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Abstract
We illustrate recent results concerning the validity of the work fluctuation
theorem in open quantum systems (Campisi et al 2009 Phys. Rev. Lett. 102
210401), by applying them to a solvable model of an open quantum system.
The central role played by the thermodynamic partition function of the open
quantum system, a two-level fluctuator with a strong quantum nondemolition
coupling to a harmonic oscillator, is elucidated. The corresponding quantum
Hamiltonian of mean force is evaluated explicitly. We study the thermodynamic
entropy and the corresponding specific heat of this open system as a function
of temperature and coupling strength and show that both may assume negative
values at nonzero low temperatures.
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1. Introduction

Exact results about nonequilibrium fluctuations in nanosystems, such as the Jarzynski equality
[1] and the Tasaki–Crooks fluctuation theorem [2, 3] have recently attracted a great deal of
attention in the burgeoning field of nonlinear fluctuation relations. These results were first
derived for classical systems and later for quantum systems that are either isolated or weakly
coupled to their environment [3–11]. However, often the interaction with the environment
does play an important role which cannot be neglected in real experimental situations. For
this reason more attention has been recently devoted to the strong coupling regime, both
classically [12] and quantum mechanically [13]. In this regime, the driven system of interest
(with Hamiltonian Ĥ S(t)), strongly couples to a bath (ĤB), via a non-negligible interaction
term Ĥ SB :

Ĥ (t) = Ĥ S(t) + Ĥ SB + ĤB . (1)
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For the applicability of work and fluctuation theorems, the correct choice of the statistical
mechanical description of an open quantum system in terms of the proper thermodynamic
partition function, is of decisive importance. The bare system partition sum

QS(t) = TrS e−βĤ S (t) (2)

clearly fails to account for the effects of the environment on the system. It rather is the open
system thermodynamic partition function

ZS(t) = Y (t)

ZB

, (3)

which consistently accounts for these effects [13–27]. Here Y (t) denotes the total system
partition function, i.e.,

Y (t) = Tr e−β(Ĥ S (t)+Ĥ SB +ĤB ) (4)

and ZB the bare bath partition function

ZB = TrB e−βĤB . (5)

The time t merely specifies the values of the external parameters as they occur in the course
of the driving protocol at the time t. The symbols TrS, TrB, Tr denote traces over system,
bath and total system, respectively. The symbol β = (kBT )−1 indicates the inverse thermal
energy, with kB Boltzmann constant and T the temperature. This temperature is provided
via vanishingly small weak contact with a large (super)-bath, which allows for a statistical
mechanical treatment.

The adoption of the thermodynamic partition function ZS(t) and the corresponding free
energy FS(t) = −β−1 ln ZS(t) allows us to obtain the Jarzynski equality

〈e−βw〉 = e−β�FS (6)

valid irrespectively of the coupling strength [13].
In the following we exemplify this result by applying it to a simple model Hamiltonian of

an open quantum system, sections 2 and 3. We next illustrate the equilibrium thermodynamics
of that open system, by computing its Hamiltonian of mean force, its entropy and specific
heat, see section 4. Remarks and conclusions are drawn in section 5.

2. A two-level fluctuator-oscillator model

We consider the following Hamiltonian describing a two-level system and a harmonic oscillator
interacting with each other:

Ĥ (t) = ε(t)

2
σ̂z ⊗ 1̂B + 1̂S ⊗ �

(
â†â +

1

2

)
+ χσ̂z ⊗

(
â†â +

1

2

)
. (7)

Here σ̂z is a Pauli matrix of the two-level system, â† and â are raising and lowering operators
of the harmonic oscillator, ε(t),�, χ are the two-level system energy spacing, the oscillator
energy quantum and the coupling energy, respectively. The parameter χ can assume positive
and negative values whereas ε(t) and � are strictly positive. The oscillator energy quantum � is
related to the oscillator frequency ω, via Planck’s constant � = h̄ω. We consider the two-level
system (also referred to as the qubit throughout the text) as our system of interest (Ĥ S(t) =
ε(t)σ̂z/2⊗1̂B), and the oscillator as our stylized, minimal ‘bath’; i.e. ĤB = �(â†â+1/2)⊗1̂S .
The operators 1̂S and 1̂B denote the identity operators acting on the system and bath Hilbert
spaces, respectively. We require |χ | < �, which ensures that the total Hamiltonian
is bounded from below guaranteeing stability of the total system (from equation (9),

 



                                                        

� + χs must be positive in order that the smallest eigenvalue be finite). The two-level system
energy spacing ε is assumed to depend on time according to some pre-specified protocol. This
model Hamiltonian has the peculiarity that the interaction Hamiltonian commutes with both
system and bath Hamiltonians, implying a so-called quantum nondemolition coupling:

[Ĥ S(t) ⊗ 1̂B , Ĥ SB] = [1̂S ⊗ ĤB, Ĥ SB] = 0. (8)

The time-instantaneous energy eigenvalues assume the form

En,s(t) = ε(t)

2
s + �

(
n +

1

2

)
+ χs

(
n +

1

2

)
(9)

s = ±1, n = 0, 1, 2, . . . . We remark that the corresponding instantaneous eigenstates |n, s〉
do not depend on time.

The partition function Y (t) of the total system becomes, with equation (4)

Y (t) =
∑
s,n

e−βEn,s (t) = q+(t) + q−(t), (10)

where

q±(t) = e−β�/2 e∓β(ε(t)+χ)/2

1 − e−β(�±χ)
. (11)

The bare bath partition function ZB is, with equation (5)

ZB =
∑

n

e−β�(n+1/2) = 1

2 sinh(β�/2)
. (12)

Then the thermodynamic partition function ZS(t) of the open system becomes, according to
equation (3),

ZS(t) = 2[q+(t) + q−(t)] sinh(β�/2). (13)

Note that the open system thermodynamic partition function differs substantially from the
bare system partition sum QS(t), which reads, with equation (2),

QS(t) =
∑

s

e−βε(t)s/2 = 2 cosh(βε(t)/2). (14)

In particular, the thermodynamic partition function consistently accounts for the presence of
the oscillator and the interaction, as it depends on � and χ , whereas the partition sum QS(t)

does not.

3. Work and fluctuation theorems

For a prescribed protocol of the two-level spacing ε(t), t0 � t � tf , the work w performed
on the two-level system is distributed according to the probability density function ptf ,t0(w),
given by [7]

ptf ,t0(w) =
∞∑

m,n=0

∑
r,s=±1

δ[w − (Em,r(tf ) − En,s(t0))]P(m, r|n, s)
e−βEn,s (t0)

Y (t0)
, (15)

where δ(x) denotes the Dirac delta function and P(m, r|n, s) is the transition probability to
jump from the eigenstate |n, s〉 of the total Hamiltonian at time t0 to the eigenstate |m, r〉 at
time tf :

P(m, r|n, s) = |〈m, r|Û tf ,t0 |n, s〉|2 (16)

 



                                                        

with Û tf ,t0 = T exp
(−i

∫ tf
t0

dtĤ (t)/h̄
)

denoting the time evolution operator. The model
Hamiltonian in equation (7) commutes with itself at different times, so the time-ordered
exponential reduces to an ordinary exponential

Û tf ,t0 = exp

[
− i

h̄

(∫ tf

t0

dt
ε(t)

2
σ̂z ⊗ 1̂B + (�1̂S + χσ̂z) ⊗

(
â†â +

1

2

)
(tf − t0)

)]
. (17)

By inserting this expression into equation (16), one sees that no transition takes place

P(m, r|n, s) = δm,nδr,s (18)

with δm,n denoting the Kronecker symbol. This is of course to be expected since an interaction
that commutes with the free evolution does not cause any transition. Thus, for the work
probability density one obtains

ptf ,t0(w) = q+(t0)δ(w − �ε/2) + q−(t0)δ(w + �ε/2)

q+(t0) + q−(t0)
(19)

where �ε = ε(tf ) − ε(t0). By exchanging t0 with tf one obtains the backward pdf of work
pt0,tf (w), corresponding to the backward protocol ε̄(t) = ε(tf +t0−t). After some calculations
one obtains the following expression for their ratio:

ptf ,t0(w)

pt0,tf (−w)
= eβw

cosh
(
β

ε(tf )+χ

2

) − e−β� cosh
(
β

ε(tf )−χ

2

)
cosh

(
β

ε(t0)+χ

2

) − e−β� cosh
(
β

ε(t0)−χ

2

) . (20)

Here we recognize that the ratio on the right-hand side is equal to ZS(tf )/ZS(t0), as predicted
by the work fluctuation theorem for arbitrary open quantum systems [13]. Using (19) we also
obtain the following expression for the Jarzynski exponentiated work:

〈e−βw〉 = cosh
(
β

ε(tf )+χ

2

) − e−β� cosh
(
β

ε(tf )−χ

2

)
cosh

(
β

ε(t0)+χ

2

) − e−β� cosh
(
β

ε(t0)−χ

2

) (21)

that is,

〈e−βw〉 = ZS(tf )

ZS(t0)
(22)

as predicted by the Jarzynski equality for arbitrary open quantum systems in equation (6) [13].
By comparison of equations (14) and (21) one observes that

〈e−βw〉 �= QS(tf )

QS(t0)
. (23)

This result is in contrast to recent claims reported by Teifel and Mahler [28], according to
which the averaged exponentiated work should be identical to the ratio of partition sums QS

independently of coupling strength, provided the interaction commutes with both system and
bath Hamiltonians as it is the case with the present study.

4. Equilibrium thermodynamics

We turn now to the study of the equilibrium thermodynamics of the open two-level system.
This means that we keep ε fixed and study the time-independent Hamiltonian

Ĥ = ε

2
σ̂z ⊗ 1̂B + 1̂S ⊗ �

(
â†â +

1

2

)
+ χσ̂z ⊗

(
â†â +

1

2

)
. (24)

 



                                                        

4.1. The Hamiltonian of mean force

A fundamental quantity that is closely related to the open system partition function ZS is the
quantum Hamiltonian of mean force [13]

Ĥ ∗ := − 1

β
ln

TrB e−β(Ĥ S+Ĥ SB+ĤB )

ZB

. (25)

It generalizes the potential of mean force commonly employed in reaction rate theory [29] and
implicit solvent models [30]. The Hamiltonian of mean force is the effective Hamiltonian that
describes the open system at equilibrium with the environment according to the equation:

Z−1
S e−βĤ ∗ = Y−1TrB e−βĤ . (26)

It hence determines the reduced density matrix of the open system, ρS , in thermal equilibrium
according to ρS = Z−1

S e−βĤ ∗
. The identification of Ĥ ∗ in general is a difficult task. However

for the model Hamiltonian in equation (24), the calculation is straightforward and leads to

Ĥ ∗ = ε∗

2
σ̂z + γ 1̂S, (27)

where

ε∗ = ε + χ +
2

β
artanh

(
e−β� sinh(βχ)

1 − e−β� cosh(βχ)

)
(28)

is the renormalized-level spacing, and

γ = 1

2β
ln

(
1 − 2 e−β� cosh(βχ) + e−2β�

(1 − e−β�)2

)
(29)

specifies a global shift of the spectrum. In obtaining equation (27) we used the identity
eaσ̂z = cosh(a)1̂S + sinh(a)σ̂z. When χ → 0, the renormalized spacing tends to the original
spacing ε and the offset γ vanishes, so that H ∗ tends to the bare system Hamiltonian HS, as
expected. Figure 1(a) displays γ as well as the amount of renormalization

� := ε∗ − ε, (30)

which is independent of the bare spacing ε, as functions of the coupling strength χ , for
|χ | < �. These quantities are displayed in non-dimensional units where energies are rescaled
by ε. As |χ |/ε approaches the stability limit ±�/ε, �/ε and γ /ε diverge, while they vanish
as the coupling χ/ε approaches zero. From equation (28), we note that, given certain values
of the spacing ε and of �, there exists a value of χ for which the renormalized energy spacing
ε∗ vanishes, meaning that an effective degeneracy of the qubit is induced by the presence of
the oscillator. In figure 1(b), �/ε and γ /ε are plotted as functions of �/ε, for fixed β and χ ,
and for �/ε > |χ |/ε.

The graphs in figure 1 correspond to values of � and χ that match the regime of values
used in an experimental implementation of the model Hamiltonian in equation (24) with
superconducting circuits, as it has been recently reported [31]. In that experiment |χ | is about
two orders of magnitudes smaller than �, thus the leading corrections to the energy spacing
are of first order and those of the shift γ are at most of second order in χ/ε.

At low temperatures we find the following limiting results:

lim
β→∞

γ = 0, (31)

lim
β→∞

ε∗ = ε + χ, (32)
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Figure 1. Dimensionless difference between renormalized qubit’s energy spacing and original
qubit’s energy spacing, �/ε (solid line, equations (28), (30)), and global dimensionless shift of the
energy spectrum, γ /ε (dashed line, equation (29)), as functions of (a) the dimensionless coupling
strength χ/ε (top panel) and (b) dimensionless oscillator’s energy quantum �/ε (bottom panel).
The graphs correspond to a temperature of T = 50 mK, and the experimental values employed
in [31] ε/2πh̄ = 6.9 GHz, (a) �/2πh̄ = 5.7 GHz (top panel), (b) χ/πh̄ = −17 MHz (bottom
panel).

lim
β→∞

∂k

∂βk
ε∗ = 0 k = 1, 2, 3 . . . . (33)

From the previous two equations we deduce that the degeneracy of the spectrum occurs at
T = 0 for the special value χ = −ε. In the following, we will come back to the effect of this
degeneracy on the system’s entropy and specific heat.

4.2. Thermodynamic entropy

From the partition function, ZS, one obtains the free energy:

FS = −kBT ln ZS = −(1/β) ln ZS, (34)
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Figure 2. Contour plot of dimensionless entropy SS/kB , equation (35), as a function of
dimensionless temperature kBT/ε = 1/(βε), and dimensionless interaction strength χ/ε, for
(a) �/ε = 3 (top panel) and (b) �/ε = 1/3 (bottom panel). The entropy is nowhere negative in
panel (a). In panel (b), it assumes negative values in the region, labelled as SS < 0, enclosed by
the-level line SS = 0 (thick light blue line).

and the entropy

SS = −∂FS

∂T
= kBβ2 ∂FS

∂β
. (35)

In figure 2(a) the entropy following from equation (13) with ε(t) = ε, is displayed as a
function of dimensionless temperature kBT/ε = 1/(βε) and dimensionless coupling strength,
χ/ε for a fixed value of rescaled oscillator energy quantum �/ε, larger than 1. As χ/ε

approaches the instability values ±�/ε the entropy diverges. For all values of χ/ε, the
entropy vanishes at zero temperature in agreement with the third law. An exception is at the
special case χ/ε = −1, where the ground state assumes a finite degeneracy. Put differently,
for χ/ε = −1, the zero temperature entropy is no longer zero but assumes the finite positive
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Figure 3. Dimensionless entropy SS/kB as a function of dimensionless temperature kBT/ε =
1/(βε), for �/ε = 1/3, and χ/ε = −1/6 (solid line), χ/ε = 1/6 (dashed line). The dotted line
is the asymptotic value calculated from equation (36).

value kB ln 21 [32–36]. This kB ln 2 term is a consequence of the fact that in the limit of zero
temperature and for χ = −ε, the effective spacing ε∗ and all its higher order derivatives with
respect to temperature vanish (see equation (32), (33)). At finite temperatures there are values
of χ for which the spacing ε∗ vanishes, however these do not coincide with the values of χ

for which the entropy is kB ln 2, since then the first derivative of ε∗ with respect to β does not
vanish and consequently yields a contribution to the entropy.

Figure 2(b) depicts the entropy as a function of dimensionless temperature kBT/ε =
1/(βε) and dimensionless coupling strength, χ/ε, for a fixed value of rescaled oscillator
energy quantum �/ε, smaller than 1. The most prominent feature in this case �/ε < 1 is
the appearance of a region of negative entropy for small values of kBT and negative coupling
(the region labeled as SS < 0 in figure 2(b)). Interestingly, the experiment reported in [31]
lies in this region � < ε, χ < 0 where the entropy may become negative. For the parameter
values reported therein, a negative entropy is expected below ∼22 mK. From figure 2(b) we
note that, for positive χ , the entropy vanishes at absolute zero temperature, in accordance with
the third law of thermodynamics [32], and reaches a plateau at high temperatures, without
becoming negative. For negative χ , it vanishes as well at zero temperature, however with
increasing low temperatures, entropy first decreases until it reaches a negative minimum, and
then increases until it approaches a positive plateau value at high temperatures. This behavior
is further illustrated in figure 3.

Independently of the sign of χ , at high temperature the entropy reaches the asymptotic
value:

lim
β→0

SS = kB ln

(
2�2

�2 − χ2

)
(36)

1 Max Planck formulated the third law of thermodynamics in rather general terms in his 3rd edition of [32]; stating
that ‘the entropy S of any physical body reaches a constant value independent of its physical state and chemical
composition, ..., which can be set to S = 0 without loss of generality’. He naturally at that time could not foresee
the dependence of entropy at absolute zero temperature on symmetry which may imply a degeneracy g(N) of the
ground state of a N-particle system. This is the case, for example, with spin degeneracy. Such a symmetry then
yields a positive residual entropy at absolute zero, S(N) = kB ln g(N), with degeneracy g(N) growing no faster than
exponentially with N. This insight came soon after the spin was introduced into the theory of quantum mechanics by
Pauli (1924, ‘Pauli-Eq.’ 1927) and Dirac (1928): seemingly, this positive residual value of entropy at absolute zero
temperature in terms of symmetry degeneracy has been introduced first by Giauque [33–35], testing the third law for
hydrogen and ice, note also the credit given to Giauque by Pauling [36].
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Figure 4. Contour plot of dimensionless specific heat CS/kB , equation (37), as a function of
dimensionless temperature kBT/ε = 1/(βε), and dimensionless interaction strength χ/ε, for (a)
�/ε = 3 (top panel), (b) �/ε = 1/3 (bottom panel). The specific heat is nowhere negative in
panel (a). In panel (b), it assumes negative values in the region, labeled as CS < 0, enclosed by
the level line CS = 0 (thick light blue line).

which notably does not depend on the spacing ε. For χ = 0, the high temperature entropy in
equation (36) becomes equal to kB ln 2, reflecting the fact that spin up and spin down states
become equally populated at infinite temperature. For χ �= 0, it assumes values larger than
kB ln 2 and diverges for |χ | approaching �.

4.3. Specific heat

From the entropy (35) one obtains the specific heat of the open two-level system:

CS = T
∂SS

∂T
= −β

∂SS

∂β
. (37)

Figures 4(a) and (b) represent the specific heat as a function of dimensionless temperature
kBT/ε = 1/(βε) and dimensionless coupling strength, χ/ε for fixed values of rescaled
oscillator energy quantum �/ε.
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Figure 5. Dimensionless specific heat CS/kB as a function of rescaled temperature kBT/ε =
1/(βε), for various values of χ/ε and (a) �/ε = 3 (top panel), (b) �/ε = 1/3 (bottom panel).

In figure 4(a) � is larger than ε. For values |χ/ε| < �/ε, the specific heat vanishes at
zero temperature. With growing temperatures, it first increases, then reaches a maximum and
finally goes again to zero. The maximum occurs at decreasing temperatures as χ/ε → −1.
As χ/ε approaches −1 we also see the appearance of a second maximum for larger values of
kBT . These features are further illustrated in figure 5(a).

The specific heat landscape changes drastically for � < ε, figure 4(b). The most relevant
feature in this parameter range is the appearance of a region of negative specific heat at low
temperatures and negative χ/ε (the region labeled as CS < 0 in figure 4(b)). From figure 4(b)
we observe that for 0 < χ/ε < �/ε the specific heat starts from zero at zero temperature,
reaches a maximum and goes to zero again at high temperatures. For −�/ε < χ/ε < 0
the specific heat starts at T = 0 from zero, reaches a negative minimum with increasing
temperature, then a positive maximum and finally goes to zero at high temperature. These
features are further illustrated in figure 5(b). From figure 5(b) we also note that the curves
corresponding to positive χ all cross each other within a very small temperature range around
kBT/ε ∼ 0.21 for the given value �/ε = 1/3. Indeed, for kBT/ε = 0.21, �/ε = 1/3 and
χ/ε ranging from 0 to �/ε, the specific heat is almost constant (with variations within 5%
of its value). An analogous situation happens also for other values of �/ε < 1, showing that
in this regime one should expect the presence of a narrow temperature range for which the
specific heat is not very sensitive to changes in coupling strength χ , as long as this remains
positive. Regardless of whether � is larger or smaller than ε, the specific heat approaches
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Figure 6. Dimensionless specific heat CS/kB as a function of rescaled temperature kBT/ε =
1/(βε) for �/ε = 1/3 and various small values of |χ/ε| − �/ε.

a unique functional form in the limits as χ approaches ±�. This limiting function can be
calculated analytically:

lim
χ→±�

CS = kB

(
1 −

[
2kBT

�
sinh

(
�

2kBT

)]−2
)

. (38)

The fact that it does not tend to zero at zero temperature is not in contrast with the third law
of thermodynamics, since for χ = ±� the system is no longer stable.

Figure 6 depicts the behavior of the specific heat as χ/ε → ±�/ε for �/ε < 1. The
convergence to the limiting function in equation (38) as χ/ε → +�/ε is quite fast compared
to the much slower convergence in the other limit χ/ε → −�/ε. The approach to the
limit is qualitatively different in the two cases. In both cases the specific heat vanishes at
low temperature and it approaches the limiting curve in equation (38) for large temperatures.
However in the case χ/ε ∼ −�/ε, the specific heat displays a drastic peak at intermediate
temperatures. As χ/ε approaches −�/ε, the peak becomes increasingly pronounced while
getting closer to the origin of the temperature axis. In the limit χ/ε → −�/ε, eventually
the peak becomes a delta singularity at zero temperature. This singularity contributes with a
finite term λ to the total heat Q = ∫

CS dT , which, in analogy with first-order phase transitions,
can be interpreted as a latent heat.

Finally, we note that the appearance of negative entropy and specific heat does not entail
any pathologies of the reduced density matrix. The reduced equilibrium density matrix of the
qubit is diagonal with respect to the σz eigenbasis with weights

p± = e∓βε∗/2/(2 cosh(βε∗/2)). (39)

These weights add up to unity and are positive within the whole stability regime |χ | < �

because the renormalized-level spacing ε∗ given by equation (28) is real and finite. Hence the
resulting density matrix has trace one and is positive. As a consequence the corresponding
von Neumann entropy

SvN = −kB TrS ρS ln ρS = −kB(p+ ln p+ + p− ln p−) (40)

is always positive and less than kB ln 2. We however emphasize that the von Neumann entropy
in general is different from the thermodynamic entropy of an open system [17] which according
to equations (3), (34) and (35) is given by the difference of the entropies of the total system
and isolated bath alone [15]. The corresponding relation also holds for the specific heat. In

  



                                                        

both cases it is this difference of two positive quantities that may lead to negative entropy or
specific heat of an open quantum system.

5. Conclusions

We illustrated the validity of the Jarzynski equality and the work fluctuation theorem in the
strong coupling regime, for the model Hamiltonian (7). The central role is played by the
thermodynamic partition function of the open system that incorporates the interaction of
the system of interest with its environment. The influence of the interaction is of major
importance even in the seemingly trivial case in which the system bath interaction Hamiltonian
commutes with both the bath and the system Hamiltonians, notwithstanding claims to the
contrary [28]. We computed the Hamiltonian of mean force for this model explicitly and
studied its equilibrium thermodynamics. In particular, we discussed its entropy and its specific
heat as functions of temperature and other system parameters. Like for other strongly coupled
systems [14, 15] these two quantities can become negative at low temperature. Nevertheless,
they vanish at zero temperature, in accordance with the third law of thermodynamics. The only
exception to this, is for the special value of coupling strength χ exactly equal to −ε, for which
the zero temperature entropy is equal to kB ln 2. This result is, however, not in contradiction
with the third law but rather corroborates this law; this is so because the two-level fluctuator
becomes degenerate in this case, as is clearly indicated by the Hamiltonian of mean force.

Interestingly, recent experiments in circuit cavity quantum electrodynamics [31] use a
parameter regime where negative entropy and specific heat may appear. For the architecture
presented in [31], these are expected below ∼22 mK and ∼20 mK, respectively. In
cavity quantum electrodynamics the Hamiltonian in equation (24) is obtained from the time-
independent Jaynes–Cummings model Hamiltonian in the rotating wave approximation and
dispersive regime [37]. These conditions imply weak coupling |χ | � �, ε, which in fact is
the case for [31]. Whether a Hamiltonian of the type in equation (7), with time-dependent ε(t),
and/or possibly strong coupling can be implemented with superconducting circuits remains
an open problem.
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