
                                     
                          

Entropic transport: a test bed for the
Fick–Jacobs approximation

BY P. SEKHAR BURADA*, GERHARD SCHMID AND PETER HÄNGGI

Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86135
Augsburg, Germany

Biased diffusive transport of Brownian particles through irregularly shaped, narrow
confining quasi-one-dimensional structures is investigated. The complexity of the higher
dimensional diffusive dynamics is reduced by means of the so-called Fick–Jacobs
approximation, yielding an effective one-dimensional stochastic dynamics. Accordingly,
the elimination of transverse, equilibrated degrees of freedom stemming from geometrical
confinements and/or bottlenecks causes entropic potential barriers that the particles
have to overcome when moving forward noisily. The applicability and the validity of the
reduced kinetic description are tested by comparing the approximation with Brownian
dynamics simulations in full configuration space. This non-equilibrium transport in
such quasi-one-dimensional irregular structures implies, for moderate-to-strong bias, a
characteristic violation of the Sutherland–Einstein fluctuation–dissipation relation.

                                                             

1. Introduction

Diffusion of Brownian particles through narrow, tortuous confining structures
such as micropores and nanopores, zeolites, biological cells and microfluidic
devices plays a prominent role in the dynamical characterization of these systems
(Barrer 1978; Volkmuth & Austin 1992; Liu et al. 1999; Kettner et al. 2000;
Müller et al. 2000; Hille 2001; Nixon & Slater 2002; Matthias & Müller 2003;
Berezhkovskii & Bezrukov 2005; Siwy et al. 2005). Effective control schemes
for transport in these systems require a detailed understanding of the diffusive
mechanisms involving small objects and, in this regard, an operative measure to
gauge the role of fluctuations. The study of these transport phenomena is, in many
respects, equivalent to an investigation of geometrically constrained Brownian
dynamics (Mazo 2002; Burada et al. 2009; Hänggi & Marchesoni 2009). With this
work, we focus on the stochastic transport of small-sized particles in confined
geometries and the feasibility of the so-called Fick–Jacobs (FJ) approximation
to describe the steady-state particle densities. Restricting the volume of the
configuration space available to the diffusing particles by means of confining
boundaries or obstacles discloses intriguing entropic phenomena (Liu et al. 1999).
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The driven transport of charged particles across bottlenecks (Burada et al.
2009), such as ion transport through artificial nanopores or artificial ion pumps
(Siwy et al. 2005; Kosinska et al. 2008) or in biological channels (Berezhkovskii &
Bezrukov 2005), are more familiar systems where diffusive transport is regulated
by entropic barriers. Similarly, the operation of artificial Brownian motors and
molecular machines also relies on a mutual interplay among diffusion and binding
action by energetic or, more relevant in the present context, entropic barriers
(Derenyi & Astumian 1998; Astumian & Hänggi 2002; Reimann & Hänggi 2002;
Burada et al. 2009; Hänggi & Marchesoni 2009).

The outline of this work is as follows: in §2, we introduce our model and
formulate the mathematical formalism needed to model the diffusion of a
Brownian particle immersed in a confined medium. In §3, we present the FJ
approximation and compute the entropic effects on the particle transport and
on the steady-state probability density in the presence of an applied force in
the transport direction. In §4, we compare the precise two-dimensional numerical
simulation results with those obtained from applying the FJ approximation. In
§5, we discuss the effective lateral diffusion and test the Sutherland–Einstein
fluctuation–dissipation relation. Section 6 provides a discussion of our main
findings.

2. Overdamped system dynamics

Generic mass transport through confined structures such as irregular pores
and channels, cf. the one depicted in figure 1, is governed by the transport of
suspended Brownian particles subjected to an externally applied potential V (r).
Generally, the dynamics of the Brownian particle inside the medium can be well
described by the Langevin dynamics in the over-damped limit (Purcell 1977), with
reflecting boundary conditions at the channel walls. The stochastic dynamics then
reads

ηṙ(t̃) = −∇V (r(t̃)) + √
ηkBTξ(t̃), (2.1)

where r is the position vector of a Brownian particle at time t̃, η denotes
the friction coefficient, kB is the Boltzmann constant and T refers to the
environmental temperature. Thermal fluctuations due to the coupling of the
Brownian particle to the environment are modelled by Gaussian white noise
with zero mean and an auto-correlation function obeying the Sutherland–Einstein
fluctuation–dissipation relation (Hänggi & Marchesoni 2005)

〈ξi(t̃)ξj(t̃
′
)〉 = 2δijδ(t̃ − t̃

′
), for i, j = x , y, z . (2.2)

For simplicity, we consider the dynamics of a Brownian particle that is
subjected to a constant force F = Fex acting along the direction of the channel
axis (in the x-direction here). The Langevin equation for the over-damped
dynamics then reads

ηṙ(t̃) = F + √
ηkBTξ(t̃), (2.3)

with reflecting (i.e. no across-flow) boundary conditions implied at the channel
walls, which confine the Brownian particles within the channel geometry.
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Figure 1. Schematic diagram of a channel confining the motion of laterally forced (with strength F)
Brownian particles. The half-width ω is a periodic function of x with periodicity L.

In order to further simplify the treatment of this setup, we introduce
dimensionless variables. We measure all lengths in units of the period length L,
i.e. r = Lx , where x denotes the dimensionless position vector of the particle.
As the unit of time τ , we choose twice the time the particle takes to diffusively
overcome the distance L, which is given by τ = L2η/(kBT ), i.e. t̃ = τ t (Burada
et al. 2008b). In these dimensionless variables, the Langevin dynamics assumes
the form

dx
dt

= f + ξ(t), (2.4)

where 〈ξ(t)〉 = 0, 〈ξi(t) ξj(t ′)〉 = 2 δij δ(t − t ′), for i, j = x , y, z , and the dimension-
less force becomes

f = f ex and f = LF
kBT

. (2.5)

The performed dimensionless scaling parameter f characterizes the force as ‘the
ratio between the work LF done on the particle along a distance of the period
length L and the thermal energy kBT ’. We anticipate here the fact that, in the
case of diffusion occurring in purely energetic potential landscapes, the driving
force F and the temperature T are independent variables; in contrast, in systems
with entropic features, these two quantities become coupled (Reguera et al. 2006).
In order to adjust a certain value of f , one can modify either the force strength
F or adjust the noise intensity kBT .

The corresponding Fokker–Plank equation describing the time evolution of the
probability density P(x , t) takes the form (Hänggi & Thomas 1982; Risken 1989)

∂P(x , t)
∂t

= −∇ · J (x , t), (2.6a)

where J (x , t) is the probability current

J (x , t) = (f − ∇)P(x , t). (2.6b)

Note that, for channels with similar geometry which are related by a scale
transformation r → λr , λ > 0, the transport properties are determined by a
single dimensionless parameter f that subsumes the respective period length,
the external force and the temperature of the surrounding fluid.

The no-flow condition beyond the channel walls leads to a vanishing probability
current at those boundaries. Consequently, due to the impenetrability of the
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channel walls, the normal component of the probability current J (x , t) vanishes
at those boundaries. Thus, the boundary conditions at the channel walls are
given by

J (x , t) · n = 0, x ∈ channel wall, (2.7)

where n denotes the normal vector at the channel walls.
The boundary of a two-dimensional periodic channel, which is mirror

symmetric about the x-axis, is given by the dimensionless periodic functions
y = ±ω(x), i.e. ω(x + 1) = ω(x) for all x , where x and y are the cartesian
components of x . In this case, the boundary condition reads

dω(x)

dx

[
fP(x , y, t) − ∂P(x , y, t)

∂x

]
+ ∂P(x , y, t)

∂y
= 0, (2.8)

at y = ±ω(x). Except for a straight channel with ω = const., there are no periodic
channel shapes for which an exact analytical solution of the Fokker–Planck
equation (2.6a, 2.6b) with the elaborate boundary conditions in equation (2.8) is
presently known. Approximate solutions though can be obtained on the basis of
a one-dimensional diffusion problem proceeding in an effective potential. Narrow
channel openings, which act as geometric hindrances in the original system,
then manifest themselves as entropic barriers within an effective one-dimensional
diffusive FJ approximation (Jacobs 1967; Zwanzig 1992; Reguera & Rubi 2001;
Kalinay & Percus 2006; Reguera et al. 2006; Burada et al. 2007).

3. Equilibration in transverse channel directions: the Fick–Jacobs
approximation

In the absence of an external force, i.e. for f = 0, it was shown (Jacobs 1967;
Zwanzig 1992; Reguera & Rubi 2001; Kalinay & Percus 2006) that the dynamics
of Brownian particles in confined structures (such as the one depicted in figure 1)
can be described approximatively by the FJ equation, i.e.

∂

∂t
P(x , t) = ∂

∂x
D(x)e−A(x) ∂

∂x
eA(x)P(x , t). (3.1)

This one-dimensional equation is obtained from the full two-dimensional
Smoluchowski equation upon the elimination of the transverse y spatial
coordinate degree of freedom by assuming a much faster equilibration in
that channel direction than in the longitudinal one. An analogous reduction
mechanism has been used for the transport of neutrons through nuclear reactors
(Beckurts & Wirtz 1964). In equation (3.1), P(x , t) = ∫ω(x)

−ω(x)
P(x , y, t) dy denotes

the marginal probability density along the axis of the channel. A(x) corresponds
to the potential of mean force, which equals, for the considered situation, the free
energy, i.e. A(x) = E(x) − S(x) = 0 − ln ω(x). We note that for three-dimensional
channels, an analogue approximate Fokker–Planck equation holds in which the
function ω(x) is to be replaced by πω2(x) (i.e. the area of the corresponding
cross-section). In the original work by Jacobs (1967), the one-dimensional
diffusion coefficient D(x) is constant and equals the bare diffusion constant
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Figure 2. Sketch of the two-dimensional channel and the effective one-dimensional potential: the
FJ approximation allows for a reduction of the two-dimensional Brownian dynamics within the
periodic channel (periodicity L) to an approximate one-dimensional Brownian dynamics with an
effective potential that is given by the free energy function A(x). In the presence of an applied
bias, A(x) has the form of a tilted periodic potential with a barrier height of 
A that depends on
the temperature T .

that assumes unity in the present dimensionless variables. However, introducing
the x-dependent diffusion coefficient considerably improves the accuracy of the
kinetic equation, extending its validity to more winding structures (Zwanzig 1992;
Reguera & Rubi 2001; Burada et al. 2007). The expression for D(x) reads (in
dimensionless units)

D(x) = 1
(1 + ω′(x)2)α

, (3.2)

where α = 1/3, 1/2 for two and three dimensions, respectively, has been shown to
appropriately account for the curvature effects of the confining walls (Reguera &
Rubi 2001; Burada et al. 2008b) and ω′(x) indicates the first derivative of the
boundary function ω(x) with respect to x .

In the presence of a constant force F along the direction of the channel, the FJ
diffusion equation (3.1) can be recast into the form (Reguera et al. 2006; Burada
et al. 2007, 2008b)

∂P
∂t

= ∂

∂x
D(x)

(
∂P
∂x

+ dA(x)

dx
P

)
, (3.3)

with the dimensionless free energy A(x) := E(x) − S(x) = −f x − ln ω(x). In
terms of the original unscaled physical variables, the energy is Ẽ ≡ kBTE(x) =
−Fx̃ (x̃ = xL) and the dimensional entropic contribution reads S̃ ≡ kBTS(x) =
kBT ln ω(x). For a periodic channel arrangement, this free energy assumes the
form of a tilted periodic potential, see figure 2. In the absence of a force, the free
energy is purely entropic and equation (3.3) reduces to the FJ equation (3.1). On
the other hand, for a straight channel, the entropic contribution vanishes and the
particles are solely driven by the externally applied force.

Remarkably, the temperature T dictates the strength of the effective potential.
An increase in temperature causes an increase in barrier height 
A, while for
purely energetic systems the barrier height is independent of the temperature
(Hänggi et al. 1990).
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(a) Steady-state probability density

Formally, the steady-state density of the particles is obtained in the limit
t → ∞, i.e. P st(x) = limt→∞ P(x , t). As a consequence, ∂/∂tP st(x) = 0. An
expression for the steady-state density can be derived from equation (3.1), using
arguments detailed in appendix A. Using the main result in equation (A 12), one
obtains

P st(x) = I (x , f )∫1
0 I (z , f ) dz

, (3.4)

where

I (x , f ) = e−A(x)

∫ x+1

x

eA(x ′)

D(x ′)
dx ′ (3.5)

depends on the dimensionless position x , the force f and, via the position-
dependent diffusion coefficient, on the shape of the tube given in terms of the
shape function ω(x) and its first derivative, cf. equation (3.2). Note that the
probability density P st(x) is normalized on the unit interval.

(b) Nonlinear mobility

The primary quantity of particle transport through periodic channels is the
average particle current, 〈ẋ〉, or equivalently, the nonlinear mobility, which is
defined as the ratio between the average particle current and the applied force
f . For the average particle current, we derive an expression that is similar to
the Stratonovich formula for the current occurring in titled periodic energy
landscapes, but here, with a spatially dependent diffusion coefficient (Burada
et al. 2007). A detailed derivation of this expression is given in appendix A,
cf. equation (A 11). Hence, we obtain the nonlinear mobility for a two- or
three-dimensional channel

μ(f ) = 〈ẋ〉
f

= 1
f

1 − e−f

∫1
0I (z , f ) dz

, (3.6)

with I (z , f ) given in equation (3.5).

4. Precise numerics for a two-dimensional channel geometry

The steady-state density and the average particle current, predicted analytically
earlier, has been compared with Brownian dynamic simulations performed by
a numerical integration of the Langevin equation (2.4), using the stochastic
Euler algorithm. The shape of the exemplarily taken two-dimensional channel
is described by

ω(x) := a sin(2πx) + b, (4.1)

where b > a. The sum and difference of the two parameters a + b and b − a
yield half of the maximal and the minimal width of the channel, respectively.
Moreover, a controls the slope of the channel walls, which, in turn, determines
the one-dimensional diffusion coefficient D(x).

For the considered channel configuration, cf. equation (4.1), the boundary
condition becomes ω(x) = a[sin(2πx) + κ], where κ = b/a = 1.02 throughout this
paper. For a we chose values between 1 and 1/2π . In all cases, the width of the
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Figure 3. The normalized steady-state probability density of particles along the propagation
direction is depicted for different force values f (black, f = 0.2; blue, f = 3.0; green, f = 10.0; red,
f = 50.0) for two different two-dimensional channels (see inset in panel (a)), with the scaled half-
width shape function given by ω(x) = a[sin(2π(x − 0.25)) + 1.02] (the shift −0.25 ensures that the
bottlenecks are located at 0 and 1). (a) For a = 1, the maximal and minimal channel widths are 4.04
and 0.04, respectively, and (b) for a = 1/2π , they are 6.43 × 10−1 and 6.37 × 10−3, respectively. The
solid lines correspond to the steady-state probability density obtained from the one-dimensional FJ
approximation, equations (3.4) and (3.5), and symbols correspond to two-dimensional numerical
simulations, see equation (4.2).

widest opening within the channel is larger by a factor of 100 than the width at
the narrowest opening. One may therefore expect rather strong entropic effects
for these channel geometries.

(a) Stationary probability densities

We have evaluated the stationary probability density P st(x , y), in the
long time limit, by mapping all particle positions onto the primitive
cell by translation into the longitudinal channel direction. Consequently,∫1

0 dx
∫ω(x)

−ω(x)
dy P st(x , y) = 1. Figure 3 (solid lines) depicts the normalized steady-

state probability density in the x-direction for various scaling parameter values,
derived from the reduced one-dimensional FJ result, equation (A 12), and is
compared with the numerical simulations for the exact expression

P st(x) :=
∫ω(x)

−ω(x)
P st(x , y) dy∫1

0 dx
∫ω(x)

−ω(x)
P st(x , y) dy

. (4.2)

Note that the steady-state marginal density P st(x) is normalized on the
primitive cell.

At small scaling parameter values f , the one-dimensional steady-state density
given by equation (3.4) is in very good agreement with those obtained from
numerical simulations, see figure 3. This holds true for rather arbitrary channel
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geometry (not shown). However, the comparison fails for large f values of the
scaling parameter or for more winding structures corresponding to larger a values.
When increasing the force, the maximum of P st(x) is shifted towards the exit
of the cell, and the particles mostly accumulate in front of the bottleneck, see
figure 3a, and the one-dimensional kinetic description starts to fail in that forward
bottleneck x-region. However, by decreasing the a of the geometric channel shape
function, the accuracy of the FJ approximation considerably improves up to very
large force values f , see figure 3b.

As a common feature, one observes that, for the two chosen geometric
structures, in the large-force regime the numerically obtained P st(x) is essentially
constant over a wide range of x values, indicating a minor influence of the shape
of the structure on the dynamics of the laterally forward-forced particles. In this
situation, the thermal noise plays a minor role and the deterministic dynamics
(with diffusion set to zero) of the diffusive equation provides a good starting
point. Put differently, at strong longitudinal driving strength the correction in
the diffusion coefficient leading to a spatial dependency, i.e. D(x), overestimates
the role of the entropic effects and consequently the FJ approximation starts
failing over extended x-regimes.

The reasons for the failure of the FJ approximation for large forces become
obvious when checking the equilibration assumption in the transverse channel
direction. From our simulations, we can actually analyse the validity of the
hypotheses of equilibration in the transverse direction on which the FJ description
relies. A detailed analysis is provided by testing the normalized steady-state
probability density in the transverse direction at a given x-position, i.e.

P st
x (y) := P st(x , y)∫ω(x)

−ω(x)
P st(x , y) dy

. (4.3)

In figure 4, we depict the steady-state probability density at the position of
maximal channel width. For small values of the scaling parameter f , the P st

x (y) is
very flat, indicating an almost ideal homogeneous equilibration in the transverse
direction, as required by the FJ approximation scheme. However, at large force
strengths f , the Brownian particles concentrate along the axis of the channel
with y = 0. In this situation, the assumption of equilibration along the transverse
direction fails, and the density peaks around the y = 0 value. The particles can
only feel the presence of the boundaries when they are close to the bottlenecks.
Hence, in the limit of very large force values, the influence of the entropic barriers
practically disappears.

(b) Nonlinear mobility

The average particle current was derived from an ensemble average using
3 × 104 trajectories

〈ẋ〉 = lim
t→∞

〈x(t)〉
t

. (4.4)

Figure 5 shows the nonlinear mobility as a function of the scaling parameter
f . We note that the transport in one-dimensional periodic energetic potentials
distinctly differs from the one occurring in one-dimensional periodic systems
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in the presence of entropic barriers (Reguera et al. 2006). The fundamental
difference lies in the temperature dependence of these barrier shapes. Decreasing
the temperature in an energetic periodic potential decreases the transition
rates from one cell to the neighbouring one by decreasing the Arrhenius
factor exp{−
V /(kBT )}, where 
V denotes the activation energy necessary to
proceed to a period (Hänggi et al. 1990). Hence, decreasing the temperature
yields a decreasing nonlinear mobility. For a one-dimensional periodic system
with an entropic free energy (or entropic potential of mean force), a decrease
of temperature results, however, in an increase of the dimensionless force
parameter f and consequently, in a monotonic increase of the nonlinear mobility,
cf. figure 5.

The dependence of the dynamics on the geometry parameter a nicely reflects
the entropic effects on the mobility: a channel with a larger a value has wider
openings, and thus provides more configuration space where the particle can
sojourn. This longer residence time within a period of the channel diminishes the
throughput and consequently the mobility. This is corroborated by the results of
our calculations depicted in figure 5. For all values of f , an increase in value of
a leads to a decrease in the mobility. This holds not only in regimes for which
the FJ equation is valid, but also for large values of f where the approximation
fails. For very large values of the scaling parameter f , the nonlinear mobility
approaches the value 1, i.e. it agrees with the deterministic strong driving
limit.

By means of the nonlinear mobility, a detailed comparison between two-
dimensional simulation results and the analytic results, cf. equation (3.6), enables
one to determine validity criteria for the FJ approximation, for further details
see Burada et al. (2007, 2008b).

5. Effective diffusion and the Sutherland–Einstein relation

A validity of a nonlinear Sutherland–Einstein relation implies that, in physical
units, we can relate the nonlinear mobility μ(F) directly to the nonlinear, effective
x-diffusion Deff(F), reading

Deff(F) = μ(F)kBT . (5.1)

Put differently, the effective diffusion coefficient Deff for the diffusive spreading
along the longitudinal channel direction would then solely be determined by the
nonlinear mobility discussed earlier and the environmental temperature T .

A validity of this relation would then imply a monotonic increase towards the
entropic-free diffusion limit, i.e. Deff = kBT/η. The latter is being approached in
the strong forcing limit, where entropic effects cease to play a significant role. Such
a monotonic behaviour, however, is not observed from the numerical simulations
for the effective x-diffusion coefficient (Reguera et al. 2006; Burada et al. 2008b).
It is defined as the ratio between the asymptotic behaviour of the variance of the
position variable and the elapsed time t, i.e.

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
2t

. (5.2)
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Figure 4. The normalized steady-state probability density of particles in the y-direction Pst
x (y), cf.

equation (4.3), taken at the x-position of maximal channel width, is depicted for different values of
the scaling parameter f (black circles, f = 0.2; blue circles, f = 3.0; green circles, f = 10.0; red circles,
f = 50.0) and different channel geometries (see inset in panel (a)) for the boundary function ω(x) =
a[sin(2π(x − 0.25)) + 1.02] (the shift −0.25 ensures that the bottlenecks are located at 0 and 1).
The maximal channel widths for the two structures are (a) 2ωmax = 4.04 for a = 1 and (b) 2ωmax =
6.43 × 10−1 for a = 1/2π . The symbols correspond to two-dimensional numerical simulations, see
equation (4.3). For large scaled force values f , the numerically obtained steady-state densities
deviate from the uniform, i.e. box-like, density (shown by the black solid line). This indicates the
failure of the equilibration assumption on which the FJ approximation relies.
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Figure 5. The numerically simulated (symbols) and analytically calculated (cf. equation (3.6);
lines) dependence of the scaled nonlinear mobility μ(f ) versus the dimensionless force f = FL/kBT
is depicted for two two-dimensional channel geometries. For both channels, the scaled half-width is
given by ω(x) = a [sin(2πx) + 1.02]; a = 1, circles and solid line; a = 1/(2π), diamonds and dashed
line. The dotted line indicates the deterministic limit μ( f ) = 〈ẋ〉/f = 1.
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Figure 6. The ratio of the effective diffusion Deff and nonlinear mobility μ times the thermal
energy kBT is depicted as a function of the scaling parameter f for two channel geometries:
ω(x) = a[sin(2πx) + 1.02] with a = 1 (circles) and a = 1/2π (diamonds). The dashed horizontal
line at 1 indicates the validity of the Sutherland–Einstein relation in this non-equilibrium situation
Deff/(μ kBT ) = 1. A deviation from this line consequently marks the breakdown of this relationship.
The inset depicts the ratio of the effective diffusion Deff and bulk diffusion constant, being kBT/η.
A ratio larger than 1 (dashed horizontal line) indicates a characteristic enhancement of the effective
x-diffusion.

Interestingly, the dependence of the effective diffusion coefficient on the scaling
parameter exhibits a bell-shaped behaviour, cf. inset of figure 6, thus indicating
a failure of the Sutherland–Einstein relation in this moderate-to-strong driving
regime. This breakdown of the Sutherland–Einstein relation can also be detected
within the FJ description (not shown in figure 6). The FJ approximation for
this effective x-diffusion also yields a non-monotonic dependence of the effective
x-diffusion coefficient on the scaling parameter f , exhibiting a peak value
exceeding the bulk diffusion coefficient D0 = kBT/η (Reguera et al. 2006; Burada
et al. 2008b).

For a detailed comparison, we depict the ratio of the numerically obtained
Deff and (μkBT ) in figure 6. Surprisingly, it turns out that such a Sutherland–
Einstein relation, equation (5.1), holds true in terms of the effective mobility in
the small forcing limit F → 0, i.e. in the linear response regime. It increasingly
fails, however, for increasing bias strength F . At very strong bias, i.e. F → ∞,
the biased diffusion becomes effectively ‘free’ from entropic effects and expectedly
approaches the free limit, given by kBT/η, which renders the original, linear
Sutherland–Einstein result in terms of the F -independent mobility μ = 1/η. Put
differently, the influence of entropic barriers caused by the bottlenecks becomes
negligible at strong bias. Vice versa, the bell-shaped behaviour of the ratio
depicted in figure 6 reflects the fact that this effective diffusion is not increasing
monotonically but rather, exhibits an enhancement of effective diffusion at
moderate bias (or scaling) values F , cf. in the inset of figure 6.

6. Conclusions

In summary, we demonstrated the applicability of the equilibration approximation
in describing biased diffusive transport occurring in narrow, irregularly shaped
one-dimensional channel structures. The FJ description, which relies on the
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equilibration assumption, allows for a treatment of the dynamics within an
effective one-dimensional kinetic equation of the Smoluchowski form. Bottlenecks
and other confining restrictions of available configuration space yield, within
this approximation, an effective one-dimensional diffusion equation exhibiting
entropic barriers. Owing to the intrinsic temperature dependence of the
underlying entropic free energy contribution, one finds the transport phenomena
in periodic channels possessing varying cross section features that are radically
different from conventional transport occurring in energetic periodic potential
landscapes.

The most striking difference between these two physical situations is that,
for a fixed channel geometry, the dynamics is characterized by a single scaling
parameter f = FL/(kBT ) which combines the external force F causing a drift,
the period length L of the channel, and the thermal energy kBT . The latter
presents a measure of the strength of the acting fluctuating thermal forces. This
leads to an opposite temperature dependence of the mobility. While the mobility
of a particle in an energetic potential increases with increasing temperature,
the mobility of a particle undergoing biased diffusion in an irregular channel
decreases. The incorporation of the spatial variation of the channel width in terms
of an entropic free energy contribution allows for a quantitative understanding
of the dependence of the transport properties, such as the nonlinear mobility, on
parameters such as force strength, channel topology or temperature. Moreover,
the lateral steady-state probability densities P st(x) can be evaluated in analytical
closed form within the reduced kinetic FJ approximation, see appendix A.

Such an effective one-dimensional reduction of a complex diffusion dynamics
with intricate boundary conditions at the confining walls certainly proves useful
and beneficial for the quantitative description, design and control of diffusive
transport along tortuous pores and the like. The latter situation dictates the
stochastic far-from-equilibrium transport in a great variety of biological and
structured synthetic pores and confining cavities, such as buckyballs, zeolites, etc.
As an example, this FJ approximation has successfully been used in describing
the phenomenon of stochastic resonance (Gammaitoni et al. 1998; Hänggi 2002)
in a two-dimensional system exhibiting an entropic barrier (Burada et al. 2008a).

This work has been supported by the Volkswagen Foundation (project I/80424, P.H.) the DFG
via research center, SFB-486, project A10 (G.S., P.H.) and via the DFG project no. 1517/26-1
(P.S.B., P.H.) and by the German Excellence Initiative via the Nanosystems Initiative Munich
(P.H., P.S.B.).

Appendix A. Steady-state current and probability density

In this appendix, we derive the steady-state solution for the effective, one-
dimensional dimensionless FJ (Smoluchowski-type) equation, equation (3.1),

∂

∂t
P(x , t) = ∂

∂x
D(x)e−A(x) ∂

∂x
eA(x)P(x , t), (A 1)

where A(x) denotes the free energy function, A(x) = −f x − ln ω(x), with
ω(x + 1) = ω(x). Equation (A 1) results from the probability continuity equation

∂

∂t
P(x , t) = − ∂

∂x
J (x , t), (A 2)
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with the probability current J (x , t) reading

J (x , t) = −D(x)e−A(x) ∂

∂x
eA(x)P(x , t). (A 3)

In the case of a tilted periodic potential, i.e. A(x + 1) = A(x) − f , it is
convenient to define the reduced probability density and the corresponding
reduced current, i.e.

P̂(x , t) =
∑

n

P(n + x , t) (A 4)

and

Ĵ (x , t) =
∑

n

J (n + x , t), n ∈ Z. (A 5)

By definition, these functions are periodic with periodicity L = 1, P̂(x + 1, t) =
P̂(x , t), Ĵ (x + 1, t) =Ĵ (x , t). The same holds true for the spatially dependent
diffusion coefficient, i.e. D(x + 1) = D(x). Moreover, P̂(x , t) and Ĵ (x , t) obey the
continuity equation, equation (A 2), and P̂(x , t) is normalized on an interval
(x , x + 1), provided that P(x , t) is normalized, i.e.

∫+∞
−∞ P(x , t) dx = 1.

In the steady-state limit, the probability current assumes a constant, i.e.
Ĵ (x , t) →Ĵ . Thus, equation (A 3) becomes

Ĵ = −D(x)e−A(x) ∂

∂x
eA(x)P̂

st
(x). (A 6)

Multiplying both sides of equation (A 6) by eA(x)/D(x), and integrating over a
period L = 1, we obtain

Ĵ
∫ x+1

x

eA(x ′)

D(x ′)
dx ′ = −

∫ x+1

x

∂

∂x ′ e
A(x ′)P̂

st
(x ′) dx ′, (A 7)

which simplifies to

Ĵ
∫ x+1

x

eA(x ′)

D(x ′)
dx ′ = P̂

st
(x)(1 − e−f )eA(x). (A 8)

Upon rearranging the terms on the right-hand side and integrating once more
over a period, i.e. from 0 to 1, we find the first result

Ĵ = (1 − e−f )∫1
0 e−A(x) dx

∫x+1
x

eA(x ′)
D(x ′) dx ′

. (A 9)
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Here, we made use of the normalization condition of the stationary probability,
i.e.

∫1
0 P̂

st
(x) dx = 1. The general relation between the steady-state probability

current and the steady-state average particle current 〈ẋ〉 is

〈ẋ〉 =
∫ 1

0
Ĵ dx , (A 10)

which implies that 〈ẋ〉 =Ĵ . Thus, the transport current is given by the first main
result

〈ẋ〉 = (1 − e−f )∫1
0 e−A(x) dx

∫x+1
x

eA(x ′)
D(x ′) dx ′

. (A 11)

By substituting equation (A 9) back into equation (A 8), we obtain, for the
steady-state probability density in the x-direction, the second main result

P̂ st(x) = e−A(x)
∫x+1

x
eA(x ′)
D(x ′) dx ′

∫1
0 e−A(x) dx

∫x+1
x

eA(x ′)
D(x ′) dx ′

. (A 12)
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