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ABSTRACT: The combination of a conventional Markov chain model (zero and first order) and a gamma distribution
model are found to be applicable to derive meaningful agricultural features from precipitation in the Volta Basin (West
Africa). Since the analysis of the monthly or annual precipitation amount does not provide any adequate information on
rainfall timing and sufficiency of crop water requirement, rainfall modelling was performed on a daily time scale for 29
rainfall stations. The modelled rainfall features follow distinct spatial patterns, which will be presented as maps of(1)
rainfall occurrence probabilities and (2) recommendations of optimal planting dates. In addition, the effective drought
index (EDI) working on daily time scales is calculated in order to assess drought properties of five different rainfall
regions within the Volta Basin. Apart from the common way of separately modelling the duration and intensity due to their
different distributions, a copula approach is chosen in this study to construct a bivariate drought distribution. Application
of the measures derived to agricultural decision support will be discussed briefly.                                  
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1. Introduction

Spatial and temporal variations of crop yield may have
profound impacts on humans and their environment
(Pielke et al., 1998). This variability results from changes
of numerous factors, in particular, physical and chemical
soil properties, temperature, precipitation, solar radiation
and human management. Of all climatic factors in
tropical areas, precipitation variability is considered to be
the most critical factor for rain-fed agriculture. Several
studies have been carried out so far with respect to
rainfall fluctuation in West and Central Africa (e.g. Le
Barbé and Lebel, 1997; D’Amato et al., 1998; Mahé
et al., 2001; L’Hôte et al., 2002; Neumann et al., 2007).
Mahé et al. (2001) calculated standardized mean annual
rainfall series for 23 countries of West and Central
Africa. They used the regional vector method to derive
44 homogeneous climatic units and analysed them for
discontinuities using different statistical tests. As a result,
they identified a main discontinuity period between 1968
and 1970 followed by a second one at the beginning of
the 1980s, with both periods being marked by severe
drought events with greater rainfall deficits north of 10°N.
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Research (IMK-IFU), Forschungszentrum Karlsruhe, Kreuzeckbahn-
straße 19, 82467 Garmisch-Partenkirchen, Germany.
E-mail: patrick.laux@imk.fzk.de

The study of L’Hôte et al. (2002) confirmed the main
discontinuity around 1970.

Footprints of climate change in the Volta Basin were
reported by Neumann et al. (2007), revealing detailed
trend analysis of the temperature-, precipitation- and
discharge-time series observed. Kunstmann and Jung
(2007) discussed the impact of intensifying agriculture
due to population pressure and accompanying land use
changes on rainfall.

In the drought–prone Sahelian countries, life is revolv-
ing around the occurrence or non-occurrence of rain-
fall and its temporal and spatial distribution (Sivakumar,
1992). Due to the limitation of precipitation to a few
months per year (rainy season), adapted farming man-
agement strategies are of crucial importance to ensure
sustainable food production. According to Sivakumar
(1988), rainfall analysis is applied above all in crop and
disaster planning, and the variable nature of rainfall is
often given to be the main reason for the frequent crop
failures and food shortages. Determination of the optimal
planting time is a major concern. The amount of water
available to plants strongly depends on the onset of the
rainy season (ORS), length and termination (Ati et al.,
2002). According to Steward (1991) and Ingram et al.
(2002), the ORS is the most important variable. For sow-
ing, it is important to know, whether (1) the rains are
continuous and sufficient to ensure enough soil moisture
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during planting and (2) whether this level will be main-
tained or even increased during the growing period to
avoid crop failure (Walter, 1967). Knowledge of the ORS,
cessation, and, hence, of the length of the rainy season is
of great help in the timely preparation of farmland, mobi-
lization of seed/crop, manpower and equipment and will
also reduce the risk of planting and sowing too late or too
early (Omotosho et al., 2000). Laux et al. (2008) devel-
oped a reliable regional, solely precipitation-based ORS
definition as well as two different prediction methods for
the ORS in the Volta Basin. An important criterion of
this approach is the occurrence of a dry spell >6 days
within the following 30 days in order to avoid total crop
failure. Calculating these dry spell occurrence probabil-
ities may therefore assist farmers in their decision on
the sowing date. According to Sultan et al. (2005), who
used a crop model for their study, large-scale climate
variability influences crop yields mainly in terms of the
choice of the sowing date, the annual rainfall totals and
the intra-seasonal rainfall distribution. They identified the
following intra-seasonal rainfall patterns by averaging
rainfall in the region from 2.5 °W to 2.5 °E and 12.5 °N to
15°N, which are very consistent over the analysed period
from 1968 to 1990:

• around 40 days with the largest amplitude during July
and August;

• around 15 days with the largest amplitude in the first
part of July and around the end of August to mid-
September;

• around 3–6 days with the largest amplitude from the
end of June, which is related to the onset of the rains, to
the end of July, followed by a dry spell period centred
in the beginning of August.

Le Barbé et al. (2002) characterized rainfall regimes
over West Africa by analysing daily rainfall time series
in terms of the average number of events over a given
period of time and the average cumulative rainfall per
event separated for the wet period 1951–1970 and the
dry period 1971–1990. They found no spatially organized
structure in the mean event rainfall, but well organized
patterns in the mean number of events.

For agricultural impact studies, it is advisable to con-
sider additional rainfall parameters like the probabilities
of a day exceeding a certain threshold, the dry spell prob-
abilities as well as the overall chance of rain (e.g. Usman
and Reason, 2004). Determination of the number of wet
days yielding specific amounts of rain is a necessary step
to better understand the prevailing rainfall characteristics.
The knowledge of heavy rainfalls with potential ero-
sive impacts – e.g. precipitation rates >20 mm/day (e.g.
Kowal and Kassam, 1978) - and their spatial distribution
is of high relevance to agriculture. Not less important
are the probabilities of dry spells at critical times dur-
ing the growing season, especially at the beginning when
they can hinder germination and during the establishment
period.

Dry spells are directly related to agricultural impacts
(e.g Sivakumar, 1992), since their frequency and duration
indicate the degree of stress plants are exposed to. Addi-
tionally, an analysis of dry spells may indicate spatial
differences in the rainfall consistency, thereby providing
an assessment of the occurrence of rain-producing sys-
tems (Usman and Reason, 2004). The phenomenon of the
decline in frequency and amount of daily rainfall for a
number of weeks half way through the rainy season is
called little dry season (LDS), leading to a bimodal rain-
fall regime in the southern part of the Volta Basin (Laux
et al., 2008). The LDS is a consequence of the seasonal
movement of the intertropical convergence zone (ITCZ).
It may adversely affect the yields of early crops, if it
takes place at the time of seed or tuber development. It
may also delay planting of late crops. On the other hand,
it provides e.g. favourable conditions for weeding, spray-
ing insecticides and pesticides, and favours a good yield
of yam. Deriving its spatially and temporally resolved
occurrence probabilities would support the farmer’s deci-
sion on scheduling seeding, weeding, harvesting, and the
choice of the fruit. Furthermore, it is of major importance
to know how long a wet spell/dry spell is likely to persist.

Since the economy of the Volta Basin is strongly
depending on rain-fed agriculture and hydro-power gen-
eration, droughts are creating a huge risk. Although it
is not possible to avoid droughts, drought preparedness
can be developed and their impacts can be managed
(Smakhtin and Hughes, 2007). The enhanced risk con-
nected with droughts, in turn, discourages investment by
farmers, governments and development agencies (Shapiro
et al., 2007). Realistic and reasonable drought predic-
tion requires a comprehensive understanding of the past
drought variability.

A precise definition of a drought is an essential prereq-
uisite to assess drought variability. Current definitions of
drought vary from region to region and may depend on
the predominating perception and the task for which it is
defined. The only common feature is that every drought
event effectively results from the lack of precipitation
(Wilhite and Glantz, 1985) and therefore is a meteo-
rological drought at first. Depending on its duration, a
meteorological drought may result in an agricultural or
a hydrological drought. The concept of the agricultural
drought is linked with the lack of available water and
agricultural impacts. In turn, the crop water requirement
depends on local weather conditions, soil and plants’
characteristics, and the plant’s stage of growth. An agri-
cultural drought should therefore be ideally defined in
terms of its impact on a specific plant on a specific soil
in a specific area, which makes it difficult to determine.
Due to the absence of this agriculturally relevant infor-
mation for the Volta Basin, drought analysis has been
performed on the basis of daily rainfall data exclusively.

As droughts are regional by nature and commonly
cover large areas, it is important to study such events
within a regional context (Hisdal and Tallaksen, 2003).
Therefore, the Volta Basin was divided into a manageable
number of areas showing similar rainfall characteristics
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Figure 1. Location of the Volta Basin and spatial distribution of areas with similar rainfall characteristics, represented by five ellipses (right),
(source: Laux et al., 2007).

prior to the drought analysis, following the approach of
Laux et al. (2008). Figure 1 illustrates the location of the
rainfall gauges as well as the five different rainfall regions
represented by five ellipses.

In order to compare the strengths of droughts in
different regions, regardless of their climatic differences,
several standardized indices have been developed. Morid
et al. (2006) compared different drought measures for
drought monitoring in the Tehran province of Iran. The
standardized precipitation index (SPI) and the effective
drought index (EDI) were found to be suitable for
consistently detecting the onset of a drought and its
spatial and temporal variation. Therefore, they were
recommended for operational drought monitoring. The
EDI was found to be more sensitive to the emerging
drought than the SPI (Morid et al., 2006).

As droughts may be considered stochastic processes,
stochastic modelling is a proper approach to assess their
characteristics (Shiau et al., 2007). Many research papers
deal with a univariate analysis of droughts (e.g. Dracup
et al., 1980a,b; Mathier et al., 1992; Cancelliere and
Salas, 2004). However, univariate analysis cannot simul-
taneously account for the correlation of drought duration
and drought intensity (Shiau et al., 2007). For this rea-
son, a bivariate distribution, which jointly describes these
two aspects was adopted. For the bivariate or multivari-
ate analysis of two or more variables with unknown or
different distribution, Copula functions can be used.

The purpose of this paper is twofold: (1) due to the
above-mentioned importance of the analysis of rainfall
on an intra-seasonal time scale, the main objective of
this paper is to derive agricultural meaningful rainfall
characteristics in the Volta Basin. As an example, the
overall rainfall probabilities and dry spell probabilities
are calculated on the plot scale and regionalized via
kriging algorithms in order to generate risk maps for
agriculture in the Volta Basin; (2) the second aspect deals
with stochastic drought modelling on the regional scale
using the EDI. Combining drought intensity and drought

duration by means of a Clayton copula function allows for
a more realistic classification of droughts in terms of risks
and return intervals. Using the EDI for drought definition
provides an objective tool for drought monitoring in the
Volta Basin.

2. Data set

Totally, 29 observation time series of the Volta Basin with
daily resolution were used for the statistical analyses.
The meteorological data were obtained from the Institut
National de l’Environnement et des Recherches Agricoles
(INERA) at Ouagadougou (Burkina Faso), the Meteo-
rological Service of Burkina Faso in Ouagadougou and
the Meteorological Service Department in Accra (Ghana).
The data had been checked for continuity and plausibility
by the two services. Due to large data gaps in most of
the observation time series, only a limited number of the
meteorological observation stations could be used.

3. Methodology

3.1. Deriving relevant rainfall features

Generalized linear models are used by numerous
researchers for modelling rainfall. Often, two models are
considered separately, one for rainfall occurrence and the
other for rainfall amounts. The former is often mod-
elled using a binomial distribution and the latter by a
gamma distribution (e. g. Stern and Coe, 1982). Dunn
and White (2005) even proposed an integrated approach
using the power-variance exponential dispersion models.
For the work described here, two models were used,
a Markov model for rainfall occurrence and a gamma
distribution for modelling the rainfall amounts. Besides
unconditional probability (zero-order Markov chain), the
simplest solution for modelling rainfall occurrence is a
two-state (occurrence of precipitation or not) first-order
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(precipitation probability depends solely on the previous
day’s precipitation occurrence) Markov model, which can
be defined by two transition probabilities:

P01 = P (rainfall on day t |
no rainfall on day t − 1) (1)

and:

P11 = P (rainfall on day t | rainfall on day t − 1) (2)

The two complementary transition probabilities are
P00 = 1 − P01 and P10 = 1 − P11. Generally, high-order
Markov chain models are also used to model sequences of
rainy or dry spells (Chin, 1977). For a two-state Markov
model, the number increases exponentially with the order
of the process, in general, 2k for kth order. As described
by Stern et al. (1981), the observed proportions, P , are
transformed using the logit transformation:

f = log
(

P

1 − P

)
(3)

This allows f to vary from −∞ (P = 0) to +∞
(P = 1). Former studies showed that Fourier series are
particularly suited to fit both unimodal and bimodal
seasonal patterns, with the advantage that the fitted
probabilities at the start and the end of the year are equal
(Garbutt et al., 1981). On the other hand, Fourier series
can be used for smoothing inherently noisy parameter
sets (Jimoh and Webster, 1999). The fitted probabilities
are given by:

y = expf

(1 + expf )
, (4)

where f is the sum of the Fourier series:

f = a0 +
n∑

j=1

(aj cos j t + bj sin j t), (5)

where t = π (date – 183)/183 and n is the number of
harmonics. In our study, the number of harmonics was
set to 4.

The distribution of daily rainfall amounts is highly
skewed. Gamma distribution is regarded to be most
appropriate to model daily rainfall volumes (Buishand,
1977). Since the mean rain per year often varies through-
out the year, it is useful to consider models which reflect
this temporal dependence (Stern and Coe, 1982). Gamma
distributions were fitted to rainfall amounts of rainy
days. Days with rainfall below a certain threshold were
excluded. The gamma distribution is given by (e.g. Stern
and Coe, 1982):

f (x) =
(

K

µ

)K
(x − c)K−1 exp−K(x−c)/µ

�(k)
, (6)

�(k) is the gamma function with its shape parameter
K and mean µ. Since these two parameters may vary

temporally (i.e. within the season) and spatially (from site
to site), their monthly values were estimated for each site.
The rainfall amounts, x, are shifted by the threshold value
c. In this study, rainfall thresholds from 0.5 to 2.0 mm
with an increment of 0.5 mm were used and compared.
The results differ scarcely (not shown within this paper).
Therefore, a mean threshold of 1 mm was assumed
in the following calculations. The Famine and Early
Warning System (FEWS) of the United States Agency
for International Development uses 0.85 mm of rain as
the minimum value for a wet day. In addition, occurrence
probabilities of a dry spell of 6 or more consecutive
days within the following 30 days were calculated for
each day of the year (DOY). The dates of the minimum
probabilities as well as their probabilities were spatially
interpolated by external drift kriging.

Kriging is a geostatistical method that uses the var-
iogram of the regionalized variable (i.e. the variance
between pairs of points that lie different distances apart)
to estimate interpolated values. The ‘best’ estimate of the
values (BLUE: Best Linear Unbiased Estimator) is cal-
culated, taking into account the layout of the observation
network relative to the interpolation grid. The external
drift kriging method (Ahmed and de Marsily, 1987) addi-
tionally incorporates external knowledge in the system
as external drift. Here, it is supposed that an additional
variable exists that is linearly related to the regionalized
variable. The estimator thus depends on the additional
variable, which therefore has to be available at a high
spatial resolution, preferably as a regular grid. In contrast
to ordinary Kriging, the expected value of the regional-
ized variable is not constant, but linearly related to the
one or more additional variables.

In West Africa, the structure of rain fields is dominated
by two major factors that have to be considered for spatial
interpolation (e.g. Ali et al., 2003): First, the displace-
ment of convective systems in the privileged east–west
direction, and second, a decreasing south–north gradi-
ent of mean annual rainfall due to the seasonal migration
of the ITCZ. Both factors yield to higher correlations of
observations in east–west than in north–south direction
and hence to a latitudinal dependence of the spatial pre-
cipitation distribution. This effect is taken into account
in the simulations by applying an anisotropy factor and
using the distance-to-sea information for each grid point
as external drift.

For this study, experimental variograms were calcu-
lated for the mean µ and shape parameter K of the
gamma distribution and monthly rainfall occurrence prob-
abilities exceeding 5 and 20 mm/day. The results of the
variogram analysis – nugget and sill and range of expo-
nential model – are summarized in Table I. The vari-
ogram parameters for the interpolation of the mean µ

and shape parameter K of the Gamma distribution show
that the microscale variation which is given by the nugget
value is minor compared to the total variation. But for
the rainfall occurrence probabilities, the mean microscale
variation describes 55% for 5 mm and 72% for 20 mm
of the total ones. Furthermore, the seasonal variations are
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Table I. Variogram analysis of optimal planting time and prob-
ability, mean µ and shape parameter K of the gamma distribu-
tion, and monthly rainfall occurrence probabilities exceeding 5

and 20 mm/day.

Nugget Sill Range [km]

Optimal planting time 16.43 246.11 240
Optimal. planting prob. 13.50 78.65 250
µ 0.01 0.83 250
K 0.00 0.25 110

Nugget Sill Range [km]

5 mm: mean 66.13 119.03 240
5 mm: std 50.85 87.42 70.11
20 mm: mean 19.92 27.72 240
20 mm: std 13.54 11.55 95.43

high which leads to high standard deviation values for all
variogram parameters.

Figure 2 illustrates the long-term mean annual rain-
fall (1961–1999) using ordinary kriging and external
drift kriging with distance-to-sea information as spa-
tial interpolation methods. External drift kriging exhibits
more realistic patterns in areas with a patchy and low-
density meteorological observation network. The patterns
and values of the precipitation interpolation by external
drift kriging are in good agreement with the results of
ORSTOM (1996). In further analyses of this study, exter-
nal drift kriging will therefore be applied for the spatial
interpolation of rainfall-related properties.

3.2. Drought definition

Drought indices are well suited to quantitatively assess
drought properties. In this study, a drought is defined
as a period with negative effective EDI values and

drought duration and drought intensity are derived from
the EDI: The first step is the calculation of daily effective
precipitation (EP)), which is defined as a function of
precipitation of the current day and precipitation of the
previous days – with lower weights. The duration of the
preceding period, over which the EP amount is calculated,
may vary. For this study, the EP was calculated over
365 days.

EPj =
i∑

n=1

[(
n∑

m=1

Pm)/n], (7)

where j is the index of a current day, i is the duration
over which the sum is calculated, and Pm is the precipita-
tion m − 1 days before the current day. For example, if i

equals 3, then the EP equals [P1 + (P1 + P2)/2 + (P1 +
P2 + P3)/3]. The next step includes the calculation of
the mean EP for each day of the year, the MEPj . This
is followed by the calculation of daily deviations of EP
from MEP, the DEP, the standard deviations (ST(EP))
for each calendar day and the standardized value of daily
deviations SEP, which allows drought intensity at two or
more locations to be compared with each other regardless
of climatic differences between them.

SEP = DEP/ST(EP) (8)

Drought duration may now be defined similarly to e.g.
the SPI as a period where SEP is consistently negative.
After the calculation of daily DEP values, it is possible to
compute the precipitation needed for a return to normal
conditions (PRN). By description, PRN is precipitation
necessary to recover from the accumulated deficit. Daily
PRN values, however, should take into account the actual

Figure 2. Spatial interpolation of the annual rainfall amount (mm) using ordinary kriging (left) and external drift kriging with the distance-to-sea
(right). Observation data from 1961 to 1999 of 29 synoptic stations (represented by crosses) were used for interpolation.
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duration over which DEP values have been calculated:

PRNj = DEPj

j∑
N=1

(1/N)

(9)

where j is actual duration. Finally, the EDI is calculated
as the standardized value of PRN:

EDIj = PRNj

ST (PRNj )
(10)

where ST(PRN)is the standard deviation of each day’s
PRN.

From the EDI, quantitative drought characteristics,
such as the onset, cessation, duration D, intensity S,
and inter-arrival time τ (time between the onsets of
two consecutive droughts), can be derived objectively.
A meteorological drought is defined as a period of time
in which the calculated EDI is negative (Figure 3). A
change of sign from positive values to negative val-
ues defines the onset and, vice versa, the cessation of
a drought. The integral of the absolute values of the EDI
between onset and cessation of a drought is a measure
of the drought intensity. Before applying this definition
to the EDI time series, a moving-average filter of differ-
ent window sizes is applied to prevent a very short, but
heavy shower event from being misinterpreted as the end
of the drought. The application of a moving-average fil-
ter is recommended to pool mutually dependent negative
meteorological droughts (e.g. Tallaksen et al., 1997). A
moving-window of 10 days was chosen to assess reason-
able drought properties in terms of a more agriculturally
rather than meteorologically oriented drought definition.
Working with unfiltered EDI values would skew the
distribution of the derived statistical drought measures.
However, short showers after long dry spell may have
profound negative impacts on agriculture in terms of soil
erosion (e.g. Chatterjea, 1998). In turn, short showers

EDI

time t

Drought
duration

Drought
intensity

Drought
interarrival
time

Figure 3. Schematic illustration of calculation of drought-specific
parameters based on the effective drought index (EDI). This figure

is available in colour online at www.interscience.wiley.com/ijoc

can also be seen as a benefit, because they can sustain
the vegetative cycle for some more days and thus ensur-
ing the survival of the crops, especially in the Sahelian
zone. For sake of simplicity, no differentiation of the
drought definition between the different agro-ecological
zones within the basin was applied. A moving-average fil-
ter of 10 days is found capable to exclude most of these
short intermittent events, but simultaneously keeps the
original structure of the EDI time series.

3.2.1. Copula-based approach

Copulas were first mentioned in literature by Sklar (1959)
and are nowadays widely used for financial or insurance
applications. The basic idea behind this approach is to
separate the dependence and the marginal distributions in
a multivariate distribution. SKLAR’s theorem states that if
H is a joint distribution function of d random variables
with F1, . . . , Fd marginal distribution functions, then a
copula C exists, such that:

H(x1, . . . , xd) = C[F1(x1), . . . , Fd(xd)] (11)

Conversely, if C is a copula and F1, . . . , Fd are
distribution functions, H is a joint distribution function
with marginal distribution functions F1, . . . , Fd . In other
words, a copula describes how the marginals are tied
together. Another practical aspect of copulas is that they
are not limited to any distinct distribution of the random
variables, in contrast to the Bravais Pearson correlation
coefficient rbp which is restricted to the (multivariate)
normal distribution. Other dependence measures like the
Spearman rank correlation coefficient ρs or Kendall’s Tau
τk just express the ‘average dependence’ in the form of
one single value.

Clayton’s copula has already been proved suitable to
construct the bivariate distribution of drought duration
(D) and drought intensity (S) (Shiau et al., 2007). For
this reason, it was applied in this study as well. The
Clayton copula (Equation (12)) and its density function
(Equation (13)) are of the form:

C(u, v) = (u−� + v−� − 1)−1/�, � ≥ 0 (12)

c(u, v) = (� + 1)(u−� + v−� − 1)−(1/�)−2

(uv)−�−1 (13)

The parameter � is a measure of the degree of
association between u and v. There is no loss of
generality working on unit square (u, v) instead of the
original variable space (d, s), because u and v can be
transformed back again, using:

u = FD(d) ⇔ d = FD
(−1)(u) (14)

v = FS(s) ⇔ s = FS
(−1)(v) (15)

The Clayton copula parameter � from Equations (12)
and (13) can either be estimated from the data by means
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Table II. Mean drought duration [days], mean drought intensity
[cum. EDI values], mean interarrival time [days], and degree
of association between drought duration and drought intensity
� of the five different rainfall regions within the Volta Basin

using a 10-day moving-average filter for the EDI values.

Rainfall
region

Mean
drought
duration

Mean
drought
intensity

Mean
inter-arrival

time

�

A 86.02 70.90 170.16 5.78
B 116.39 84.16 204.23 7.29
C 72.42 57.50 147.77 10.11
D 94.79 74.60 186.94 7.50
E 77.62 56.21 143.65 5.51

of Kendall’s Tau τk or it can be estimated numerically
using e.g. Newton’s method. Here, the second method
is applied. The likelihood function of the copula is
maximized to obtain the estimate �̂ of the copula
parameter �. The values of �̂ can be found in Table II.
The drought distribution for region B based on Clayton’s
copula can therefore be expressed as:

FD,S(d, s) = C[FD(d), FS(s)] = [(FD(d)−7.29

+ FS(s)
−7.29 − 1)]−1/7.29 (16)

3.2.2. Drought return intervals

The return period is a simple, but efficient criterion
for risk analysis (Salvadori, 2004). It is usually defined
as the average time elapsing between two successive
occurrences of an event. The analysis of return periods is
often limited to univariate cases, e.g. the return periods
τ of drought duration (index D) and drought intensity
(index S) can be defined separately as:

τD = L

1 − FD(d)
(17)

τS = L

1 − FS(s)
(18)

where L denotes the mean inter-arrival time of droughts
(Figure 3) and F denotes the cumulative density func-
tions (CDF) of drought duration and drought intensity.

Since natural events are often characterized by the joint
behaviour of several non-independent random variables,
this may lead to an over- or underestimation of the risk of
the event. Consequently, the event should be defined in
terms of two or more variables (Salvadori et al., 2004).
Instead of considering a particular joint distribution FXY

with well-specified marginals FX and FY, bivariate return
periods were calculated using the copula approach. Two
cases of bivariate drought periods can be defined by
either drought duration and drought intensity exceeding a
specific value (∧ - case) or by drought duration or drought

intensity exceeding a specific value (∨ case). Both cases
can be calculated by:

τDS ∨ = L

1 − C[FD(d), FS(s)]
(19)

τDS ∧ = L

1 − FD(d) − FS(s)+
C[FD(d), FS(s)]

(20)

This methodology offers considerable advantages com-
pared to the above approaches, because it will consider
the joint distributions for all the marginals, and it is even
possible to derive the analytical expressions of the iso-
lines of the return periods (Salvadori et al., 2007).

4. Results

Temporal distribution of rainfall was first investigated
by analysing its overall probability. The probability of
rainfall depends on the conditions of previous days (con-
ditional probabilities). Before analysing the conditional
probabilities, it is reasonable to determine the overall
chance of rainfall (unconditional probability). By way
of example, Figure 4 presents the observed and fitted
rainfall probabilities (zero-order Markov model) at Accra
based on rainfall data (1961–1999) with a threshold of
1 mm for a rainy day. The probability increases rapidly
around DOY 100 (08/09 April), reaching a maximum
of more than 50% during the first (major) rainy season
from DOY 160 to 170 (08–18 June), remaining rela-
tively constant at 25% from DOY 200 to 270 (18 July–26
September) during the second (minor) rainy season in this
region, and decreasing again towards the end of the year.
The overall chance of rain during the major rainy sea-
son is approximately twice the rainfall probability during
the minor rainy season. During the months of January,
February, November and December, the rainfall proba-
bility is less than 10%. Figure 5 shows the first-order
Markov chain dealing with rainfall probability depend-
ing on whether the previous day was wet or dry. When
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Figure 4. Overall rainfall probability (zero-order Markov model) for
each day of the year at Accra, based on rainfall data (1961–1999) with
a threshold of 1 mm for a rainy day, observed (∗) and fitted (−) using
Fourier series with four harmonics. This figure is available in colour

online at www.interscience.wiley.com/ijoc
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Figure 5. First-order Markov chain of Accra, the black line is the fitted
line of the overall chance of rain. The red line stands for the probability
of rain, if it is followed by a dry day (fitted), and the blue line stands

for the probability of rain, if it is followed by a wet day (fitted).
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Figure 6. Observed (∗) and fitted (−) dry spell occurrence probability
within the following 30 days for each day of the year at Bole, based
on rainfall data from 1961 to 1999. This figure is available in colour

online at www.interscience.wiley.com/ijoc

comparing the conditional probabilities with the over-
all chance of rainfall (black line), it is found that the
probability of rain following a rainy day is higher. For
the time around the minor season (from DOY 200 until
300), the probability is about three times higher. In the
period around the normal ORS in Accra (∼ day 85), a
peak occurs, with the probability being more than twice
as high as that of rain following a dry day. The over-
all chance of rainfall at a location predominantly ranges
between the curves of rain following a rainy day and rain
following a dry day.

Figure 6 exhibits the observed and fitted dry spell
occurrence probabilities within the following 30 days cal-
culated for each DOY at Bole. The probability decreases
below 10% around DOY 160 (08 June). After this, the
probability of dry spells increases to more than 60%
(around 12 August). Then, it decreases again to less
than 40% (25 September), and finally, it increases again
rapidly. Assuming e.g. a probability threshold value of
P = 0.2, which is not allowed to be exceeded at plant-
ing time, the time window for planting is restricted to
the period from approximately DOY 120 to 180. These
probabilities were calculated for all stations in the Volta
Basin, and Figure 7 illustrates the spatial distribution of

Figure 7. Date with minimum dry spell occurrence probability for
the following 30 days, representing the optimal planting date (day of
year). External drift kriging, including distance-to-sea information, was

applied for spatial interpolation.

Figure 8. Probability of the dry spell occurrence within the following
30 days (%). External drift kriging, including distance-to-sea informa-

tion, was applied for spatial interpolation.

the dates with minimum dry spell occurrence probabil-
ities. Except for the stations Bole and Ejura (Figure 1),
the pattern approximately reflects a north–south distribu-
tion following the movement of the ITCZ. The respective
probabilities of these dates are presented in Figure 8. The
minimum dry spell probabilities hold a regional maxi-
mum in the northwest of Ghana and southwest of Burkina
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Faso (∼30%). This is of crucial importance to farming
management. In these regions, dry spells are more likely
to occur within the following 30 days and, thus, crop fail-
ure is more likely to occur. Focussed irrigation strategies
especially in regions with a very high dry spell probability
would be beneficial to enhance food security.

When modelling rainfall or dry spell probabilities,
conditional probabilities should be considered to allow
conclusions to be drawn with respect to their persistence
in time. The transition probabilities help to estimate the
reasonable order of the Markov chains. The first-order
transition probabilities were found to be adequate for
rainfall in the Volta Basin. Similar conclusions were
drawn for rainfall in Nigeria (Jimoh and Webster, 1999).

The rainfall amount can be described adequately
using a gamma distribution. Figure 9 depicts the mod-
elled mean precipitation per rainy day at Accra for
the wet period 1961–1969, the dry period 1970–1990
and the whole period 1961–1999 separately. Le Barbé
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Figure 9. Fitted mean rainfall amount (mm) per day of year at Accra
for the wet period 1961–1969 (blue line), the dry period 1970–1990
(red line) and the period 1961–1999 (black line). A Fourier series with

four harmonics was used.

et al. (2002) compare rainfall characteristics of the wet
1950–1969 period and the dry 1970–1990 period across
West Africa. For some regions, they identified signifi-
cant differences. Within this study, no significant changes
of the seasonal cycles can be found comparing dry
and wet periods, but remarkable differences in the rain-
fall amounts are detected. For station Accra, the high-
est differences occur during the major rainy season in
June. The rainfall maximum for 1961–1999 is slightly
higher than 8 mm and reached around June 8, fol-
lowed by a period with less than 1 mm per day from
DOY 195 to 260 and slightly larger than 2 mm/day up
to DOY 300, and again smaller values to the end of
year.

Figure 10 illustrates the mean spatial distribution of
the mean µ and shape parameter K of the gamma
distribution. Both parameters show a large spatial vari-
ability, which has to be taken into account for mod-
elling the rainfall amounts. The observed patterns of µ,
impacted mainly by the mean rainfall amount per day,
and K , impacted mainly by the occurrence frequency
of rainfall events of different magnitude, are generally
arranged zonally and follow the climatological condi-
tions in the Volta Basin. The highest values of the mean
parameters K (K ≈ 5) are found in the southwest of the
Volta Basin where rainfall amounts up to 2000 mm per
year (Figure 2). More northward, between latitudes of 6
and 7°N, the lowest values of K (K ≈ 1.5) are observed.
From 8 to 15°N, the values of K are increasing again to
values of K ≈ 4. The shape parameter µ is increasing
rapidly from the coastal zone (µ ≈ 1) to 8°N (µ ≈ 2.5),
and decreasing slowly to 15°N (µ ≈ 0.3). In the coastal
zone of the basin, the shape parameter K is approxi-
mately 1. The distributions of three observation stations
with different parameter combinations (Figure 11) are
highlighted as follows.

According to the highest rainfall amounts in southwest
Ghana, represented by station Axim (Figure 11, top), the

Figure 10. Spatial distribution of the mean µ (left) and the shape parameter k (right) of the gamma distribution, interpolated using external drift
kriging with distance-to-sea information.
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Figure 11. Observed (∗) and fitted (−) mean rainfall amount (mm/per day of year) from 1961 to 1999 (left) and its fitted gamma distribution
(right) for the stations (a) Axim, (b) Kumasi and (c) Ouahigouya. The location of the stations can be found in Figure 10. This figure is available

in colour online at www.interscience.wiley.com/ijoc

mean parameter of the gamma distribution is higher.
This leads to a flat probability density function (PDF)
compared with other regions of the basin. In the northern
part of the basin, represented by station Ouahigouya
(Figure 11, bottom), higher values of the mean parameter
µ than in the central part, represented by station Kumasi
(Figure 11, middle), can be observed. Even though the
annual rainfall amounts in the northern region are less
than those in the central part, a rainfall event produces
averagely more rainfall than in the central part. This is
due to the increased number of rainy days in the central
part of the Volta Basin. In Kumasi, the rainy season starts
earlier than in the coastal zone and the LDS is reduced
compared to coastal zone. This is in accordance to results

of Laux et al. (2008). Additionally, the frequency of
rainy days is enhanced and the maximum of the rainfall
spectrum is shifted to magnitudes between 2 and 3 mm.
Therefore, the shape parameter K exceeds values of 1,
which is producing an unimodal shape of the PDF. The
differences in the spatial distribution of rainfall events
can be explained by the spatial varying influence of the
major rain-bearing systems in West Africa (e.g. Fink
et al., 2006).

Threshold values of 20 mm/day are used to character-
ize erosive rainfalls with a potentially high risk of soil
loss (e.g. Kowal and Kassam, 1978). Values of 5 mm/day
are applied to approximate the daily potential evaporation
during the rainy season in West Africa (Garbutt et al.,
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(a) (b)

(c) (d)

Figure 12. Spatial distribution of rainfall occurrence probabilities (%) exceeding 5 mm/day in the Volta Basin for the month of (a) March,
(b) April, (c) May, (d) June, (e) July, (f) August, (g) September and (h) October. External drift kriging, including distance-to-sea information,

was applied for spatial interpolation.

1981). The rainfall probabilities exceeding these two
thresholds are calculated for each DOY and illustrated
in a condensed manner as monthly maps. Figures 12
and 13 display the spatial distribution of occurrence
probabilities of rainfall exceeding 5 and 20 mm/day
for the months from March to October in the Volta
Basin. The probability of rainfall >5 mm/day in June
is almost 50% for the coastal area and around 30% for
the eastern region. During July, the maximum probability
shifts to the central area of Ghana, with low probabil-
ities at the western border of Ghana. In August, high
probabilities are reached in Burkina Faso, whereas 0%
probability occurs in the southern and western areas
of Ghana. In September, the maximum probabilities
shift southwards again and are centred in the Volta

Basin. In October, the maximum probability is encoun-
tered in eastern and western regions of Ghana, while
0% probability is observed for the whole of Burkina
Faso. Using the threshold of 20 mm/day, the monthly
resolved patterns are almost identicaland only vary in
magnitude.

In this paper, a drought is defined as a time period in
which one or more consecutive days with 10-day moving-
averaged EDI values less than zero occur (Figure 3). The
EDI using a 10-day moving-average filter was calculated
for five different regions within the Volta Basin from
1961–2001 (Figure 14). The year 1961 served as cali-
bration period. Wet 1960s, dry1970s, severe droughts in
the 1980s and wetter 1990s were obtained. These results
are in good agreement with many other studies dealing
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(e) (f)

(g) (h)

Figure 12. (Continued).

with droughts in West Africa (e.g. Lamb and Peppler,
1992; Janicot et al., 1996). However, fluctuations in mag-
nitude and duration of droughts can be found between the
different regions. In comparison to all the other regions,
the coastal region A shows a long-lasting drought period
starting in 1998.

From the smoothed EDI values, important drought
properties like drought duration, drought intensity and
inter-arrival time of droughts were derived. In this con-
text, Figure 15 reflects the influence of the window
size of different drought properties in the northernmost
region E. The number of drought events drastically
decreases from 244 events without using a filter to 47
when applying a 30-day moving-average filter. Apply-
ing a 10-day moving-average filter slightly reduces the
drought events of the drought intensity classes (Table III)
severe and extreme and enhances the moderate class
(Figure 16).

Table III. Classification of drought intensity using the effective
drought index (EDI).

Normal 0 ≥EDI> −0.7
Moderate −0.7 ≥EDI> −1.5
Extreme −1.5 ≥EDI> −2.5
Severe −2.5 ≥EDI>

The mean values of these drought characteristics of
the five different regions obtained by using the 10-day
moving-average filter are listed in Table II. Region B
reaches the highest mean drought duration (116.4 days)
and mean drought intensity values (84.2), calculated as
the integral of the EDI values from the onset to the
cessation of a drought event. The mean inter-arrival times
range from about 144 days (region E) to about 204 days
(region B). The drought characteristics of region B
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(a) (b)

(c) (d)

Figure 13. Spatial distribution of rainfall occurrence probabilities (%) exceeding 20 mm/day in the Volta Basin for the month of (a) March,
(b) April, (c) May, (d) June, (e) July, (f) August, (g) September and (h) October. External drift kriging, including distance-to-sea information,

was applied for spatial interpolation.

show the longest and severest droughts within the Volta
Basin.

The most severe drought events occurred within the
rainfall regions B and C and started on February 20,
1998 and March 31, 1982, respectively. The bulk of
the drought events has drought durations of less than
100 days and drought intensities of less than 100 (cum.
EDI values). Strong dependencies between drought dura-
tion and drought intensity were found, which vary slightly
between the five rainfall regions (Figure 14). Small varia-
tions between the Bravais Pearson correlation coefficient
and the Spearman rank correlation coefficient (Table IV)
indicate a very strong linear dependency between drought
duration and drought intensity. Since the dependency
structure between the two variables is linear, the Bravais

Pearson correlation coefficient also is an appropriate mea-
sure. For non-linear dependence, a rank correlation coef-
ficient is more appropriate. These coefficients measure
the degree to which large or small values of a variable
associate with large or small values of another vari-
able.

Even though the distributions of both variables match
a gamma distribution (Figures 17 and 18), a copula
approach was chosen in order to model their dependence
structure. Alternatively, a bivariate gamma model would
also be appropriate in this case. The parameters of the
gamma distributions were estimated using the maximum
likelihood method (Hahn and Shapiro, 1994).

Figure 19 illustrates the bivariate Clayton–Copula
density ratio for rainfall region B by way of example.
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(e) (f)

(g) (h)

Figure 13. (Continued).

The linear structure of the mutual association between
drought duration and drought intensity can clearly be
seen, varying strongly for the different percentiles. The
centre of the density function can be found in the lower
percentiles due to the disproportionately high frequency
of droughts with short durations and low intensities com-
pared to droughts with high durations and high intensi-
ties. The copula parameter � was calculated separately
for each rainfall region (Table II). The relatively tight
parameter range indicates similar shapes of the five dif-
ferent copulas. Figure 20 displays the isolines of bivariate
drought duration and drought intensity return periods
TDS for the ∧ - case in region A (top) and region E
(bottom) using 10-day moving-average EDI values. In
both regions, one larger than one-in-1000-year drought
occurred. For region A, three larger than one-in-100-year
droughts and one larger than one-in-10-year droughts

occurred, whereas in region E, no larger than one-in-100-
year drought, but four one-in-10-year droughts happened.

The ∨ - case, as illustrated in Figure 21, has to be
interpreted in a slightly different way: either drought
duration or drought intensity can cause one event of a
distinct return period, whereas the other parameter is
equal to or larger than zero. For region A, for instance,
one larger than one-in-1000-year drought occurred, with
drought intensity exceeding the values of the τ = 1000
isoline. Within region E, just one larger than one-in-1000-
year and one larger than one-in-10-year droughts took
place.

5. Summary and outlook

A number of studies dealing with rainfall variability focus
on monthly or annual rainfall totals. For agricultural
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Figure 14. Effective drought index (EDI) for the rainfall regions (e, top), (d), (c), (b) and (a, bottom) using a 10-day moving-average filter. The
location of the rainfall regions within the research area can be found in Figure 1.

needs, however, a monthly resolution is too coarse to
explain e.g. fluctuations in crop yields, since the dis-
tribution of rainfall within the season is the most cru-
cial variable. Crops have specific and varying moisture
needs throughout their growth. The identification of crop-
specific critical stages during growth and the adaptation in
terms of the optimal planting time are the most important
factors to minimize crop failure. Therefore, a compre-
hensive understanding of daily rainfall characteristics is

crucial to agricultural production. A major task of the
agricultural management in semi-arid to arid environ-
ments is to estimate reliably the ORS date and, hence,
the optimal planting date. In a former study of Laux
et al. (2008), a prediction scheme of the ORS in the
Volta Basin was proposed. For the predictive mode, no
information about the dry spell occurrence for the weeks
following planting is available. A major contribution of
this paper consists in the derivation of the mean dry spell
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Table IV. Sample size and measures of dependence between
drought duration and drought intensity (rbp = Bravais Pearson
correlation coefficient, ρs = Spearman rank correlation coeffi-
cient, τk = Kendall’s Tau) using a 10-day moving-average filter

for the EDI values.

Rainfall
region

n rbp ρs τk

A 84 0.96 0.95 0.84
B 71 0.95 0.96 0.84
C 96 0.96 0.99 0.92
D 77 0.98 0.94 0.83
E 99 0.96 0.97 0.85
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Figure 15. Influence of the moving-average filter with window sizes of
5, 10, 15, 20, 25 and 30 days and of the absence of a moving-average
filter (window size = 0) on different mean drought parameters in region

E (for the location of region E see, Figure 1).

occurrence probabilities for each DOY and observation
site, averaged for the period 1961–1999. Recommenda-
tions in the form of optimal time windows for planting
dates can be derived, depending on the specific crop type.
A map of the ‘optimal’ planting date, represented by
the minimum dry spell probability within the following
30 days for each DOY, is displayed. This information
is very useful for farmers or farming managers, since
the occurrence of dry spells during the critical stages of
plant growth (e. g. establishment, flowering and grain fill-
ing) that often decides on the survival or non-survival
of the seedlings. On this basis, adapted planting and
supplementary irrigation strategies can be derived. In
addition, the rainfall probabilities exceeding 5 mm/day
(rough estimation of the evaporation during the rainy sea-
son in West Africa) and 20 mm/day (potential erosive
impacts) are calculated. The probability maps obtained
may be used to derive soil protection strategies with a
direct spatial linkage. Due to the relatively coarse spatial
coverage of the observation network, the presented maps
have to be considered with caution.

As droughts are regional in nature, their parameters
have to be assessed in a regional context. The Volta
Basin was divided into five different regions, which are

normal 52%
moderate 34%

extreme 13%

severe 1%

normal 52%
moderate 35%

extreme 12%

severe < 1%

Figure 16. Frequency distribution of the occurrence of the four defined
classes (Table III) for rainfall region E. The pie chart at the top shows
the distribution of the daily calculated EDI, the one at the bottom shows

the distribution using a 10-day moving-average filter.
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Figure 17. Cumulative density function of drought intensity (black
dashed line) and drought duration (grey dashed line) for rainfall region

B (for the location of the rainfall regions see, Figure 1).
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Figure 18. Comparison of the empirical CDF (black diamonds) of
drought intensity (cum. EDI) for rainfall region B and its fitted CDF

(grey dashed line).
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Figure 19. Contour plot of the bivariate Clayton copula density for
� = 7.29, corresponding to rainfall region B (for the location of the
rainfall regions, see Figure 1), u is the transformed drought duration
and v is the transformed drought intensity. This figure is available in

colour online at www.interscience.wiley.com/ijoc
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Figure 20. Isolines of return periods TDS accounting for drought
duration and drought intensity exceeding a specific value (∧ - case)
in region A (top) and region E (bottom). The location of the rainfall
regions within the research are can be found in Figure 1. A 10-day
moving-average filter for the EDI values is used. The dots represent

the single drought events.

arranged zonally. The EDI was used for quantitative
drought definition in terms of drought duration and
drought intensity. A quantitative approach allows for
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Figure 21. Isolines of return periods TDS accounting for drought
duration or drought intensity exceeding a specific value (∨ - case)
in region A (top) and region E (bottom). The location of the rainfall
regions within the research are can be found in Figure 1. A 10-day
moving-average filter for the EDI values is used. The dots represent

the single drought events.

the establishment of an operational drought monitoring
system for the Volta Basin.

A copula approach was used to simultaneously model
the dependence between drought duration and drought
intensity. Regional return periods of droughts were
derived. As droughts cannot be avoided, adaptation strate-
gies must be derived for agriculture. On the basis of the
regional return periods derived, highly drought-resistant
crop varieties must be planted in regions with most
frequently recurring droughts. Unresistant crop varieties
should be displaced to other regions.

The flexible copula approach allows for the integra-
tion of other drought-relevant parameters and is therefore
preferred to e.g. the bivariate gamma distribution model.
Potential input parameters should capture the variability
of rainfall and thus contributing to droughty or wet con-
ditions within the Volta Basin, e.g. the ENSO (Adiku and
Stone, 1995). The Clayton copula has proved suitable for
various hydrologic needs (e.g. Favre et al., 2004; Shiau
et al., 2007). However, the question as to which copula
model fits best to the empirical data still remains to be
answered and is far beyond the scope of the present work.
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