-phonon relaxation rate
within lead, i.e., �
1 THz.

III. PUMPING HEAT VIA SINGLE-SIDED TEMPERATURE
ROCKING

Let us first consider the case in which the temperature of
one lead is modulated harmonically, while the temperature of
the other lead is constant,

TL�t� = T0 + A cos��t� ,

TR�t� = T0. �19�

Here A and � are the amplitude and the �angular� frequency
of the temperature modulation, respectively, while T0 is the
reference temperature. The driving amplitude A is positive
and bounded by the temperature T0 since TL�t� has to remain
positive at any time. The temperature difference between the
left lead and the right lead reads as �T�t�=A cos��t�, such
that the net thermal bias vanishes on time average �T�t�=0.
Unless mentioned explicitly otherwise, we use unbiased
source-drain leads with the chemical potentials being 	L
=	R=	, i.e., there is no voltage bias acting.

The cycle-averaged heat fluxes, both the electronic and
the phononic one, follow from numerically evaluating the
integrals in Eqs. �13� and �14�. As expected for an adiabatic
theory, we observe that the average heat current JQ is inde-
pendent of the driving frequency �. This is in accordance
with the findings for ballistic heat transfer in the adiabatic
regime.

In an experiment, the molecular level E1 can be manipu-
lated by a gate voltage, which influences only the electrons.
This allows one to tune the electron transport while keeping
the phonons untouched. In Fig. 2, we depict the net electron
heat current JQ

el as a function of E1−	 for a fixed driving
amplitude. We find that the heat current possesses an extre-
mum for E1−	=0, i.e., when the on-site energy is aligned
with the Fermi energy. Interestingly enough, this extremum
is a maximum for low reference temperature T0 and turns
into a minimum when the temperature exceeds a certain
value. This implies that the net electron heat current is rather
sensitive to the on-site energy with respect to the Fermi en-
ergy. This property thus provides an efficient way to deter-
mine experimentally the Fermi energy of the wire as an al-
ternative to, e.g., measuring the thermopower, as proposed in
Ref. �64�. For large gate variations, we find that the directed
electron heat current is significantly suppressed since the

wire level is far off the electron thermal energy, i.e.,
E1−	�kBT0. The directed heat current is then dominated by
the phonon heat flux. As temperature is increased, the
peak positions of the pumped electron heat current shift
outward, away from the Fermi energy. At room temperature
T=300 K, the peak positions are located at E1−	
= �0.138 eV.

A. Scaling behavior for small driving strengths

Figure 3 shows the total heat current JQ as a function of
the driving amplitude A for the reference temperature
T0=300 K and the electronic site above the Fermi level. For
weak driving �A
T0�, we find JQ

el�ph��A2 for both the elec-
tronic and the phononic contributions. This behavior can be
understood from a Taylor expansion of the Fermi-Dirac dis-
tribution f and the Bose-Einstein distribution n,

E1 − µ (eV)

J
el Q
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W

)

0

50

100

150
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FIG. 2. �Color online� Directed electronic heat current JQ
el as

function of on-site energy E1−	 for different reference tempera-
tures T0 and temperature oscillation amplitude A=30 K. The arrow
marks the on-site energy E1−	=0.138 eV for which the pumped
electron current assumes at temperature T0=300 K its maximum.
The adiabatic rocking frequency is �=3.92 GHz.
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FIG. 3. �Color online� Total electronic and phononic time-
averaged directed heat current JQ as function of the squared driving
amplitude A2 with reference temperature at T0=300 K for the on-
site energy E1−	=0.138 eV. The dotted blue line represents the
electronic contribution; the dashed red line represents the phononic
one. The inset depicts the directed heat current as a function of the
reference temperature T0 for the amplitude A=30 K�A2=900 K2�
marked by the arrow in the main panel.
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D��,TL� − D��,T0� = D��,T0 + �T� − D��,T0�

= D���,T0��T�t� +
D���,T0�

2
��T�t��2

+ ¯ , �20�

where D= f ,n represents either distribution, while D�
and D� denote derivatives with respect to temperature. Note
that the time dependence stems solely from the temperature
difference �T�t�. After a cycle average over the driving
period, the first term in the expansion vanishes owing to
�T�t�=0. Therefore, the leading term of the heat
current is of second order, i.e., ���T�t��2, which yields
JQ

el�ph���0
2�/���T�t��2dt�A2, as observed numerically. We

also plot the directed heat current as a function of the refer-
ence temperature T0 in the inset of Fig. 3. Upon increasing
the reference temperature, the directed phonon heat current
decreases monotonically. However, the emerging total heat
current exhibits a relatively flat behavior in a large tempera-
ture range. This is due to the combined effect from phonons
and electrons. At high temperatures, the electron contribution
dominates the directed heat flow.

B. Thermal load characteristics and ratchet-induced
thermoelectric voltage

Thus far, we have studied heat pumping in the absence of
a static temperature bias, i.e., for �T�t�=0. We next intro-
duce a static thermal bias such that a thermal bias
�Tbiasª�T�t��0 emerges. The resulting total directed heat
current JQ is depicted in Fig. 4. Within this load curve, we
spot a regime with negative static thermal bias �Tbias�0 and
positive-valued overall heat flow until �Tbias reaches the
stop-bias value, i.e., we find a so-called Brownian heat-
ratchet effect �39,40�. This means that heat can be pumped
against a thermal bias from cold to warmlike in a conven-
tional heat pump. The width of this regime scales with the
driving amplitude A2 �cf. Fig. 4�.

As can be deduced from Fig. 4, a zero-biased temperature
modulation generates a finite net heat flow at zero-
temperature bias similar to the heat flow that would be in-

duced by a static thermal bias. Near equilibrium, i.e., within
the linear-response regime, Onsager symmetry relations for
conjugated transport quantities are expected to hold. There-
fore, the adiabatic temperature modulations are expected to
induce an electric current as well. This net adiabatic electric
pump current can be obtained by means of the cycle-
averaged Landauer expression

Jel =
�

2�
�

0

2�/�

dt
e

h
� d�T����f��,TL� − f��,TR�� . �21�

We, in addition, apply a net static voltage bias �V. Figure 5
depicts the net electric current-voltage characteristics Jel��V�
in the presence of an unbiased temperature modulation
while, importantly, no external thermal bias is applied. For a
finite range of positive bias voltages �V�0, the net electric
current is negative, i.e., the system acts as an “electron
pump.”

When the voltage bias �V assumes a certain value,
namely, the so-called stop voltage �Vstop, the bias-induced
current and the driving-induced current compensate each
other. This value can be interpreted as a sole heat-ratchet-
induced thermopower. We term this phenomenon ratchet
Seebeck effect. Knowingly, the usual thermopower �Seebeck
coefficient� is defined by means of the change in induced
voltage per unit change in applied temperature bias under
conditions of zero electric current �67�. Here, in the absence
of a net thermal bias, we introduce instead the Grüneisen-
like relation �= ��Veff /Jel��V=0��, where �Veff denotes the
effective static voltage bias, which yields the identical elec-
tric current Jel��V=0� as generated by our imposed tempera-
ture modulation. We find that this effective voltage bias pre-
cisely matches the above-mentioned stop voltage, i.e.,
�Veff=−�Vstop. Due to the linear Jel−�V characteristics, as
evidenced with Fig. 5, the ratchet-induced Grüneisen con-
stant � is independent of the amplitude of the temperature
modulation. In Figs. 6�a� and 6�b�, we depict the reciprocal
of � as a function of varying reference temperature T0 �Fig.
6�a�� and varying on-site energy E1−	, respectively �Fig.
6�b��. We detect a resonancelike dependence 1 /� as a func-
tion the reference temperature T0, while it decreases mono-
tonically with increasing on-site energy E1. Note also that
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FIG. 4. �Color online� Total directed heat current JQ as the func-
tion of static thermal bias �Tbias for different driving amplitude
strengths A for the temperature modulation. The reference tempera-
ture is set as T0=300 K and the electronic wire level is set as
E1−	=0.138 eV.
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FIG. 5. �Color online� The time-averaged directed electric cur-
rent Jel as function of the static voltage bias �V for different tem-
perature amplitudes A. The reference temperature is T0=300 K and
the electronic wire level is at E1−	=0.138 eV.
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this Grüneisen parameter � is a symmetric function of
E1−	.

IV. TEMPERATURE ROCKING IN BOTH LEADS:
PUMPING HEAT BY DYNAMICAL SYMMETRY

BREAKING

We next consider temperature modulations applied to both
leads in the absence of a thermal bias. The temperature driv-
ing consists of a contribution with frequency � and a second
harmonic with frequency 2�. This entails a dynamical sym-
metry breaking, namely, harmonic mixing �43–47�. The
time-dependent lead temperatures are chosen as

TL,R = T0 � �A1 cos��t� + A2 cos�2�t + ��� , �22�

such that again TL�t�=TR�t�=T0 and �T�t�
=2�A1 cos��t�+A2 cos�2�t+���. Then the average tempera-
ture bias vanishes irrespective of the phase lag �.

In Fig. 7�a�, we depict the resulting electron heat current
JQ

el as a function of the on-site energy E1−	 for various
reference temperatures T0. At low temperatures, the net elec-
tron heat current exhibits a minimum at the Fermi energy.
With increasing reference temperature T0, this minimum de-
velops into a local maximum with two local minima in its
vicinity. The arrow in Fig. 7�a� marks the minimum at
E1−	=0.049 eV for T0=300 K. It is interesting that the
direction of the net electron heat current can be controlled by
the gate voltage. For an electron wire level close to the Fermi
energy, the directed electron heat current is negative. Upon

tuning the gate voltage, the heat current undergoes a reversal
and becomes positive when E1−	 is larger than 0.15 eV �at
reference temperature T0=300 K� and eventually ap-
proaches zero again for large detuning.

Figure 7�b� shows the corresponding sum of electron and
phonon heat flow, i.e., the net heat current JQ as a function of
wire level E1−	. The net phonon heat current JQ

ph is negative
for these parameters �not depicted� and is not sensitive to the
gate voltage. As a consequence, JQ exhibits multiple current
reversals as the on-site energy E1−	 increases. For small
values of E1−	, i.e., close to the Fermi surface, both the
electron and the phonon heat fluxes are negative and in phase
with the driving. There the absolute value of the total heat
current assumes its maximum �at which the heat current is
negative�. For intermediate values of E1−	, the direction of
total net current JQ is reversed due to the dominating positive
contribution of the electrons. At even larger values of
E1−	, the electron heat current almost vanishes, so that the
total heat current is dominated by the negative-valued con-
tribution of the phonons. In the limit of large E1−	, we find
saturation at a negative value.

We also study with Fig. 8 the net electron and phonon
heat current as a function of driving amplitudes A1, A2, and
of the relative phase �. Both contributions scale as
JQ

el/ph�A1
2A2 cos���, which implies that they can be manipu-

lated simultaneously. This behavior can be understood by
again expanding the Fermi-Dirac distribution f and the Bose-
Einstein distribution n in �T around the average temperature
T0,

0

10

20

30

0 0.2 0.4 0.6 0.8 1
E1 − µ (eV)

1/
γ

(µ
S
)

15

16

17

18

0 200 400 600 800 1000
T0 (K)

1/
γ

(µ
S
)

(b)

(a)

FIG. 6. The reciprocal of the Grüneisen-like constant 1 /� as the
function of �a� reference temperature T0 with E1−	=0.138 eV and
�b� on-site energy E1−	 with T0=300 K. For both cases, the driv-
ing amplitude is set as A=30 K.
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FIG. 7. �a� �Color online� Directed electron heat current JQ
el as

function of the wire level E1−	 for various reference temperatures
T0. The driving parameters are A1=A2=30 K and harmonic mixing
phase lag �=0. �b� Total net heat current JQ as function of the wire
level E1−	 for reference temperature T0=300 K and amplitudes
A1=A2=30 K, with harmonic mixing phase lag �=0.
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D��,TL� − D��,TR� = D��,T0 + �T/2� − D��,T0 − �T/2�

= D���,T0��T�t� +
D���,T0�

24
��T�t��3

+ ¯ , �23�

where D= f ,n represents the distribution function for either
the electrons or for the phonons, respectively. The terms of
even order in �T vanish owing to the antisymmetric tem-
perature modulation. Thus, the heat currents are governed by
the time average of the odd powers ��T�t��2n+1 with n�1
since �T=0. It can be easily verified that all these time-
averaged odd moments vanish if either amplitude A1 or A2
vanishes.

Note that the lowest-order contribution, i.e., the third mo-
ment reads as ��T�t��3=8A1

2A2 cos���. Thus, for small driv-
ing amplitudes A1 ,A2
T0, this explains the proportionality

to A1
2A2 cos��� of the numerical results depicted in Figs.

8�a�–8�c�. The proportionality to cos��� �see Fig. 8�c�� is
even more robust than expected because the cycle-averaged
5th and 7th moments are proportional to cos��� as well, i.e.,
��T�t��5 , ��T�t��7�cos���. This behavior can be employed
for a sensitive control of the heat current. The direction of
the heat current can be reversed by merely adjusting the rela-
tive phase � between the two harmonics. Note that for the
parameters used in the figure, the net electron heat current JQ

el

exceeds the net phonon heat current JQ
ph roughly by a factor

5.

V. CONCLUSIONS

We have demonstrated the possibility of steering heat
across a gated two-terminal molecular junction, owing to
lead temperatures that undergo adiabatic, unbiased, and time-
periodic modulations. In a realistic molecule, the heat flow is
carried by the electrons as well as by the phonons. Our study
considers both contributions. Two scenarios of temperature
modulations have been investigated, namely, directed heat
flow induced �i� by periodic temperature manipulation in one
connecting lead and �ii� by a temperature modulation that
includes a contribution oscillating with twice the fundamen-
tal frequency. In both cases, we predict a finite heat current,
which is related to dynamical breaking of reflection symme-
try. A necessary ingredient is the nonlinearity of the initial
electron and phonon distributions, which is manifested in the
Fermi-Dirac distribution and the Bose-Einstein distribution.
The first scenario yields sizable heat currents proportional to
the squared amplitude of the temperature modulation. The
resulting heat flow occurs in the absence of a static thermal
bias. We also studied heat pumping against an external static
thermal bias and computed the corresponding thermal heat-
current load characteristics. Moreover, the ratchet heat flow
in turn generates an electric current. This ratchet heat current
induces a ratchet-induced effective thermopower �see in Fig.
5�.

When the asymmetry is induced by temperature rocking
at both leads, the resulting net heat current becomes smaller.
This is so because the leading-order time-averaged heat flow
now starts out with the third moment of the driving ampli-
tude. The benefit of this second scenario is the possibility of
controlling efficiently both the magnitude and the sign of the
net heat flow. For example, the direction of the heat current
can be readily reversed via the gate voltage or the relative
phase between two temperature modulations that are har-
monically mixed. When adjusting the gate voltage, the di-
rected heat current experiences multiple reversals. The di-
rected heat flow is even up to seventh order in the amplitude
proportional to the cosine of the phase between the funda-
mental frequency and the second harmonic. This allows ro-
bust control even for relatively large temperature amplitudes.

These theoretical findings may inspire experimental ef-
forts to steer heat in a controlled manner across a molecular
junction as well as the development of concepts for measur-
ing system parameters via their impact on the heat current.
For example, as elucidated in Sec. III, the Fermi energy can
be sensitively gauged in this way.
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FIG. 8. �Color online� Heat current JQ as function of �a� funda-
mental driving strength A1, where A2=30 K and �=0 and �b� as
function of the second-harmonic amplitude A2, where A1=90 K
and �=0. �c� Dependence on the relative phase � for A1=A2

=30 K. The reference temperature is T0=300 K, while the wire
level is E1−	=0.049 eV.
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APPENDIX: THE DERIVATION OF PHONON
TRANSMISSION (18)

We derive the phonon transmission coefficient of Eq. �18�
along the lines of Ref. �55�. Starting with Eq. �33�
of that work and assuming symmetric coupling, i.e.,
�k,k�

L ��0�=�k,k�
R ��0�=�k,k���0�, Eq. �33� of Ref. �55� can be

simplified to read as

��k
2 − �0

2 + 2i�0�k,k��0��Ak��0�

+ i�0 �
k��k


 �k

�k�
2�k,k���0�Ak���0�

=
�k

�0
V0,ka0

†, �A1�

where �0 is a dummy variable.
Since we only consider one phonon mode, i.e., k=1. The

second term in the left-hand side of the last equation van-
ishes such that

��1
2 − �0

2 + 2i�0�1,1��0��A1��0� =
�1

�0
V0,1a0

†. �A2�

Substituting Eq. �46� of Ref. �55�, i.e.,

Ak��0� = Ak��0�V0,ka0
†
�k

�0
�A3�

into Eq. �A2�, we find

A1��0� =
1

�1
2 − �0

2 + 2i�0�1,1��0�
. �A4�

For one phonon mode, the phonon transmission is defined
from Eq. �48� in �55�. However, this definition is 1 /2� times
smaller than the commonly used definition of Refs. �53,56�.
With the commonly used definition, the phonon transmission
can be expressed as

T��� = 4�2�1,1
2 ����A1����2. �A5�

Substituting Eq. �A4� into the last equation and omitting the
subscript in �1,1, we obtain

T��� =
4�2�2���

��1
2 − �2�2 + 4�2�2���

, �A6�

which is the phonon transmission �18� employed in the main
text.
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