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We study directed transport of overdamped particles in a periodically rocked random sawtooth potential.
Two transport regimes can be identified which are characterized by a nonzero value of the average velocity of
particles and a zero value, respectively. The properties of directed transport in these regimes are investigated
both analytically and numerically in terms of a random sawtooth potential and a periodically varying driving
force. Precise conditions for the occurrence of transition between these two transport regimes are derived and
analyzed in detail.
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I. INTRODUCTION

Directed transport in ratchet systems, i.e., devices rectify-
ing undirected driving forces �both random and determinis-
tic� into directed motion of the transported particles or local-
ized structures, is much in the limelight of present activities.
The reason is that the rectifying property of these systems,
the so-called ratchet effect, constitutes a theoretical basis for
operating Brownian motors �1–5� which, for example, can be
employed to do surface smoothing �6–9� or the separation of
particles �10–15�. The topic is also closely related to a vari-
ety of yet other intriguing noise-induced transport phenom-
ena �1–4,16�.

Usually the action of ratchet systems on the transported
particles is described by a spatially asymmetric periodic po-
tential. The assumption of strict periodicity of a ratchet po-
tential is technically convenient, but in many systems the
validity of this assumption is not guaranteed. Therefore, if a
sizable spatial aperiodicity is the result of quenched disorder,
it is advantageous to use a random ratchet potential for de-
scribing the transport properties in such systems. Within this
approach, some of these properties that result from quenched
disorder have already been studied �17–22�.

If the noise arising from the environment can be neglected
then the average drift velocity of overdamped particles in a
periodic ratchet potential exhibits a threshold dependence on
the amplitude of the time-periodic driving force �see also
Refs. �23,24��. In this case only one transport regime with a
nonzero average velocity exists whenever the amplitude of
the driving force exceeds the threshold value. If the ampli-
tude is less than threshold, the particles remain localized
mainly within one period of the ratchet potential although
coexisting bounded solutions may exist �10�. However, this
picture can be changed drastically in ratchet systems contain-
ing quenched disorder. Indeed, if for a random ratchet poten-
tial the threshold amplitude exists and the amplitude of the
driving force exceeds this threshold value then the ordinary

transport regime, i.e., transport with a nonzero average ve-
locity of particles and an arbitrary large transport distance,
emerges. But if the driving amplitude is somewhat smaller
than the threshold value then a new transport regime charac-
terized by a zero average velocity and a finite transport dis-
tance is expected to be realized. Moreover, since at the
threshold amplitude these regimes merge, it is plausible that
the transport distance approaches infinity if the driving am-
plitude tends to the threshold one. The aim of this paper is to
study analytically and numerically these different transport
regimes in ratchet systems with quenched disorder described
by a random sawtooth potential.

The paper is structured as follows. In Sec. II, we intro-
duce the overdamped equation of motion for particles in a
random sawtooth potential driven by a dichotomously alter-
nating force and formulate the main definitions and assump-
tions. Directed transport of particles with a nonzero average
velocity is considered in Sec. III. Here we derive an explicit
formula for the average velocity in the adiabatic limit and
numerically study this transport regime depending on the
amplitude and period of the driving force. In Sec. IV, we
consider some aspects of directed transport of particles with
a vanishing average velocity. Specifically, we derive the av-
erage transport distance of particles in the preferential direc-
tion and study the transition between the transport regimes
with zero and nonzero average velocities. Our main findings
are summarized in Sec V.

II. DEFINITIONS AND BASIC EQUATIONS

We study the directed transport of particles governed by
the dimensionless overdamped equation of motion,

Ẋt = g�Xt� + f�t� . �2.1�

Here, Xt �X0=0� denotes the particle coordinate, f�t� is a
periodically varying driving force of a period 2T, and
g�x�=−dU�x� /dx= �g� presents a dichotomous random
force which is generated by a random sawtooth potential
U�x�, i.e., a piecewise linear random potential such as the*stdenis@pks.mpg.de
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one depicted in Fig. 1. This random potential U�x� is char-
acterized by �i� statistically independent random intervals of
lengths s j which are distributed with the probability densities
p+�s� and p−�s� for even numbered �j=2n , n=0, �1, . . .�
and odd numbered �j=2n+1� intervals, respectively, �ii� two
deterministic slopes −g+ and g− �g+�g−�0�, and �iii� the
constraint condition g+s+=g−s−, with s�=�0

�dssp��s���
denoting the average lengths of even, s+, and odd, s−, inter-
vals. The last condition implies that the average value of the
dichotomous random force equals zero, i.e.,

lim
L→�

1

2L
�

−L

L

dxg�x� = lim
L→�

�g+
L+

L
− g−

L−

L
� = g+s+ − g−s− = 0,

�2.2�

where 2L+ and 2L− denote the total lengths of the even and
the odd intervals on the interval �−L ,L�. In addition, we
assume that at the origin of the coordinate system all sample
paths of this potential change its slope from −g+ �at x=−0� to
g− �at x= +0�, i.e., g��0�= �g�. We also note that the spe-
cial case of the above-defined potential when g+=g− has
been invoked to study the statistical properties of the arrival
time and the arrival position of particles in a medium with
quenched dichotomous disorder driven by a constant force
�25,26�.

This chosen form of the random potential in Fig. 1 pos-
sesses random �i.e., nonperiodic� barrier widths with corre-
sponding �random� barrier heights and comprises the com-
plexity of more general realizations of random landscapes
while at the same time allowing for an explicit analytical
treatment �see also the further remarks given before Sec. V
below�.

The periodic driving force f�t� is assumed to be alternat-
ing, i.e., f�t�= �−1�k+1f , where f��0� is the amplitude of f�t�
or the driving strength, k= �t /T�+1, and �t /T� is the integer
part of t /T. This force can therefore be explicitly written as

f�t� = 	 f , �2k − 2�T � t � �2k − 1�T
− f , �2k − 1�T � t � 2kT


 �2.3�

�k=1,2 , . . .�, and since

lim
�→�

1

�
�

0

�

dtf�t� = 0, �2.4�

its average value equals zero as well.
In accordance with Eq. �2.1�, if f �g− then the particle

remains localized in the initial state for all t�0; the particle
coordinate depends on time only if f �g−. Although the av-
erage values of the forces g�x� and f�t� are zero, a systematic
displacement of particles along the positive direction �since
g+�g−� of the axis x may nevertheless exist. In other words,
the potential U�x� can rectify the periodic motion of particles
induced by the periodic alternating force f�t� into directed
transport. This phenomenon is known as the ratchet effect
�2–5�.

III. AVERAGE TRANSPORT VELOCITY

A. Long-period limit

We next define the average transport velocity vT of par-
ticles in the following way:

vT = lim
t→�

�Xt�
t

, �3.1�

where the angular brackets denote an averaging over the
sample paths of g�x�. In the case of long-lasting period of the
driving force, T→�, it is possible to derive the exact for-
mula for v�. The starting point is that in the definition �Eq.
�3.1�� we can replace t by 2T and X2T by XT−YT, yielding

v� = lim
T→�

�XT� − �YT�
2T

, �3.2�

where XT is the displacement of the particle during the first
half period of f�t�, and YT=XT−X2T is the displacement dur-
ing the second half period. As pointed out above, at f �g−
the particle stays in the initial state for all t, and so v�=0. A
simple analysis of Eq. �2.1� shows that if f �g− then
XT�0 and limT→��XT� /T� �f −g− , f +g+�, i.e., this limit is
always nonvanishing. In contrast, the sign of YT depends on
f and g�XT�, and the limit limT→��YT� /T can either be zero or
nonzero. Specifically, if g−� f �g+ then YT�0 at
g�XT�=−g− and YT�0 at g�XT�=g+. Since in this case the
particle moves during the second half-period only in
one odd interval �if g�XT�=−g−� or in one even interval
�if g�XT�=g+�, we obtain limT→��YT� /T=0. On the contrary,
if f �g+ then YT�0 and the particle passes during the sec-
ond half period an infinite number of intervals s j when
T→�. In this case limT→��YT� /T� �f −g+ , f +g−�, i.e., the
limit is nonzero. One therefore expects that the dependence
of v� on f differs in these two cases.

Let us first derive the average velocity for g−� f �g+. In
this case limT→��YT� /T=0, and Eq. �3.2� becomes

0

0

g

x

s1s0 s2 s3 s5s 1 s4

s6

s7

U( )x

0

g x( )

( )a

( )b

0

g

FIG. 1. Schematic representation of �a� the random sawtooth
potential U�x� and �b� the corresponding dichotomous random force
g�x� as functions of the spatial coordinate x.

DENISOV et al. PHYSICAL REVIEW E 79, 051102 �2009�

051102-2



v� = lim
T→�

�XT�
2T

. �3.3�

Representing XT in the form XT=XT
++XT

−, where XT
+ and XT

−

are the total lengths of the even and odd intervals s j on the
interval �0,XT�, respectively, and using the relation
g+�XT

+�=g−�XT
−�, which follows from the condition

g+s+=g−s−, we find

�XT� = �XT
−��1 +

g−

g+
� . �3.4�

On the other hand, because the particle passes the even and
odd intervals with the velocities f +g+ and f −g−, respec-
tively, we have

T =
�XT

+�
f + g+

+
�XT

−�
f − g−

= �XT
−��1 +

g−

g+
� f + g+ − g−

�f + g+��f − g−�
.

�3.5�

Finally, substituting Eqs. �3.4� and �3.5� into Eq. �3.3�, the
resulting average velocity assumes the form

v� =
�f + g+��f − g−�
2�f + g+ − g−�

. �3.6�

If f �g+ then the average velocity of particles is defined
by Eq. �3.2�. Introducing by analogy with the previous case
the total lengths YT

+ and YT
− of the even and odd intervals s j

on the interval �0,YT�, for the second half period of f�t� we
obtain

�YT� = �YT
−��1 +

g−

g+
� �3.7�

and, likewise,

T =
�YT

+�
f − g+

+
�YT

−�
f + g−

= �YT
−��1 +

g−

g+
� f − g+ + g−

�f − g+��f + g−�
.

�3.8�

Calculating with the help of these formulas the limit
limT→��YT� /T, Eq. �3.2� gives the result

v� =
�f + g+��f − g−�
2�f + g+ − g−�

−
�f − g+��f + g−�
2�f − g+ + g−�

, �3.9�

which can be simplified to read

v� =
g+g−�g+ − g−�
f2 − �g+ − g−�2 . �3.10�

Thus, in the adiabatic limit the average velocity of par-
ticles in a random sawtooth potential U�x� driven by a peri-
odically alternating force f�t� is given by Eq. �3.6� if
g−� f �g+ and Eq. �3.10� if f �g+. It is important to note
that these results do not depend on the concrete distributions
of the intervals s j. In fact, in evaluating the average velocity
we used only the condition that the probability densities
p��s� possess finite first moments s�.

Since by assumption g+�g−, the transport of particles
occurs with the average velocity v� in the positive direction
of the axis x. In accordance with Eqs. �3.6� and �3.10�, v� is

a nonmonotonic function of f which assumes the maximum
value

v� max =
g+�g+ − g−�

2g+ − g−
�3.11�

for f =g+, i.e., at the point where the character of v� as a
function of f changes qualitatively. If, on the other hand,
g+�g− then the transport of particles occurs in the negative
direction of the axis x. In this case, the average velocity �and
the corresponding conditions for f� is determined by Eqs.
�3.6� and �3.10� in which g+ and g− must be replaced by g−
and g+, respectively. At g+=g− the average velocity v� equals
zero for all f .

The predicted dependence of v� on f and the numerical
results obtained by simulation of Eq. �2.1� are depicted in
Fig. 2 for the case with g+=6 and g−=2. For each f the
numerical average velocity,

vsim =
1

N

i=1

N
X2T

�i�

2T
, �3.12�

shown in this figure by the triangular symbols, was calcu-
lated for N=2�102 runs of the motion Eq. �2.1�. Before
each run, a new realization of the dichotomous force g�x�
was generated in accordance with the uniform probability
densities

p��s� = 	�2d��−1, 0 � s � 2d�

0, s � 2d�.

 �3.13�

Since in this case s�=d�, we chose d+=0.5 and d−=1.5
in order to satisfy the condition g+s+=g−s−. Finally, to
ensure that the particle passes a large number of the
intervals s j, we chose T=102d− / �f −g−� if f � �g− ,g+�, and
T=102 max d� / �f −g�� if f �g+. As seen from Fig. 2, our
numerical results obtained in such a way are in excellent
agreement with theory. It should be noted, however, that we
used the uniform distributions for the intervals s j only for
illustrative purposes: the average velocity vT of particles
does not depend on p��s� in the limit T→�.

62

1

0 10
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f

theory

simulation

v8

FIG. 2. �Color online� Average transport velocity v� of particles
as a function of the driving strength f in the adiabatic limit. The
solid lines represent the theoretical results obtained from Eqs. �3.6�
and �3.10�, and the triangular symbols �blue� indicate results de-
rived from the numerical simulations of Eq. �2.1�. The presented
results correspond to the dichotomous random force g�x� with
g+=6 and g−=2.
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B. Nonadiabatic driving

In contrast to the previous case, if T is finite then the
average velocity vT depends on the explicit form of the
probability densities p��s�. It is important to note that in this
case the condition f �g− does not guarantee that vT�0
�at g+�g−�. Specifically, if �a

�dsp−�s��0 for arbitrary large
�but finite� a, i.e., if p−�s� is the probability density with
unbounded support, then �X���� and so vT=0 for all finite
f and T. However, even if p−�s�=0 for s�b, i.e., if p−�s� has
bounded support, the average velocity equals zero as well if
T�Tth=b / �f −g−�, where Tth is the threshold half period.
From a physical point of view, the condition vT=0, i.e., the
absence of directed transport of particles toward infinity,
arises from the fact that there is a nonzero probability of
those �odd� intervals s j that cannot be overcome by particles
during a positive pulse of f�t�. The existence of directed
transport of particles with a zero average velocity and a finite
transport distance will be considered in more detail in the
next section.

In accordance with the above discussion, directed trans-
port of particles with a nonzero average velocity exists only
if both conditions, f �g− and T�Tth, hold true. Since the
latter condition is more restrictive than the former, it is the
latter that determines the criterion of directed transport of
particles with nonzero average velocity vT. In particular, if
p−�s� is the uniform probability density �see Eq. �3.13��, then
this criterion can be written in the form

f � f th = g− +
2d−

T
, �3.14�

where f th is the threshold amplitude of the driving force f�t�.
The dependencies of vT on f obtained by the numerical simu-
lation of the motion Eq. �2.1� are shown in Fig. 3. Typical
solutions of this equation for f � �f th ,g+� and f �g+ are illus-
trated in Fig. 4.

IV. DIRECTED TRANSPORT WITH ZERO AVERAGE
VELOCITY

In the case of zero average velocity the particles cannot be
transported to an arbitrary large distance along the axis x in a
common way. Instead, for each realization of g�x� the par-
ticles are transported to any position in whose vicinity they
oscillate �see Fig. 5�. For random g�x� these positions are
random as well, and since g+�g−, they are preferably dis-
tributed at x�0. Our next objective is to find the average
distance �l� from the origin of the coordinate system to these
positions in the positive direction of the axis x.

Let us assume that the interval s2n+1 with some n�	0� is
the first odd interval satisfying the condition s2n+1�
, where
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T = 8
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v
T

FIG. 3. �Color online� Average transport velocity vT as a func-
tion of the driving strength f for different values of the half-period
T. The triangular �blue� and circular �red� symbols represent the
numerical results obtained via N=103 runs of Eq. �2.1� and by using
the numerical average velocity �Eq. �3.12�� in which 2T is replaced
by 40T. The theoretical dependence of vT on f for T=� �solid lines�
reproduces the average velocity v� from Fig. 2 and is shown for
comparison only. The parameters characterizing the dichotomous
random force g�x� whose intervals s j are distributed with uniform
probability densities �Eq. �3.12�� are chosen to be g+=6, g−=2,
d+=0.5, and d−=1.5. According to Eq. �3.14�, f th=2.6 for T=5 and
f th=5 for T=1.
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l12

FIG. 4. �Color online� Illustrative realizations of the particle
coordinate Xt in the case of nonzero average velocity vT. The pa-
rameters of the dichotomous random force g�x� are chosen as in
Fig. 3, T=1, and f th=5. The transport regime with vT�0 occurs at
f � f th, and Xt displays different behavior for f � �f th ,g+� and
f �g+. The line with horizontal segments �red� represents Xt for
f =5.5 �in this case f �g+=6 and vT=1=1.62�, and the other line
�blue� represents Xt for f =8 �f �g+ , vT=1=1.00�. For convenience,
the distances ln= j=1

n s j, which correspond to a given sample path of
g�x�, are shown for even n only.
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l4
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FIG. 5. �Color online� Illustrative realizations of the particle
coordinate Xt in the case of zero average velocity vT. The param-
eters of the dichotomous random force g�x� are the same as in Fig.
3, T=0.5, and f th=8. In this case, the transport regime with vT=0
occurs only if f � �g− , f th�, and Xt shows different behavior for
f �g+ and f �g+. The lower line �red� represents Xt for f =5.5
�f �g+=6 and �l�=1,93�, and the upper line �blue� for f =7.5
�f �g+ and �l�=20,63�.
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 = �f − g−�T �4.1�

is the minimal displacement of particles during a positive
pulse of the driving force f�t�. In other words, s2n+1 is the
first interval which is not crossed by particles in the positive
direction of the axis x. The distance from the coordinate
origin to this interval is given by

l2n = 
j=1

2n

s j �4.2�

if n	1, and l0=0 if n=0. We also introduce the probability

w = 1 − �



�

dsp−�s� = �
0




dsp−�s� �4.3�

that the length of the odd interval is smaller than 
. In ac-
cordance with these definitions, the probability density P�l�
that l= l2n �with n	0� can be written in the form

P�l� = �1 − w�
n=1

� �
0




¯�
0


 ��
j=1

n

ds2j−1p−�s2j−1��
� �

0

�

¯�
0

� ��
k=1

n

ds2kp+�s2k����l − l2n� + �1 − w���l� ,

�4.4�

where ��·� is the Dirac � function. Using the geometric series
formula n=0

� wn= �1−w�−1, it is not difficult to verify that
P�l� is properly normalized, i.e.,

�
0

�

dlP�l� = �1 − w�
n=1

�

wn + 1 − w = �1 − w�
n=0

�

wn = 1.

�4.5�

The average transport distance, i.e., the mean value of l2n,
is defined in the usual way,

�l� = �
0

�

dllP�l� . �4.6�

In order to calculate this integral, we first note that, accord-
ing to Eq. �4.2�,

�
0

�

dll��l − l2n� = 
m=1

n

s2m−1 + 
m=1

n

s2m. �4.7�

Then, substituting the probability density �Eq. �4.4�� into Eq.
�4.6� and taking into account the formulas

�
0




¯�
0


 ��
j=1

n

ds2j−1p−�s2j−1��
m=1

n

s2m−1 = ns̃−wn−1,

�4.8�

where s̃−=�0

dssp−�s�, and

�
0

�

¯�
0

� ��
k=1

n

ds2kp+�s2k��
m=1

n

s2m = ns+, �4.9�

expression �4.6� can be reduced to read

�l� = �1 − w��s̃− + s+w�
n=1

�

nwn−1. �4.10�

Finally, using the formula n=1
� nwn−1= �1−w�−2, we obtain

for the average transport distance the following remarkably
simple result:

�l� =
s̃− + s+w

1 − w
. �4.11�

It is important to note that Eq. �4.11� represents the aver-
age distance to the first impassable interval in the positive
direction of the axis x, i.e., the average value of the maxi-
mum displacement of particles in the preferred direction. If
f � �g− ,g+� then Xt	0 for all sample paths of g�x� and thus
the average displacement of particles, lim�→��1 /���0

�dtXt, re-
lates closely to �l�. But when f �g+ then there exists a set of
sample paths, whose total probability is nonzero, on which
the particles are transported in the negative direction of the
axis x. As a consequence, in this case the average displace-
ment of particles is, in general, smaller than �l�.

According to Eq. �4.11�, the average distance �l� is finite
if w�1. If the probability density p−�s� has unbounded sup-
port then this condition holds for all half-period T’s of the
driving force f�t�. Otherwise, i.e., in the case of bounded
support, �l� may be finite or infinite depending on the value
of T. In order to illustrate the distinctive features of directed
transport in these two cases, we next calculate �l� for the
exponential and uniform probability densities p��s�, which
represent the probability densities with unbounded and
bounded support, respectively.

A. Exponentially distributed intervals

For the exponential probability densities

p��s� = ��e−��s, �4.12�

where �� are the rate parameters, we have s�=��
−1,

w=1−e−�−
, and

s̃− =
1

�−
�1 − e−�−
 − �−
e−�−
� . �4.13�

Therefore, in this case formula �4.11� becomes

�l� =
�− + �+

�−�+
�e�−
 − 1� − 
 . �4.14�

For given g+ and g−, the parameters �� and g� are not inde-
pendent because, in accordance with Eq. �2.2�, the condition
g+�−=g−�+ must hold. Eliminating with the help of this re-
lation the parameter �+, Eq. �4.14� yields

�l� =
1

�−
�1 +

g−

g+
��e�−
 − 1� − 
 . �4.15�

According to this result, the average distance �l� is finite,
and so vT=0 for all finite f �g− and T. In other words, in the
case of exponential distributions of the interval s j the di-
rected transport of particles always occurs with zero average
velocity. This feature of directed transport arises from the
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fact that the probability density p−�s� has unbounded support.
As it follows from Eq. �4.15�, the average distance grows
linearly with 
, �l�= �g− /g+�
, if �−
1, and exponentially,
�l�=�−

−1�1+g− /g+�e�−
, if �−
�1. Our analytical results are
in full agreement with the numerical simulations �see Fig. 6�.

B. Uniformly distributed intervals

If the intervals s j are distributed with uniform probability
densities �Eq. �3.13�� then s�=d�,

w = 	
�2d−�−1, 0 � 
 � 2d−

1, 
 	 2d−,

 �4.16�

and

s̃− = 	
2�4d−�−1, 0 � 
 � 2d−

d−, 
 	 2d−.

 �4.17�

According to these results, Eq. �4.11� for 
	2d−, i.e., f
	 f th, yields �l�=�. In contrast, if 0�
�2d−, i.e., f
� �g− , f th�, then Eq. �4.11� reduces to

�l� =

�2d+ + 
�
2�2d− − 
�

. �4.18�

Since g+d+=g−d−, the last formula can be rewritten in the
form

�l� = d−�1 +
g−

g+
� f − g−

f th − f
−

T

2
�f − g−� . �4.19�

Thus, depending on f , two regimes of directed transport
exist. The first occurs at f � �g− , f th� and is characterized by a
zero average velocity vT and a finite transport distance �Eq.
�4.19��. The second, with a nonzero vT and an infinite �l�,
takes place at f � f th. At the threshold amplitude f = f th the
transition between these regimes occurs. Like in the previous
case, the dependencies of the average transport distance �l�
on f , which follow from Eq. �4.19�, are fully corroborated by
our numerical simulations �see Fig. 7�.

We note that the random sawtooth potentials account for
the influence of quenched disorder in nonperiodic ratchet
systems and at the same time allow for a full analytical de-
scription of the ratchet effect. In the case of other random
ratchet potentials a rigorous theoretical analysis of directed
transport becomes extremely cumbersome without providing
prominent additional insight. Put differently, the above
analysis evidences that qualitatively the same results hold for
a wider class of random ratchet potentials that produce the
random forces g�x� varying in the interval �−g− ,g+� and as-
suming a zero mean value. Specifically, if the distances be-
tween the nearest global maxima of g�x� are distributed with
unbounded support then only one transport regime of par-
ticles with vT=0 can be realized. The reason for this is the
same as in the case of a dichotomous random force: for any
finite half-period T of the driving force f�t� there is always a
nonzero probability for distances that cannot be overcome by
particles during a positive pulse of f�t�. Accordingly, if the
support is bounded then two transport regimes with vT�0
�when T is sufficiently large� and vT=0 �when T is suffi-
ciently short� exist.

V. CONCLUSIONS

We have studied the directed transport of particles in ab-
sence of noise which are driven by a periodically alternating
force in a viscous medium with quenched disorder. The in-
fluence of quenched disorder is modeled by a random saw-
tooth potential that generates a dichotomous random force
with zero mean. We could show that, depending on the char-
acteristics of the dichotomous and driving forces, two re-
gimes of directed transport occur, namely, with a nonzero
average velocity and with a vanishing average velocity.

The main result which we have obtained for the former
regime is an explicit formula for the average transport veloc-
ity in the long-period limit of the driving force. An important
feature of this limiting formula is that it does not depend on
the probability densities of the intervals characterizing the
dichotomous random force. We have shown numerically that

6 f5432
0
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l

20
simulation

theory

FIG. 6. �Color online� Average transport distance �l� as a func-
tion of the driving strength f for exponentially distributed intervals
s j. The theoretical curves are derived from Eq. �4.15� with g+=6,
g−=2, �−=1 /3, and T=0.5 �solid line�, T=1 �short-dashed line,
red�, and T=1.5 �long-dashed line, blue�. The symbols depict the
numerical results obtained by �i� generating a sample path of g�x� in
accordance with exponential distributions �Eq. �4.12��, �ii� finding
the distance �Eq. �4.2�� to the first interval s2n+1 whose length ex-
ceeds 
, and �iii� averaging this distance over 103 realizations of
g�x�.

f42
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FIG. 7. �Color online� Average transport distance �l� as a func-
tion of the driving strength f for uniformly distributed intervals s j.
The theoretical curves are obtained from Eq. �4.19� for g+=6,
g−=2, and d−=1.5. The solid line corresponds to the half-period
T=0.5, the short-dashed line �red� to T=1 and the long-dashed line
�blue� to T=1.5. In these cases f th=8, 5 and 4, respectively. The
symbols depict the numerical results that are obtained in the same
way as in Fig. 6.
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for finite periods of the driving force the average transport
velocity is always less than the limiting one if all other pa-
rameters are kept the same.

In order to characterize the transport regime with a zero
average velocity, we have calculated analytically the average
value of the maximum displacement of particles in the pre-
ferred transport direction. This quantity is finite and so the
average velocity of particles is zero if the probability density
of the odd intervals characterizing the dichotomous force has
unbounded support. Otherwise, i.e., if this probability den-
sity has bounded support, the average velocity can be either
zero or nonzero, depending on the characteristics of the di-
chotomous and driving forces. We have applied the uniform

probability densities for the quantitative study of the trans-
port properties in these regimes and for describing the tran-
sition between them. All our theoretical predictions are
nicely confirmed by our numerical simulations.
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