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1. Introduction

In his annus mirabilis 1905 Albert Einstein published four manuscripts [1–4] that would forever change the world of
physics. Two of those papers [2,3] laid the foundations for the special theory of relativity, while another one [4] solved the
longstanding problem of classical (nonrelativistic) Brownian motion.1 Barring gravitational effects [5,6], special relativity
has proven to be the correct framework for describing physical processes on all terrestrial scales [7,8]. Accordingly,
during the past century extensive efforts have been made to adapt established nonrelativistic theories such as, for
example, thermodynamics, quantummechanics or field theories [9] to the requirements of special relativity. Following this
tradition, the present review focuses on recent progress in the theory of special relativistic Brownian motion and diffusion
processes [10–34].

1 Einstein’s first paper [1] provided the explanation for the photoelectric effect.
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Symbols

M rest mass of the Brownian particle
m rest mass of a heat bath particle
Σ inertial laboratory frame := rest frame of the heat bath
Σ ′;Σ∗ moving frame; comoving rest frame of the Brownian particle
O;O′ lab observer; moving observer
t time coordinate
τ proper time of the Brownian particle
c vacuum speed of light (set to unity throughout, i.e., c = 1)
d number of space dimensions
X, x position coordinate X = (X i), i = 1, . . . , d
V , v particle velocity
w observer velocity
P, p momentum coordinates
E, P0, ε, p0 particle energy
η = (ηαβ) Minkowski metric tensor
Λ Lorentz transformation (matrix)
γ Lorentz factor γ (v)= (1− v2)−1/2
E spacetime event
Xα (contravariant) time-space four-vector (Xα)= (X0,X), α = 0, 1, . . . , d
Pα energy–momentum four-vector, (Pα)= (E, P)
Uα velocity four-vector, Uα = Pα/M
f one-particle phase space probability density
% one-particle position probability density
φ one-particle momentum probability density

one-particle velocity probability density
jα( t, x) four-vector current density
θαβ ( t, x) energy–momentum tensor
kB Boltzmann constant
T temperature
β inverse thermal energy β := (kBT )−1
U;Uα internal energy; thermodynamic energy–momentum four-vector
S thermodynamic entropy
S relative entropy
P pressure
V volume (number)
α friction coefficient
D noise coefficient
D spatial diffusion constant
B(s) d-dimensional standard Wiener process with time parameter s
P probability measure of the Wiener process
� placeholder for discretization rule in stochastic integrals,� ∈ {∗, ◦, •}
∗ Ito (pre-point) interpretation of the stochastic integral
◦ Stratonovich–Fisk (mid-point) interpretation of the stochastic integral
• backward Ito (post-point) interpretation of the stochastic integral
R set of real numbers
V ⊂ Rd finite d-dimensional spatial volume set
H d-dimensional hyperplane in (1+ d)-dimensional Minkowski spacetime
C(E ) backward light cone of the event E
T(ξ 0) isochronous hyperplane {( t, x)|t = ξ 0}
λ Lebesgue measure, e.g., V = λ(V)
µ, ρ measures
I indicator function with values in {0, 1}
〈X〉 expected value of the random variable or process X

1.1. Historical background

Historically, the term ‘Brownian motion’ refers to the irregular dynamics exhibited by a test particle (e.g., dust or pollen)
in a liquid environment. This phenomenon, alreadymentioned in 1784 by theDutch physician Ingen-Housz [35,36], was first
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analyzed in detail by the Scottish botanist Robert Brown [37] in 1827. About eighty years later, Sutherland [38], Einstein [4]
and von Smoluchowski [39] were able to theoretically explain these observations. They proposed that Brownian motion is
caused by quasi-random, microscopic interactions with molecules forming the liquid. In 1909 their theory was confirmed
experimentally by Perrin [40], providing additional evidence for the atomistic structure of matter. During the first half of
the 20th century the probabilistic description of Brownian motion processes was further elaborated in seminal papers by
Langevin [41,42], Fokker [43], Planck [44], Klein [45], Uhlenbeck and Ornstein [46] and Kramers [47].2
In parallel with these early theoretical studies in the field of physics, outstanding mathematicians like Bachelier [50],

Wiener [51–53], Kolmogoroff [54–56], Feller [57], and Lévy [58,59] developed a rigorous basis for the theory of Brownian
motions and stochastic processes. Between 1944 and 1968 their groundbreaking work was complemented by Ito [60,61],
Gihman [62–64], Fisk [65,66] and Stratonovich [67–69], who introduced and characterized different types of stochastic
integrals or, equivalently, stochastic differential equations (SDEs). SDEs present a very efficient tool for modeling random
processes and their analysis has attracted an ever-growing interest over the past decades [70–76].3 Nowadays, the modern
theory of stochastic processes goes far beyond the original problem considered by Einstein and his contemporaries, and the
applications cover a wide range of different areas, including physics [77–84], biology [85,86], economy and finance [87–89].
A central topic of this review concerns the question of how SDE-based Brownian motion models can be generalized

within the framework of special relativity. In the physics literature [75], SDEs are often referred to as Langevin equations [41,
42], and we shall use both terms synonymously here. From a mathematical perspective, SDEs [74] determine well-defined
models of stochastic processes; from the physicist’s point of view, their usefulness for the description of a real system is a
priori an open issue. Therefore, the derivation of nonrelativistic Langevin equations from microscopic models has attracted
considerable interest over the past sixty years [21,90–96]. Efforts in this direction not only helped to clarify the applicability
of SDEs to physical problems but led, among others, also to the concept of quantum Brownian motion [92,97–110].4
If one aims at generalizing the classical Brownian motion concepts to special relativity, then several elements from

relativistic equilibrium thermodynamics and relativistic statistical mechanics play an important role. More precisely,
thermostatistic principles govern the stationary behavior of Brownian particles and, thus, impose constraints on the
structure of relativistic Langevin equations. The first papers on relativistic thermodynamics were published in 1907
by Planck [120,121] and Einstein [122]. A main objective of theirs was to identify the Lorentz transformation laws of
thermodynamic variables (temperature, pressure, etc.).5 In 1963 the results of Einstein and Planck became questioned by
Ott [127], whose work initiated an intense debate about the correct relativistic transformation behavior of thermodynamic
quantities [128–177].6 However, as clarified by van Kampen [150] and Yuen [178], the controversy surrounding relativistic
thermodynamics can be resolved by realizing that thermodynamic quantities can be defined in different, equally
consistent ways.
While some authors considered relativistic thermodynamics as a purely macroscopic theory, others tried to adopt a

more fundamental approach by focusing on relativistic equilibrium statistical mechanics. Early pioneeringwork in the latter
directionwas provided by Planck’s students, vonMosengeil [184] and von Laue [185], and his collaborator Jüttner [186], who
derived in 1911 the relativistic generalization of Maxwell’s velocity distribution [187].7 Research on relativistic equilibrium
thermostatistics experienced its most intense phase between 1960 and 1970 [137,138,146,150,159,203–219]. An excellent
exposition on the conceptual foundations and difficulties of relativistic statistical mechanics was given by Hakim [220–222]
in 1967. Over the past years, the field has continued to attract interest [22,191,195–202,223–242].
The recurring debate on relativistic thermostatistics can be traced back to the difficulty of treating many-particle

interactions in a relativistically consistent manner.8 In nonrelativistic physics, interactions may propagate at infinite speed,
i.e., they can be modeled via instantaneous interaction potentials which enter additively in the Hamilton function; from

2 Excellent early reviews are given by Chandrasekhar [48], and Wang and Uhlenbeck [49].
3 The history of the mathematical literature on Brownian motions and stochastic processes is discussed extensively in Section 2.11 of Ref. [74]; see also
Sections 2–4 in Nelson [71].
4 The vast literature on classical Brownian motion processes and their various applications in nonrelativistic physics is discussed in several survey
articles [78–83,111–115]. Nonrelativistic generalizations of the standard theory as, for example, anomalous diffusion processes have been summarized
in [83,116,117], while review articles on nonrelativistic quantum Brownian motion can be found in [107,108,118,119].
5 See also Pauli [123], Eddington [124], Tolman [125] and van Dantzig [126] for early discussions of this problem.
6 The pre-1970 literature on this disputed issue has been reviewed by Yuen [178] and Ter Haar and Wegland [179], see also Israel [177]; more recent
surveys can be found in [180–183].
7 A general introduction to relativistic gases is given in Synge’s textbook classic [188]. Relativistic generalizations of equipartition and virial
theorems [189] are discussed by Pauli [123] and Einbinder [190]; more recent investigations of these two specific topics can be found in, for
example, Refs. [191–193]. Equilibrium distributions for ideal relativistic quantum gases were also derived by Jüttner [194] in 1928. A few recent papers [22,
195–200] have raised doubts about the correctness of Jüttner’s results [186,194], but relativistic molecular dynamics simulations confirm Jüttner’s
prediction [201,202], cf. discussion in Sections 3.2.2 and 4.3 below.
8 Seminal contributions to the theory of relativistic many-particle interactions were provided by Fokker [243], Wheeler and Feynman [244,245],
Pryce [246], Havas and Goldberg [247,248], and Van Dam andWigner [249,250]. Over the past decades, several no-interaction theoremswere proven [250–
253]. These forbid, within their respective qualifications, certain types of interaction models within the framework of special relativity. The mathematical
structure of relativistic many-particle interactions was analyzed in detail by Arens and Babbitt [254]; various semi-relativistic approximations have been
discussed, for example, in Refs. [255–257]. Kerner [258] has edited a reprint collection covering large parts of the pre-1972 literature on relativistic
action-at-a-distance models; more recent contributions include [228,229,259–268]. An alternative, intensely studied method for describing relativistic
interactions is based on the so-called constraint formalism [196,229,269–285]. The foundations of this approach were worked out by Dirac [269], who
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that point on, nonrelativistic statistical mechanics emerges without much difficulty [287,288]. Unfortunately, the situation
becomes significantlymore complicated in the relativistic case:Due to their finite propagation speed, relativistic interactions
should be modeled by means of fields that can exchange energy with the particles [6]. These fields add an infinite number
of degrees of freedom to the particle system. Eliminating the field variables from the dynamical equations may be possible
in some cases, but this procedure typically leads to retardation effects, i.e., the particles’ equations of motions become non-
local in time [220,221,244,245,249,250]. Thus, in special relativity it is usually very difficult or even impossible to develop a
consistent field-free Hamilton formalism of interacting particles.
In spite of the difficulties impeding a rigorous treatment of classical relativistic many-particle systems, considerable

progresswasmade during the second half of the past century in constructing an approximate relativistic kinetic theory [167,
225,255,289–309] based on relativistic Boltzmann equations for the one-particle phase space probability density functions
(PDFs).9 From such a kinetic theory, it is only a relatively small step to formulating a theory of relativistic Brownian motion
processes in terms of Fokker–Planck equations and Langevin equations. While the relativistic Boltzmann equation [311,
312] is a nonlinear partial integro-differential equation for the PDF, Fokker–Planck equations are linear partial differential
equations and, therefore, can be more easily solved or analyzed [73].
The present article focuses primarily on relativistic stochastic processes that are characterized by linear evolution

equations for their respective one-particle (transition) PDFs. The corresponding phenomenological theory of relativistic
Brownian motion and diffusion processes has experienced considerable progress during the past decade, with applications
in various areas of high-energy physics [315–322] and astrophysics [323–327]. From a general perspective, relativistic
stochastic processes provide a useful approach whenever one has to model the quasi-random behavior of relativistic
particles in a complex environment. Therefore, it may be expected that relativistic Brownian motion and diffusion concepts
will play an increasingly important role in future investigations of, e.g., thermalization and relaxation processes in
astrophysics [323–326] or high-energy collision experiments [315,316,318,319,328,329].

1.2. Relativistic diffusion processes: Problems and general strategies

According to our knowledge, the first detailed mathematical studies on relativistic diffusion processes were performed
independently by Łopuszaǹski [330], Rudberg [331], and Schay [332] between 1953 and 1961. In the 1960s and 70s their
pioneering work was further elaborated by Dudley who published a series of papers [333–336] that aimed at providing
an axiomatic approach to Lorentz invariant Markov processes [74] in phase space. Independently, a similar program was
pursued by Hakim [220–222,337,338], whose insightful analysis helped to elucidate the conceptual subtleties of relativistic
stochastic processes [338]. Dudley (Theorem 11.3 in [333]) and Hakim (Proposition 2 in [338]) proved the non-existence of
nontrivial10 Lorentz invariant Markov processes in Minkowski spacetime, as already suggested by Łopuszaǹski [330]. This
fundamental result implies that it is difficult to find acceptable relativistic generalizations of the well-known nonrelativistic
diffusion equation [287,339]

∂

∂t
% = D ∇2%, (1)

where D > 0 is the diffusion constant and %( t, x) ≥ 0 the PDF for the particle positions x ∈ Rd at time t . In order to
circumvent this ‘no-go’ theorem for relativistic Markov processes in spacetime, one usually adopts either of the following
two strategies11:
• One considers non-Markovian diffusion processes X ( t) in Minkowski spacetime [10,23,365–367].
• One constructs relativistically acceptable Markov processes in phase space by considering not only the position
coordinate X ( t)of the diffusing particle, but also its momentum coordinate P ( t) [11–22,24,26,31,32,220–222,332–338].

1.2.1. Non-Markovian diffusion models in Minkowski spacetime
A commonly considered ‘relativistic’ generalization of Eq. (1) is the telegraph equation [10,365–367]
12

τv
∂2

∂t2
% +

∂

∂t
% = D ∇2%, (2)

aimed at constructing a relativistic quantum theory for interactingmany-particle systems [250–253]. For a detailed discussion of relativistic many-particle
theory, we refer to the insightful considerations in the original papers of Van Dam andWigner [249,250] and Hakim [220–222,224] as well as to the recent
review by Hakim and Sivak [286].
9 Comprehensive introductions to relativistic Boltzmann equations can be found in the textbooks by Stewart [310], de Groot et al. [311], and Cercignani
and Kremer [312], or also in the reviews by Ehlers [313] and Andréasson [314].
10 A diffusion process is considered as ‘nontrivial’ if a typical path has a non-constant, non-vanishing velocity.
11 The mathematical interest in relativistic diffusion processes increased in the 1980s and 1990s, when several authors [340–362] considered the
possibility of extending Nelson’s stochastic quantization approach [363] to the framework of special relativity. These studies, although interesting from a
mathematical point of view, appear to have relatively little physical relevance because Nelson’s stochastic dynamics [363] fails to reproduce the correct
quantum correlation functions even in the nonrelativistic case [364].
12 Masoliver and Weiss [10] discuss several possibilities of deriving Eq. (2) from different underlying models.
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where τv > 0 denotes a finite relaxation time scale. Unlike the classical diffusion equation (1), which is recovered for τv = 0,
the telegraph equation (2) contains a second order time-derivative and, therefore, describes a non-Markovian process.While
the classical diffusion equation (1) permits superluminal propagation speeds, the diffusion fronts described by Eq. (2) travel
at finite absolute velocity v = (D/τv)1/2; cf. the discussion in Section 5 below.
Historically, Eq. (2) was first obtained by Thomson (Lord Kelvin) in 1854 [365], while studying the signal transduction

for the first transatlantic cable. The first probabilistic derivation of Eq. (2) for the one-dimensional case was given by
Goldstein [366] in 1950. His approach was based on a so-called persistent random walk model originally introduced by
Fürth [368,369] in 1917 as a paradigm for diffusive motion in biological systems and later also considered by Taylor [370]
in an attempt to treat turbulent diffusion. 13 In contrast to standard non-directed random walk models, which lead to the
classical diffusion equation (1)whenperforming an appropriate continuum limit [74], the random jumps of a persistentwalk
take into account thehistory of a path by assigning a larger probability to those jumps that point in the direction of themotion
before the jump [366,367]. Persistent random walk models can be used to describe the transmission of light in multiple
scattering media [372] such as foams [373–375] and thin slabs [371,376]. Similarly, the telegraph equation (2) has been
applied in various areas of physics over the past decades, e.g., to model the propagation of electric signals and heat waves. 14
Moreover, an interesting connection between the free particle Dirac equation [382] and the telegraph equation (2)

was pointed out by Gaveau et al. [383] in 1984: The solutions of both equations may be linked by means of an analytic
continuation quite similar to the relation between the classical diffusion equation (1) and the free-particle Schrödinger
equation in the nonrelativistic case. 15 On the other hand, the telegraph equation (2) is not the only possible generalization
of Eq. (1) and a rather critical discussion of Eq. (2) in the context of relativistic heat transport was given by van Kampen [153]
in 1970. Section 5 below takes a closer look at the properties of Eq. (2) and also addresses potential alternatives [23,390].

1.2.2. Relativistic Markov processes in phase space
As an alternative to non-Markovian diffusion models in spacetime, one can consider relativistic Markov processes in

phase space [11–22,24,26,31–34,220–222,332–338]. Typical examples are processes described by Fokker–Planck equations
(FPEs) or Langevin equations [11–15,17,18,20,21,24–26,31–34,391–395]. Similar to the relativistic Boltzmann equation, rel-
ativistic FPEs in phase space can be used to describe non-equilibriumand relaxation phenomena in relativisticmany-particle
systems. FPEs can be derived from Langevin equations, as approximations to more general linear master equations [75,332]
or by approximating the collision integrals in nonlinear Boltzmann equation by differential expressions that contain effec-
tive friction and diffusion coefficients [16,299]. In particular, the latter method was successfully applied in different areas of
physics over the past decades, including plasma physics [299,396–408], high-energy physics [315–319,328,329], and astro-
physics [324,325,409–412]. 16 In the 1980s and 90s this approach was further elaborated [396–404] and several numerical
methods for solving FPEs were developed [399,417–419]. 17 Recent applications include the modeling of diffusion and ther-
malization processes in quark-gluon plasmas, as produced in relativistic heavy ion collision experiments [315,316,318,319,
328,329], as well as the description of complex high-energy processes in astrophysics [323–325,409–412].
A complementary approach towards relativistic stochastic processes in phase space starts from Langevin equations [11–

15,17,18,20,21,24–26,31,32,391–395]. Stochastic differential equations of the Langevin type yield explicit sample
trajectories for the stochastic motion of a relativistic Brownian particle. Relativistic Langevin equations may either be
postulated as phenomenological model equations [11,17] or obtained from more precise microscopic models by imposing
a sequence of approximations [21]. Compared with the nonrelativistic case, the latter task becomes considerably more
complicated due to the aforementioned conceptual and technical difficulties in formulating consistent relativistic many-
particle theories. The phenomenological Langevin approach to relativistic Brownian motion was initiated by Debbasch
et al. [11] who, in 1997, proposed a simple relativistic generalization of the classical Ornstein–Uhlenbeck process [46],
representing a special limit cases of a larger class of relativistic Langevin processes [15,19,26]. From a practical point
of view, relativistic Langevin equations provide a useful tool for modeling the dynamics of relativistic particles in a
random environment, because these SDEs may be simulated by using well-established Monte-Carlo techniques that are
numerically robust and efficient [76,89,420]. Recent applications include the analysis of thermalization effects in quark-
gluon plasmas [318,319,329,421] and ultrarelativistic plasma beam collisions [326].

1.3. Structure of the review

The present article intends to provide a comprehensive introduction to the theory of relativistic Brownian motions, with
a particular emphasis on relativistic Langevin equations. For this purpose, the subsequent parts are organized as follows.

13 See also Kac [367] and Boguñá et al. [28,371].
14 A detailed review of the pre-1990 research on heat waves was provided by Joseph and Preziosi [377,378], while more recent discussions and
applications of Eq. (2) can be found in [10,27,29,320,321,379–381].
15 For further reading about path integral representations of the Dirac propagator we refer to the papers of Ichinose [384,385], Jacobson and
Schulman [386], Barut andDuru [387], andGaveau and Schulman [388]; see also footnote 7 inGaveau et al. [383] and pp. 34–36 in Feynman andHibbs [389].
16 Relativistic Fokker–Planck-type equations also played a role in the debate about whether or not the black body radiation spectrum is compatible with
Jüttner’s relativistic equilibrium distribution [191,413–416].
17 A main reason for the lively interest in relativistic FPEs at that time was the prospect of building plasma fusion reactors.
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Section 2 summarizes the Langevin theory of nonrelativistic Brownian motions in phase space. Section 3 discusses aspects
of relativistic equilibrium thermostatistics as far as relevant for the subsequent discussion. Relativistic Langevin equations
in phase space and their associated FPEs are considered in Section 4. Section 5 is dedicated to relativistic diffusion processes
in Minkowski spacetime; as outlined above, such processes must necessarily be non-Markovian. Our review concludes with
a summary of open questions in Section 6, whichmay serve as a starting point for future investigations and extensions of the
theory. Since the topic of this article resides in the intersection between statistical and high-energy physics, we hope that the
presentation is accessible for members of both communities. To keep the discussion as self-contained as possible, the article
includes three appendices which summarize a few essentials about stochastic integrals, surface integrals in Minkowski
spacetime and relativistic thermodynamics.

2. Nonrelativistic Brownian motion

This section summarizes basic definitions and mathematical tools, as well as relevant results from the nonrelativistic
theory of nonrelativistic Brownian motions. In particular, the Langevin and Fokker–Planck equations considered in this
part define the nonrelativistic limit case of the relativistic theory described Section 4. In Section 2.1 we shall briefly recall
the general mathematical structure of Langevin and Fokker–Planck equations, the relevance of discretization rules and
the choice of fluctuation-dissipation relations. Section 2.2 focuses on the question of how stochastic differential equations
(SDEs) can bemotivated and/or derived frommicroscopic models. As typical examples, the well-known harmonic oscillator
model [90–96] and a recently proposed binary collision model [21] will be considered. In contrast to the oscillator model,
the collision model can be generalized to the framework of special relativity, and its relativistic version will be discussed in
Section 4.5.

2.1. Langevin and Fokker–Planck equations

The condensed discussion in this part is primarily based on the papers of Uhlenbeck and Ornstein [46], Wang and
Uhlenbeck [49], and Klimontovich [112]. For further reading about nonrelativistic stochastic processes and their numerous
applications in physics and mathematics, we refer to the review articles of Chandrasekhar [48], Fox [111], Hänggi and
Thomas [77], Bouchaud and Georges [116], Metzler and Klafter [117], Hänggi and Marchesoni [81], Frey and Kroy [82],
or the textbooks references [74–76,422]. For conceptual clarity, we restrict ourselves to the simplest case where motions
are confined to one space dimension (d = 1). The generalization to higher space dimensions is obvious.

2.1.1. Langevin equations and discretization rules
As a standard paradigm for Brownianmotion, we consider the one-dimensional motion of a point-like Brownian particle

(mass M), which is surrounded by a stationary homogeneous heat bath consisting, for example, of smaller liquid particles
(mass m � M) at constant temperature T . The inertial rest frame 18 Σ of the heat bath will be referred to as lab frame
hereafter. The position of the Brownian particle inΣ at time t is denoted byX ( t)and its velocity is given byV ( t) := dX ( t)/dt .
The associated nonrelativistic momentum of the Brownian particle is defined by P( t) := MV ( t).
According to the Langevin picture of Brownian motion, the stochastic dynamics of the Brownian particle due to the

interaction with the bath, and in the presence of a conservative external force field, F ( t, x) can be described by the
differential equations [25,41,42,46,48,49,77,112,423]

dX
dt
=
P
M
, (3a)

dP
dt
= F ( t, X)− α(P)P +L(P, t), (3b)

complemented by the initial conditions 19 X (0) = x0 and P(0) = p0. The second term on the rhs of Eq. (3b) is a friction
force, with the shape of the friction coefficient function α(p)> 0 depending on the microscopic details of the particle-bath
interaction. The stochastic Langevin force

L(P( t), t)= [2D(P)]1/2 � ζ ( t) (3c)

reflects fluctuations in the surrounding heat bath. The symbol � signals the choice of a specific discretization rule to be
discussed in more detail below. The amplitude of the fluctuating force L is tuned by function D(p) > 0. For a spatially
inhomogeneous heat bath, the functions α and D would also depend on the position coordinate x. The stochastic ‘driving’
function ζ ( t) is often taken to be a Gaussian white noise, i.e., ζ ( t) is characterized by:

〈ζ ( t)〉 = 0, (4a)
〈ζ ( t)ζ (s)〉 = δ( t − s), (4b)

18 By definition, the mean velocity of the heat bath particles vanishes inΣ .
19 Without loss of generality we fix the initial time t0 = 0.
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with all higher cumulants being zero. In Eq. (4), the bracket 〈 · 〉 symbolizes an average over all possible realizations of the
noise process ζ ( t).
In themathematical literature [74,76], SDEs like the Langevin equation (3) are usually written in the differential notation

dX ( t)= (P/M)dt, (5a)

dP( t)= F ( t, X)dt − α(P)P dt + [2D(P)]1/2 � dB( t). (5b)

Here, dX ( t) := X ( t + dt)− X ( t)denotes the position increment and dP( t) := P( t + dt)− P( t) the momentum change. The
random function B( t) is a standardized one-dimensional Brownian motion or, equivalently, a standard Wiener process [51,
74,76,77], whose increments

dB( t) := B( t + dt)− B( t) (5c)

are defined to be stochastically independent 20 and characterized by the Gaussian probability distribution

P{dB( t)∈ [y, y+ dy]} = (2π dt)−1/2 exp
[
−y2/(2 dt)

]
dy; (5d)

i.e., the increments dB( t) are independent random numbers drawn from a normal distribution with variance dt . From
Eq. (5d) and the independence of the increments at different times s 6= t , it follows that

〈dB( t)〉 = 0, 〈dB( t)dB(s)〉 =
{
0, t 6= s,
dt, t = s, (6)

where now the expectation 〈 · 〉 is taken with respect to the probability measure P of the Wiener process B( t). The two
different representations (3) and (5) may be connected by formally identifying

dB( t)= ζ ( t)dt.

In the remainder, we will write SDEs primarily in the differential notation of Eq. (5), which may also be viewed as a simple
numerical integration scheme, cf., e.g., Ref. [89,420] and Appendix A.
It is worthwhile to summarize the physical assumptions, implicitly underlying Eqs. (3) and (5):

• The heat bath is spatially homogeneous and stationary; i.e., relaxation processeswithin the heat bath occur on time scales
much shorter than the relevant dynamical time scales associated with the motion of the heavy Brownian particle.21
• Stochastic impacts between the Brownian particle and the constituents of the heat bath occur virtually uncorrelated.
• On a macroscopic level, the interaction between Brownian particle and heat bath is sufficiently well described by the
friction coefficient α and the stochastic Langevin forceL.
• Eqs. (3) and (5) hold in the lab frameΣ , corresponding to the specific inertial system, where the average velocity of the
heat bath particles vanishes for all times t .

In Section 2.2 we shall review how stochastic dynamical equations similar to Eqs. (3) and (5) can be derived or, at least,
motivated by means of specific microscopic models.

Discretization rules. A stochastic force with a momentum dependent noise amplitude function D(p)as in Eq. (5b) is usually
referred to as ‘multiplicative’ noise. When considering SDEs that contain multiplicative noise terms, the specification of the
discretization rule � is necessary since, for fixed functions α(p) and D(p), different discretization schemes in general lead
to non-equivalent stochastic processes [74,76,77,422]; put differently, the values of the stochastic integral P( t)defined by
Eq. (5b) depend on the choice of discretization rule. This is themost essential difference comparedwith ordinary differential
equations, whose integral curves (i.e., solutions) are independent of the underlying discretization scheme when taking the
continuum limit dt → 0.22 The three most commonly considered discretization rules are the following ones [424]23:

• The pre-point discretization of Ito [60,61], denoted by ‘‘� = ∗’’, is defined by computing the function C (P)= [D(P)]1/2
at P( t), i.e.,

C (P)∗ dB( t) := C (P( t))dB( t). (7a)

• The post-point rule ‘‘� = •’’, sometimes also referred to as kinetic [112] or backward Ito rule [424], is defined by
evaluating the function C (P)= [D(P)]1/2 at P( t + dt), i.e.,

C (P)• dB( t) := C (P( t + dt))dB( t). (7b)

20 This means that the joint probability density of an arbitrary collection of subsequent increments dB( ti) is a product of the Gaussian distributions — see,
for example, [74,76] for a precise mathematical definition.
21 Interaction with a spatially inhomogeneous non-stationary heat bath can bemodeled, e.g., by considering friction and noise amplitude functions of the
form α( t, x, p)and D( t, x, p).
22 For example, the discretization rule is irrelevantwhen the driving process B( t)is a regular function, e.g., if B( t)= sin(ωt)such that dB( t)= cos(ωt) dt .
If, however, the driving process is a strongly fluctuating function (of unbounded variation) as, for example, a Wiener (white noise) process, then different
integration rules may yield non-equivalent trajectories; cf. Problem 2.29 in [74].
23 A brief summary of the different discretization rules and their consequences with regard to stochastic differential calculus is given in Appendix A.
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• The mid-point rule ‘‘� = ◦’’ of Stratonovich [67–69] and Fisk [65,66] is defined by taking the mean value of the Ito and
the backward Ito stochastic integral, i.e.,

C (P)◦ dB( t) :=
1
2
[C (P)∗ dB( t)+ C (P)• dB( t)]. (7c)

From the mathematical point of view, the choice of the discretization rule reduces more or less to a matter of
convenience [74,76]. To briefly illustrate this, consider Eq. (5) with post-point rule ‘‘� = •’’, reading

dX ( t)= (P/M)dt, (8a)

dP( t)= [F ( t, X)− α(P)P] dt + [2D(P)]1/2 • dB( t). (8b)

Then, for each pair of sufficiently smooth functions (α(p),D(p)), one can determine new friction coefficients α◦|∗(p)
such that the pairs (α◦|∗(p),D(p)) describe exactly the same stochastic dynamics as Eq. (8) when combined with
the corresponding discretization rule ◦ and ∗, respectively. Specifically, one can replace Eq. (8b) by the equivalent
Stratonovich–Fisk SDE

dP( t)= [F ( t, X)− α◦(P)P] dt + [2D(P)]1/2 ◦ dB( t), (9a)

α◦(p) := α(p)− D′(p)/(2p), (9b)

or, alternatively, by the equivalent Ito SDE

dP( t)= [F ( t, X)− α∗(P)P] dt + [2D(P)]1/2 ∗ dB( t), (10a)

α∗(p) := α(p)− D′(p)/p, (10b)

where D′(p) := dD(p)/dp. The modified friction coefficients in Eqs. (9b) and (10b) account for the fact that the three
discretization rules are characterized by different conditional expectations, respectively:〈

[2D(P)]1/2 • dB( t)|P( t)= p
〉
= D′(p) dt, (11a)〈

[2D(P)]1/2 ◦ dB( t)|P( t)= p
〉
= D′(p) dt/2, (11b)〈

[2D(P)]1/2 ∗ dB( t)|P( t)= p
〉
= 0. (11c)

From a practical point of view, each of the three abovementioned discretizationmethods has its ownmerits and drawbacks:
Ito’s pre-point rule (∗) is particularly convenient for numerical simulations, but care is requiredwhen considering nonlinear
transformations G(P) of the momentum coordinate due to modifications of the differential calculus, cf. Appendix A. By
contrast, if one adopts the Stratonovich–Fisk mid-point rule (◦), then the transformation rules from ordinary differential
calculus carry over, but it becomes more difficult to implement this mid-point rule in numerical simulations. The latter
disadvantage also applies to the post-point rule employed in Eq. (5b). However, as we shall see next, the post-point rule (•)
leads to a particularly simple form of the fluctuation-dissipation relation.24

Fokker–Planck equation. When studying SDEs of the type (5), one is typically interested in the probability

f ( t, x, p)dx dp

of finding the Brownian particle at time t in the infinitesimal phase space interval [x, x+dx]×[p, p+dp]. The non-negative
phase space probability density function (PDF) f ( t, x, p)≥ 0 of the Brownian particle is normalized at all times, i.e.

1 =
∫
dxdp f ( t, x, p), ∀ t > 0; (12)

where, here and below, unspecified integrals range over the full phase space, position space, or momentum space,
respectively. Given the phase space PDF f ( t, x, p), themarginalmomentumPDFφ( t, p)and themarginal position PDF%( t, x)
are defined by

φ( t, p)=
∫
dx f ( t, x, p), (13a)

%( t, x)=
∫
dp f ( t, x, p). (13b)

Deterministic initial data X (0)= x0 and P(0)= p0 translate into the initial conditions

f (0, x, p)= δ(x− x0)δ(p− p0), (14a)
φ(0, p)= δ(p− p0), (14b)
%(0, x)= δ(x− x0). (14c)

24 The general conversion formulae for the different discretization rules are summarized in Appendix A.
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Adopting the post-point rule (•), the FPE describing the phase space density f ( t, x, p)of the stochastic process (5) is given
by25

∂ f
∂t
+
p
M
∂ f
∂x
+ F ( t, x)

∂ f
∂p
=

∂

∂p

[
α(p)p f + D(p)

∂ f
∂p

]
. (15)

Eq. (15) is a linear partial differential equation in f , i.e., more general general solutions can be obtained by integrating the
special solution with deterministic initial condition (14) over some arbitrary initial distribution f0(x0, p0). Moreover, the
FPE (15) is of first order in time, reflecting the fact that the Langevin equations (5) describe a Markovian process.
If there are no external forces present (i.e., F ( t, x) ≡ 0) then Eq. (15) yields the following FPE for the momentum PDF

φ( t, p)

∂φ

∂t
=

∂

∂p

[
α(p)pφ + D(p)

∂φ

∂p

]
. (16)

The stationary solution of Eq. (16) is given by

φ∞(p)= N exp
[
−

∫ p

−p∗
dp′

α(p′)
D(p′)

p′
]
, (17)

whereN is a normalization constant, and p∗ some arbitrary constant such that the integral in the exponential exists.
The general form (17) of the stationary solution implies that one may generate arbitrary momentum distributions

(e.g., Maxwell, Bose, Fermi or power law distributions) by choosing the friction and noise amplitude functions α(p) and
D(p) in a suitable manner [19,425]. To briefly illustrate this, consider some normalized target PDF φ̂(p)≥ 0. We would like
to fix the relation between α and D such that the stationary solution φ∞(p)coincides with φ̂(p). Equating φ̂(p)with φ∞(p)
from Eq. (17), taking the logarithm and differentiating with respect to pwe find the condition26

α(p)
D(p)

p ≡ −
d
dp
log φ̂(p). (18)

For instance, if a classical nonrelativistic Brownian particle is in thermal equilibrium with the surrounding heat bath, then
φ̂ is a Maxwell distribution

φ̂M(p)= (2πM/β)−1/2 exp[−β p2/(2M)], β := (kBT )−1, (19)

where T is the temperature of the heat bath and kB the Boltzmann constant. In this case, Eq. (18) reduces to the generalized
Einstein fluctuation-dissipation relation [25,112,113]

D(p)= α(p)MkBT = α(p)M/β. (20)

The fluctuation-dissipation relations (18) and (20) do fix only one of the two coefficients α(p) and D(p). Put differently,
one is still free to adapt, for example, the function α(p) such that the stochastic process (5b) exhibits the correct
relaxation behavior. This freedom is a main reason why the Langevin approach is successfully applicable to a wide range of
thermalization processes [112]. Physically reasonable expressions for α(p)may be deduced from kinetic theory [315,316,
426–429] or microscopic Hamiltonian models that take into account the interactions as well as the statistical properties of
the heat bath [21,90–93,96,430]. Examples will be discussed in Section 2.2.
With regard to our subsequent discussion of relativistic Brownian motions, it will be important to keep in mind that

the nonlinear Langevin equations like Eq. (5b) provide a tool for constructing Brownian motion processes with arbitrary
stationary velocity and momentum distributions [19,425].

2.1.2. Nonrelativistic Ornstein–Uhlenbeck process
The standard paradigm for a nonrelativistic Brownian motion process in the absence of external forces is the classical

Ornstein–Uhlenbeck process [46], corresponding to constant coefficients

D(P)≡ D0, α(p)≡ α0, (21)

yielding, e.g., the Ito SDE

dX = (P/M)dt, (22a)

dP = F ( t, X)dt − α0 P dt + (2D0)1/2 ∗ dB( t). (22b)

Note that in this particular case the choice of the discretization rule is not relevant when integrating the momentum
equation (22b), but a rule must be specified when considering nonlinear transformations G(P); cf. remarks in Appendix A.

25 If we had considered Eq. (5b) with another stochastic integral interpretation (e.g., pre-point or mid-point discretization), then the corresponding FPE
would be different from Eq. (16).
26 If re-expressed in terms of the corresponding Ito or Stratonovich–Fisk friction coefficients α∗|◦(p) from Eqs. (10b) and (9b), then the derivative D′(p)
enters the lhs. of Eq. (18), which thus would take the form of a differential equation.



                                             11

Free motion. Considering free Brownian motions with F ( t, x)≡ 0 first, the solutions of Eqs. (5) read explicitly

X ( t)= X (0)+
∫ t

0
ds P(s)/M, (23a)

P( t)= P(0)e−α0t + (2D0)1/2e−α0t
∫ t

0
eα0s ∗ dB(s). (23b)

Combining the solution (23) with Eq. (5d), one finds for the first two moments of the momentum coordinate [46,48]

〈P( t)〉 = P(0)e−α0t , (24a)〈
P( t)2

〉
= P(0)2e−2α0t +

D0
α0
(1− e−2α0t), (24b)

while the first centered moments of the position coordinate are obtained as

〈X ( t)− X (0)〉 =
P(0)
α0M

(1− e−α0t), (25a)

〈
[X ( t)− X (0)]2

〉
=

2D0
(α0M)2

t +
[
P(0)
α0M

]2 (
1− e−α0t

)2
+

D0
α30M2

(
−3+ 4e−α0t − e−2α0t

)
. (25b)

The asymptotic spatial diffusion constantD∞, not to be confused with the noise amplitude D0, is usually defined by

2D∞ := lim
t→ ∞

1
t

〈
[X ( t)− X (0)]2

〉
. (26)

From Eq. (25b) we find for the Ornstein–Uhlenbeck process the classical result27

D∞ := D0/(α0M)2. (27)

The FPE governing the momentum PDF φ( t, p)of the free Ornstein–Uhlenbeck process reads [287]

∂φ

∂t
=

∂

∂p

(
α0pφ + D0

∂φ

∂p

)
. (28)

Adopting the deterministic initial condition (14b), φ(0, p) = δ(p − p0), the time-dependent solution of Eq. (28) is given
by [46,287]

φ( t, p)=
{

α0

2πD0[1− exp(−2α0t)]

}1/2
exp

{
−
α0[p− p0 exp(−α0t)]2

2D0[1− exp(−2α0t)]

}
. (29)

In the limit t → ∞ this solution reduces to the stationary Gaussian distribution

φ∞(p)=
(

α0

2πD0

)1/2
exp

(
−
αp2

2D0

)
. (30)

For a given momentum distribution φ( t, p)of the Brownian particle, the corresponding velocity PDF ψ( t, v) is defined by

( t, v) :=
∣∣∣∣dpdv

∣∣∣∣ φ( t, p(v)), (31)

where p = Mv in the nonrelativistic case. Hence, by imposing again the Einstein relation from Eq. (20), which now reduces
to D0 = α0MkBT , the stationary momentum PDF (30) is seen to be equivalent to Maxwell’s velocity distribution

M(v)=

(
M

2πkBT

)1/2
exp

(
−
Mv2

2kBT

)
. (32)

Moreover, by virtue of the Einstein relation D0 = α0MkBT , the asymptotic diffusion constant from Eq. (27) can be written
in the form

D∞ := kBT /(α0M). (33)

27 A useful integral formula for the diffusion constant for nonlinear one-dimensional Brownian motion processes was derived by Lindner [25] recently,
see Eq. (149).
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External force fields. The FPE describing the phase space density f ( t, x, p)of the stochastic process (22) in an external force
field F ( t, x) reads

∂ f
∂t
+
p
M
∂ f
∂x
+ F ( t, x)

∂ f
∂p
=

∂

∂p

(
α0pf + D0

∂ f
∂p

)
. (34)

Models of this type have been intensely studied during the past century, covering a wide range of application (see, for
example, Ref. [78] for a review). However, for arbitrary time and position dependent force fields F ( t, x) it is generally very
difficult, and in many cases even impossible, to find exact time-dependent solutions of the Fokker–Planck equation (34). In
the simpler case of a time-independent, conservative force field F ( t, x)≡ F (x)with confining28 potentialΦ(x), i.e.,

F (x)= −
∂

∂x
Φ(x), (35)

one can determine the stationary solution attained in the limit t → ∞. Imposing, as above, the Einstein relation D0 =
α0MkBT , the stationary solution of Eq. (34) is given by the Maxwell–Boltzmann distribution [287,288]

f (x, p)= Z−1 exp
{
−β

[
p2

2M
+ Φ(x)

]}
, β := (kBT )−1, (36)

where the normalization constant Z is determined by Eq. (12).
Another important class of applications concerns time periodic force fields, satisfying F ( t, x) = F ( t + 1t, x) for

some fixed period 1t . In this case it is sometimes possible to derive approximate asymptotic solutions of the FPE (34) by
considering the limit t → ∞. These asymptotic solutions are usually also time periodic and can exhibit phase shifts. They
may give rise to a number of interesting phenomena such as, for example, stochastic resonance [431–441].
From the purely mathematical perspective, SDEs define well-defined models of stochastic processes [74]; from the

physicist’s point of view, their usefulness for the description of real systems is a priori an open issue. Hence, before directing
our attention to the relativistic case, it is worthwhile to recall how nonrelativistic Langevin equations can be justified by
means of microscopic models [21,90–96].

2.2. Microscopic models

When considering Langevin equations of the type (5), onemay in principle distinguish between the two following tasks:

(a) One can postulate Langevin equations as phenomenological model equations, study the mathematical consequences
and compare the resulting predictions with experiments in order to (in)validate the theory. Adopting this approach, the
parameters and the explicit functional form of the friction and noise amplitude functions have to be determined from
experimental data [442].

(b) Alternatively, one can try to motivate and derive Langevin equations from microscopic models. If successful, this
approach yields explicit expressions for the friction and noise functions in terms of the microscopic model parameters.

The remainder of this section addresses the latter problem, which has attracted considerable interest over the past
decades [16,21,90–96,415,428,430,443]. Langevin equations provide an approximate stochastic description of the ‘exact’
microscopic dynamics. Hence, in order to derive SDEs from, for example, Hamilton mechanics, one has to impose certain
approximations. These approximations determine the range of applicability of the Langevin approach. Generally, one can
pursue at least two different routes for deriving SDEs of the type (5) from more precise models:

(1) Starting from a Boltzmann-type equation [289,312,444] or master equation [75] for the one-particle probability density
of the Brownian particle, one can try to reduce these integro-differential equations to a Fokker–Planck equation
by performing suitable approximations [16,315,316,415,427–429,443,445–447]. Once the Fokker–Planck equation
has been found, it is straightforward to write down a corresponding Langevin dynamics [75,76]. The microscopic
collision dynamics is then encoded in the scattering cross-sections appearing in the collision integral of the Boltzmann
equation [312,444].

(2) Alternatively, one may start from amicroscopic (e.g., Hamiltonian) model describing the interaction between Brownian
particle and heat bath. After eliminating the heat bath degrees of freedom from the equations of motion for the
Brownian particle [21,90–96,430], one obtains a generalized Langevin equationwhichmay be reduced to the form (5) in
certain limit cases. As a byproduct, the fluctuation-dissipation relations arise quite naturally within this approach upon
assuming a probability distribution for the (initial) bath configuration.

To briefly illustrate the second procedure by example, we next consider the oscillator model [90–96] and the elastic
binary collision model [21]. In contrast to the more frequently studied harmonic oscillator model, the collision model from
Section 2.2.2 can be extended to the relativistic case; cf. discussion in Section 4.5.

28 Conventionally, a potentialΦ(x) is called ‘confining’ if it increases sufficiently fast for |x| → ∞ so that the phase space PDF f is normalizable.
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2.2.1. Harmonic oscillator model
The harmonic oscillator model presents the classical paradigm for constructing a generalized Langevin equation from a

Hamiltonian model [78,90–96]. The Hamiltonian function upon which the derivation is based reads [96]

H =
P2

2M
+ Φ(X)+

∑
r

[
p2r
2mr
+
mrω2r
2

(
xr −

cr
mrω2r

X
)2]

. (37)

Here M , X and P are the mass, position and momentum of the Brownian particle, and Φ(x) is an external potential field;
xr and pr denote the position and momentum of a heat bath particle with mass mr , oscillator frequency ωr and coupling
constant cr . Eq. (37) yields the following Hamilton equations of motions:

Ẋ = (P/M), Ṗ = F (X)+
∑
r

cr

(
xr −

cr
mrω2r

X
)
; (38a)

ẋr = (pr/mr), ṗr = −mrω2r xr + crX, r = 1, . . . ,N, (38b)

where F (x) = −dΦ(x)/dx is the conservative external force acting on the Brownian particle. As evident from Eq. (38),
Brownian particle and heat bath are coupled via linear forces in this model. By formally integrating Eq. (38b) and inserting
the solutions into Eq. (38a), one may eliminate the heat bath coordinates from Eq. (38a), yielding the exact generalized
Langevin equations [93,96]

Ẋ = (P/M), (39a)

Ṗ = F (X)−
∫ t

0
ds ν( t − s)P(s)+ L( t), (39b)

where, for given initial values X (0), P(0), {xr (0), pr (0)}, the memory friction kernel ν( t − s) and the Langevin noise force
L( t)are given by [96]

ν( t − s) :=
1
M

∑
r

c2r
mrω2r

cos[ωr ( t − s)], (39c)

L( t) :=
∑
r

cr

{[
xr (0)−

cr
mrω2r

X (0)
]
cos(ωr t)+

pr (0)
mrωr

sin(ωr t)
}
. (39d)

In order to be able to characterize the properties of the noise force L( t)by means of a fluctuation-dissipation relation, one
still needs to impose a distribution for the initial conditions {xr (0), pr (0)} of the bath variables. In principle, this initial
distribution can be chosen arbitrarily. Of particular interest in canonical thermostatistics are equilibrium distributions of
the Maxwell–Boltzmann type. In the case of the generalized Langevin equation (39), a plausible choice for the initial bath
distribution corresponds to the PDF

fb({xr (0), pr (0)} | X (0)= x0 )= Z−1 exp

{
−β

∑
r

[
pr (0)2

2mr
+
mrω2r
2

(
xr (0)−

cr
mrω2r

x0

)2]}
, (40)

where β = (kBT )−1 is the inverse thermal energy, T the temperature, and Z the normalization constant. The initial
position X (0) = x0 of the Brownian particle enters in Eq. (40) as an independent parameter, i.e., averages with respect
to fb({xr (0), pr (0)} | X (0)= x0)are conditional on the initial Brownian particle position X (0)= x0. Averaging the stochastic
force L( t)with respect to fb from Eq. (40), one finds

〈L( t)〉b = 0, (41a)

〈L( t)L(s)〉b = MkBT ν( t − s). (41b)

Eq. (41b) represents the fluctuation-dissipation relation for the generalized Langevin equation (39) given the initial bath
distribution (40). The generalized Langevin equation (39) differs from Eqs. (5) and (22) through thememory friction ν( t−s).
The SDE (22), describing the Ornstein–Uhlenbeck process in an external force field, is recovered from Eq. (39) in the limit
case 29

ν( t − s)= 2α0 δ( t − s), (42)

where α is a constant friction coefficient. The limit case (42) can be illustrated by rewriting the friction kernel (39c) in the
more general form

ν( t − s)=
∫
∞

0
dω C (ω) cos[ω( t − s)]. (43)

29 The prefactor ‘2’ is required in Eq. (42) because of the convention
∫ t
0 ds δ( t − s)P(s)= P( t)/2.
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By fixing the amplitude function C (ω)as

C (ω)=
1
M

∑
r

c2r
mrω2r

δ(ω − ωr), (44)

one recovers the memory friction (39c) as a special case of Eq. (43). In order to obtain the limit case (42) from Eq. (43), one
can use the cosine-decomposition of the Dirac δ-function

δ( t − s)=
1
2π

∫
∞

−∞

dω eiω( t−s) =
1
π

∫
∞

0
dω cos[ω( t − s)]. (45)

Hence, upon comparing Eqs. (45) and (43), the white noise limit (42) corresponds to the particular choice

C (ω)= (2α0)/π. (46)

The harmonic oscillator model 30 provides a useful microscopic justification for the Langevin equations (5) and (22)
of the Ornstein–Uhlenbeck process. Unfortunately, this model cannot be transferred to special relativity, as it is based on
instantaneous harmonic interactions-at-distancewhich violate fundamental relativistic principles. Therefore, in the last part
of this section we shall consider another microscopic model which is based on strictly localized elastic binary collisions and,
thus, can be extended to special relativity.

2.2.2. Elastic binary collision model
The one-dimensional elastic binary collisionmodel [21,448] is based on the idea that the stochasticmotion of a Brownian

particle (mass M) is caused by frequent elastic collisions with smaller heat bath particles (mass m � M). 31 As before, we
denote the coordinates and momenta of the heat bath particles by {xr , pr}, where r = 1, . . . ,N and N � 1.

Collision kinematics. An elastic collision of the Brownian particle [velocity V , momentum P = MV , kinetic energy E =
P2/(2M)] with a heat bath particle [velocity vr , momentum pr = mvr , kinetic energy εr = p2r /(2m)] is governed by the
energy–momentum conservation laws

E + εr = Ê + ε̂r , P + pr = P̂ + p̂r . (47)

Here, hat-symbols refer to the state after the collision. Taking into account the kinematic conservation laws (47), we find
that the momentum gain1Pr of the Brownian particle per single collision is given by

1Pr := P̂ − P = −
2m
M +m

P +
2M
M +m

pr . (48)

To construct a Langevin-like equation from Eqs. (47) and (48), one considers the total momentum change δP( t) = P( t +
δt)− P( t)of the Brownian particle within the ‘mesoscopic’ time interval [t, t + δt], assuming that:
• collisions occurring within [t, t + δt] can be viewed as independent events;
• the time step δt is sufficiently small, so that there occurs at most only one collision between the Brownian particle and
a specific heat bath particle r and that |δP( t)/P( t)| � 1 holds true;
• δt is still sufficiently large, so that the total number of collisions within δt is larger than 1.

These requirements can be fulfilled simultaneously only if m � M holds. With the above assumptions, one can
approximate

δP( t)≈
N∑
r=1

1Pr Ir ( t, δt), (49)

where Ir ( t, δt) ∈ {0, 1} is the indicator function for a collision with the heat bath particle r during the interval [t, t + δt];
i.e.

Ir ( t, δt)=
{
1 if a collision has occurred in [t, t + δt],
0 otherwise. (50)

In the one-dimensional case, Ir ( t, δt)can be expressed in the form32

Ir ( t, δt)= Θ(X − xr)Θ(x′r − X
′)+Θ(xr − X)Θ(X ′ − x′r), (51a)

30 The quantummechanical generalization of the harmonic oscillator model represents a paradigm for quantum Brownianmotions and has been studied,
for example, in [92,97–103,109]; see also the reviews by Grabert et al. [118] and Hänggi and Ingold [108].
31 Similar approaches are known from unimolecular rate theory — see, for example, Section V in [78]. In the context of quantum Brownian motions, a
quantum-mechanical version of the collision model was proposed and studied by Pechukas [105], and Tsonchev and Pechukas [106].
32 The Heaviside-function Θ(x) is defined as the integral over the Dirac δ-function, i.e., Θ(x) := 0, x < 0; Θ(0) := 1/2; Θ(x) := 1, x > 0. When
considering higher space dimensions, the expression (51) for the indicator function has to be modified accordingly — e.g., by taking into account the
geometric shape of the Brownian particle.
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where X = X ( t), xr = xr ( t)are the ‘initial’ positions of the colliding particles at time t , and

X ′ = X + V δt, x′r = xr + vr δt (51b)

their projected positions33 at time t + δt . The collision indicator from Eq. (51) is characterized by

Ir ( t, 0)= 0, [Ir ( t, δt)]j = Ir ( t, δt), j = 1, 2, . . . . (52)

The Taylor-expansion of Ir at δt = 0 reads [21]

Ir ( t, δt)≈
δt
2
|vr − V |δ(xr − X). (53a)

Combining Eqs. (48), (49) and (53a) yields

δP( t)≈ −2

[
N∑
r=1

m
M +m

Ir ( t, δt)

]
P( t)+ 2

N∑
r=1

M
M +m

pr Ir ( t, δt), (53b)

where, additionally, it was assumed that for each collision occurring within [t, t + δt], the momentum of the Brownian
particle before the collision is approximately equal to the ‘initial’ value P( t). In view ofm� M , Eq. (53b) can be simplified
further to give

δP( t)≈ −2

[
N∑
r=1

m
M
Ir ( t, δt)

]
P( t)+ 2

N∑
r=1

pr Ir ( t, δt). (53c)

A comparison with the Langevin equation (5b) suggests that, heuristically, the first term on the rhs of Eq. (53c) can be
interpreted as a ‘friction’ term, while the second term represents ‘noise’. However, although looking quite similar to a
Langevin equation, Eq. (53c) is still considerably more complicated than, for example, the Langevin equation (5b). This is
due to the fact that the collision indicators Ir ( t, δt) from Eq. (53a) depend not only on the Brownian particle’s position and
velocity but also on the stochastic bath variables {xr , vr}. Nevertheless, it is possible to calculate the statistical properties of
the momentum increments δP( t) from Eq. (53), provided one specifies a distribution for the heat bath particles.

Bath distribution. In principle, one can use Eq. (53) to calculate the statistical moments
〈
(δP)j

〉
b for an arbitrarily given heat

bath PDF f Nb ({xr , pr}). Here, we shall focus on the situation where the (infinitely large) heat bath is given by a quasi-ideal gas
which is in thermal equilibrium with its environment. In this case, the one-particle PDF f 1b (xr , pr) is given by the spatially
homogeneous Maxwell distribution

f 1b (xr , pr)= (2πmkBT )
−1/2 L−1 exp[−p2r /(2mkBT )], (54)

where xr ∈ [0, L]with L being the one-dimensional container volume. Moreover, we will assume that:

• the heat bath particles are independently and identically distributed;
• the distribution of the bath particles is not affected by the collisions with the Brownian particle.

The above assumptions can be justified for a sufficiently large bath, if collisions between the bath particles rapidly
reestablish a spatially homogeneous bath distribution.

Mean drift force. Wedefine themean (momentum) drift as the averagemomentum change 〈δP〉b over the interval [t, t+δt],
given the momentum value P at time t .34 In the case of Eq. (53c), one finds [21,448]

〈δP( t)〉b = −2N
(m
M

)
〈Ir ( t, δt)〉b P + 2N 〈pr Ir ( t, δt)〉b . (55)

To calculate the averages on the rhs we note that, for a spatially uniform bath distribution, as in Eq. (54), one-particle
expectation values of the form 〈G(xr , vr)Ir ( t, δt)〉b can be calculated to first order in δt as [21]

〈G(xr , vr)Ir ( t, δt)〉b =
δt
2L

∫
∞

−∞

dvr G(X, vr)|vr − V |ψb(vr). (56)

Here, ψb(vr)denotes the one-particle velocity PDF of the heat bath particles which, in the case of Eq. (54), is given by the
Maxwellian

b(vr)=
(
v2Bπ

)−1/2
exp(−v2r /v

2
B), vB := (2kBT /m)1/2. (57)

33 Of course, in the case of a collision the position of the particles at time t + δt will be different from the ‘projected’ positions X ′ and x′ .
34 More precisely, one should write the meanmomentum drift in the form of a conditional expectation 〈δP( t) | P( t)= p〉b; however, for ease of notation
we write 〈δP〉b at this stage.
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Fig. 1. Nonrelativistic binary collision model. Mean drift forceK(P)= 〈δP( t)/δt〉b from Eq. (58) with nb = N/L denoting the number density of the heat
bath particles and pB := M(2kBT /m)1/2 the characteristic momentum of a Brownian particle (massM), surrounded by heat bath particles of mass m and
temperature T .

By making use of Eq. (56), one obtains for the mean drift of the collision model:35

〈δP( t)〉b ≈ −2nb kBT

{
π−1/2

(
P
pB

)
exp

[
−

(
P
pB

)2]
+

[(
P
pB

)2
+
1
2

]
erf
(
P
pB

)}
δt, (58)

where nb = N/L is the number density of the heat bath particles, pB := MvB = M(2kBT /m)1/2 a characteristic thermal
momentum scale, and the error function erf(z) is defined by

erf(z) :=
2
√
π

∫ z

0
dx e−x

2
.

Fig. 1 depicts the mean drift force

K(P) := 〈δP( t)/δt〉b , (59)

obtained fromEq. (58). The absolute value of this drift force grows linearly for smallmomentumvalues (Ornstein–Uhlenbeck
regime) and quadratically for large momentum values.
In the remainder of this section,we are going to illustrate howone can use the result (58) to obtain a systematic procedure

for approximating the model equations (53) by a nonlinear SDE of the type (5b).

Langevin approximation. Similar to the oscillator equation (39), the Eq. (53c) for the momentum increments δP( t) in the
binary collision model is not yet a Langevin equation. SDEs of the type

dP( t)= −α(P)P dt + [2D(P)]1/2 • dB( t) (60)

are phenomenological model equations that provide a simplified description of themicroscopic dynamics, which in the case
of the collision model is more precisely described by Eq. (53c). Therefore, to obtain a useful Langevin model, the coefficients
α(p) and D(p)have to be chosen such that they yield the best possible approximation within this class of SDEs defined by
Eq. (60). Plausible general criteria for the ‘best approximation’ can be formulated as follows:
The stochastic process described by Eq. (60) should
• approach the correct stationary momentum distribution;
• exhibit the correct mean relaxation behavior.

The first criterion is equivalent to imposing the appropriate fluctuation-dissipation relation on the functions α and D. For
the elastic collisionmodel considered here, the expected stationarymomentum PDF of the Brownian particle is given by the
Maxwell distribution

φ∞(p)= (2πMkBT )−1/2 exp
[
−p2/(2MkBT )

]
. (61)

According to the discussion in Section 2.1.1, this implies that α and Dmust be coupled by the Einstein condition

D(P)= α(P)MkBT . (62)

The second (drift) criterion can be expressed mathematically as36〈
dP( t)
dt

∣∣∣∣ P( t)= p〉 != 〈δP( t)δt

∣∣∣∣ P( t)= p〉
b
. (63)

35 Higher moments and correlation functions may be calculated in a similar manner.
36
〈 · |P( t)= p〉 denotes by the conditional expectation with respect to the Wiener measure of the Brownian motion B( t).
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Fig. 2. Nonrelativistic binary collision model. (a) Friction coefficient α∞(p)= −K(p)/p from Eq. (66) with nb = N/L denoting the number density of the
heat bath particles and pB := M(2kBT /m)1/2 the characteristic momentum of a Brownian particle (massM), surrounded by heat bath particles of massm
and temperature T . (b) The ratio χ(p) from Eq. (67) as a measure for the quality of the approximation α∞(p).

Taking into account the Einstein relation and Eq. (11a), the lhs. of Eq. (63) is given by〈
dP( t)
dt

∣∣∣∣ P( t)= p〉 = −[α(p)p− α′(p)M kBT ], (64a)

where α′(p) := dα(p)/dp. The rhs of Eq. (63) is obtained by substituting P = p on the rhs of Eq. (58), yielding, i.e.,〈
δP( t)
δt

∣∣∣∣ P( t)= p〉
b
= K(p), (64b)

where the mean drift force K was defined in Eq. (59). Hence, by virtue of Eq. (64), we see that the drift criterion (63) is
equivalent to the following ordinary differential equation (ODE) for α(p):

−α(p)p + α′(p)M kBT = K(p). (65)

With respect to the two criteria formulated above, the solution of this ODE gives the friction function α that provides the
‘best’ Langevin approximation to the binary collision model. The initial condition for α(p)must be specified such that the
correct asymptotic behavior is obtained [448]. Information about the collisionmodel and the bath distribution is encoded in
the mean drift forceK(p). Evidently, the procedure leading to Eq. (65) can be generalized to other interaction models/bath
distributions as well — provided the stationary distribution of the Brownian particle is known. Other types of interactions
(e.g., nonelastic) would result in another functionK(p). A non-Maxwellian bath distribution would affect not only the rhs
of Eq. (65) but also its lhs. due to a modified fluctuation-dissipation relation.
Unfortunately, it is usually very difficult or even impossible to find the exact analytical solution of the ODE (65) for a

realistic drift functionK(p). For practical purposes, one can obtain useful approximations, for example, by considering the
asymptotic behavior for p → ∞ and p → 0, respectively. In the case of the collisionmodel, one finds that the approximation

α(p)' −K(p)/p =: α∞(p), (66)

which becomes exact for p → ∞, is also applicable at small |p|-values, if m � M . This is illustrated in Fig. 2(b), which
depicts the dimensionless ratio

χ(p) := [−α∞(p)p + α′∞(p)MkBT ]/K(p). (67)

The functionχ is an indicator for the quality of the approximative solution α∞(p), which is plotted in Fig. 2(a). As evident
from the dotted curve in Fig. 2(b), form� M the functionχ is close to unity even for small values |p|. Thismeans thatα∞ is a
good approximation to the exact solution of Eq. (65). Thus, a Langevin equation of the type (60)withα∞(p)from Eq. (66) and
D(p)= α∞(p)MkBT yields the correct stationary momentum distribution (61) and exhibits almost exactly the same mean
relaxation behavior as Eq. (53). In particular, such a nonlinear Langevin equation provides a considerably more accurate
description of the Brownian motion in a gaseous heat bath than, for example, a classical Ornstein–Uhlenbeck process with
constant friction and noise coefficients, cf. Eq. (22b). For instance, an Ornstein–Uhlenbeck (or Stokes-like) approximation is
obtained by replacing α∞(p) through its minimum value

α0 := α∞(0)= −K ′(0)= nb
m
M

(
8kBT
πm

)1/2
(68)

and fixing the Einstein relation D(p) = α0M kBT =: D0. Adopting these additional simplifications, the corresponding
Ornstein–Uhlenbeck process can be expected to provide a useful description for slow Brownian particles at sufficiently
low temperature values T .
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Similar to the harmonic oscillator model from Section 2.2.1, the collision model provides useful insights into the
approximations that must be made in order to obtain a Langevin equation from a microscopic model. Compared with
the oscillator model, an advantage of the collision model is given by the fact that it can be extended to special relativity,
cf. Section 4.5.
From a more general perspective, the above examples illustrate which objectives can(not) be achieved by

phenomenological Langevin models that are based on Brownian motion processes. Langevin equations of this type, and
their corresponding Fokker–Planck equations, provide a simplified description of the underlying microscopic dynamics.
The coefficient functions in the Langevin/Fokker–Planck equations allow one to construct stochastic processes that exhibit
the same asymptotic relaxation behavior and approach the same stationary or asymptotic distribution as the actual physical
process. Stationary distributions can often be inferred from thermostatistical (e.g., maximum entropy) principles, while the
relaxation behavior must be deduced from the exact microscopic dynamics. In many cases, the resulting stochastic models
are sufficient for comparing with experimentally accessible data, but they may become inaccurate for describing higher
order correlations and/or the relaxation dynamics far from the asymptotic state.

2.3. Remarks and generalizations

In this section we have focused on the most commonly considered examples of nonrelativistic Brownian motion
processes, described by SDEs of the type (5). Such nonrelativistic Langevin equations have been studied extensively in
various contexts over the past decades (see, e.g., the reviews [78,112]). The list of successful applications covers a wide
range of different areas including laser physics [112,113,449], optical lattices [450,451], plasma physics [452–455], high
energy physics [315,316], biologically and chemically motivated population and reaction dynamics [456], active Brownian
motionmodels [429,457–462], or theoretical and experimental studies of excitation and transition phenomena in nonlinear
systems [463–466].
The stochastic processes defined by Eq. (5) share, as a common feature, that the underlying noise source is modeled by a

standardWiener process B( t). In general, one can also consider other driving processes such as Poisson processes [74,76] or
Lévy processes [467–471], which may give rise to so-called anomalous super- or sub-diffusion effects; see, e.g., the reviews
by Bouchaud and Georges [116] and Metzler and Klafter [117].37 Furthermore, one can abandon the assumption (4b) of
δ-correlated ‘white’ noise by considering stochastic processes that are driven by ‘colored’ noise, for example, by replacing
Eq. (4b) with an exponential correlation

〈ζ ( t)ζ (s)〉 =
1
τn
exp(−|t − s|/τn), (69)

where the parameter τn is the relaxation time of the driving noise ζ . The mathematical analysis of processes driven by
colored noise is considerablymore complicated than in the case of δ-correlated white noise (see Ref. [114] for a review). The
study of non-Gaussian and/or colored driving processes within a relativistic framework still represents an open problem for
the future. By contrast, the relativistic generalization of stochastic processes of the type (5) has been the subject of intense
research in recent years, leading to the relativistic Brownian motion theory described in Section 4.

3. Relativistic equilibrium thermostatistics

The brief summary of nonrelativistic Brownian motion theory in the preceding section shows that equilibrium
thermostatistics plays an important role in constraining the relation between friction and noise coefficients in Langevin
equations bymeans of suitably chosen fluctuation-dissipation relations.Moreover, a priori knowledge about the equilibrium
properties of the heat bath is required if one wishes to derive (generalized) Langevin equations from microscopic models.
Therefore, the present section intends to summarize relevant aspects of relativistic equilibrium thermostatistics in order to
provide for the subsequent discussion of relativistic Langevin equations in Section 4. This part is structured as follows.
Section 3.1 introduces some notation and discusses general properties of relativistic probability density functions.

Section 3.2 focuses on the thermostatistics of stationary systems, since these will play the role of a heat bath later on.
In this context, particular emphasis will be placed on the relativistic generalization of Maxwell’s distribution for the
following reason: Nonrelativistic Brownian motion models such as the classical Ornstein-Uhlenbeck process are in obvious
conflict with special relativity because they permit particles to move faster than the speed of light c. Most directly, this
can be seen from the stationary velocity distribution, which is a Maxwell velocity distribution and thus non-zero for
velocities |v| > c . The recent literature has seen some debate about the correct generalization of Maxwell’s distribution
in special relativity [22,196,198,199,232,475]. In Section 3.2 we shall discuss recent molecular dynamics simulations [202]
which favor a distribution that was proposed by Jüttner [186] in 1911, i.e., six years after Einstein had formulated his theory
of special relativity [2,3]. In addition to its relevance with regard to relativistic Brownian motion theory, the Jüttner gas also

37 Anomalous diffusion processes [472–474] exhibit a nonlinear growth of the mean square displacement, for example, of the form to tκ with κ > 1 and
κ < 1 corresponding super- and sub-diffusion, respectively [117,467].
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provides a useful model for illustrating the subtleties of relativistic thermodynamics. The latter topic is discussed separately
in Appendix C, also addressing the controversy that has surrounded the Lorentz transformation laws of temperature and
other thermodynamic quantities over the past 100 years [121,122,127–149,156,158–160,165,166,169,171,172,178,214,215,
217,234,476].

3.1. Preliminaries

Section 3.1.1 summarizes definitions and notational conventions.38 Subsequently, the ‘peculiar’ Lorentz transformation
behavior of one-particle phase space probability density functions (PDFs) will be addressed.

3.1.1. Notation and conventions
In special relativity, an inertial frame Σ corresponds to a global Cartesian spacetime coordinate system. A spacetime

event E is labeled by a (1 + d)-dimensional coordinate tuple x̄ = (xα) = (ct, x) = ( t, x1, . . . , xd) in Σ , where d is the
number of space dimensions and, adopting natural units from now on, the speed of light c = 1. Upper and lower Greek
indices α, β, . . . take values 0, 1, . . . , d, and we use Latin indices i, k, . . . ∈ {1, . . . , d} for the spatial components. Vectors
with upper indices are called contravariant.
With respect to the Cartesian coordinate frameΣ , the components ηαβ of the metric tensor of flat Minkowski spacetime

are defined by [6]

ηαβ =

{
−1 α = β = 0
+1 α = β = 1, . . . , d
0 α 6= β.

(70)

By definition, the components of the covariant vector (xα) are obtained by contracting the contravariant vector (xα)with
ηαβ , i.e., 39

xα :=
d∑

β=0

ηαβxβ =: ηαβxβ ⇒ (xα)= (−t, x). (71)

The tuples (xα)and (xα)will be called four-vectors, regardless of the number of space dimensions. The corresponding four-
vector gradients are defined by

(∂α) :=

(
∂

∂xα

)
=

(
∂

∂t
,
∂

∂x1
, . . . ,

∂

∂xd

)
=

(
∂

∂t
,∇

)
, (72a)

(∂α) :=

(
∂

∂xα

)
=

(
−
∂

∂t
,
∂

∂x1
, . . . ,

∂

∂xd

)
=

(
−
∂

∂t
,∇

)
. (72b)

The components ηαβ of the inverse metric tensor are determined by the condition

xα != ηαβxβ = ηαβηβγ xγ ∀ (xα), (73a)

or, equivalently, by

ηαβηβγ
!
= δαγ , (73b)

where δαγ is the Kronecker δ-symbol, yielding

ηαβ = ηαβ . (74)

The Minkowski spacetime distance between two events x̄A = (xαA)= ( tA, xA)and x̄B = (x
α
B)= ( tB, xB) is defined by

d( x̄A, x̄B)2 := ηαβ (xαA − x
α
B)(x

β

A − x
β

B )

= −( tA − tB)2 + (xA − xB)2. (75)

By definition, the separation of two events is

• time-like, if d( x̄A, x̄B)2 < 0;
• light-like, if d( x̄A, x̄B)2 = 0;
• space-like, if d( x̄A, x̄B)2 > 0.

38 For a more detailed introduction to special relativity we refer to Weinberg [6] or Sexl and Urbantke [8].
39 Throughout, we will use the Einstein summation convention defined in Eq. (71).
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Events with time-like separation can be causally connected by (a series of) signals travelling slower or equal to the speed
of light. Events with light-like separation can be causally related only by undisturbed signals travelling at the speed of light.
Events with space-like separation are causally disconnected.
The classical motion of a massive point-like particle through spacetime corresponds to a sufficiently smooth, time-like

curve inΣ , referred to as world-line. Consider a stationary observerO, who is at rest inΣ . It is natural thatO parameterizes
the particle motion using the coordinate time t ofΣ , i.e.,O describes the world-line as a curve (x0( t), xi( t))with x0( t)= t .
In the vicinity of any point (event) on the particle’s world-line, an infinitesimal proper time differential can be defined by

dτ := (−ηαβdxαdxβ)1/2 = (dt2 − dx2)1/2 = dt (1− v2)1/2, (76)
where v( t) := dx( t)/dt is the particle velocity inΣ . According to the postulates of special relativity, dτ is the time interval
measured by an intrinsic clock, comoving with the particle, whereas dt is the coordinate time interval measured by a clock
at rest in Σ . The four-velocity (uα) of a massive particle is defined as the derivative of the world-line with respect to its
proper time,

uα :=
dxα

dτ
⇒ uαuα = −1. (77)

For a point-like particle with rest mass m > 0, the energy–momentum four-vector (pα) = (p0, p1, . . . , pd) = (ε, p) is
defined by

pα := muα ⇒ pαpα = −m2. (78)
Upon comparing with (76), one finds for a particle with velocity v inΣ

p0 = ε = mγ (v), p = mγ (v)v, γ (v) := (1− v2)−1/2. (79)

Lorentz–Poincaré transformations. In special relativity affine-linear Lorentz–Poincaré transformations (LPTs) of the form

x̄′ = Λx̄+ ā ⇔ x′α = Λαβxβ + aα (80a)
describe the transition from an inertial frameΣ to another inertial frameΣ ′. The constant four-vector aα shifts the origins
of time and space, while the constant Lorentzmatrix (Λαβ)may account for a spatial rotation, a change of orientation and/or
a relative velocity between the two framesΣ andΣ ′ [6]. The matrix componentsΛαβ are determined by the condition

d( x̄′A, x̄
′

B)
2 !
= d( x̄A, x̄B)2 ⇔ ΛαγΛ

β
δηαβ

!
= ηγ δ, (80b)

which means that causal relations remain preserved during transitions between inertial systems. The LPTs (80) form a
group.40 Of particular interest for our purpose, is the subgroup of proper Lorentz transformations (LTs), defined by aα = 0
and the additional constraints

Λ00 ≥ 1, det(Λαβ)= +1. (81)
The requirements (81) exclude time reversal and space inversion. Examples are pure rotations

Λ00 = 1, Λi0 = Λ
0
i = 0, Λij = Rij, (82)

where (Rij) is a rotation matrix [i.e., det(Rij)= 1 and RijRkj = δij], and Lorentz boosts [6]

Λ00 = γ , Λi0 = Λ
0
i = −γw

i, Λij = δ
i
j +

wiwj

w2
(γ − 1) (83)

with velocityw = (w1, . . . , wd)and Lorentz factor γ := (1−w2)−1/2. To briefly illustrate the effect of a boost, consider a
particle at rest in the spatial origin ofΣ and, therefore, being described by the world-line (xα( t))≡ ( t, 0) inΣ . By applying
the Lorentz boost (83) to (xα)= ( t, 0), we find

x′0 = Λ00x0 = γ t = t ′, x′i = Λi0x0 = −γwit = −wit ′, (84)
which means that the particle travels at constant velocity w ′ = −w throughΣ ′; i.e.,Σ ′ moves with velocity w relative to
Σ . The inverse of the transformation matrix Eq. (83) is obtained by replacingw with−w.
From Eq. (80) and the definition (78) of the four-momentum, one finds the relativistic energy–momentum

transformation law
p′α = Λαβpβ . (85)

Combining Eqs. (85) and (80b), one can verify the well-known mass-shell condition

m2 = ε2 − p2 = ε′2 − p′2 = m′2, (86)
which means that the rest massm is a Lorentz invariant. In particular, the mass shell condition (86) implies that Eq. (85) is
equivalent to a restricted nonlinear transformation p 7→ p′ = p(p′), given by

p′i(p)= Λi0(m2 + p2)1/2 +Λijpj. (87)

40 For group theoretical aspects of Lorentz transformations see, e.g., Refs. [6,8,9].
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Fig. 3. The solid curves represent two world-lines starting at the same spacetime point (dashed lines indicate the forward lightcone) The one-particle
phase space PDF f ( t, x, p)measures the number of world-lines that pierce through the hyperplane ‘‘t = constant’’ within the interval [x, x + dx] while
having momentum values in the range [p, p + dp]. Similarly, the PDF f ′( t ′, x′, p′)measures the number of world-lines piercing through the hyperplane
‘‘t ′ = constant’’ within the interval [x′, x′ + dx′]while having momenta in the range [p′, p′ + dp′].

3.1.2. Probability densities in special relativity
With regard to the subsequent discussion, it is worthwhile to address a few subtleties concerning the definition and

transformation behavior of probability density functions (PDFs) in special relativity [151,230].

Relativistic one-particle phase space distributions. To start with, we consider the one-particle phase space PDF f ( t, x, p)≥ 0,
where ( t, x, p)aremeasuredwith respect to the inertial ‘lab’ frameΣ . For a relativisticmany-particle systemwith conserved
particle number N (e.g., a gas of identical particles), the function f can be defined operationally as follows [151]:
An observer O, who is at rest inΣ and observes the system atΣ-time t , finds

N f ( t, x, p) ddxddp

particles in the 2d-dimensional phase space interval [x, x+ dx] × [p, p+ dp]. Assuming that the dynamics of each particle
is described by functions Xr ( t)and Pr ( t) inΣ , the fine-grained one-particle PDF f of the N-particle system is defined by41

f ( t, x, p)= N−1
N∑
r=1

δ(x− Xr ( t)) δ(p− Pr ( t)). (88a)

From this definition it is evident that f satisfies the t-simultaneous normalization condition

1 =
∫
ddxddp f ( t, x, p). (88b)

Note that this integral is taken along the hyperplane ‘‘t = constant’’ inΣ .
Alternatively, when considering, for example, the randommotion of a single Brownian particle in a fluctuating medium,

the quantity f ( t, x, p)ddxddp can be interpreted as the probability offinding the Brownian particle at lab time t in [x, x+dx]×
[p, p + dp]. In the latter case, it is usually assumed that a potential trajectory is realized with a certain a priori probability.
Mathematically, this idea is implemented by introducing latent variables ω in order to label the potential trajectories42 by
writing X ( t;ω)and P ( t;ω). The assignment of a priori probabilities is equivalent to specifying a PDFΦ(ω)on the set of the
latent variables {ω}. In this case, the phase space density f inΣ is defined by [151,230]

f ( t, x, p)=
∫
dω Φ(ω) δ(x− X ( t;ω)) δ(p− P ( t;ω)), (88c)

and this f is again subject to the normalization condition (88b).
Eq. (88) refer explicitly to the inertial rest frameΣ of the observerO. Now consider a second observerO′ at rest in another

inertial frameΣ ′ that moves with constant velocityw 6= 0 relative toΣ . Employing an analogous operational definition as
O, the moving observer O′ will measure another distribution f ′( t ′, x′, p′)and so arises the question how the two functions
f ′( t ′, x′, p′) and f ( t, x, p) are related to each other. In the nonrelativistic theory, the change from one inertial system to
another does not affect the time coordinate; hence, one can use the standard transformation laws for PDFs in that case [see,
e.g., Eq. (31)]. By contrast, the situation becomes more complicated in the relativistic theory, because now the definition of
f and f ′ is based on an observer-dependent notion of simultaneity: Themeasurements ofO andO′ refer to the two different
hyperplanes ‘‘t = constant’’ and ‘‘t ′ = constant’’ in Minkowski space, respectively. This is illustrated in Fig. 3.

41 Since the kinetic momentum Pr is uniquely linked to the velocity Vr ( t) := dXr ( t)/dt , the definition (88a) formalizes the idea of classifying the particle
curves Xr ( t)according to their positions and time derivatives at time t .
42 For example, if the particle dynamics in Σ is described by differential equations of the form dX ( t)/dt = V [X ( t), P ( t)], dP ( t)/dt = K [X ( t), P ( t)]
with given (well-behaved) functions V : Rd × Rd → Rd and K : Rd × Rd → Rd , then a trajectory is uniquely determined by specifying the values
X ( t0)= x0 and P ( t0)= p0 at some instant t0 inΣ . In this case, one could choose ω = (x0, p0). More generally, ω could also label different realizations of
some background field which affects the particle dynamics.
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In an insightful paper [151] published in 1969, van Kampen proved that the one-particle phase space PDF f transforms
as a Lorentz scalar, i.e.,43

f ( t, x, p)= f ′( t ′, x′, p′), (89)
where ( t, x, p) and ( t ′, x′, p′) are connected by Lorentz transformations. His (first) proof of Eq. (89) merely uses an
assumption about the uniqueness of particle trajectories and a reparameterization of the particles trajectories in terms
of their invariant proper times (cf. Section 3 in [151]). As a consequence, Eq. (89) represents a generic kinematical result and
applies to a broad class of interaction models. Furthermore, van Kampen showed that44∫

ddx′ddp′ f ( t ′, x′, p′)=
∫
ddxddp f ( t, x, p), (90a)

implying that the function f ′ satisfies the t ′-simultaneous normalization condition

1 =
∫
ddx′ddp′ f ( t ′, x′, p′). (90b)

We next summarize a few consequences of Eq. (89).

Density-current vector. Equation (89) implies that the quantities

%( t, x)=
∫
ddp f ( t, x, p) (91a)

j( t, x)=
∫
ddp f ( t, x, p) v, (91b)

where v = p/ε = p/p0 is the particle velocity, can be combined into a density-current four-vector field j̄( x̄)= ( jα)= (%, j).
As any covariant vector field, j̄ transforms under a Lorentz transformation x̄ 7→ x̄′ = Λx̄ as

j̄′( x̄′)= Λj̄(Λ−1x̄′)= Λj̄( x̄). (92)
The four-vector character of ( jα)becomes particularly evident by rewriting Eq. (91) in the form

jα( t, x)=
∫
ddp
p0
f ( t, x, p) pα, (93)

where
ddp
p0
=
ddp′

p′0
(94)

is invariant under Lorentz transformations [151,312]. Furthermore, as shown in Section 4 of van Kampen’s paper [151], jα
satisfies the continuity equation

∂α jα =
∂

∂t
% +∇ · j = 0, (95)

stating the conservation of particle number or probability, in agreement with Eq. (90a). The kinematical proof of Eq. (95)
as given in [151] does not require knowledge about the equations of motions, but uses only the existence of the particle
trajectories.

Energy–momentum density tensor. Equation (93) can be generalized to define a symmetric energy–momentum (density)
tensor field by [151,312]

θαβ ( t, x)=
∫
ddp
p0
f ( t, x, p) pαpβ . (96)

In particular, the ‘‘00’’-component gives the (kinetic) energy density per particle. In contrast to the particle number
conservation law (95), the conservation of the energy–momentum tensor is a dynamical propertywhich requires knowledge
about the equations of motions (see example in the next section).
In principle, ‘‘higher moment tensors’’ can be defined in a similar manner:

θ̂αβγ ...( t, x)=
∫
ddp
p0
f ( t, x, p) pαpβpγ . . . . (97)

However, conventional thermodynamic and hydrodynamic analysis [164,177,477] usually focuses on relations involving jα
and θαβ .

43 One can find several insufficient ‘proofs’ of Eq. (89) in the literature, cf. the discussion in [151,230]. In this context it is sometimes claimed, erroneously,
that the phase space element ddxddp is a Lorentz scalar; in Section 2 of their paper, Debbasch et al. [230] demonstrate that this is not true in general.
44 The result (90a) is nontrivial due the fact that the integrals refer to different hyperplanes ‘‘t = constant’’ and ‘‘t ′ = constant’’ in Minkowski spacetime,
respectively. The proof of Eq. (90a) follows from Gauss’ theorem, by making use of the fact that the absolute particle velocities are bounded by the speed
of light c = 1, cf. Eqs. (34) and (35) in [151].
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Marginal momentum distributions. The zero-component %( t, x) of the density-current vector j̄( x̄), defined in Eq. (91a),
can be interpreted as the marginal distribution of the particle positions. Similarly, one may define marginal momentum
distributions with respect toΣ andΣ ′ by

φ( t, p)=
∫
ddx f ( t, x, p), (98a)

φ′( t ′, p′)=
∫
ddx′ f ′( t ′, x′, p′). (98b)

Again, φ and φ′ refer to different hyperplanes in Minkowski spacetime, respectively. Thus, in general, it is impossible to
calculateφ′ fromφ alone or vice versa. There exist, however, a few exceptions such as, for example, a systemof freelymoving,
identical particles (i.e., no interactions, no external fields, no walls). In any inertial frame, such a collection of particles is
described by a time-dependent45 one-particle phase space PDF f satisfying [151]

f ( t, x, p)= f (0, x− vt, p), (99)

where v = p/(m2 + p2)1/2 is the velocity. Moreover, since the individual particle momenta do not change, the marginal
momentum distribution must be time-independent in any inertial frame. In particular, in this case – and only in this case –
it is true that each particle observed by O as having momentum p is observed by O′ as having momentum p′, i.e., [151]

φ(p)ddp = φ′(p′)ddp′, (100)

where p′(p) is the restricted Lorentz transformation from Eq. (87). Taking into account that ddp′ = (p′0/p0)ddp, cf. Eq. (94),
one thus obtains

(m2 + p2)1/2 φ(p)= (m2 + p′2)1/2 φ′(p′). (101)

It should be stressed again that this formula holds true only in the case of an unconfined, non-interacting systems; it is not
valid anymore in the presence of a confinement (see example in Section 3.2).

Multi-particle distributions. The discussion in the remainder mostly concerns one-particle distributions. Nonetheless, we
mention that Eq. (89) can be generalized to the case of N-particle phase space PDFs fN , yielding [151]

fN ( t1, x1, p1; . . . ; tN , xN , pN)= f ′N ( t
′

1, x
′

1, p
′

1; . . . ; t
′

N , x
′

N , p
′

N), (102)

where for n = 1, . . . ,N the coordinates ( t ′n, x
′
n, p
′
n)and ( tn, xn, pn)are connected by a Lorentz-transformation, and fN is the

multiple-time probability density for the lab observer O to observe particle 1 at time t1 near (x1, p1), and particle 2 at time
t2 near (x2, p2), etc.
The above results clarify the transformation behavior of PDFs in special relativity, but they do not yet answer the question

as towhich PDF provides the correct description for a given physical system as, for example, a relativistic gas in equilibrium.
The latter problem will be addressed in the next part.

3.2. Stationary systems with confinement

Of particular relevance in equilibrium thermodynamics are confined systems that can be described by an isotropic,
stationary PDF f ( t, x, p) = ϕ(x, p) in a specific inertial frame Σ . A typical example is an equilibrated gas, enclosed in a
container box which is at rest in the lab frameΣ . In standard Brownian motion theory, such systems often play the role of
the heat bath.

3.2.1. General remarks

Lab frame. In the lab frameΣ , a spatially homogeneous gas is described by a PDF of the form

ϕ(x, p)= V−1 I(x;V) φ(p), (103a)

where V = λd(V) is the rest volume number (i.e., the Lebesgue measure [478]) of the spatial container region V ⊂ Rd inΣ ,
and I(x;V)denotes the indicator function of the box, i.e.,

I(x;V) :=
{
1, x ∈ V,
0, x 6∈ V. (103b)

45 We assume that at least two particles have different velocities.
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To be more specific, we consider a cubic container of length L such that V = [−L/2, L/2]d. In this case, V = λd(V)= Ld and
the indicator function can be expressed as

I(x;V) :=
d∏
i=1

Θ(L/2+ xi)Θ(L/2− xi). (104)

Isotropy and stationarity of the gas in the lab frame Σ require the marginal momentum distribution to be rotationally
invariant, φ(p)= φ̂( |p|), yielding for the four-current ( jα)= (%, j) inΣ

%( t, x)= V−1 I(x;V), (105a)

j( t, x)= 0. (105b)

It is obvious that this current satisfies the continuity equation (95), ∂α jα = 0. Furthermore, due to the isotropy of the
momentum distribution φ inΣ , the energy–momentum tensor (96) becomes diagonal with components given by46

θαβ ( t, x)= V−1 I(x;V)

{
〈ε〉 , α = β = 0,
〈p · v〉 /d, α = β = 1, . . . , d,
0, α 6= β.

(106a)

Here, we have defined the one-particle mean values

〈ε〉 :=

∫
ddp φ(p) ε, (106b)

〈p · v〉 :=
∫
ddp φ(p) p · v (106c)

with ε(p)= (p2 +m2)1/2 denoting the energy of a gas particle, and v(p)= p/ε the velocity.
It is worthwhile to calculate the four-divergence of the energy momentum tensor:

∂αθ
αβ
= (Vd)−1 〈p · v〉

{
0, β = 0,
∂iI(x;V), β = i, (107a)

where, in the case of a cubic box V := λd(V)= [−L/2, L/2]d, we find

∂iI(x;V)=
[
δ(L/2+ xi)− δ(L/2− xi)

]∏
j6=i

Θ(L/2+ xj)Θ(L/2− xj); (107b)

i.e., the boundaries are sources of stress [152].47
To illustrate the meaning of the energy–momentum tensor θαβ , consider the mean (integrated) energy–momentum

vector 〈
pβ
〉
t :=

∫
ddxddp f ( t, x, p) pβ . (108a)

This quantity can be rewritten in terms of θαβ as follows:〈
pβ
〉
t =

∫
ddx θ0β ( t, x)=

∫
t
dσα θαβ ( t, x). (108b)

The directed surface element normal to the hyperplane ‘‘t = constant’’ in Σ-coordinates is given by (dσα) = (ddx, 0);
cf. Appendix B. Thus, a d-dimensional spatial integration in Σ is equivalent to a surface integral over the hyperplane
‘‘t = constant’’ in (1+ d)-dimensional Minkowski space. For the energy–momentum tensor (106) one finds explicitly〈

pβ
〉
t =

{
〈ε〉 , β = 0,
0, β 6= 0. (108c)

It is important to note that 〈pβ〉t is a non-local quantity, as it represents a sum over components of the energy–momentum
tensor at different spacetime points. As emphasized by Gamba [476] and discussed below, this aspect becomes relevant if
one considers the question of how a moving observer O′ could, in principle, determine 〈pβ〉t .

46 As usual, we denote by p ·v the ordinary Euclidean scalar product of two d-dimensional vectors p = (pi)and v = (vi), i.e., p ·v :=
∑d
i=1 p

ivi . Moreover,
we abbreviate p2 := p · p = pipi =

∑d
i=1 p

ipi.
47 Usually, it is assumed that the momentum conservation violation of the gas, ∂αθ

αβ
gas 6= 0, is compensated for by the energy–momentum tensor θ

αβ

conf of
the confinement (environment), i.e., ∂α (θ

αβ
gas + θ

αβ

conf)≡ 0; a similar problem occurs in continuummodels of the electron, cf. [479].
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Moving frame. Consider an observer O′ who is at rest in a frame Σ ′ that moves at velocity w = (w, 0, . . . , 0) along
the x1-axis of Σ . Denoting the spacetime coordinates and four-momentum in Σ by (xα) = ( t, x1, . . . , xd) and (pα) =
(ε, p1, . . . , pd)= (ε, p)and those inΣ ′ by (x′α)= ( t ′, x′1, . . . , x′d)and (p′α)= (ε′, p′1, . . . , p′d)= (ε′, p′), we obtain from
Eqs. (80a), (83) and (87) the explicit Lorentz transformations

t ′ = γ ( t − wx1)
x′1 = γ (−wt + x1)
ε′ = γ (ε − wp1)
p′1 = γ (−wε + p1)
x′j = xj

t = γ ( t ′ + wx′1)
x1 = γ (wt ′ + x′1)
ε = γ (ε′ + wp′1)
p1 = γ (wε′ + p′1)
pj = p′j j = 2, . . . , d,

(109)

where γ = γ (w) = (1 − w2)−1/2 is the Lorentz factor; ε = (m2 + p2)1/2 and ε′ = (m2 + p′2)1/2 denotes the relativistic
energy, respectively. FromEq. (109) one can obtain an explicit expression for the phase space PDF f ′measured by themoving
observer. If the observer moves at three-velocityw = (w, 0, . . . , 0) through the lab frame, then from her point of view, the
container box moves at velocity

w ′ = (w′, 0, . . . , 0)= (−w, 0, . . . , 0)= −w (110)

through Σ ′. By inserting Eqs. (109) and (110) into Eq. (89) for a stationary lab distribution of the form (103a), one obtains
the PDF f ′ in the moving frameΣ ′ as

f ′( t ′, x′, p′)= V−1 I(γ (−w′t ′ + x′1), x′2 . . . , x′d;V)φ(γ (−w′ε′ + p′1), p′2, . . . , p′d). (111)

While the phase space PDF f was stationary in Σ , the associated PDF f ′ is not stationary in Σ ′ due to the motion of the
container box.48 Considering the representation (104) of the indicator function I in Σ , one can introduce a corresponding
quantity I′ inΣ ′ by

I′( t ′, x′;V) := I(γ (−w′t ′ + x′1), x′2, . . . , x′d;V)

= Θ(L/2+ γ (x′1 − w′t ′))Θ(L/2− γ (x′1 − w′t ′))
d∏
i=2

Θ(L/2+ x′i)Θ(L/2− x′ i)

= Θ(L′/2+ (x′1 − w′t ′))Θ(L′/2− (x′1 − w′t ′))
d∏
i=2

Θ(L/2+ x′ i)Θ(L/2− x′ i), (112)

where L′ = L/γ is the Lorentz-contracted length in x′1-direction. By means of Eq. (112), one can express the components of
the conserved four-current ( j′α)= (%′, j ′)= (γ %,−γw%) inΣ ′ as [cf. Eq. (105)]

%′( t ′, x′)= V ′−1 I′( t ′, x′;V) (113a)

j ′( t ′, x′)= V ′−1 I′( t ′, x′;V)w ′ = %′w ′, (113b)

with V ′ := V/γ denoting the Lorentz-contracted box volume in themoving frameΣ ′. By inserting the expression (112) into
Eq. (111), one may perform a volume integration along the hyperplane ‘‘t ′ = constant’’ to obtain the marginal momentum
density in the moving frame as [151]

φ′(p′) :=
∫
ddx′ f ′( t ′, x′, p′)= γ−1 φ(p(p′)). (114a)

This result was already obtained by Dirac [480] in 1924; it is sometimes written in the equivalent form [151]49

φ′(p′)/V ′ = φ(p)/V . (114b)

As anticipated above, Eq. (114) differ from the corresponding result (101) for an unconfined system of non-interacting
particles. At first sight, it may seem surprising that the presence of the box alters the transformation properties of the
momentum distribution. The underlying physical explanation is that the observations by O and O′ are not synchronous
and that in the time between their observations some particles collide with the container walls.50

48 In fact, this also happens in the nonrelativistic case.
49 Experimentally, the momentum PDF φ(p) can be determined by collecting the momentum values pr ( t)of the N gas particles, measured at the same
instant of time t in Σ , into a histogram. Similarly, the function φ′(p′) can be determined from a histogram of the momentum values p′r ( t

′), measured at
the same time t ′ inΣ ′ .
50 Cf. discussion in Section 6 of van Kampen’s paper [151].
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The marginal momentum distributions present another example of non-locally defined quantities. In the history of rela-
tivity, such quantities have been a source of considerable confusion.51 Pitfalls may be avoided by keeping inmind that [476]:
In general, non-locally defined quantities are not connected by Lorentz transformations if they refer to different subsets

(e.g., hyperplanes) in Minkowski spacetime. Therefore, a complete measuring instruction for a nonlocal observable must include
a statement about the set of events over which the quantity is defined.
To illustrate this, we may consider the non-locally defined vector

〈
p′β
〉
t ′
:=

∫
ddx′ddp′ f ′( t ′, x′, p′) pβ =

∫
t ′
dσ ′α θ

′αβ ( t ′, x′), (115a)

representing a surface integral along the hyperplane ‘‘t ′ = constant’’.52 Although the average four-momentum vector
〈p′β〉t ′ from Eq. (115a) looks quite similar to 〈pβ〉t from Eq. (108), the crucial difference is given by the fact that these two
objects refer to two distinct hyperplanes, respectively, as signaled by the different labels t and t ′. For the energy–momentum
tensor (106), the rhs of Eq. (115a) can be evaluated to give [218]

〈
p′β
〉
t ′
=

γ (〈ε〉 + w
2
〈p · v〉 /d), β = 0,

−γw(〈ε〉 + 〈p · v〉 /d), β = 1,
0, β > 1.

(115b)

Upon comparing this result with Eq. (108c), we note that 〈pβ〉t and 〈p′
β
〉t ′ are indeed not related by a Lorentz transformation,

i.e., 〈
p′α
〉
t ′ 6= 〈p

′α
〉t = Λ

α
β 〈pβ〉t .

This inequality is, in fact, caused by the non-vanishing divergence of the energy–momentum vector in the presence of a
container, cf. Eq. (107). The actual Lorentz transformation 〈p′β〉t of 〈pβ〉t is obtained by keeping the underlying hypersurface
‘‘t = constant’’ fixed [178,476], i.e.,

〈
p′β
〉
t
:= Λβµ

∫
ddx θ0µ( t, x)= Λβµ

∫
t
dσα θαµ =

∫
t
dσ ′α θ

′αβ , (116a)

producing the expected result

〈
p′β
〉
t
=

{
γ 〈ε〉 , β = 0,
−γw 〈ε〉 , β = 1,
0, β > 1.

(116b)

With regard to experimental observations this means that, in order to determine 〈p′β〉t , a moving observer O′ must first
reconstruct the momentum values on the hyperplane ‘‘t = constant’’ from her data before being able to compare with the
averages 〈pβ〉t of a lab observer O.
This gives rise to a bit of a dilemma when attempting to formulate a relativistic thermodynamic theory that is based on

global system averages such as, for example, the total internal energy, momentum, etc.:

• Following Planck [121] and Einstein [122], one can build a theory based on observer-simultaneously defined quantities,
as those in Eq. (115b), but this leads to a loss of covariance because different observers would use different hyperplanes
depending on their velocities.

51 Gamba [476] gives a detailed list of examples, including the Lorentz contraction of length: ‘‘Only rarely is it pointed out clearly that the measurements
of the two observers . . .do not refer to the same set of events. The ‘ends’ of the rod being taken as contemporary for both observer at rest andmoving observer,
are in fact different points in the four-dimensional (absolute) spacetime. Once this is clearly indicated, the accepted definition [of length] is not particularly
harmful’’.
52 As discussed in more detail in Appendix B, for a surface integral along the hyperplane ‘‘t ′ = constant’’ inΣ ′ one finds inΣ ′-coordinates∫

t ′
dσ ′αθ

′αβ...( t ′, x′)=
∫
ddx′ θ ′0β...( t ′, x′).
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• Alternatively, one can define thermodynamic quantitieswith respect to a specific, fixed hyperplane to obtain amanifestly
covariant formalism [178]. In this case, however, the question arises as to which hyperplane is the most appropriate one
(cf. discussion below).

These difficulties can, in principle, be avoided by formulating a thermodynamic field theory [164,170,173,177,183,
290,477,481] in terms of local tensorial quantities as, e.g., jα and θαβ . In view of the fact that traditional nonrelativistic
thermodynamics [287,482] intends to describe a many-particle system by means of a few macroscopic control parameters,
one could argue that such a field theoretic approach is already somewhat closer to hydrodynamics.

3.2.2. Jüttner gas
The above results apply to an arbitrary stationary momentum PDF φ(p) in the lab frame Σ . With regard to Brownian

motion theory, one is particularly interested in thermal equilibrium distributions. When postulating relativistic Langevin
equations [11,17,18,20], these distributions must be known in advance in order to correctly specify the relativistic
fluctuation-dissipation relation. Similarly, thermal equilibrium distributions are required as an input, if onewishes to derive
Langevin-type equations from microscopic models, cf. Section 2.2. 53
At the beginning of the last century, it was commonly accepted that a dilute (quasi-ideal) gas in equilibrium is described

by the Maxwellian velocity PDF [187]

M(v;m, β, d)= [βm/(2π)]d/2 exp(−βmv2), (117a)
or, equivalently, by the one-particle momentum distribution

φM(p;m, β, d)= [β/(2πm)]d/2 exp[−βp2/(2m)], (117b)
where m is the rest mass of a gas particle, v = p/m ∈ Rd the nonrelativistic velocity, and T = (kBβ)−1 the temperature.
After Einstein [2,3] had formulated his theory of special relativity in 1905, Planck and others noted immediately that the
distribution (117) is in conflict with the fundamental relativistic postulate that velocities cannot exceed the light speed c .
In 1911 a solution to this problem was put forward by Jüttner [186], who proposed to replace Maxwell’s PDF by

J(v;m, β, d)= Z−1d m
dγ (v)2+d exp[−βmγ (v)] Θ(1− |v|), (118a)

yielding for the relativistic momentum p = mvγ (v) the PDF

φJ(p;m, β)= Z−1d exp[−β(m
2
+ p2)1/2]. (118b)

Similar to the Maxwell distribution (117), Jüttner’s distribution (118) refers to a lab frame Σ where the vessel, enclosing
the gas, is at rest. For space dimensions d = 1, 2, 3, the normalization constant

Zd(m, β)=
∫
ddp exp[−β(m2 + p2)1/2] (119a)

can be expressed as [186]
Z1 = 2m K1(βm), (119b)

Z2 = 2πm2 exp(−βm)(1+ βm)/(βm)2, (119c)

Z3 = 4πm3 K2(βm)/(βm), (119d)
with Kn(z) denoting modified Bessel functions of the second kind [486]. The average energy per particle is obtained by
logarithmic differentiation

〈ε〉d = −
∂

∂β
lnZd, (120a)

yielding

〈ε〉1 = m
K0(βm)+ K2(βm)

2K1(βm)
, (120b)

〈ε〉2 =
2
β
+

m2β
1+mβ

, (120c)

〈ε〉3 =
3
β
+m

K1(βm)
K2(βm)

, (120d)

53 Knowledge of the relativistic equilibrium distributions is essential for the correct interpretation of experimental observations in high energy and
astrophysics [318,319,326,411]. Examples include thermalization processes in heavy ion collision experiments [318,319] and ultra-relativistic plasma
beams [309,326], or the relativistic Sunyaev–Zel’dovich (SZ) effect [411], describing the distortion of the cosmic microwave background (CMB) radiation
spectrum due to the interaction of CMB photons with hot electrons in clusters of galaxies [483–485]. The predicted strength of the spectral distortions and
the cosmological parameters inferred from the SZ effect depend on the assumed velocity distribution of the relativistic electrons [411].
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and exhibiting the limiting behavior

lim
β→ ∞
〈ε〉d = m, (121a)

lim
β→ 0

β 〈ε〉d = d. (121b)

Moreover, one can show that, for arbitrary space dimensions d the expectation value 〈p · v〉 is independent of the mass m;
more precisely

〈p · v〉 =
〈
p2/ε

〉
= d/β, (122)

which allows one to regard 〈p · v〉 as a statistical thermometer (cf. discussion below).

Maximum (relative) entropy principle. Jüttner [186] originally derived the distribution (118) from a maximum entropy
principle [219,242,475] by postulating that, for a sufficiently large particle number N � 1, the one-particle equilibrium
distribution in phase space ϕ(x, p)be a maximizer of the Boltzmann–Gibbs–Shannon (BGS) entropy54

S[φ|h−d] = −kB

∫
V
ddx

∫
ddp ϕ(x, p)ln[hdϕ(x, p)], (123a)

while satisfying the constraints

1 =
∫

V
ddx

∫
ddp ϕ(x, p), (123b)

〈ε〉 =

∫
V
ddx

∫
ddp ϕ(x, p) ε, (123c)

for a given mean energy value per particle 〈ε〉 = E/N . Pursuing a similar approach, Jüttner later also derived the
corresponding expressions for relativistic quantum gases obeying Bose and Fermi statistics [194].55

Microcanonical approach. An alternative way [123,227,242] of justifying the Jüttner distribution (118) is based on the
microcanonical ensemble. To illustrate this, consider a dilute system of weakly interacting relativistic particles enclosed
in a vessel V ⊂ Rd of volume V = λd(V)which is at rest in the lab frame Σ . Assume that, with respect to Σ , this system
can – in some approximation – be described by a truncated Hamiltonian of the form

H(x1, . . . , pN)=
N∑
s=1

(m2 + p2s )
1/2
= E, (124a)

complemented by the condition of elastic reflections at the boundaries of the vessel. Bywriting (124a) one demands that the
energy stored in the interaction is negligible compared with the energy carried by the particles, so that E is approximately
conserved. The corresponding microcanonical N-particle distribution is given by the PDF

f MCN (x1, . . . , pN)= ω−1
{
δ(E − H(x1, . . . pN)), xs ∈ V,
0, xs 6∈ V. (124b)

The normalization constant ω = ω(E, V ,N) can be obtained from the integrated phase volume Ω = Ω(E, V ,N) by
performing a differentiation with respect to E , i.e.,

Ω :=

∫
dΓN Θ(E − H(x1, . . . , pN)), (124c)

ω :=

∫
dΓN δ(E − H(x1, . . . , pN))=

∂Ω

∂E
, (124d)

where, for identical particles, the integration measure in N-particle phase space is defined by

dΓN := (N!hdN)−1
{
ddx1 · · · ddxNddp1 · · · ddpN , xs ∈ V,
0, xs 6∈ V. (124e)

54 The BGS entropy S[φ|h−d] from Eq. (123a) is a relative entropy [487–491] with respect to the Lebesgue measure (normalized by the constant hd) on
the 2d-dimensional one-particle phase space {(x, p)}; i.e., by writing Eq. (123) one has already fixed a specific reference measure [475,491].
55 Alternative derivations of the Jüttner distribution are discussed by Pauli [123], Synge [188], Matolcsi et al. [227], and Debbasch [242].
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Fig. 4. Left column: Equilibrium velocity PDFs as measured by an observer with velocityw = 0 in the lab frameΣ . The numerically obtained one-particle
velocity PDFs (©) are based on a fully relativistic, deterministic 1D molecular dynamics algorithm [202] with N1 = 1000 light particles of mass m1 and
N2 = 1000 heavy particles with mass m2 = 2m1 . Considering elastic interactions between the gas particles and elastic reflections at the boundaries,
the mean energy per particle in the lab frame, ε̄ = [

∑N1
r=1 m1γ (vr)vr +

∑N2
s=1 m2γ (vs)vs]/(N1 + N2), remains conserved during the simulation. The

solid curves in the upper and lower panel correspond to Jüttner functions (118a) with different particle masses but same inverse temperature parameter
β = 0.701 (m1c2)−1 . The latter can be determined from the value ε̄ = 2.5m1c2 used in the simulation by the procedure described in [202]. Right column:
Equilibrium velocity PDFs as measured by a moving observerΣ ′ who travels at constant velocity w = 0.2c relative to the lab frameΣ . Parameter values
and initial conditions are the same as those in the left column. In contrast to the diagrams withw = 0, the PDFs forw = 0.2 are basedΣ ′-simultaneously
measured velocities. The solid curves represent the theoretically expected, Lorentz-boosted Jüttner functionψ ′J (v

′
;m, β,w) from Eq. (129). The very good

agreement with the simulation data corroborates the validity of the Jüttner distribution. In particular, since in the stationary (equilibrium) state, both
particle species are characterized by the same β-value, the definition T := (kBβ)−1 yields a meaningful statistical temperature concept.

The one-particle momentum PDF corresponding to f MCN from Eq. (124b) is defined by

φ(N)(p) :=

〈
N−1

N∑
s=1

δ(p− pN)

〉MC

=

∫
dΓN f MCN (x1, . . . , pN)N−1

N∑
s=1

δ(p− pN). (125)

As discussed in Pauli’s early review [123] and more recently also by Matolsci et al. [227], in the limit of an infinite particle
number N → ∞, the PDFs φ(N) converge to the Jüttner distribution φJ from Eq. (118b).
Quite generally, amicrocanonical PDF of the formEq. (124b) gives rise to a number of rigorous equipartition theorems [287,

288,492] such as, e.g.,56〈
pis
∂H
∂pis

〉MC
=
Ω

ω
=

[
∂

∂E
lnΩ

]−1
=: kBT MC(E,N), (126)

for each s = 1, . . . ,N and i = 1, . . . , d. The rhs of Eq. (126) defines [287,288,492] the usual microcanonical temperature of
the gas in the lab frame. In the case of the Hamiltonian (124a), the equipartition theorem (126) is consistent with Eq. (122)
upon identifying β = (kBT MC)−1 in the limit N � 1.

Computer experiments. Although the Jüttner distribution (118) becamewidely accepted [123,179,188,242,294,311], several
modifications have been discussed in the literature [22,195,196,198,199,232,235,475]. The validity of Jüttner’s (118) was
recently confirmed in fully relativistic one-dimensional (1D) molecular dynamics simulations [202], see Fig. 4, as well as in
(semi-)relativistic two and three-dimensional simulations [201,493]. By restricting the dynamics to one space dimension, it
is possible simulate localized elastic particle interactions in a relativistically consistentmannerwithout needing to introduce
fields. This is due to the fact that, in the 1D case, the outgoing momenta ( p̂A, p̂B) of two colliding particles A and B are

56 In this case, the summation convention is abrogated on the lhs. of Eq. (126); i.e., Eq. (126) holds separately for each s = 1, . . . ,N and i = 1, . . . , d.
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uniquely determined by the momentum values (pA, pB)before the collision, by means of the relativistic energy momentum
conservation laws [22]

ε(mA, pA)+ ε(mB, pB)= ε(mA, p̂A)+ ε(mB, p̂B), (127a)

pA + pB = p̂A + p̂B, (127b)

where ε(m, p) = (m2 + p2)1/2. In higher space dimensions, additional assumptions about the spatio-temporal structure
of the collision processes need to be made [245,249–251,253,273]. In order to be fully consistent with the requirements of
special relativity, relativistic interactions d > 1 space dimensions must be formulated in terms of fields. Direct simulation
of the field dynamics is numerically expensive and, therefore, practically infeasible in most cases. Alternatively, one can
use simplified semi-relativistic models such as, for example, effective hard-sphere models where the interaction radius is
definedwith respect to the center-of-mass frame of the colliding particles. Generally, it can be expected that such simplified
models yield satisfactory results in the low density regime [201], but they may lead to inconsistencies at high densities —
e.g., when three-body encounters become relevant.
In addition to (in)validating theoretically predicted distribution functions, numerical simulations can be useful for

illustrating themeaning of concepts such as ‘temperature’ and ‘thermal equilibrium’ in special relativity. Fig. 4 shows results
of a 1D relativistic gas simulation as described in [202]. The simulated gas consists of N1 ‘light’ particles (mass m1) and N2
‘heavy’ particles (mass m2 > m1). Particle collisions in the gas are governed by the conservation laws (127) and collisions
with the boundaries are elastic in the lab frame (i.e., p → −p in Σ). As evident from Fig. 4, the numerically obtained
stationary velocity distributions are very well matched by 1D Jüttner functions (118) with different masses but same
parameter β . Hence, the Jüttner distribution not only agrees with the numerical data, it also yields a well-defined concept
of ‘temperature’ in the lab frame: Intuitively, the temperature T is thought to be an intensive quantity that equilibrates
to a common value if two or more systems are brought into contact with each other (i.e., may exchange different forms of
energy). In the example considered here, it is natural to regard the particle species as two different subsystems that may
exchange energy via elastic collisions. After a certain relaxation time, the combined system approaches a ‘thermodynamic
equilibrium state’, where each subsystem is described by the same asymptotic, two-parametric velocity PDF ψJ(v;mi, β),
differing only via the restmassesmi. The commonly shared distribution parameter β may thus be used to define a relativistic
(statistical) equilibrium temperature inΣ by

T := (kBβ)−1, (128)

in agreement with the interpretation of β in the nonrelativistic case.
However, for this concept of temperature to bemeaningful, a restriction of the accessible spatial volume is required — be

it bymeans of periodic boundary conditions, by imposing reflectingwalls or other types of confinements [157].57 Otherwise,
it cannot be expected that a many-particle system approaches a universal stationary equilibrium state independent of the
specific initial conditions.
The simulations can also be used to determine the equilibrium velocity distributions as seen from another frame Σ ′,

moving with velocity w relative to the lab frame Σ , see Fig. 4. In contrast to the diagrams for w = 0, the numerical data
points forw = 0.2 are obtained by measuring the particle velocities v′s simultaneously with respect toΣ

′. The solid curves
in the right column of Fig. 4 correspond to the PDF

′

J (v
′
;m, β,w)= γ (w)−1

m γ (v′)3

Z1
exp[−βγ (w)mγ (v′) (1+ wv′)], (129)

obtained by making use of transformation law (114). The excellent agreement between the simulation data and Eq. (129)
confirms the validity of Eq. (114) and, thereby, also the scalar Lorentz transformation behavior of the phase space PDF
f ( t, x, p)[151].Moreover, for themodel under consideration, onemay statemore precisely: Two relativistic gas components
are in ‘thermodynamic equilibrium’ for any observer if their one-particle velocity PDFs are given by generalized Jüttner
functions (129) with same parameters β andw. It is only in this case that the net energy–momentum transfer between the
different gas components in the container vanishes (a more general version of this criterion is discussed in Ref. [150]).
The numerical simulations illustrate that T = (kBβ)−1 yields a useful statistical temperature concept in the lab frame

Σ , defined by the boundary (container box). The question as to which temperature value is measured by a moving observer
O′ cannot be uniquely answered — the answer depends on the respective definitions (i.e., measurement conventions) for
heat, internal energy, etc. as employed by O′. These aspects are discussed in more detail in the Appendix C. At this point, it
suffices to mention that T := (kBβJ)−1 can also be determined from t ′-simultaneously sampled velocity data (right column

57 The critical role of the boundary conditions in relativistic systems has been emphasized by Sinyukov [494] and van Kampen [150,151]. Loosely speaking,
if a many-particle system has reached a universal stationary equilibrium state, then each particle ‘knows’ about the presence of the confinement/walls
because equilibration typically requires momentum reversal at the walls, e.g., in order to maintain a uniform density and a well-balanced average collision
frequency. In particular, if thewalls are considered to be stationary objects then they single out a preferred frameof reference. The relevance of the boundary
conditions is even more obvious in quantum mechanics/statistics due to their direct effect on the energy spectra and, thus, on the density of states [194].
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Fig. 5. Measured mean particle velocity (©, left digram) and estimated temperature (©, right diagram) based on Eqs. (130) as a function of the observer
velocityw. Solid lines correspond to the theoretically expected values, respectively, using the same simulation parameters and initial conditions as in Fig. 4.

of Fig. 4) by means of the expectation value58 [141]

kBT = mγ (w)3
〈
γ (v′) (v′ + w)2

〉
t ′ , (130a)

where

w = −〈v′〉t ′ (130b)

is the mean velocity of the gas measured by the moving observer. One can test the validity of Eq. (130a) explicitly by using
simulation data obtained for different values of w, see Fig. 5. Hence, in this sense, Eq. (130) defines a Lorentz invariant
statistical gas thermometer — when adopting this thermometer a moving body appears neither hotter nor colder [202].59
We conclude this part with another general remark: The above discussion has focused on the case where an ‘ordinary’

thermal equilibrium state is approached, corresponding to a stationary ‘exponential’ one-particlemomentumdistribution of
the Jüttner type [186,194]. In general, one could also imagine non-equilibrium scenarios that give rise to (quasi-)stationary
momentum distributions which differ from the Jüttner function (see, e.g, [197,232,233,235–237,239]). When attempting
to develop a thermodynamic formalism for such non-standard distributions, the entropy functional needs to be modified
appropriately [492]. However, our subsequent discussion of relativistic Langevin equations will concentrate on the case
where the heat bath, which surrounds the Brownian particle, is described by a spatially homogeneous Jüttner function.

4. Relativistic Brownian motion processes in phase space

The present section describes the generalization of the Langevin theory of Brownianmotions to the framework of special
relativity [11–15,17,18,20–22,24–26,31–34,394,395,475,495]. More precisely, we will consider stochastic differential
equations (SDEs) that describe Markov processes in relativistic one-particle phase space.60 Relativistic Langevin equations
present a useful tool for modeling the dynamics of relativistic particles in a random environment. Examples include the
analysis of thermalization effects in relativistic plasmas [318,319,329,421] and astrophysical systems [326,496]. Here, we
would like to provide a comprehensive introduction to the underlying mathematical theory.
From a conceptual perspective, one can distinguish two complementary approaches towards modeling relativistic

stochastic processes in one-particle phase space: The first approach is based on postulating evolution equations for the
(transition) probability density of the stochastic process, as for example, integro-differential master-type equations or
Fokker–Planck-type partial differential equations. Within a relativistic framework, the condition of subluminal particle
propagation imposes stringent constraints on the structure of the evolution equations. These aspects were studied in the
early pioneering works of Łopuszaǹski [330], Schay [332] and Hakim [338]. Alternatively, one may start by postulating
SDEs as phenomenological model equations and subsequently derive the evolution equations for the associated (transition)
probability densities. Here, we are going to pursue the latter route for mainly two reasons: We will be able to directly
compare with the nonrelativistic case discussed in Section 2 and, more importantly, the physical origin of the stochastic
dynamics – the interaction with a complex background medium – is ‘less hidden’ within the Langevin approach.61
According to our knowledge, Debbasch et al. [11] were the first to propose relativistic Langevin equations as models for

relativistic Brownian motions. More precisely, these authors constructed a relativistic Ornstein–Uhlenbeck process (ROUP)

58 Equation (130a) is obtained by combining the microcanonical equipartition theorem for a Hamiltonian H =
∑N1
i=1 E(m1, pi)+

∑N2
j=1 E(m2, pj)with

the Lorentz invariance of the relativistic phase space PDF f .
59 The mean value from Eq. (130a) can be used to measure the rest temperature, which plays a central role in van Kampen’s [150] approach to relativistic
thermodynamics. Evidently, upon multiplying Eq. (130a) by factors γ (w)α , α 6= 0 one can construct thermometers that measure ‘other’ temperatures;
e.g.,α = −1would correspond to Planck’s [121] formulation of relativistic thermodynamics andα = 1 to proposalsmade by Eddington [124] andOtt [127].
60 A main motivation for considering processes (X ( t), P ( t)) rather than ‘pure’ position processes X ( t) is that in the relativistic case, it is impossible to
define nontrivial relativistic Markov processes X ( t) in Minkowski spacetime; cf. Łopuszaǹski [330], Dudley (Theorem 11.3 in [333]), Hakim (Proposition 2
in [338]), and also the discussion in Section 5.
61 For a detailed analysis of the complementary approach we refer to Hakim [338].
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by postulating an additive Gaussian white noise force in the rest frame of the bath while adapting the friction such that
the stationary momentum distribution is given by a Jüttner function. During the past decade, various properties of the
ROUP were studied by Debbasch and Rivet [12], Barbachoux et al. [13,14], and Zygadło [20]. As will be illustrated below, the
ROUP represents a special limit case of a larger class of relativistic Langevinmodels [15,19,26,31,32], which also includes the
relativistic Brownianmotion (RBM) process proposed in [17,18]. Processes belonging to this class share the common feature
that their stationary momentum distribution is given by a Jüttner function, but they may exhibit a significantly different
relaxation behavior, resulting, for example, in a different temperature dependence of the spatial diffusion constant [15].
The present section is structured as follows. Section 4.1 introduces the axiomatic Langevin approach, i.e., suitable SDEs

and fluctuation-dissipation relations are postulated in order to provide a simplified model of the complex interaction
between the Brownian particle and its environment (heat bath). Specific example processes will be analyzed in Section 4.2.
Section 4.2.2 discusses the temperature dependence of the asymptotic mean square displacement for three different
relativistic Brownianmotion processes [15,25]. It is demonstrated that the diffusion constant is sensitive to variations of the
friction coefficients. This implies that measurements of the diffusion constant may reveal information about the underlying
microscopic interactions. In Section 4.4 relativistic Brownian motion processes will be analyzed from the viewpoint of a
moving observer. The relativistic generalization of the binary collision model from Section 2.2.2 is discussed in Section 4.5,
representing a simple microscopic model for relativistic Brownian motions.

4.1. Relativistic Langevin and Fokker–Planck equations

When considering Langevin equations as models of Brownian motion, one implicitly assumes that it is possible and
reasonable to separate the degrees of freedom of the Brownian particle from those of the environment (heat bath). Adopting
this point of view, one can specify two distinguished frames of reference: the lab frameΣ , defined as the inertial rest-frame
of the heat bath, and the inertial frameΣ∗ that is comoving with the Brownian particle at a given instant of time.62 To start
with, we consider the question how one can model the dynamics of a relativistic Brownian particle in the lab frameΣ .

4.1.1. Relativistic Langevin equations: General construction principles
Roughly speaking, a relativistic Brownian motion process is a stochastic process whose absolute velocity |V ( t)| =

|dX/dt| does not exceed the light speed c = 1 at any time; i.e., the process must satisfy the condition

|V ( t)| =
|P|
P0
=

|P|
(M2 + P2)1/2

≤ 1 ∀ t, (131)

whereM > 0 denotes the rest mass of the Brownian particle. Of particular interest here are processes that can be modeled
by means of SDEs similar to the nonrelativistic Langevin equations (5). The basic idea for constructing such processes is
to couple the noise sources (e.g., Wiener processes) only to the relativistic momentum P = (P i), i = 1, . . . , d, which can
take values in whole Rd. By doing so, the condition (131) is automatically fulfilled. However, before one can actually write
down specific SDEs for the relativistic momentum components P i, an additional question needs to be addressed, namely
[30,338,497]:

The choice of the time parameter. A fundamental assumption (postulate) of nonrelativistic Galilean physics is the existence
of a universal time t . Therefore, within the nonrelativistic Langevin theory, it is quite natural to identify this universal
time t with the time parameter of the stochastic driving process, which is often taken to be a multi-dimensional Wiener
process B( t). By contrast, in special relativity, the notion of time becomes frame-dependent and it is important to specify in
advance which time parameter is used to quantify the fluctuations of the stochastic driving process.
When considering the stochastic motion of a relativistic Brownian particle, two characteristic time parameters can be

distinguished: The coordinate time t of the inertial lab frame Σ , which may be interpreted as the proper time of the heat
bath, and the proper time τ of the Brownian particle. In principle, either of the two parameters could be used to formulate
SDEs for the spatial components of the particlemomentum, P = (P i). Within the conventional Langevin picture of Brownian
motion, one usually considers friction and noise as externally imposed forces that act upon the Brownian particle and reflect
the fluctuations within the heat bath. Therefore, it seems more natural to characterize the statistical properties of the noise
source in terms of the lab time t . However, as we shall discuss in Section 4.3 one can reparameterize a given lab-time
Langevin equation in term of the associated proper-time.63

Lab-time Langevin equation. Within the lab-time approach [11–14,17,18,20,394,498] one aims at constructing t-
parameterized 2d-dimensional stochastic processes {X ( t), P ( t)} with respect to the lab frame Σ , where the position

62 Apart from an irrelevant shift of the origin, the inertial lab frameΣ is uniquely determined by the requirement that the mean velocity of the heat bath
particles, which is assumed to be constant in any inertial frame, vanishes in Σ . Similarly, the instantaneously comoving frame Σ∗ is determined by the
condition that theΣ∗-velocity of the Brownian particle is equal to zero at the given instant of time. Generally, we assume that the time coordinates t and
t∗ can be measured, e.g., by using atomic clocks that are at rest inΣ orΣ∗ , respectively.
63 Within this lab-time approach, the proper time becomes a stochastic quantity, and one could, for example, ask for the probability of finding at lab time
t the particle’s proper time in the interval [τ , τ + dτ ]. Conversely, if adopting the proper time τ as the primary deterministic evolution parameter, one
could ask for the probability to find the particle at proper time τ within the spacetime interval [t, t + dt] × [x, x+ dx]with respect to the lab frame. The
proper-time approach was studied in Refs. [337,338,391] and most recently in [30].
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coordinatesX = (X i)and the spatialmomentum coordinates P = (P i)are connected by the standard relativistic differential
relation

dX i( t)= (P i/P0) dt, (132a)
with P0( t)= E( t)= (M2+P2)1/2 denoting the relativistic energy of the particle and V i( t)= P i/P0 its velocity components
in Σ . Stochasticity is implemented into the dynamics by coupling the momentum components P i( t) to an external noise
source via the SDEs64

dP i( t)= F idt − aij P j dt + c ij � dBj( t), (132b)
where
• F i denotes a deterministic external force (e.g., Lorentz force), −aij P j is a phenomenological friction force, and the last
term represents noise;
• � ∈ {∗, ◦, •} signals the discretization rule (i.e., the stochastic integral definition, cf. Appendix A);
• in general, the functions F i, aij and c ij can depend on ( t,X, P);
• the noise source is usually modeled by the d-dimensional standard Wiener65 process B( t) = (B1( t), . . . , Bd( t)) in a
relativistic context.

Equations (132) govern the spatial components of the four-vectors (X0,X)and (P0, P). One can still add an equation for
time component X0 by setting

dX0( t)= (P0/P0) dt = dt. (133a)
The equation for the energy component P0 can be derived from Eq. (132b) by applying the (backward) Ito formula, cf.
Appendix A, to the mass-shell condition P0( t)= (M2 + P2)1/2, yielding

dP0( t)=
{
(Fi − aijP j)

P i

P0
+ λ�

Dij
2

[
δij

P0
−
P iP j

(P0)3

]}
dt +

P i

P0
cir � dBr ( t), (133b)

where
Fi := F i, Dij := Dij := c irc jr , cir := c ir ,

and, depending on the discretization rule,
λ∗ = 1, λ◦ = 0, λ• = −1.

The λ�-term in Eq. (133b) reflects the modification of differential calculus for Ito and backward-Ito SDEs, cf. Appendix A.
Finally, we still note that the proper-time process associated with Eq. (132) is defined by

dτ ( t)= (M/P0)dt. (134)
In Section 4.3, we shall discuss how the lab-time Langevin equations (132) can be reparameterized in terms of τ .

4.1.2. Fokker–Planck equations
In the case of the Ito rule ‘‘� = ∗’’ in Eq. (132b), the corresponding Fokker–Planck equation (FPE) is given by [cf. Eq. (A.29)](

∂

∂t
+
pi

p0
∂

∂xi

)
f∗ =

∂

∂pi

[
(−F i

+ aijpj)f∗ +
1
2
∂

∂pk
(c irckr f∗)

]
, (135a)

in the case of the Stratonovich–Fisk mid-point rule ‘‘� = ◦’’ by(
∂

∂t
+
pi

p0
∂

∂xi

)
f◦ =

∂

∂pi

[(
−F i
+ aijpj −

1
2
ckr

∂

∂pk
c ir

)
f◦ +

1
2
∂

∂pk
(c irckr f◦)

]
(135b)

and in the case of the post-point (backward Ito) rule ‘‘� = •’’ by(
∂

∂t
+
pi

p0
∂

∂xi

)
f• =

∂

∂pi

[(
−F i
+ aijpj − ckr

∂

∂pk
c ir

)
f• +

1
2
∂

∂pk
(c irckr f•)

]
(135c)

with f�( t, x, p)denoting the phase space PDF of the relativistic Brownian particle inΣ , and p0 = (M2+p2)1/2, respectively.
Deterministic initial data X (0)= x0 and P (0)= p0 corresponds to the localized initial condition
f�(0, x, p)= δ(x− x0) δ(p− p0). (135d)

Due to the linearity of Eq. (135), more general solutions can be obtained by integrating the solutions of Eqs. (135) over a non-
localized initial distribution f0(x0, p0). However, it should be noted that, within a relativistic framework, it is very difficult
to determine non-localized lab-isochronous initial data by means of experimental measurements.

64 E.g., for the post-point rule ‘‘� = •’’, Eqs. (132) constitute a special case of the general SDE (A.28), upon identifying n = 2d, Y =

(X1, . . . , Xd, P1, . . . , Pd)and Ai = P i/P0, C i j = 0, Ai+d = −ai jP j, C i+dj = c i j for i = 1, . . . , d.
65 In principle, one could also consider other driving process (as, e.g., Levy or Poisson processes) but we are not aware of such studies.
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4.1.3. Free motions in an isotropic bath and Einstein relations
Similar to the nonrelativistic case, physical constraints on the coefficient functions aij and c ij come from symmetry

properties of the heat bath and from the requirement that Eqs. (132) must reproduce the correct stationary distribution
and the correct relaxation behavior. For example, in the absence of external force-fields, F i

≡ 0, and if the heat bath is
stationary, isotropic and homogeneous in the lab frameΣ , the coefficient matrices take the simplified diagonal form

aij = α δij, c ij = (2D)1/2 δij. (136)
Under the stated assumptions, the functions α and D depend only on the Brownian particles’ absolute momentum – or,
equivalently, on its relativistic energy p0 = (M2 + p2)1/2 i.e., α(p)= α̂(p0) and D(p)= D̂(p0). In this case, the relativistic
Langevin equations (132) simplify to

dX i( t)= (P i/P0) dt, (137a)

dP i( t)= −α̂P idt + (2D̂)1/2 � dBi( t), (137b)
and the Fokker–Planck equations (135) take the form(

∂

∂t
+
pi

p0
∂

∂xi

)
f∗ =

∂

∂pi

[
α̂pif∗ +

∂

∂pi
( D̂f∗)

]
, (138a)(

∂

∂t
+
pi

p0
∂

∂xi

)
f◦ =

∂

∂pi

[
α̂pif◦ + D̂1/2

∂

∂pi
( D̂1/2f◦)

]
, (138b)(

∂

∂t
+
pi

p0
∂

∂xi

)
f• =

∂

∂pi

[
α̂pif• + D̂

∂

∂pi
f•

]
. (138c)

An additional constraint on the functions α(p) = α̂(p0) and D(p) = D̂(p0) arises from thermostatistical considerations: If
the motion of the Brownian particle is restricted to a finite volume V ⊂ Rd and if the heat bath is in a thermal equilibrium
state at temperature T = (kBβ)−1, then the expected stationary solution f∞(x, p)of Eq. (135) is a spatially homogeneous
Jüttner distribution [186], 66

f∞(x, p)= N exp[−β(M2 + p2)1/2] I(x;V), (139)
with I(x;V) being the indicator function of the accessible volume V as defined in Eq. (103b). By inserting Eq. (139) into
the Fokker–Planck equations (135) one finds that, depending on the discretization rule, the functions α(p) = α̂(p0) and
D(p)= D̂(p0)must satisfy the generalized fluctuation-dissipation relations [11,17,18]

� = ∗ : 0 ≡ α̂(p0) p0 − β D̂(p0)+ D̂′(p0), (140a)

� = ◦ : 0 ≡ α̂(p0) p0 − β D̂(p0)+ D̂′(p0)/2, (140b)

� = • : 0 ≡ α̂(p0) p0 − β D̂(p0), (140c)

where D̂′(p0) := dD̂(p0)/dp0. Equations (140) are also referred to as the relativistic Einstein relations. In particular, by
comparing Eq. (140c) with the nonrelativistic Einstein relation (20), we note that the mass has been replaced with energy
p0 in the relativistic case.

4.2. One-dimensional examples and mean square displacement

In this part, we will consider one-dimensional example processes (d = 1). Their generalization to higher space
dimensions is straightforward but analytic calculations become more tedious. We first summarize the SDEs for the energy
process P0( t) and the velocity process V ( t) := P( t)/P0( t) in Section 4.2.1. Subsequently, analytical and numerical results
for the asymptotic diffusion constants of specific example processes will be discussed [15,25].

4.2.1. Discretization rules, energy and velocity equations
Considering an isotropic thermalized heat bath in d = 1 space dimensions and the post-point discretization, Eq. (137)

takes form
dX ( t)= (P/P0) dt,

dP( t)= −α•(P)P dt + [2D(P)]1/2 • dB( t), (141a)

where B( t) is characterized by the Gaussian distribution (5d) and α•(p) = α̂•(p0) and D(p) = D̂(p0). Similar to the
nonrelativistic case, one can replace Eq. (141a) by the equivalent Stratonovich–Fisk SDE 67

66 Cf. the discussion in Section 3.2.2.
67 See also the corresponding discussion by Hänggi [499], and Hänggi and Thomas (page 293 of Ref. [77]).
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Fig. 6. Time evolution of the spatial mean square displacement Dt :=
〈
[X ( t)− X (0)]2

〉
/(2t) for the ROUP [11] model (solid line) from Eq. (151d), the

RBM [17] model (dashed) from Eq. (155b) and the RBM(I) model (dotted) from Eq. (159a) at same temperature–mass ratio χ−1 := kBT /(Mc2) = 1.
The plots are based on a simulation with N = 1000 trajectories, initial conditions X (0) = 0, P(0) = 0 for each trajectory, and discretization time step
∆t = 10−4 α−1c/Ď .

dP( t)= −α◦(P)P dt + [2D(P)]1/2 ◦ dB( t)

α◦(p) := α•(p)− D′(p)/(2p),
(141b)

or by the equivalent Ito SDE

dP( t)= −α∗(P)P dt + [2D(P)]1/2 ∗ dB( t)

α∗(p) := α•(p)− D′(p)/p,
(141c)

where D′(p) := dD(p)/dp. Compared with Eqs. (141a) and (141b), the Ito form (141c) is most convenient for numerical
simulations.
Imposing that the solution of corresponding FPE (138) be given by a one-dimensional Jüttner function of the form (139),

the friction and noise coefficients must satisfy the Einstein relations (140). In terms of the friction coefficients α�(p), the
Einstein relations can also be rewritten as

0 ≡ α•(p) p0 − βD(p) (142a)

0 ≡ α◦(p) p0 − βD(p)+ D′(p) p0/(2p) (142b)

0 ≡ α∗(p) p0 − βD(p)+ D′(p) p0/p. (142c)

From Eq. (133b) one obtains for the relativistic energy process P0( t) := (M2 + P2)1/2 the following SDE

dP0( t) =

{
−α̂�(P0)P0

[
1−

(
M
P0

)2]
+ λ�

D̂(P0)
P0

(
M
P0

)2}
dt

+

{
2 D̂(P0)

[
1−

(
M
P0

)2]}1/2
� dB( t), (143)

where λ∗ = 1, λ◦ = 0, and λ• = −1. Furthermore, by defining for P(V)= MV (1− V 2)−1/2 new coefficients

α̃(V) := α(P(V)), D̃(V) := D(P(V))

and applying the (backward) Ito formula, cf. Appendix A, to the relativistic velocity formula V ( t) = P/(M2 + P2)1/2, one
finds the following SDE for the velocity process

dV ( t)=

[
−α̃(V) (1− V 2)− λ�

3D̃
M2

)
(1− V 2)2

]
V dt +

[
2D̃
M2

)
(1− V 2)3

]1/2
� dB( t). (144)

As discussed in the next section, this equation can be used to calculate the asymptotic mean square displacement.

4.2.2. Asymptotic mean square displacement
A primary objective within any Brownian theory is to determine the asymptotic diffusion constantD∞, corresponding

to the plateau values in Fig. 6. For a one-dimensional diffusion process X ( t)with velocity V ( t), the asymptotic diffusion
constantD∞ is defined by

D∞ = lim
t→ ∞

〈
[X ( t)− X (0)]2

〉
/(2t), (145a)
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where the spatial displacement is given by

X ( t)− X (0)=
∫ t

0
ds V (s). (145b)

The asymptotic diffusion constantD∞ may be expressed in terms of the velocity correlation function 〈V ( t)V (s)〉 by virtue
of

D∞ = lim
t→ ∞

1
2
d
dt

〈
[X ( t)− X (0)]2

〉
= lim
t→ ∞

1
2
d
dt

∫ t

0
ds
∫ t

0
ds′

〈
V (s)V (s′)

〉
= lim
t→ ∞

∫ t

0
ds 〈V ( t)V (s)〉 . (146)

Assuming that the velocity process V ( t)is (approximately) stationary, whichmeans that 〈V ( t)V (s)〉 = 〈V ( t − s)V (0)〉 holds
(at least in good approximation), and substituting u = t − s, we recover Kubo’s formula

D∞ = lim
t→ ∞

∫ t

0
du 〈V (u)V (0)〉 . (147)

As recently discussed by Lindner [25], for a one-dimensional Langevin equation of the form

dV ( t)= −a•(V)V dt + [2 b(V)]1/2 • dB( t) (148)

with symmetric coefficient functions, a•(v)= a•(−v)and b(v)= b(−v), the Kubo formula (147) gives rise to the following
integral representation for the asymptotic diffusion constant:

D∞ =

∫ v+
0 dy eU (y)

[∫ v+
y dx e−U (x) x/b(x)

]2
∫ v+
0 dz e−U (z)/b(z)

. (149)

Here, v+ ∈ [0,∞] represents the upper bound for the velocity range, and

U (v) :=
∫ v

0
dw µ∗(w)/b(w) (150a)

is an effective velocity potential with Ito drift

µ∗(v) := a∗(v)v = a•(v)v − b′(v). (150b)

In general, the formula (149) has to be integrated numerically, but for the first two models from Section 4.2.3 the integrals
may also be evaluated analytically. The d-dimensional generalization of Eq. (149) was recently derived by Angst and
Franchi [15].

4.2.3. Examples
We discuss three specific one-dimensional relativistic Langevin models whose stationary momentum distributions are

Jüttner functions φJ(p) ∝ exp[−β(p2 + M2)1/2] with heat bath temperature T = (kBβ)−1. In this case, the relativistic
Einstein relation (140) implies that only one of the two functions α•(p)and D(p)can be chosen arbitrarily.

Constant noise amplitude. As a first example, we consider the so-called ‘Relativistic Ornstein–Uhlenbeck process’ (ROUP),
proposed by Debbasch et al. [11,12] and also studied by Zygadło [20]. The ROUP is defined by the choice

α•(p)= αc M/p0, (151a)

where αc > 0 is a constant friction parameter. From the relativistic Einstein relation (140), one then finds

D(p)≡ α•(p)p0 β−1 = αcM β−1 =: Dc, (151b)

i.e., the ROUP corresponds to the limit case of constant noise amplitude. The associated Langevin equation reads

dP( t) = −αc
M
P0
P dt +

(
2αcM
β

)1/2
• dB( t) (151c)

= −αc
M
P0
P dt +

(
2αcM
β

)1/2
∗ dB( t). (151d)
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The discretization rule is irrelevant here, because the noise amplitude Dc = αcM/β does not depend on the momentum P
for this particular case. However, the rules of stochastic calculus have to be specified, if one wishes to write down the SDE
for the associated velocity process V ( t) := P/P0. Defining the useful abbreviation

χ := βM = M/(kBT ), (151e)

one finds

dV ( t) = −αc

[
(1− V 2)3/2 −

3
χ
(1− V 2)2

]
V dt +

[
2αc
χ

(1− V 2)3
]1/2
• dB( t) (151f)

= −αc

[
(1− V 2)3/2 +

3
χ
(1− V 2)2

]
V dt +

[
2αc
χ

(1− V 2)3
]1/2
∗ dB( t). (151g)

Using the Ito form, as required in Eq. (150b), we see that the ROUP (151d) corresponds to

µ∗(v)= αc

[
(1− v2)3/2 +

3
χ
(1− v2)2

]
v, (152a)

b(v)=
αc

χ
(1− v2)3 (152b)

with an upper velocity bound v+ = c = 1 in Eq. (149). In this case, the general integral formula (149) for the asymptotic
diffusion constant can be evaluated analytically by making use of the identity (153)

(−1)ν
dν

dχ ν
K0(χ)=

∫ 1

0
dv exp

(
−

χ
√
1− v2

)
(1− v2)−(ν+2)/2, (153)

where, for ν = 0, 1, 2 . . . , Kν (z)denotes the modified Bessel function of the second kind [486]. Remarkably, one recovers
for the ROUP the ‘classical’ result [15], cf. Eq. (33),

DROUP
∞
= (αcχ)

−1
= kBT /(Mαc) (154)

for all parameter values (αc, T ,M).

Constant friction coefficient in the backward-Ito SDE. An alternative relativistic Brownian motion (RBM) model [17,18]
corresponds to the special case of a constant friction function α•(p) ≡ αĎ in the backward-Ito SDE (141). In this case,
the relativistic Einstein relation (140) yields the momentum dependent noise amplitude

D(p)= αĎp0 β−1. (155a)

The relativistic (backward) Ito Langevin equations of this model read explicitly

dP( t) = −αĎ P dt +
(
2αĎP0

β

)1/2
• dB( t) (155b)

= −αĎ

(
βP0 − 1
βP0

)
P dt +

(
2αĎP0

β

)1/2
∗ dB( t). (155c)

The corresponding SDEs for the velocity process V ( t)= P/P0 are given by

dV ( t) = −αĎ

[
(1− V 2)−

3
χ
(1− V 2)3/2

]
V dt +

[
2αĎ
χ

(1− V 2)5/2
]1/2
• dB( t) (155d)

= −αĎ

[
(1− V 2)+

2
χ
(1− V 2)3/2

]
V dt +

[
2αĎ
χ

(1− V 2)5/2
]1/2
∗ dB( t). (155e)

With regard to numerical simulations, the Ito form is more convenient, cf. Appendix A.
Various properties of the RBM process (155) have been analyzed by Fa [24], Lindner [25], Fingerle, [395]68 and Angst and

Franchi [15]. In particular, from Eq. (155e) we see that this model corresponds to

µ∗(v)= αĎ

[
(1− v2)+

2
χ
(1− v2)3/2

]
v, (156a)

b(v)=
αĎ

χ
(1− v2)5/2, (156b)

68 Fingerle [395] discusses a fluctuation theorem for this process; see also Cleuren et al. [241].
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Fig. 7. Temperature dependence of the asymptotic diffusion constantD∞ for the ROUP [11] from Eq. (151d), the RBMmodel [17] from Eq. (155b), and the
RBM(I) model from Eq. (159a). Symbols ’◦’, ’+’ and ’×’ represent the results of computer simulations (N = 100 trajectories, initial conditions X (0) = 0,
P(0) = 0 for each trajectory, discretization time step ∆t = 10−4 in units of α−1c/Ď/∗), obtained by averaging over the numerically determined values
{D100,D110,D120, . . . ,D500}. Solid, dashed and dotted lines correspond to the theoretical predictions from Eqs. (154), (157) and (161), respectively.

with an upper velocity bound v+ = c = 1 in Eq. (149). As for the ROUP, the integral formula (149) can be calculated
analytically by making use of the identity (153) and one then finds that69

DRBM
∞
= (αĎχ)

−1 K0(χ)
K1(χ)

. (157)

At low temperatures β := (kBT )−1 → ∞, Eq. (157) reduces to the well-known classical result Dclass
∞
= kBT /(MαĎ), cf.

Eq. (33). In the opposite limit of very high temperatures (i.e., for βM � 1) one finds a logarithmic dependence [15]

DRBM
∞
= (αĎM)−1

{
−γε + ln(2/χ)+ O[(βM)2]

}
, (158)

where γε ' 0.577216 is the Euler constant. However, it should be kept in mind that, due to the increasing importance of
particle annihilation/creation at high energies, classical non-quantum theories become invalid in the high temperature limit
χ = βM � 1, and, therefore, the asymptotic expansion (158) appears to be of limited practical use.
By comparing with the ROUP, we observe that DRBM

∞
≤ DROUP

∞
holds true for same values of the friction coefficients

αc = αĎ, cf. Fig. 7. Intuitively, this can be explained by the fact that, for the ROUP, the absolute value of the friction force
is bounded by αcM , cf. Eq. (151d), whereas the friction force is unbounded for the RBM model (155b), thereby suppressing
spatial diffusion more strongly in the latter case.

Constant friction coefficient in the Ito SDE. The RBM process defined by Eq. (155b) is characterized by a constant friction
coefficient αĎ, when adopting the post-point discretization rule (•). Another model, referred to as RBM(I) hereafter, is
obtained by considering a constant friction coefficient α∗ in the Ito Langevin equation

dP( t)= −α∗ P dt +
[
2α∗
β2
(1+ βP0)

]1/2
∗ dB( t), (159a)

where the noise amplitude is chosen such that the Einstein relation (142c) is satisfied. The Ito SDE of the associated velocity
process V ( t) := P/P0 reads

dV ( t) = −α∗

[
(1− V 2)+

3
χ
(1− V 2)3/2 +

3
χ2
(1− V 2)2

]
V dt

+

{
2α∗
χ

[
(1− V 2)5/2 + χ−1(1− V 2)3

]}1/2
∗ dB( t). (159b)

In this case, we have

µ∗(v)= α∗

[
(1− v2)+

3
χ
(1− v2)3/2 +

3
χ2
(1− v2)2

]
v, (160a)

b(v)=
α∗

χ

[
(1− v2)5/2 + χ−1(1− v2)3

]
. (160b)

From these equations the velocity potential is obtained as

U (v)= ln
[

χ + 1
χ(1− v2)+ (1− v2)3/2

]
− χ [1− (1− v2)−1/2],

69 Eq. (157) is an equivalent, more compact representation of Lindner’s result Eq. (10) in [25].
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yielding for the asymptotic diffusion constant:

DRBM( I)
∞

= [α∗K1(χ)]−1
∫ 1

0
dv

e−χ(1−v
2)−1/2

χ(1− v2)+ (1− v2)3/2
. (161)

The remaining integral can be evaluated numerically. As illustrated in Fig. 7, the theoretical predictions from Eqs. (157),
(154) and (161) are in good agreement with the numerically obtained estimates of the asymptotic diffusion constant.
The three model processes (151d), (155b) and (159a) give rise to the same stationary momentum PDF φJ(p), but their

respective relaxation behavior differs strongly. This is illustrated in Fig. 6, which depicts the time evolution of the spatial
mean square displacement divided by time,

Dt :=
〈
[X ( t)− X (0)]2

〉
/(2t), (162)

for all three models at same temperature T . The curves in Fig. 6 were calculated numerically from Eqs. (151d), (155c) and
(159a), respectively, using an algorithm similar to those described in [15,25], see also Appendix A.5.
The ROUP and the two RBM models considered in this part represent special limit cases of the general Langevin

equation (141) with arbitrarily chosen friction coefficient functions. Nonetheless, they yield useful insights: As evident
from Fig. 7, at moderate-to-high temperatures the diffusion constant can vary significantly for different friction models.
For realistic systems, the exact functional shape (i.e., energy dependence) of the friction function α is determined by
the microscopic interactions. This result implies that simultaneous measurements of the temperature and the diffusion
constants can reveal information about the underlying microscopic forces. Below, in Section 4.5, we will outline a general
procedure for deducing more realistic friction coefficients α from microscopic models.

4.3. Proper-time reparameterization

The relativistic Langevin equations considered thus far are parameterized in terms of the time-coordinate t of the lab
frameΣ .We shall nowdiscuss how these equations can be re-parameterized in terms of the proper-time τ . For this purpose,
we start from the Ito Langevin equation70

dXα( t)= (Pα/P0) dt, (163a)

dP i( t)= Ai dt + c ij ∗ dBj( t). (163b)

In general, the functionsAi andC ijmaydependon ( t, X i, P i). Upon applying Ito’s formula [74,500] to themass-shell condition
P0( t)= (M2 + P2)1/2, Eq. (163b) yields the following equation for the relativistic energy

dP0( t)=
{
Ai
P i

P0
+
Dij
2

[
δij

P0
−
P iP j

(P0)3

]}
dt +

P i

P0
cir ∗ dBr ( t), (163c)

where Ai := Ai, Dij := Dij = c irc
j
r :=

∑
r c
i
rc
j
r and cir := c ir . The Fokker–Planck equation for the associated phase space PDF

f ( t, x, p) reads(
∂

∂t
+
pi

p0
∂

∂xi

)
f =

∂

∂pi

[
−Aif +

1
2
∂

∂pk
(
Dikf

)]
. (164)

As before, we consider deterministic initial data X (0) = x0 and P (0) = p0, which translates into f (0, x, p) = δ(x − x0)
δ(p− p0).
We are interested in rewriting Eq. (163) in terms of the proper-time τ , defined by

dτ ( t)= (1− V 2)1/2dt, τ (0)= 0. (165)

The proper-time differential may also be expressed as

dτ ( t)= (M/P0)dt. (166a)

The inverse of the function τ ( t)will be denoted by X̂0(τ)= t(τ) and represents the time coordinate of the particle in the
frameΣ parameterized by the proper time τ . Our goal is to find SDEs for the reparameterized processes X̂α(τ) := Xα( t(τ))
and P̂α(τ)= Pα( t(τ)) inΣ . Heuristically, the SDEs can be derived from the relation

dBj( t)'
√
dt =

(
P̂0/M

)1/2√
dτ '

(
P̂0/M

)1/2
∗ dB̂j(τ), (166b)

where B̂j(τ) is a standard Wiener process with time-parameter τ . Equation (166b) can be justified rigorously by applying
theorems for the time-change of (local) martingale processes [30,500]. Inserting Eqs. (166) in Eqs. (132) one finds

70 For simplicity, we assume that B( t)= (Bj( t)) is d-dimensional, implying that C ij is a square matrix. However, all results still hold if B( t)has a different
dimension.
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Fig. 8. ‘Stationary’ probability density function (PDF) of the absolute momentum |P| measured at time t = 15 (×) and proper-time τ = 15 (©),
respectively, from 10000 sample trajectories of the one-dimensional (d = 1) relativistic Ornstein–Uhlenbeck process [11], corresponding to coefficients
D(p0)= Dc = const and α(p0)= βDc/p0 in Eqs. (163) and (169). Simulation parameters: dt = 0.001,M = c = β = Dc = 1. The solid and dashed lines
show the corresponding standard and modified Jüttner functions φJ ∝ exp(−βp0)and φMJ ∝ exp(−βp0)/p0 , respectively.

dX̂α(τ)= ( P̂α/M)dτ , (167a)

dP̂ i(τ)= Âi dτ + ĉ ij ∗ dB̂
j(τ), (167b)

where the transformed coefficients are given by

Âi := ( P̂0/M) Ai( X̂0, X̂, P̂), (167c)

ĉ ij := ( P̂
0/M)1/2 c ij( X̂

0, X̂, P̂). (167d)

Analogous to Eq. (163c), the reparameterized energy equation is obtained as

dP̂0(τ)=
{
Âi
P̂ i

P̂0
+
D̂ij
2

[
δij

P̂0
−
P̂ iP̂ j

( P̂0)3

]}
dt +

P̂ i

P̂0
ĉir ∗ dB̂r (τ), (167e)

where now D̂ik := ĉ ir ĉ
k
r . The FPE for the associated probability density f̂ (τ , x

0, x, p) reads(
∂

∂τ
+
pα

M
∂

∂xα

)
f̂ =

∂

∂pi

[
−Âi f̂ +

1
2
∂

∂pk

(
D̂ik f̂

)]
. (168)

We note that now f̂ dx0ddxddp gives the probability of finding the particle at proper-time τ in the (2d + 1)-dimensional
interval [t, t + dt] × [x, x+ dx] × [p, p+ dp] in the inertial frameΣ .
An interesting consequence of this reparameterization can be illustrated by considering the free motion in a thermalized

heat bath, which is stationary, isotropic and position independent in the lab frame Σ . As discussed above, in this case a
plausible ansatz reads

Ai = −α̂(p0)pi, c ij = [2D̂(p0)]1/2 δij, (169a)

where the friction and noise coefficients α̂ and D̂ depend on the energy p0 = (M2+p2)1/2 and satisfy the relativistic Einstein
relation

0 ≡ α̂(p0)p0 + D̂′(p0)− βD(p0). (169b)

Then, the stationary momentum distribution of the lab-time FPE (164) is given by a Jüttner function [186,202], i.e.,

f∞ := lim
t→ ∞

f ∝
exp(−βp0)

ZJ
= φJ(p). (170a)

Remarkably, however, in this case the stationary solution f̂∞ of the corresponding proper-time FPE (168) is given by the
modified Jüttner function [475]

f̂∞ := lim
τ → ∞

f̂ ∝
exp(−βp0)

ZJ p0
=: φMJ(p). (170b)

This can be confirmed by direct numerical simulation of Eqs. (163). An example is given in Fig. 8, which depicts the
numerically obtained PDF of the absolute momentum |P| for the one-dimensional ROUP [11]. The numerical PDFs were
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calculated from 10000 sample trajectories, by measuring the momentum at constant lab-time t (×) and constant proper-
time τ (◦), respectively. The solid and dashed lines show the corresponding standard and modified Jüttner functions,
respectively. The physical explanation for the difference between f∞ and f̂∞ is that measurements at t = const and
τ = const are non-equivalent even if both τ , t → ∞.
The modified Jüttner distribution φMJ, representing the stationary solution of the proper-time FPE, differs from the

standard Jüttner function φJ (118b) by a prefactor proportional to the inverse energy. As discussed in Ref. [475], the
modified distribution φMJ can be derived from a relative entropy principle by using a Lorentz invariant reference measure
in momentum space, whereas the Jüttner function φJ is obtained when adopting a constant reference density (Lebesgue
measure), cf. Eq. (123a).
Wemay summarize: If a relativistic Langevin-Ito process has been specified in the inertial frameΣ and is parameterized

by the associated Σ-coordinate time t , then this process can be reparameterized by its proper-time τ and the resulting
process is again of the Langevin-Ito type but exhibits a modified stationary distribution. With regard to applications [316,
319] the latter fact means that the correct form of the fluctuation-dissipation relation depends on the choice of the time-
parameter in the relativistic Langevin equation. In principle, however, one can – similar to the case of purely deterministic
relativistic equations of motions – choose freely between different time parameterizations by taking into account that the
noise part needs to be transformed differently than the deterministic part.

4.4. Moving observers

The preceding discussion has focused on Langevin equations that describe the randommotion of a relativistic Brownian
particle in the lab frame, defined as the rest frame of the heat bath. In this part we would like to address the following
question [26,30]: Assuming that a Langevin equation of the type (141) holds in the lab frame Σ — how does the
corresponding process appear to a moving observer?
There exist (at least) two different ways to tackle this problem: Either one uses the Lorentz invariance of the phase space

density, or one applies a Lorentz transformation directly to the Langevin equation [26,30].

4.4.1. Lorentz transformation of the phase space density
An observer at rest in the lab frame would measure the PDF f governed by the Fokker–Planck equations (135) or (138).

As discussed in Section 3.1.2 the one-particle phase space density transforms as a Lorentz scalar [151]; i.e.,

f ′( t ′, x′, p′)= f ( t( t ′, x′), x( t ′, x′), p(p′)), (171a)

and, conversely,

f ( t, x, p)= f ′( t ′( t, x), x′( t, x), p′(p)), (171b)

where ( t ′, x′, p′)and ( t, x, p)are related by the Lorentz transformation

x′λ( t, x) = Λλ0t +Λλ ixi, (172a)

p′ i(p) = Λi0(m2 + p2)1/2 +Λijpj. (172b)

For an observer moving at constant velocityw through the lab frame, the corresponding Lorentz boost matrix elements are
given by Eq. (83). Therefore, in order to find f ′, it suffices to solve the Fokker–Planck equations (135) in the lab frame Σ ,
e.g., for a given t-simultaneous initial condition f (0, x, p), and to insert the solution into (171a).

4.4.2. Lorentz transformation of the Langevin equation
Alternatively, in order to obtain explicit SDEs for the Brownian motion inΣ ′, one has to apply a Lorentz transformation

to the Langevin equations in the lab frameΣ [26,30]. This can be done by employing similar heuristics as in the case of the
proper-time reparameterization, cf. Section 4.3.
To illustrate this in more detail, we start again from the Langevin equations (163) and consider a Lorentz

transformation [8] from the lab frame Σ to another inertial frame Σ ′, mediated by a constant matrix Λνµ that leaves the
metric tensor ηαβ invariant. For convenience, we exclude time reversal transformations, i.e., we restrict ourselves to proper
Lorentz transformations withΛ00 > 0. It is convenient to proceed in two steps: First we define

Y ′ν ( t) := ΛνµXµ( t), G′ν ( t) := ΛνµPµ( t).

Then we replace t by the coordinate time t ′ ofΣ ′ to obtain processes

X ′α( t ′)= Y ′α( t( t ′)), P ′α( t ′)= G′α( t( t ′)).

In order to find the SDEs for X ′α( t ′)and P ′α( t ′), we note that dY ′0( t)= Λ0µdXµ( t)and, therefore,

dt ′( t)= dY ′0( t)=
Λ0µPµ

P0
dt =

G′0

P0
dt =

P ′0( t ′( t))
(Λ−1)0µP ′µ( t ′( t))

dt, (173a)
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whereΛ−1 is the inverse Lorentz transformation. A similar heuristics as in Eq. (166b) then gives

dBj( t)'
√
dt =

(
P0

P ′0

)1/2
√
dt ′ '

[
(Λ−1)0µP

′µ

P ′0

]1/2
∗ dB′j( t ′), (173b)

where B′
j
( t ′) is a Wiener process with time parameter t ′. Defining

A0 := Ai
pi

p0
+
Dij
2

[
δij

p0
−
pipj

(p0)3

]
, (174a)

c0j :=
pi

p0
cij, (174b)

we can introduce Lorentz-transformed coefficient functions inΣ ′ by

A′i(x′0, x′, p′)=
[
(Λ−1)0µp′µ

p′0

]
ΛiνAν

(
(Λ−1)0µx′µ, (Λ−1)iµx′µ, (Λ−1)iµp′µ

)
, (175a)

c ′ij(x′0, x′, p′) :=
[
(Λ−1)0µp′µ

p′0

]1/2
Λiν cν j

(
(Λ−1)0µx′µ, (Λ−1)iµx′µ, (Λ−1)iµp′µ

)
. (175b)

Substituting the formulas (173)–(175) into the Langevin equations (163), one finds that the particle’s trajectory
(X ′( t ′), P ′( t ′)) inΣ ′ is governed by an SDE of the form [11,17,20]

dX ′α( t ′)= (P ′α/P ′0) dt ′, (176a)

dP ′ i( t ′)= A′ i dt ′ + c ′ ij ∗ dB′
j
( t ′). (176b)

It should be noted that, due to the [ · ]-prefactors in Eq. (175), the coefficients Aµ and cνµ do not form Lorentz tensors.
This is essentially a consequence of the coordinate-time parameterization in Eqs. (163) and (176). 71 Furthermore, it is
straightforward now to obtain the corresponding SDE for the energy P ′0 = (M2+P ′2)1/2 inΣ ′ as well as the Fokker–Planck
equation by replacing unprimed with primed quantities in Eqs. (163c) and (164), respectively. 72

4.5. Relativistic binary collision model

The preceding subsections have focused on general aspects of relativistic Langevin and Fokker–Planck equations. Similar
to the nonrelativistic case, relativistic SDEs present a useful tool for analytical and numerical studies of relaxation processes
in relativistic systems. Stochastic models of this type provide a simplified picture of the underlying microscopic dynamics.
In order for the Langevin approach to be successful, one must know in advance which friction coefficient function α(P)
and noise amplitude D(P) are appropriate for the system under consideration. Realistic friction models can be obtained,
e.g., by deriving Fokker–Planck equations from relativistic Boltzmann equations [16,299]. In this context, however, it should
be noted that the validity of the relativistic Boltzmann equation [312] is less understood than that of its nonrelativistic
counterpart. In the remainder of this section, we will sketch an alternative procedure for obtaining friction coefficients
and noise amplitudes from a simple microscopic interaction model [21]. The latter can be viewed as the direct relativistic
generalization of the elastic binary collision model from Section 2.2.2. More precisely, we consider a one-dimensional
system consisting of a heavy Brownian particle (mass M) which is embedded into a heat bath of smaller particles (mass
m� M , total number N � 1). Our model assumes that the stochastic motion of a Brownian particle arises due to frequent
elastic interactions with the surrounding heat bath particles. Similar to Section 2.2.2, we are interested in finding the ‘best’
approximation of the ‘exact’ dynamics within the class of SDEs defined by Eq. (141).
Relativistic collision kinematics. To begin with, we consider a single collision of the Brownian particle (momentum P , energy
E = P0) with a heat bath particle (momentum p, energy ε). The relativistic energy, momentum and velocity of the two
particles before the collision are given by

P = MV γ (V), E(P)=
(
M2 + P2

)1/2
, (177a)

p = mv γ (v), ε(p)=
(
m2 + p2

)1/2
. (177b)

71 The coefficients Âi of the corresponding τ -parameterized process are the spatial components of a Lorentz four-vector Âµ; similarly, the quantities
D̂ij =

∑
r ĉ
i
r ĉ
k
r are spatial components of a second rank Lorentz tensor.

72 In particular, if the coefficients of the lab frame Langevin equation satisfy the relativistic Einstein relation (169b), then the stationary momentum
distribution in the moving frameΣ ′ is given by a boosted Jüttner distribution of the form φ′(p′)∝ exp(βU ′αp

′α), where U ′α is the four-velocity of the heat
bath inΣ ′ .
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where γ (v) :=
(
1− v2

)−1/2. Considering elastic interactions, the collision kinematics is governed by the relativistic
mass–energy–momentum conservation laws

M̂ = M, m̂ = m, E + ε = Ê + ε̂, P + p = P̂ + p̂, (178)

where hat-symbols refer to the state after the collision. Inserting Eqs. (177) into the conservation laws (178), and solving
for the momentum of Brownian particle after the collision, P̂ , we obtain [21]

P̂ = γ (u)2 [2u E − (1+ u2)P], (179a)

where the collision-invariant center-of-mass velocity u is given by

u(p, P)=
P + p
E + ε

. (179b)

Accordingly, the momentum change1Pr := P̂ − P of the Brownian particle in a single collision with the heat bath particle
‘r ’ is given by

1Pr = −2γ (ur)2
εr

E + εr
P + 2γ (ur)2

E
E + εr

pr , (180)

where ur := u(pr , P)and εr := ε(pr). In the non-relativistic limit case, where u2r � 1, E ' M and εr ' m, Eq. (180) reduces
to Eq. (48).
Furthermore, by making the same assumptions as in Section 2.2.2, we find that the momentum change δP( t) :=

P( t+δt)−P( t)of the Brownian particle during a small-but-sufficiently-long time interval [t, t+δt] can be approximated by

δP( t)≈ −2
N∑
r=1

γ (ur)2
εr

E + εr
P( t) Ir ( t, δt)+ 2

N∑
r=1

γ (ur)2
E

E + εr
pr Ir ( t, δt). (181a)

Formally, the collision indicator Ir ( t, δt) is again given by [cf. Eq. (53a)]

Ir ( t, δt)≈
δt
2
|vr − V | δ(xr − X), (181b)

but now one has to use the relativistic velocities V = P/(M2 + P2)1/2 and vr = pr/(M2 + p2r )
1/2, respectively. Eq. (181a)

is the relativistic counterpart of Eq. (53b). Heuristically, the first term on the rhs of Eq. (181a) can again be interpreted as
‘friction’, while the second contribution may be viewed as ‘noise’.
Bath distribution and drift. Similar to the nonrelativistic case, Eqs. (181) can be used to calculate the statistical moments of
themomentum increments — provided one specifies the phase space distribution of the heat bath particles. Wewill assume
here that the heat bath is in a thermal equilibrium state, so that the one-particle phase space PDF is given by a spatially
homogeneous Jüttner function on V = [0, L], i.e.,

f 1b (xr , pr)= (Z1L)
−1 exp

[
−β(m2 + p2r )

1/2]Θ(L− xr)Θ(xr), (182)

where T = (βkB)−1 is the temperature, and Z1 = 2mK1(βm)with K1(z) denoting the modified Bessel function. With
regard to our subsequent discussion, we are interested in calculating the mean drift forceK , defined by73

K(p) :=
〈
δP( t)
δt

∣∣∣∣ P( t)= p〉
b
. (183)

Inserting δP( t) from Eq. (181a), we find

K(p) = −nb

〈
γ (ur)2

εr

E + εr
L |vr − V | δ(xr − X)

∣∣∣∣ P( t)= p〉
b
P

+ nb

〈
γ (ur)2

E
E + εr

pr L |vr − V | δ(xr − X)
∣∣∣∣ P( t)= p〉

b
, (184)

where nb = N/L is the number density of the bath particles. In order to determineK(p), we note that for some arbitrary
function G(p, P), we have

〈G(pr , P)L|vr − V |δ(xr − X)|P( t)= p〉b = Z−11

∫
dpr G(pr , P) exp

[
−β(m2 + p2r )

1/2]
×

∣∣∣∣ pr
(m2 + p2r )1/2

−
P

(M2 + P2)1/2

∣∣∣∣ . (185)

73 In principle, higher moments can be calculated in a similar manner, but then one has to specify the corresponding many-particle heat bath PDFs.
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Fig. 9. Relativistic binary collision model. Mean drift force K(P) := 〈δP( t)/δt〉b numerically evaluated from Eq. (184) for different values kBT , with
nb = N/L denoting the number density of the heat bath particles.

The rhs of Eq. (184) involves the functions

G1(pr , P) := γ (ur)2
ε(pr)

E(P)+ ε(pr)
, (186a)

G2(pr , P) := γ (ur)2
E(P)

E(P)+ ε(pr)
pr . (186b)

Unfortunately, it is very difficult or perhaps even impossible to analytically evaluate the integral (185) for the functions G1/2.
Fig. 9 depicts the mean drift forceK , obtained by numerically integrating the formula (185) for different values of P .

Langevin approximation
We conclude this section by discussing how one could, in principle, approximate Eqs. (181) by, for example, a nonlinear

backward Ito SDE of the form (141), reading

dP( t)= −α(P)P dt + [2D(P)]1/2 • dB( t). (187)

The considerations for the two-component Jüttner gas from Section 3 imply that the stationary momentum distribution of
the Brownian particle in the binary collision model is given by the Jüttner function

φJ(p)= exp[−β(p2 +M2)1/2]/[2M K1(βM)]. (188)

Hence, in order for Eq. (187) to yield the expected Jüttner distribution, the functions α and D must be coupled by the
relativistic Einstein relation (140),

D(p)= β−1α(p)E(p), (189)

where E = (p2+M2)1/2. In order to determine the function α, we demand that the Langevin equation yields the samemean
drift forceK as the collision model, i.e.,〈

dP( t)
dt

∣∣∣∣ P( t)= p〉 != 〈δP( t)δt

∣∣∣∣ P( t)= p〉
b
. (190)

For the post-point (backward-Ito) Langevin equation (187) we know that [cf. Eq. (A.25)]〈
dP( t)
dt

∣∣∣∣ P( t)= p〉 = −α(p)p+ d
dp
D(p). (191)

Thus, by means of the Einstein relation (189), the lhs. of Eq. (190) is given by〈
dP( t)
dt

∣∣∣∣ P( t)= p〉 = −α(p)p+ β−1 ddp [α(p)E(p)], (192)

and the condition (190) becomes equivalent to the differential equation [cf. Eq. (65)]

−α(p)p+ β−1
d
dp
[α(p)E(p)] = K(p). (193)

In the case of the collision model, where the functionK(p) is not exactly known, one could, for example, try to fitK(p)by
a simple analytic expression and, subsequently, use this approximation in Eq. (193).
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5. Non-Markovian diffusion processes in Minkowski spacetime

The preceding section has focused on relativistic Brownian motions in phase space. In the remainder we will discuss
relativistic diffusion models in Minkowski spacetime, i.e., continuous relativistic stochastic processes that do not explicitly
depend on the momentum coordinate. On the one hand, such spacetime processes may be constructed, for example, from
a Brownian motion process in phase space by integrating out the momentum coordinates. As a result of this averaging
procedure, the reduced process for the position coordinate will be non-Markovian. Alternatively, one can try to derive or
postulate a relativistic diffusion equation and/or diffusion propagators in spacetime on the basis of microscopic models [10,
28,153,366] or plausibility considerations [23]. Regardless of the approach adopted, in order to comply with the principles
of special relativity, the resulting spacetime process must be non-Markovian, in accordance with the results of Dudley
(Theorem11.3 in [333]) andHakim (Proposition 2 in [338]). Roughly speaking, thismeans that any relativistically acceptable
generalization of the classical diffusion equation (1) should be of at least second order in the time coordinate.
The construction and analysis of relativistic diffusion models in Minkowski spacetime poses an interesting problem

in its own right. Additionally, the investigation of these processes becomes relevant in view of potential analogies with
relativistic quantum theory [383,391], similar to the analogy between Schrödinger’s equation and the diffusion equation (1)
in the nonrelativistic case [501,502]. The present section intends to provide an overview over classical relativistic diffusion
models that have been discussed in the literature [10,23,27–29,337,366,367,379–381,391]. For this purpose, we first recall
basic properties of the Wiener (Gaussian) process, which constitutes the standard paradigm for nonrelativistic diffusions
in position space (Section 5.1). Subsequently, relativistic generalizations of the nonrelativistic diffusion equation (1) and/or
the nonrelativistic Gaussian diffusion propagator will be discussed [23].

5.1. Reminder: Nonrelativistic diffusion equation

We start by briefly summarizing a few relevant facts about the standard nonrelativistic diffusion equation [287,339,422,
502]

∂

∂t
% = D ∇2%, t ≥ t0, (194)

where D > 0 denotes the spatial diffusion constant, and %( t, x) ≥ 0 the one-particle PDF for the particle positions
x ∈ Rd at time t . Within classical diffusion theory, Eq. (194) is postulated to describe the (overdamped) random motion
of a representative particle in a fluctuating environment (heat bath). In particular, Eq. (194) refers to the rest frame of the
bath.
There exist several well-known ways to motivate or derive the phenomenological diffusion equation (194) by means of

microscopic models (see, e.g., [287,339,422,502]). With regard to our subsequent discussion of relativistic alternatives, it is
useful to briefly consider a ‘hydrodynamic’ derivation [503], which starts from the continuity equation

∂

∂t
%( t, x)= −∇ · j( t, x), (195)

where j( t, x)denotes the current density vector. In order obtain a closed equation for the density %, the current j has to be
expressed in terms of %. One way of doing this is to postulate the following rather general ansatz {cf. Eq. (2.81) in [503]}

j( t, x)= −∇
∫ t

t0
dt ′ K ( t − t ′) %( t ′, x), (196)

where, in general, K may be a memory kernel. However, considering for the moment the memory-less kernel function74

KF( t − t ′) := 2D δ( t − t ′), (197)
one finds

jF( t, x)= −D ∇%( t, x). (198)
Upon inserting this expression into the continuity equation (195), we recover the classical diffusion equation (194).
Now, it has been well-known for a long time that the diffusion equation (194) is in conflict with the postulates of special

relativity. To briefly illustrate this, we specialize to simplest case of d = 1 space dimensions, where ∇2 = ∂2/∂x2. In this
case, the propagator of Eq. (194) at times t > t0 is given by the Gaussian

p( t, x|t0, x0)=
[

1
4π D( t − t0)

]1/2
exp

[
−
(x− x0)2

4D( t − t0)

]
. (199)

The propagator (199) represents the solution of Eq. (194) for the initial condition
%( t0, x)= δ(x− x0).

That is, if X ( t) denotes the random path of a particle with fixed initial position X ( t0) = x0, then p( t, x|t0, x0)dx gives

74 The factor ‘2’ in Eq. (197) appears because of the convention
∫ t
t0
dt ′ δ( t − t ′)f ( t ′)= f ( t)/2.
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Fig. 10. Spreading of the Gaussian PDF %( t, x) = p( t, x|0, 0) from Eq. (199) at different times t , where t is measured in units of D/c2 . At initial time
t = t0 = 0, the PDF corresponds to a δ-function centered at the origin.

the probability that the particle is found in the infinitesimal volume element [x, x + dx] at time t > t0. As evident from
Eq. (199), for each t > t0 there is a small, but non-vanishing probability that the particle may be observed at distances
|x − x0| > c( t − t0), where c = 1 is the speed of light in natural units. The evolution of the nonrelativistic Gaussian PDF
from Eq. (199) is depicted in Fig. 10.
It is worthwhile to summarize a few essential properties of Eqs. (194) and (199): Eq. (194) is a linear parabolic partial

differential equation. Due to the linearity,more general solutionsmay be constructed by superpositioning, i.e., by integrating
the solution (199) over some given initial PDF %0(x0). Eq. (194) describes a Markov process which means that the transition
PDF (199) satisfies the Chapman–Kolmogoroff criterion

p( t, x|t0, x0)=
∫

R
dx1 p( t, x|t1, x1) p( t1, x1|t0, x0) (200)

for all t1 ∈ ( t0, t). The corresponding diffusion process X ( t)can be characterized in terms of the following SDE:

dX ( t)= (2D)1/2 ∗ dB( t), X ( t0)= x0, (201)
where B( t) is a standard Wiener process as defined in Section 2.1.2. Formally, Eq. (201) may be obtained from the Langevin
equations (22) of the classical Ornstein–Uhlenbeck process with F ≡ 0 as follows: First we rewrite Eq. (22b) as

dV ( t)
α
= −Vdt +

(
2D0
M2α2

)1/2
∗ dB( t). (202)

Upon letting α → ∞ and D0 → ∞ such that D = D0/(αM)2 remains constant, the lhs. of Eq. (202) should become
negligible. Then, by making use of dX = Vdt , Eq. (201) is recovered.75 This limiting procedure defines the so-called
overdamped regime of the Ornstein–Uhlenbeck process. The mean square displacement of the overdamped process (201)
is given by [287]〈

[X ( t)− X ( t0)]2
〉
:=

∫
dx (x− x0)2 p( t, x|t0, x0)

= 2D ( t − t0), (203)
qualitatively similar to the asymptotic behavior of the classical Ornstein–Uhlenbeck process; cf. Eq. (25). Finally, we note
that the solution of Eq. (194) with initial condition

%( t0, x)≡ %0(x), (204)
can be expressed in terms of the Feynman–Kac formula [74,76]

%( t, x)=
〈
%0
(
x+ (2D)1/2B( t)

)〉
, (205)

where 〈 · 〉 indicates an averagewith respect to theWienermeasure of the standardWiener processB( t)with initial condition
B( t0) = 0. Equation (205) yields an efficient Monte-Carlo simulation scheme for computing the solutions of the diffusion
equation (194) for a broad class of initial distributions %0.

5.2. Telegraph equation

The problem of constructing continuous diffusion models which, in contrast to the classical nonrelativistic equations
(194) and (199), avoid superluminal velocities, has attracted considerable interest over the past years [10,23,27–29,327,337,
366,367,379–381,391]. Nonetheless, it seems fair to say that a commonly accepted solution is still outstanding. Apart from

75 Debbasch and Rivet [12] discuss the difficulties that arise when attempting a similar reduction for the relativistic Ornstein–Uhlenbeck process.
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the theoretical challenge of developing a consistent relativistic diffusion theory, there exist several practical applications
including, for example, the analysis of data from high energy collision experiments [320–322] or the diffusion of light
through turbidmedia [372,504,505] and foams [373–375]. In this context, a frequently considered alternative to the classical
diffusion equation (194) is given by the telegraph equation [10,27,29,320,321,366,370,377–380](

τv
∂2

∂t2
+
∂

∂t

)
% = D ∇2%. (206)

Here, D > 0 plays again the role of a diffusion constant, while τv > 0 is an additional relaxation time parameter.
Equation (206) can also be obtained from the continuity equation (195), provided one uses the exponential memory kernel
(Section 2.10 in Ref. [503])

KT( t − t ′) :=
D

τv
exp[−( t − t ′)/τv], (207)

instead of KF from Eq. (197). Similar to Eq. (194), the telegraph equation (206) refers to a special frame where the
background medium, causing the random motion of the diffusing test particle, is at rest (on average). The ‘nonrelativistic
limit’ corresponds to letting τv → 0 in Eq. (206), which leads back to Eq. (194). For τv > 0, Eq. (206) is a linear hyperbolic
partial differential equation. Because of the second order time derivative in Eq. (206), one now also has to specify the first
order time derivative of the initial distribution at time t0.
Considering again d = 1 space dimensions and particular initial conditions

%( t0, x)= δ(x− x0),
∂

∂t
%( t0, x)≡ 0, (208)

one finds that the corresponding solution of Eq. (206) is given by [10,366]

p( t, x|t0, x0)=
e−( t−t0)/(2τv)

2

{
δ[|x− x0| − v( t − t0)] +

Θ(ξ 2)

2τvv

[
I0(ξ)+

t
2τv

I1(ξ)
ξ

]}
. (209a)

Here, we have abbreviated

ξ :=
1
2

[(
t − t0
τv

)2
−

(
x− x0
τvv

)2]1/2
, v := (D/τv)

1/2, (209b)

and the modified Bessel functions of the first kind, Iν (z), are defined by

Iν (z) :=
∞∑
k=0

1
Γ (k+ ν + 1) k!

( z
2

)2k+ν
with Γ (z) denoting the Euler gamma function. According to our knowledge, the solution (209) was first obtained by
Goldstein in 1938/1939. Actually, Goldstein derived the result (209) by considering the continuum limit of a persistent
randomwalk model [369]; subsequently, he proved that this function satisfies the telegraph equation (206), cf. Section 8 of
his paper [366].
The propagator (209) is characterized by two salient features:

(1) As evident from the δ-function term, the solution exhibits two singular diffusion fronts traveling at absolute velocity
v := (D/τv)

1/2 to the left and right, respectively.
(2) Due to the appearance of the HeavisideΘ-function, the solution is non-zero only within the region |x− x0| ≤ v( t − t0),
i.e., upon fixing τv such that v = c = 1 the solution vanishes outside the light cone.

Thus, in contrast to the nonrelativistic propagator (199), Eqs. (209) define a relativistically acceptable diffusion model.
Because of the second order time derivative, the telegraph equation (206) describes a non-Markovian process, in accordance
with the aforementioned theorems of Dudley [333] and Hakim [338]. The non-Markovian character of the propagator (209)
can also be proven directly by verifying that this solution does not fulfill the condition (200).
The linearity of Eq. (206) implies that more general solutions can be obtained by integrating the propagator (209) over

some given initial distribution %0(x0). In principle, one may also construct other classes of solutions with ∂%( t0, x)/∂t 6≡ 0,
e.g., by applying a Laplace–Fourier transformation [10,506,507] to Eq. (206). We note, however, that in order for the
solution %( t, x) to remain normalized and positive at all times t > t0, additional constraints on the initial conditions must
be imposed, cf. Eq. (208). Various solutions and extensions of the telegraph equation (206), including different types of
boundary conditions, additional external sources etc., have been discussed, e.g., by Goldstein [366], Masoliver et al. [506,
507], Foong [508], Foong and Kanno [509], Renardy [510], and Dorogovtsev [511].
Similar to the nonrelativistic diffusion equation (194), the telegraph equation (206) may be derived and/or motivated in

many different ways. A detailed overview is given by Masoliver and Weiss [10], who discuss four different possibilities of
deducing Eq. (206) from underlying models; see also Koide [27,29]. During the past decades, the telegraph equation (206)
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has been used to describe a number of different phenomena. The applications include:

• Transmission of electrical signals.According toMasoliver andWeiss (206), the earliest derivation of the telegraph equation
is based on a paper by William Thomson [365] (who later became Lord Kelvin), published in 1855. He considered the
problem of how to transmit electrical signals without distortion, a question closely related to the design of the first
transatlantic cable.
• Continuummodels of persistent diffusion. It seems that the concept of persistent diffusionwas first proposed in 1917/1922
by Fürth [368,369] who aimed at describing the randommotion of biological objects. Independently, a similar approach
was suggested by Taylor [370] in an attempt to treat turbulent diffusion [367]. Fürth and Taylor considered discrete
models, assuming that a particle moves with constant absolute velocity between neighboring lattice points. At each
lattice point, the particle is either back-scattered or transmitted, with the transmission probability being larger than the
back-scattering probability (persistence). A few decades later, in 1950, Goldstein [366] demonstrated for the 1D case 76
that, for a suitable choice of the transition probabilities, the continuum limit of thismodel leads to the telegraph equation.
Hence, in contrast to the ordinary diffusion equation (194), the telegraph equation (206) relies on asymmetric transition
probabilities, causing the non-vanishing probability concentration at the diffusion fronts. Inmore recent years, persistent
diffusion models have been employed to describe the propagation of photons in thin slabs and foams [371–375].
• Heat transport and propagation of heat waves. In this case, the function %( t, x) in Eq. (206) is interpreted as a temperature
field and the normalization condition is dropped. For a detailed account of the vast literature on heat waves, we refer to
the review articles of Joseph and Preziosi [377,378].
• High energy ion collision experiments. In recent years, the telegraph equation has been used to estimate the dissipation
of net charge fluctuations, which may obliterate signals of QCD phase transitions in nuclear collisions [320,321]. In this
context, however, the coordinate x in Eq. (206) is interpreted as a rapidity variable.

Another interesting aspect of the telegraph equation is elucidated in a paper by Kac [367]. He observed that the solutions
of Eq. (206) with initial conditions

%( t0, x)≡ %0(x),
∂

∂t
%( t0, x)≡ 0, (210)

may be expressed in the form77

%( t, x)=
1
2

〈
%0

(
x− v

∫ t

t0
ds (−1)N(s)

)〉
+
1
2

〈
%0

(
x+ v

∫ t

t0
ds (−1)N(s)

)〉
, (211)

where v = (D/τv)1/2, and 〈 · 〉 indicates an average with respect to the τv-parameterized Poisson process N( t); i.e., for any
given time t > t0 we have

Prob{N( t)= k} =
e−( t−t0)/(2τv)

k!

(
t − t0
2τv

)k
, k = 0, 1, 2, . . . ; (212a)

and for any finite sequence t0 < t1 < · · · < tn the increments

N( t1)− N( t0),N( t2)− N( t1), . . . ,N( tn)− N( tn−1) (212b)

are independent. Equation (211) is the direct counterpart of Feynman–Kac formula (205) for the classical diffusion equation.
Eqs. (211) and (212) together provide an efficient Monte-Carlo simulation scheme for computing solutions of the telegraph
equation (206). Moreover, the Poisson path integral representation (211) discloses an interesting correspondence between
the free-particle Dirac equation [382] and the telegraph equation (206), whichwas first pointed out by Gaveau et al. [383] in
1984: The solutions of both equations may be linked by means of an analytic continuation. This connection is similar to the
relation between the diffusion equation (194) and the free particle Schrödinger equation in the nonrelativistic case.78 The
crucial difference is given by the fact that the measures of the functional integration refer to different underlying processes,
respectively.
However, the telegraph equation (206) is not the only possible relativistic generalization of the nonrelativistic diffusion

equation (1) and, recently, there has been some controversy about its applicability and validity [379–381]. An early critical
discussion of Eq. (206) in the context of relativistic heat transport was given by van Kampen [153] in 1970. Starting from a
simple microscopic model, consisting of a cloud of material particles that exchange electromagnetic radiation, van Kampen
derived an integral equation for the temperature of the particles as function of time and space. He then showed how the
telegraph equation (206) can be recovered as an approximation to the more precise integral equation, but that the validity
of this approximation breaks down in the vicinity of the diffusion fronts.

76 Boguñá et al. [28] discuss persistent random walks in higher space dimensions.
77 The result (211) may be generalized to an arbitrary number of space dimensions; cf. p. 500 in Kac’s paper [367].
78 For further reading about path integral representations of the Dirac propagator, we refer to the papers of Ichinose [384,385], Jacobson and
Schulman [386], Barut and Duru [387], and Gaveau and Schulman [388]; see also footnote 7 in Gaveau et al. [383] and problem 2–6, pp. 34–36 in Feynman
and Hibbs [389].
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.
For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = ( t0, x0) to x̄ = ( t, x) and assume

that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a( x̄|x̄0)=
1
2

∫ t

t0
dt ′ v( t ′)2, (213)

where the velocity v( t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v( t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v( t ′)≡ (x − x0)/( t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−( x̄|x̄0)=
(x− x0)2

2( t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x− x0)/( t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂ [t0, t]. Hence, the largest possible action value is a+( x̄, x̄0)= +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p( x̄|x̄0)∝
∫ a+( x̄|x̄0)

a−( x̄|x̄0)
da exp

(
−
a
2D

)
, (216a)

supplemented by the normalization condition

1 =
∫
dx p( x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a( x̄|x̄0)= −
∫ t

t0
dt ′

[
1− v( t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v( t ′)≡ (x− x0)/( t − t0). One explicitly obtains

a−( x̄|x̄0)= −
[
( t − t0)2 − (x− x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p( x̄|x̄0)= N −1
{
exp

[
−
a−( x̄, x̄0)
2D

]
− 1

}
, (218b)

if (x− x0)2 ≤ ( t − t0)2, and p( x̄|x̄0)≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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Fig. 11. Transition PDF %( t, x)= p( t, x|0, 0) for the one-dimensional (d = 1) relativistic diffusion process (218) at different times t (measured in units of
D/c2). At time t = t0 = 0, the function %( t, x)reduces to a δ-function centered at x0 = 0. In contrast to the nonrelativistic diffusion propagator, cf. Fig. 10,
the PDF (218) vanishes outside of the light cone.

Fig. 12. Comparison of the mean square displacements
〈
X2( t)

〉
, divided by 2Dt , for the one-dimensional (d = 1) nonrelativistic Wiener process (199) and

its relativistic generalization from Eq. (218) with initial condition ( t0, x0)= (0, 0).

The relativistic diffusion process described by Eq. (218) is non-Markovian, i.e., it does not fulfill Chapman–Kolmogoroff
criterion (200). The functional form of the propagator (218b) remains the same for higher space dimensions d > 1. The
normalization constantsNd for d = 1, 2, 3 read

Nd = N ′d −
ud

d
Od, (219)

where u := t − t0, Od = 2πd/2/Γ (d/2) is surface area of the d-dimensional unit sphere, andN ′d can be expressed in terms
of modified Bessel functions of the first kind In and modified Struve functions Lk [486], as

N ′1 = u π [I1(χ)+ L−1(χ)] , (220a)

N ′2 = u
2 2π
χ2
[1+ (χ − 1) exp(χ)] , (220b)

N ′3 = u
3 2π

2

χ2
{χ [I2(χ)+ L0(χ)]− 2L1(χ)} , (220c)

with χ = u/(2D).
In contrast to the solution (209) of the telegraph equation, the propagator (218b) vanishes continuously at the diffusion

fronts. Fig. 11 depicts the PDF %( t, x) = p( t, x|0, 0) of the diffusion process (218) for the one-dimensional case d = 1 at
different times t . The corresponding mean square displacement is plotted in Fig. 12 (dashed curve).
It is also interesting to note that the PDF (216) is a special case of a larger class of diffusion processes, defined by

pw( x̄|x̄0)= N [w]−1
∫ a+( x̄|x̄0)

a−( x̄|x̄0)
da w(a), (221)

wherew(a)≥ 0 is a weighting function, andN [w] the time-dependent normalization constant. In particular, Eq. (221)may
be viewed as a path integral definition in the following sense: Physically permissible paths from x̄0 to x̄ have action values
(per mass) a in the range [a−, a+]. Grouping the different paths together according to their action values, one may assign to
each such class of paths, denoted byC(a; x̄, x̄0), the statistical weightw(a). The integral (221) can then be read as an integral
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over the equivalence classes C(a; x̄, x̄0)and their respective weightsw(a). The nonrelativistic Wiener process corresponds
to the specific choicew(a)= exp[−a/(2D)]; hence, it appears natural to define the relativistic generalization by using the
same weighting function. It is, however, worth mentioning that a very large class of functions w(a) yields an asymptotic
growth of the spatial mean square displacement that is proportional to t , corresponding to ‘ordinary’ diffusion. Moreover,
Eq. (221) could also be used to describe super-diffusion or sub-diffusion processes [116,117,512], whose asymptotic mean
square displacements grow as tα, α 6= 1.80

6. Outlook

Wewould like to conclude our discussion by summarizing problemswhich, in our opinion, deserve further consideration
in the future:
• Microscopic models. The one-dimensional binary collision model from Section 4.5 appears to be the simplest example for
motivating relativistic Langevin-type equations by means of an underlying microscopic model. Future investigations
should focus on constructing relativistic Langevin equations from more precise particle-field interaction models;
e.g., one could consider the motion of a classical relativistic point particle in quasi-static external random fields. If
successful, this approach would yield more precise noise and friction models for relativistic systems.81 In particular,
this would contribute to clarifying under which circumstances stochastic differential equations may provide a feasible
approximation to complex relativistic systems. A useful starting point for future research in this direction could be the
work of Blanco et al. [416], Johnson and Hu [519–521] and Galley et al. [522], who proposed to model the interaction
between quantum test particles and vacuum fluctuations of quantum fields by means of effective Langevin equations.
• Relativistic processes driven by non-Gaussian noise. The most frequently studied relativistic stochastic differential
equations [11–14,17,18,20,21,24,31–34,391,394] are driven by Brownianmotion (Wiener) processeswhich couple to the
momentum coordinates. It would be interesting to also consider other driving processes (e.g., Poisson or Lévy noise) and
to compare with the results of the corresponding nonrelativistic equations [83,467,470]. On the one hand, the properties
of such generalized relativistic processes deserve to be studied from a purely mathematical point of view — e.g., with
regard to potential modifications of normal or anomalous diffusion effects. On the other hand, it would be desirable to
identify classes of physical systems that can be described by these processes. For example, it seems likely that the quasi-
random particle acceleration [523] in various astrophysical systemsmay be efficiently modeled by non-Gaussian driving
processes.
• Relativistic fluctuation theorems. Fluctuation theorems are mathematical relations that may be used to deduce certain
thermodynamic properties of equilibrium systems by measuring suitable averages from different realizations of a non-
equilibrium process [524–529]. During the past two decades, numerous fluctuation theorems have been established
for various closed and open nonrelativistic systems. Both from a theoretical and practical point of view, it would be
most interesting to generalize these results to the relativistic case. Recently, a first step in this direction was made
by Fingerle [395], who derived a relativistic fluctuation theorem for the special relativistic Brownian motion process
proposed in [17]. It will be worthwhile to extend these investigations to other, more general relativistic processes (see
also Cleuren et al. [241]).
• Relativistic diffusion models in Minkowski space. The above problems refer to stochastic processes in relativistic phase
space. Alternatively, one may focus on constructing and analyzing novel types of relativistic diffusion processes in
Minkowski spacetime, similar to those discussed in Section 5. One particularly important issue in this context concerns
the existence of reasonable path integral representations for the propagators of such processes. The latter question is
closely related to the problem of finding path integral formulations of relativistic quantum propagators [384,385,387,
389].
• Relativistic quantum Brownian motions. Another potential generalization of the above ideas concerns the construction
of relativistic quantum Brownian motion processes. Recent efforts in this direction include the aforementioned papers
by Johnson and Hu [519–521] and Galley et al. [522], who considered the motion of quasi-particles in fluctuating
quantum fields. Similar concepts have also been studied within the theory of stochastic semiclassical gravity, where
the gravitational field plays the role of a ‘Brownian particle’, with the vacuum fluctuations of quantum fields forming a
stochastic environment (‘bath’); for details we refer to the recent review by Hu and Verdaguer [530]. Another promising
starting point may be the work of Pechukas [105], and Tsonchev and Pechukas [106], who developed a simple elastic
collision model of nonrelativistic quantum Brownian motions. In this context, we also mention the work of Breuer
and Petruccione [531–533], who proposed a Langevin equation approach to describe quantum state diffusion in the
framework of special relativity, see also Diosi [534].
• Extensions to general relativity. Last but not least, notwithstanding recent progress [395,495,498,535–538,538–540], the
generalization of stochastic concepts and their applications within the framework of general relativity offers many
interesting challenges for the future.

80 This can be achieved, for example, by choosing the integral boundaries as ã− = (x− x0)2/( t − t0)α , α 6= 1 and a+ = ∞, but then the variable amay
not be interpreted as a conventional action anymore.
81 In this context, technical and conceptual challenges are likely to arise when considering the energy loss of the particle due to radiation emission
[513–518].
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Appendix A. Stochastic integrals and calculus

This appendix summarizes themost commonly considered stochastic integral definitions and the corresponding rules of
stochastic calculus. For a more rigorous and comprehensive introduction, we refer to, e.g., Refs. [73,74,76,422].
We consider a Wiener process (standard Brownian motion) B( t)as defined in Section 2.1.2; i.e., the increments dB( t) :=

B( t + dt)− B( t)are stochastically independent [74,76] and characterized by the Gaussian distribution

P{dB( t)∈ [y, y+ dy]} = (2πdt)−1/2 exp
[
−y2/(2dt)

]
dy. (A.1)

We are interested in defining integrals of the form

I =
∫ t

0
f (Y (s))� dB(s), (A.2)

where f (y) is some real-valued function, Y (s) a real-valued time-dependent process, and � signals a discretization rule
discussed below. If B(s)were some ordinary differentiable function of s ∈ [0, t], then the integral in Eq. (A.2) would simply
be given by82

I =
∫ t

0
f (Y (s)) Ḃ(s) ds, (A.3)

where Ḃ = dB/ds. Unfortunately, Ḃ(s) is not well-defined for theWiener process [74,422], but it is possible to generalize the
concept of integration to also include the Wiener process and other stochastic processes [74,76,422]. However, in contrast
to the standard Riemann–Stieltjes integral (A.3), the integral with respect to a stochastic process may depend on the choice
of the discretization scheme� and, in particular, also require modifications of differential calculus.
To illustrate these aspects for the most commonly considered stochastic integral definitions, we will always consider the

following equidistant partition {t0, t1, . . . , tN} of the time interval [0, t]:

1t = tk − tk−1 = t/N, k = 1, . . . ,N, t0 = 0, tN = t. (A.4)

A.1. Ito integral

We first summarize the properties of Ito’s stochastic integral [60,61]. Its relationship to other stochastic integrals is
discussed in Appendix A.4.

A.1.1. One-dimensional case
The Ito stochastic integral of some real-valued function f (Y ( t))with respect to a standard Brownianmotion process B( t)

over the time-interval [0, t] can be defined by∫ t

0
f (Y (s))∗ dB(s) := lim

N→ ∞

N−1∑
k=0

f (Y ( tk))[B( tk+1)− B( tk)] , (A.5)

where the partition {t0, . . . , tN} is given by (A.4). The peculiar, defining feature of this integral is that, on the rhs of Eq. (A.5),
the argument of the function f must be evaluated at the lower boundary points tk of the discrete intervals [tk, tk+1]; i.e., the
definition of the Ito integral is non-anticipating. Accordingly, the Ito discretization scheme is also known as the pre-point
rule.
Now consider a stochastic process Y ( t)which, for two given functions A(y)and C (y), is defined by

Y ( t)= Y (0)+
∫ t

0
A(Y (s))ds+

∫ t

0
C (Y (s))∗ dB(s), (A.6)

and where the last term is interpreted as an Ito integral (A.5). Stochastic integral equations like Eq. (A.6) are usually
abbreviated by rewriting them as an Ito stochastic differential equation (I-SDE)

dY ( t)= A(Y) dt + C (Y)∗ dB( t), (A.7)

82 By writing Eq. (A.3), it is implicitly assumed that f (y), Y and Ḃ are sufficiently smooth functions so that this integral exists in the sense of
Riemann–Stieltjes; in this case, the value of the integral (A.3) is independent of the underlying discretization scheme [76].
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complemented by the initial condition Y (0). From the non-anticipating definition (A.5) of the Ito integral and the properties
of the Wiener process it follows that [422]

83

〈C (Y)∗ dB( t)|Y ( t)= y〉 = 0. (A.8)

The Fokker–Planck equation for the PDF f ( t, y)of the stochastic process defined by Eq. (A.7) reads

∂ f
∂t
=

∂

∂y

[
−Af +

1
2
∂

∂y
(C2f )

]
, (A.9)

where A = A(y)and C = C (y). A deterministic initial condition Y (0)= y0 translates into f (0, y)= δ(y− y0).
Finally, an important peculiarity arises when one considers nonlinear transformations G of the stochastic process Y ( t).

More precisely, assuming that Y is defined by the I-SDE (A.7), then the differential change of the process Z ( t) := G(Y ( t)) is
given by (see, e.g., Section 4.3.2 in [422])

dZ ( t) = G′(Y)∗ dY +
1
2
C (Y)2 G′′(Y) dt

=

[
A(Y) G′(Y)+

1
2
C (Y)2 G′′(Y)

]
dt + C (Y) G′(Y)∗ dB( t), (A.10)

where G′(y) = dG(y)/dy and G′′(y) = d2G(y)/dy2. Within ordinary differential calculus, the term containing G′′ is absent.
Eq. (A.10) is usually referred to as Ito formula.

A.1.2. The n-dimensional case
Consider the n-dimensional stochastic process Y ( t) = (Y 1( t), . . . , Y n( t)), defined by the following n-dimensional

generalization of Eq. (A.7):

dY i( t)= Ai(Y) dt + C ir (Y)∗ dBr ( t), (A.11)

where i = 1, . . . , n and r = 1, . . . , K . In Eq. (A.11), the Wiener processes Br ( t) represent K independent noise sources, and
each term C ir (Y)∗ dBr ( t) symbolizes an Ito integral. The Fokker–Planck equation for the PDF f ( t, y1, . . . , yn) reads

∂ f
∂t
=

∂

∂yi

[
−Aif +

1
2
∂

∂yj
(C irC jr f )

]
. (A.12)

The generalized Ito formula reads (see, e.g., Section 4.3.2 in [422])

dG[Y ( t)] =
[
Ai ∂iG+

1
2
C irC jr ∂i∂jG

]
dt + C ir ∂iG ∗ dBr ( t), (A.13)

where ∂i := ∂/∂yi.

A.2. Stratonovich–Fisk integral

Next we summarize the properties of an alternative stochastic integral definition which was proposed by
Stratonovich [67–69] and Fisk [65,66]. In contrast to the non-anticipating Ito integral, the Stratonovich–Fisk (SF) integral
is semi-anticipating, but satisfies the rules of ordinary stochastic calculus.

A.2.1. One-dimensional case
The SF stochastic integral of some real-valued function f (Y ( t))with respect to a standard Brownian (Wiener) motion

process B( t)over the time-interval [0, t] can be defined by∫ t

0
f (Y (s))◦ dB(s) := lim

N→ ∞

N−1∑
k=0

1
2
[f (Y ( tk+1))+ f (Y ( tk))] [B( tk+1)− B( tk)] (A.14)

where the partition {t0, . . . , tN} is given by (A.4). In contrast to Ito’s integral (A.5), the SF definition (A.14) uses the mean of
the boundary values of f on the intervals [tk, tk+1]; i.e., the definition of the SF integral is semi-anticipating. This discretization
scheme is also known as themid-point rule.

83 〈·|Y ( t)= y〉 denotes the conditional expectation with respect to the Gaussian measure of the Wiener process B( t).
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Similar to Eq. (A.6), we may consider a stochastic process Y ( t)defined by

Y ( t)= Y (0)+
∫ t

0
A(Y (s))ds+

∫ t

0
C (Y (s))◦ dB(s), (A.15)

where now the last term is interpreted as an SF integral (A.14). The integral equation (A.15) can be abbreviated in terms of
the equivalent SF stochastic differential equation (SF-SDE)

dY ( t) = A(Y) dt + C (Y)◦ dB( t), (A.16)

with initial condition Y (0). From the semi-anticipating definition (A.14) of the SF integral and the properties of the Wiener
process it follows that [422]

〈C (Y)◦ dB( t)|Y ( t)= y〉 =
1
2
C (y)C ′(y)dt, (A.17)

where C ′(y)= dC (y)/dy. The Fokker–Planck equation for the PDF f ( t, y)of the stochastic process (A.16) reads

∂ f
∂t
=

∂

∂y

[
−Af +

1
2
C
∂

∂y
(Cf )

]
(A.18)

where A = A(y)and C = C (y). The deterministic initial condition Y (0)= y0 translates into f (0, y)= δ(y− y0).
It can be shown [76,422] that the SF integral definition preserves the rules of ordinary stochastic calculus; i.e., if Y ( t) is

defined by the SF-SDE (A.16), then the differential change of the process Z ( t) := G(Y ( t)) is given by (see, e.g., Section 4.3.2
in [422])

dZ ( t) = G′(Y)◦ dY

= A(Y) G′(Y) dt + C (Y) G′(Y)◦ dB( t), (A.19)

where G′(y)= dG(y)/dy.
However, as will be discussed in Appendix A.4, for a given SF-SDE with sufficiently smooth coefficient functions A and C

one can always find an I-SDE, which yields the same Fokker–Planck equation. Hence, in order to describe a certain physical
process, one may choose that integral definition which is most convenient for the problem under consideration.

A.2.2. The n-dimensional case
Consider the n-dimensional stochastic process Y ( t) = (Y 1( t), . . . , Y n( t)), defined by the following n-dimensional

generalization of Eq. (A.16):

dY i( t)= Ai(Y) dt + C ir (Y)◦ dBr ( t), (A.20)

where i = 1, . . . , n and r = 1, . . . , K . In Eq. (A.20), the Wiener processes Br ( t) represent K independent noise sources, and
each term C ir (Y)◦ dBr ( t) symbolizes an SF integral. The Fokker–Planck equation for the PDF f ( t, y1, . . . , yn) reads

∂ f
∂t
=

∂

∂yi

[
−

(
Ai +

1
2
C jr

∂

∂yj
C ir

)
f +

1
2
∂

∂yj
(C irC jr f )

]
(A.21)

and the transformation rules of ordinary differential calculus apply.

A.3. Backward Ito integral

We still consider a third stochastic integral definition which is also known as the backward Ito (BI) integral [70,74]. Its
relationship to the other stochastic integrals is discussed in Appendix A.4.

A.3.1. One-dimensional case
The BI stochastic integral of some real-valued function f (Y ( t))with respect to B( t) over the time-interval [0, t] can be

defined by∫ t

0
f (Y (s))• dB(s) := lim

N→ ∞

N−1∑
k=0

f (Y ( tk+1))[B( tk+1)− B( tk)] , (A.22)

where the partition {t0, . . . , tN} is given by (A.4). On the rhs of Eq. (A.22), in contrast to the Ito and SF integrals, the argument
of the function f must be evaluated at the upper boundary points tk+1 of the discrete intervals [tk, tk+1]; i.e., the definition
of this integral is anticipating. This discretization scheme is also known as the post-point rule.
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Similar to above, we may consider a stochastic process Y ( t)which, for two given functions A(y)and C (y), is defined by

Y ( t)= Y (0)+
∫ t

0
A(Y (s))ds+

∫ t

0
C (Y (s))• dB(s), (A.23)

and where the last term is now interpreted as a BI integral (A.22). Equation (A.6) can be abbreviated by rewriting it as a
backward Ito stochastic differential equation (BI-SDE)

dY ( t)= A(Y) dt + C (Y)• dB( t), (A.24)

complemented by the deterministic initial condition Y (0). From the anticipating definition (A.22) of the BI integral and the
properties of the Wiener process, it follows that [422]

〈C (Y)• dB( t)|Y ( t)= y〉 = C (y)C ′(y)dt. (A.25)

The Fokker–Planck equation for the PDF f ( t, y)of the stochastic process defined by Eq. (A.24) reads

∂ f
∂t
=

∂

∂y

[
−Af +

1
2
C2
∂

∂y
f
]
, (A.26)

where A = A(y)and C = C (y). The deterministic initial condition Y (0)= y0 translates into f (0, y)= δ(y− y0).
It can be shown that, similar to the Ito integral, also the BI integral requires a modification of differential calculus. More

precisely, assuming that Y is defined by the BI-SDE (A.24), the differential change of the process Z ( t) := G(Y ( t)) is given by

dZ ( t) = G′(Y)• dY −
1
2
C (Y)2 G′′(Y) dt

=

[
A(Y) G′(Y)−

1
2
C (Y)2 G′′(Y)

]
dt + C (Y) G′(Y)• dB( t), (A.27)

where G′(y)= dG(y)/dy and G′′(y)= d2G(y)/dy2.

A.3.2. The n-dimensional case
Consider the n-dimensional stochastic process Y ( t) = (Y 1( t), . . . , Y n( t)), defined by the following n-dimensional

generalization of Eq. (A.24):

dY i( t)= Ai(Y) dt + C ir (Y)• dBr ( t), (A.28)

where i = 1, . . . , n and r = 1, . . . , K . In Eq. (A.28), the Wiener processes Br ( t) represent K independent noise sources, and
each term C ir (Y)•dBr ( t)symbolizes a BI integral. The Fokker–Planck equation for the associated PDF f ( t, y1, . . . , yn)reads

∂ f
∂t
=

∂

∂yi

[
−

(
Ai + C jr

∂

∂yj
C ir

)
f +

1
2
∂

∂yj
(C irC jr f )

]
(A.29)

The generalized backward Ito formula reads

dG[Y ( t)] =
[
Ai ∂iG−

1
2
C irC jr ∂i∂jG

]
dt + C ir ∂iG • dBr ( t), (A.30)

where ∂i := ∂/∂yi.

A.4. Comparison of stochastic integrals

As anticipated in the preceding sections, the three different stochastic integrals/SDEsmay be transformed into each other.
In particular, a given Fokker–Planck equation can usually be realized by any of three SDE types, upon choosing the coefficient
functions appropriately. To illustrate this by example, we reconsider the n-dimensional SDEs from above, assuming identical
noise coefficients C ir but different drift coefficients Ai∗|◦|•(Y), respectively, i.e.

dY i( t)= Ai
∗
(Y) dt + C ir (Y)∗ dBr ( t), (A.31a)

dY i( t)= Ai
◦
(Y) dt + C ir (Y)◦ dBr ( t), (A.31b)

dY i( t)= Ai
•
(Y) dt + C ir (Y)• dBr ( t), (A.31c)
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where i = 1, . . . , n and r = 1, . . . , K . Wewould like to determine the drift coefficients such that these three different types
of SDEs describe the same n-dimensional stochastic process Y ( t) = (Y 1( t), . . . , Y n( t)) on the level of the Fokker–Planck
equations,84 which may be compactly summarized as follows

∂ f�
∂t
= ∂i

[
−
(
Ai
�
+ λ� C jr∂jC ir

)
f� +

1
2
∂j(C irC jr f�)

]
, (A.32)

where ∂i := ∂/∂yi, and λ∗ = 0, λ◦ = 1/2, and λ• = 1. We distinguish three cases.
Eq. (A.31a) is given: Eq. (A.32) implies that Eqs. (A.31b) and (A.31c) describe the same process like Eq. (A.31a), if we fix

Ai
◦
= Ai

∗
−
1
2
C jr∂jC ir , Ai

•
= Ai

∗
− C jr∂jC ir . (A.33)

Eq. (A.31b) is given: Eqs. (A.31a) and (A.31c) describe the same process like Eq. (A.31b), if we fix

Ai
∗
= Ai

◦
+
1
2
C jr∂jC ir , Ai

•
= Ai

◦
−
1
2
C jr∂jC ir . (A.34)

Eq. (A.31c) is given: Eqs. (A.31a) and (A.31b) describe the same process like Eq. (A.31c), if we fix

Ai
∗
= Ai

•
+ C jr∂jC ir , Ai

◦
= Ai

•
+
1
2
C jr∂jC ir . (A.35)

To summarize, by means of Eqs. (A.33), (A.34) and (A.35) one can change between the different forms of stochastic
integration and stochastic differential calculus, respectively. Each SDE type has advantages and disadvantages: The Ito
formalism is well suited for numerical simulations [73,89,420] and yields a vanishing noise contribution to conditional
expectations of the form (A.8). The Stratonovich–Fisk approach ismore difficult to implement numerically, but preserves the
rules of ordinary differential calculus (in contrast to Ito/backward Ito integration). Finally, within the backward Ito scheme,
fluctuation dissipation relations may take a particularly elegant form (cf. Section 6.2 in Ref. [77], and Ref. [112]).

A.5. Numerical integration

A detailed introduction to the numerical simulation of SDEs can be found in [73,89,420]. A simpleMonte-Carlo algorithm
for numerically integrating Eq. (A.31) follows directly from the definition of the stochastic integrals. The corresponding
discretization scheme, which works sufficiently well for many purposes, reads

Y i( t +1t)− Y i( t)= Ai
∗
(Y ( t))1t + C ir (Y ( t))1Br ( t), (A.36a)

Y i( t +1t)− Y i( t)= Ai
◦
(Y ( t))1t +

1
2
[C ir (Y ( t +1t))+ C ir (Y ( t))]1Br ( t), (A.36b)

Y i( t +1t)− Y i( t)= Ai
•
(Y ( t))1t + C ir (Y ( t +1t))1Br ( t). (A.36c)

Here, the1Br ( t)are random numbers, sampled from a Gaussian normal distribution with density

P[1Br ( t)] =
(
1

2π1t

)1/2
exp

{
−
[1Br ( t)]2

21t

}
. (A.37)

As evident from Eqs. (A.36), for given functions Ai
∗
and C ir , the discretized I-SDE (A.36a) allows for calculating the values

Y i( t + 1t) directly from the preceding values Y i( t). By contrast, the discretized SF-SDEs (A.36b) and BI-SDEs (A.36c) are
implicit equations, which must be solved for Y i( t +1t). The latter difficulty can be avoided by transforming a given SF/BI-
SDE to the corresponding I-SDE by means of Eqs. (A.33)–(A.35).

Appendix B. Surface integrals in Minkowski spacetime

We would like to integrate a tensorial quantity θµαβ...( t, x) over a fixed d-dimensional hyperplane H in (1 + d)-
dimensional Minkowski space, e.g.,85

Gαβ...[H] :=

∫
H

dσµ θµαβ...( t, x). (B.1)

84 For most practical purposes, two Markovian stochastic processes can be considered as physically equivalent if their PDFs are governed by the same
Fokker–Planck equation.
85 If θµαβ... is a tensor of rank n then the quantity Gαβ...[H] from Eq. (B.1) is tensor of rank (n− 1).
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Relevant examples are integrals over the energy–momentum tensor θαβ or the current density jα , as discussed inAppendix C.
We outline the general procedure for the case of d = 3 space dimensions, considering Cartesian coordinates with metric
tensor (ηαβ) = diag(−1, 1, 1, 1). In this case, the surface element dσµ may be expressed in terms of the alternating
differential form [220]

dσµ =
1
3!
εµαβγ dxα ∧ dxβ ∧ dxγ , (B.2)

where εµαβγ is the Levi-Cevita tensor86 and ‘∧’ denotes the antisymmetric product

dxα ∧ dxβ = −dxβ ∧ dxα, (B.3a)

implying that

dx0 ∧ dx0 = dx1 ∧ dx1 = · · · = 0. (B.3b)

Inserting (B.2) and ordering differentials with the help of Eq. (B.3a), the integral (B.1) can be rewritten as

Gα...[H] :=

∫
H

dx1 ∧ dx2 ∧ dx3 θ0α... −
∫

H

dx0 ∧ dx2 ∧ dx3 θ1α...

+

∫
H

dx0 ∧ dx1 ∧ dx3 θ2α... −
∫

H

dx0 ∧ dx1 ∧ dx2 θ3α.... (B.4)

With regard to thermodynamics, we are particularly interested in integrating over space-like or time-like surfaces H given
in the form

x0 = t = g(x)= g(x1, . . . , xd). (B.5)

Typical examples are the isochronous hyperplane T(ξ 0)of an inertial frameΣ , defined by

T(ξ 0) := {( t, x)|t = ξ 0 =: g(x)}, (B.6a)

or the backward light cone C[E ] of some spacetime event E with coordinates (ξ 0, ξ) inΣ , which is given by

C(E ) := {( t, x)|t = ξ 0 − |x− ξ| =: g(x)}. (B.6b)

Given such an explicit representation of the hyperplane, we may express the differential dx0 in Eq. (B.4) in terms of dxi by
using

dx0 = ∂ig dxi. (B.7)

Inserting this expression into Eq. (B.4) and taking into account Eq. (B.3), we obtain

Gα...[H] =

∫
H

dx1 ∧ dx2 ∧ dx3
[
θ0α... − (∂ig) θ iα...

]
:=

∫
ddx

[
θ0α...(g(x), x)− (∂ig) θ iα...(g(x), x)

]
. (B.8)

Hence, in this case, we may write for the covariant surface element four-vector

(dσα)= nαddx, nα = (1,−∂ig). (B.9)

In particular, for the isochronous hyperplane T(ξ 0) from Eq. (B.6a), we have g(x)= ξ 0 and ∂ig = 0 inΣ , yielding

Gα...[ξ 0] := Gα...[T(ξ 0)] =

∫
ddx θ0α...(ξ 0, x). (B.10)

For comparison, when integrating over the light cone C(E ) from Eq. (B.6b), one has to use

∂ig = −
xi − ξ i

|x− ξ|
, (B.11)

such that nαnα = 0, yielding explicitly

Gα...[E ] =

∫
ddx

{
θ0α...(ξ 0 − |x− ξ|, x) +

xi − ξ i

|x− ξ|
θ iα...(ξ 0 − |x− ξ|, x)

}
. (B.12)

86 The total antisymmetric covariant Levi-Cevita tensor εαβγ δ is 0 if two or more indicies are equal,+1 for even permutations of the indices (0123)and
−1 for odd permutations. Similar to the metric tensor, the Levi-Cevita tensor is numerically invariant under Lorentz transformations with determinant
+1. For a general discussion of the properties of Levi-Cevita tensors we refer to Section 5.5 of Sexl and Urbantke [8].
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Example 1: Gas in a cubic container.We calculate Gα[E ] for the energy–momentum tensor θαβ from Eq. (106), describing an
isotropic, stationary, spatially homogeneous gas in the lab frameΣ . Considering a cubic vessel V = [−L/2, L/2]d inΣ , the
components of θαβ inΣ read87

θαβ ( t, x)= V−1 I(x;V)

{
〈ε〉 , α = β = 0,
〈p · v〉 /d, α = β = 1, . . . , d,
0, α 6= β,

(B.13)

where V = Ld. Since θαβ is diagonal and time-independent inΣ , we find

G0[E ] =

∫
ddx θ00(g(x), x)= V−1 〈ε〉

∫
ddx I(x;V)= 〈ε〉 . (B.14)

The spatial components Gi[E ] can be calculated by means of a partial integration

Gi[E ] = −

∫
ddx (∂ig) θ ii(g, x)

= −(Vd)−1 〈p · v〉
∫
ddx (∂ig) I(x;V)

= (Vd)−1 〈p · v〉
∫
ddx g(x) ∂iI(x;V)

= (Vd)−1 〈p · v〉
∫
ddx (ξ 0 − |x− ξ|) ∂iI(x;V), (B.15)

where, cf. Eq. (107b),

∂iI(x;V)=
[
δ(L/2+ xi)− δ(L/2− xi)

]∏
j6=i

Θ(L/2+ xj)Θ(L/2− xj)

is antisymmetric with respect to xi; hence

Gi[E ] = −(Vd)−1 〈p · v〉
∫
ddx|x− ξ|∂iI(x;V).

In the one-dimensional case, where V = L and d = 1, this integral can be solved exactly, and one finds

G1[E ] = −L−1
〈
p1v1

〉
( |L/2+ ξ 1| − |L/2− ξ 1|). (B.16)

In particular, for a lab observer located in the origin ξ i = 0we haveG1[E ] = 0. In this example, the originmay be interpreted
as the photographic center-of-mass, which can be defined by the condition G1[E ] = 0 in the lab frame.
If the picture is taken from outside the volume V = [−L/2, L/2], corresponding to the condition L/|ξ 1| ≤ 1/2, then

G1[E ] = − 〈pv〉 (ξ 1/|ξ 1|); (B.17)
i.e., if the mean momentum is naively sampled from a photo taken outside of the photographic center-of-mass, then even
the lab observer (who is not moving with respect to the system) will find a non-vanishingmomentum average value always
pointing away from herself. In the case of a Jüttner gas with 〈p · v〉 = d/β , the magnitude of this photographic drift effect
is proportional to the temperature (and particle number).
In the d-dimensional case, performing the dxi-integration first, we find

Gi[E ] =
〈p · v〉
Vd

∫
dd/ix [(x1 − ξ 1)2 + · · · (L/2− ξ i)2 + · · ·]1/2

−
〈p · v〉
Vd

∫
dd/ix [(x1 − ξ 1)2 + · · · (L/2+ ξ i)2 + · · ·]1/2, (B.18)

with the remaining (d − 1)-dimensional integration (denoted by dd/ix) ranging over [−L/2, L/2]d−1. Again, Gi[E ] vanishes
if ξ i = 0. In the limit L/|ξ| � 1/2, corresponding to an observer position far outside the volume, one may expand the
integrands, yielding

Gi[E ] ' −(Vd)−1 〈p · v〉
∫
dd/ix L ξ i [(x1 − ξ 1)2 + · · · (ξ i)2 + · · ·]−1/2

' −(Vd)−1 〈p · v〉 (ξ i/|ξ|)
∫
dd/ix L

= −d−1 〈p · v〉 (ξ i/|ξ|). (B.19)

87 θαβ from Eq. (B.13) is the energy–momentum tensor per particle and has to be multiplied by the particle number N to obtain the total energy and
momentum of an N-particle system.
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In the one-dimensional case this reduces to Eq. (B.17).
Example 2: Arbitrary confinement. In the preceding example, the spatial density was taken to be piecewise constant with a
singular drop-off at the boundaries (walls of the vessel). As a slightlymore general example, consider an equilibrated gas in a
smooth confinement — e.g., due to some external potential. Moreover, assume that there exists a preferred inertial frameΣ ,
where the gas is stationary with an isotropic momentum density, so that it can be described by a Lorentz-scalar one-particle
density of the form

ϕ(x, p)= %(x) φ(p), (B.20)

with normalized marginal distributions % and φ, and φ being spherically symmetric. In this case, the (kinetic)
energy–momentum tensor

θαβ ( t, x) :=
∫
ddp
p0
pαpβ ϕ(x, p) (B.21)

has components

θαβ ( t, x)= %(x)


〈ε〉 , α = β = 0,〈
pivi

〉
, α = β = i = 1, . . . , d,

0, α 6= β.

(B.22)

Then, from Eq. (B.12), one obtains

G0[E ] = 〈ε〉

∫
ddx %(x)= 〈ε〉 , (B.23)

and

Gi[E ] =
〈
pivi

〉 ∫
ddx

xi − ξ i

|x− ξ|
%(x)=: Gi(ξ) (B.24)

In this case, the photographic center-of-mass position ξ∗ inΣ is defined by

Gi(ξ∗)= 0, i = 1, . . . , d; (B.25)

e.g., if % is rotationally invariant with respect to some space point z in Σ , then ξ∗ = z . On the other hand, assuming that
the density % vanishes outside a finite region V ∈ Rd inΣ and that a stationary observer is located at a position ξ far away
from V, then we may approximate

Gi[E ] '
〈
pivi

〉 ∫
ddx

xi − ξ i

|ξ|
%(x)=

〈
pivi

〉 〈xi〉− ξ i
|ξ|

. (B.26)

Appendix C. Relativistic thermodynamics

In this appendix, we shall refer to the Jüttner gas [188] from Section 3.2.2 in order to compare different formulations
of relativistic thermodynamics [121,122,127,150,152]. This serves to illustrate how different definitions and conventions
imply different Lorentz transformation formulas for, e.g., the temperature.

C.1. Reminder: Nonrelativistic thermodynamics

Traditionally, nonrelativistic thermodynamics intends to describe a many-particle systems by means of a few
macroscopic control parameters. According to Callen [482,541], the most ‘natural’ candidates for thermodynamic variables
are either conserved quantities (such as total internal energyU in the rest frame, particle numberN , etc.) or parameters that
characterize the breaking of symmetries (e.g., the volume parameter V characterizes the breaking of translation invariance,
external magnetic fields may break isotropy, etc.). Within the axiomatic formulation of thermodynamics [482,541,542],
one further postulates the existence of an extensive thermodynamic potential S(U, V , . . .) called entropy, required to be
a monotonous function ofU. Given the entropy S, intensive thermodynamic quantities (temperature T , pressure P , etc.)
are defined by a differentiation of S with respect to the extensive control parameters (U, V , . . .), yielding the first law of
thermodynamics

dS = T −1(dU+ P dV + · · ·). (C.1a)

Upon introducing a heat differential form đQ and a work contribution đA by [150,543]

đQ := T dS, đA := −P dV − · · · , (C.1b)



60                                              

the first law (C.1a) can be rewritten in the form

đQ = dU− đA. (C.1c)

In the nonrelativistic framework, it is rather straightforward to generalize Eq. (C.1) to also describemoving systems [150]. To
illustrate this, consider a nonrelativistic thermodynamic system of constant total massM , moving at constantmean velocity
w ′. In this case, one can interpret the mean velocityw ′ as an additional intensive variable, and define the internal energyU
by [150]

E ′ = U+Mw ′2/2, (C.2)

where E ′ is the total energy of the moving system; hence,

dU = dE ′ −w ′ · d(Mw ′)= dE ′ −w ′ · dG ′, (C.3a)

where G ′ := Mw ′ is the total (mean) momentum of the system. Combining this with Eq. (C.1), the first law can be expressed
as

đQ = dE ′ −w ′ · dG ′ − đA, (C.3b)

where the second term on the rhs may be interpreted as acceleration work.

C.2. Relativistic case

The relativistic generalization of Eqs. (C.1)–(C.3) is less trivial due to the following reasons [150]
• One cannot decompose the relativistic energy E of a thermodynamic system into the sum of a kinetic part and a termU
depending only on the internal state.
• In general, the rest mass (energy) of a thermodynamic system is not constant in thermodynamic processes, since, for
example, any heat transfer đQ represents a change of energy and, therefore, of mass.
• The transfer of energy andmomentum betweenmoving systems implies the transfer of mass and, hence, of momentum.
• There exist several different, reasonable ways to define heat and work in relativistic systems.

When adopting a statistical approach88 towards relativistic thermodynamics, i.e., when identifying thermodynamic
variables with statistical averages, one can add one more source of difficulty to this list [178]:
• Expectation values such as the mean energy or the mean momentum of a many-particle system are nonlocal quantities
whose definition requires choosing (i.e., fixing) a specific hyperplane in spacetime. The choice of the hyperplane may
single out a preferred frame of reference.

In particular, the last two aspects have led to considerable debate and confusion during the past century, e.g., concerning
the behavior of temperature under Lorentz transformations [127–149,156,158–160,165,166,169,171,172,178,214,215,217,
234,476]
In the remainder of this section, we briefly summarize three different formalisms of relativistic thermodynamics, as

proposed by a Planck [121], Ott [127] and van Kampen [150,152], respectively. This serves to illustrate how different
definitions and conventions yield, for example, different transformation formulas for the temperature. For this purpose,
we consider a confined system with fixed particle number N that, in the lab frame Σ , can be described by a spatially
homogeneous, stationary Jüttner distribution (118). Aiming to identify thermodynamic quantities with statistical averages,
we distinguish three different types of hyperplanes in Minkowski spacetime, as illustrated in Fig. C.1.:
We define theΣ-isochronous hyperplane T(ξ 0), corresponding to events ( t, x)with t = ξ 0 = constant in the lab frame

Σ , by

T(ξ 0) := {( t, x)|t = ξ 0, x ∈ Rd}. (C.4a)

Similarly, we define for a frame Σ ′ moving at velocity w = (w, 0, . . . , 0) relative to the lab frame Σ , the Σ ′-isochronous
hyperplane T′(ξ ′

0
)by

T′(ξ ′0) := {( t ′, x′)|t ′ = ξ ′0, x′ ∈ Rd}. (C.4b)

Wedenote the backward light coneC(E )of some spacetime event E , having coordinates ξ̄ (E )= (ξ 0, ξ)inΣ and coordinates
(ξ ′

α
)= (Λαβξ

β) inΣ ′, by

C(E ) := {( t, x)|t = ξ 0 − |x− ξ|, x ∈ Rd}. (C.4c)

We next introduce relativistic thermodynamic variables as integrals over these hyperplanes.

88 Eqs. (C.1) and (C.3) represent relations between macroscopic observables. The microscopic, statistical justification of these equations rests on the
assumption that thermodynamic variables can be related to well-defined expectation values with respect to a phase space probability distribution [287,
492]. A statistical distribution (ensemble) with density f provides a ‘‘good’’ model of thermodynamics if the expectation values satisfy the differential
relation (C.3) for a suitable entropy functional S[f ]. Recently, it has been shown [492] that thermodynamic relations of the type (C.1) hold for a rather wide
class of distributions (not only microcanonical and canonical ones), provided the entropy functional is chosen appropriately.
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Fig. C.1. The different hyperplanes as defined in Eq. (C.4). The world lines of two particles are labeled by ‘‘P1’’ and ‘‘P2’’; the world lines of the container
walls correspond to vertical lines at x = −L/2 and x = L/2 (thick dashed lines), respectively. Assume a lab observer, resting at position x = 0 inΣ , takes
a photograph of the system at the spacetime event E with coordinates ( t, x)= (ξ 0, 0) inΣ . This photograph will reflect the state of the system along the
light cone C(E).

Energy and momentum.We distinguish energy–momentum mean values defined along the different hyperplanes89:

Uβ
[ξ 0] := N

∫
T(ξ0)

dσα θαβ ( t, x), (C.5a)

Uβ
[ξ ′0] := N

∫
T′(ξ ′0)

dσα θαβ ( t, x), (C.5b)

Uβ
[E ] := N

∫
C(E)

dσα θαβ ( t, x). (C.5c)

In the presence of an arbitrary external confinement, the energy–momentum tensor is not divergence-free everywhere,90
cf. Eq. (107). In this case, each of the three quantities from Eq. (C.5) represents a different91 nonlocal four-vector, since they
refer to different hyperplanes, respectively. In principle, either of the three four-vectors could be used as a thermodynamic
variable, giving rise to different thermodynamic formalisms [178].
The lab-isochronous four-vectorUβ

[ξ 0] from Eq. (C.5a) ismost easily calculated in the lab frameΣ; cf. Appendix B. Using
Eq. (108c), one finds

Uβ
[ξ 0] = N

〈
pβ
〉
ξ0
= N

{
〈ε〉 , β = 0,
0, β 6= 0. (C.6a)

In the case of a Jüttner distribution, the one-particle expectation value 〈ε〉 = 〈ε〉d is given by Eqs. (120b)–(120d). In
another frame Σ ′, moving with velocity w along the x1-axis of Σ , one finds the transformed energy–momentum vector
U′β [ξ 0] = Λ(w)βνU

ν
[ξ 0] as

U′
β
[ξ 0] = N

{
γ 〈ε〉 , β = 0,
−γw 〈ε〉 , β = 1,
0, β > 1,

(C.6b)

where γ (w) = (1 − w2)−1/2 and Λ(w)βν denotes the Lorentz transformation matrix. As discussed below, Ott [127] and
van Kampen [150,152] use Eq. (C.6) as the starting point for their formulations of relativistic thermodynamics, but consider
different definitions of heat and temperature, respectively.
For comparison, the Σ ′-isochronous energy–momentum four-vector, defined in Eq. (C.5b) by integration along the

hyperplane T′(ξ ′
0
), is most conveniently calculated inΣ ′, yielding, by virtue of Eq. (115b),

U′
β
[ξ ′0] = N

〈
p′β
〉
ξ ′0
= N

γ (〈ε〉 + w
2
〈p · v〉 /d), β = 0,

−γw(〈ε〉 + 〈p · v〉 /d), β = 1,
0, β > 1,

(C.7a)

89 Although the energy–momentum tensorwas introduced abovewith the help of the one-particle phase space PDF, Eqs. (C.5) can also be used to develop
more general thermodynamic theories based on the energy–momentum tensor (and other conserved currents) constructed, e.g., from field theories [6,9,
164,544].
90 Similar problems arise if one wants to construct a relativistic continuummodel for the electron [134,476,479].
91 The three four-vectors from Eq. (C.5) would coincide if the energy–momentum tensor were divergence-free everywhere [178].



62 J. Dunkel, P. Hänggi / Physics Reports 471 (2009) 1–73

where 〈p · v〉 = d/β for the Jüttner distribution, cf. Eq. (122). Eq. (C.7a) presents the basis of the Planck–Einstein
formulation [121,122] of relativistic thermodynamics, cf. discussion below. Applying an inverse Lorentz transformation
Λ(−w) to Eq. (C.7a) gives

Uβ
[ξ ′0] = N

{
〈ε〉 , β = 0,
−w 〈p · v〉 /d, β = 1,
0, β > 1.

(C.7b)

The non-vanishing component with β = 1 reflects the fact that the integration was performed along the hyperplane
‘‘t ′=constant’’, which introduces an apparent asymmetry in the lab frame, cf. Fig. C.1, and results in a spurious mean
momentum.92

In fact, the most frequently discussed versions of relativistic thermodynamics (see, e.g., [121,122,127–149,156,158–160,
165,166,169,171,172,178,214,215,217,234,476]) adopt – implicitly or explicitly – either Eq. (C.6) or Eq. (C.7) as the starting
point. From an experimental point of view, these equations refer to different, nonequivalent measurements procedures:
In order to determineU′β [ξ 0] a moving observer (at restΣ ′) had to reconstruct the velocities and/or momentum values

along the hyperplane t = ξ 0, whereas to obtainU′β [ξ ′0] velocities must be sampledΣ ′-simultaneously along t ′ = ξ ′0. On
the other hand, as pointed out by Gamba [476], even for a lab observer it will be very difficult (if not impossible in practice)
to reconstruct the velocity data along the hyperplane t = ξ 0 due to the finiteness of the speed of light.
Isochronous vs. light cone averages. A more natural way of performing measurements (e.g., in astronomy) is to ‘take a
photograph’ of a given system. A photograph recorded by an observer at the event E reflects the state of the system along the
light coneC[E ]—see Fig. C.1. Let us assume that an idealized photograph encodes both position and velocity93 of the particles
in the system. Then, the empirical energy and momentum averages which can be sampled from this data correspond to the
light cone averageUβ

[E ] as defined in Eq. (C.5c).
Calculating Uβ

[E ] for a stationary lab distribution of the form ϕ(x, p) = %(x)φ(p), with isotropic momentum PDF φ,
gives in the lab frame (cf. Appendix B)

U0
[E ] = N 〈ε〉 , (C.8a)

Ui
[E ] = N d−1 〈p · v〉

∫
ddx

xi − ξ i

|x− ξ|
%(x), i = 1, . . . , d, (C.8b)

where (ξ 0, ξ)are the spacetime coordinates E inΣ . By comparingwith Eqs. (C.6a) and (C.7b), we see that the 0-components
are identical,

U0
[E ] = U0

[ξ 0] = U0
[ξ ′0]; (C.9)

i.e.when sampling energy values it does notmatterwhether this is done fromaphotograph or from simultaneously collected
(i.e., reconstructed) data.
The situation is different, when estimating the mean momentum. As evident from Eq. (C.8b), even for a lab observer at

rest inΣ , the light cone average depends on the position ξ of the observer.94 A distinguished ‘‘photographic center-of-mass’’
position ξ∗ inΣ can defined by

Ui
[E ]|ξ=ξ∗

= 0, i = 1, . . . , d. (C.10)

For example, if % is symmetric with respect to the origin ofΣ , then ξ∗ = 0; this would correspond to a light cone as drawn
in Fig. C.1.
To illustrate how Ui

[E ] depends on the observer position, assume that the density % vanishes outside a finite region
V ∈ Rd in Σ and that a stationary observer is located at a position ξ far away from V. In this case, one can approximate
|x− ξ| ' |ξ| in the integrand of Eq. (C.8b), yielding

Ui
[E ] = Nd−1 〈p · v〉

〈
xi
〉
− ξ i

|ξ|
. (C.11)

92 Some authors [127,151,152] have interpreted the w2-term in Eq. (C.7) as an energy contribution due to presence of the walls. This view, although
objected to by others [178], seems to be at least partially correct. The above derivation shows that the difference between U′β [ξ 0] and U′β [ξ ′0] can
be attributed to the different underlying hyperplanes T(ξ 0) and T′(ξ ′

0
), respectively. However, Eqs. (C.5a) and (C.5b) would give the same result if the

energy–momentum tensor were divergence-free everywhere [178]. In the above example of a homogeneous gas, the divergence is non-zero only on the
boundary due to the appearance of the Θ-function in the phase space density, cf. Eq. (107); i.e., the difference between U′β [ξ 0] and U′β [ξ ′0] is indeed
related to the presence of the boundary. It seems that Einstein was aware of this problem, cf. his remarks in [122], but at that time did not follow up this
issue.
93 In practice, velocities can be reconstructed from color variations due the Doppler shift of spectral lines.
94 Clearly, averages in the lab frame do not depend on the specific value ξ 0 of the time coordinate if the PDF is stationary in this frame.
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In particular, when considering a homogeneous Jüttner gas with position mean value 〈x〉 = 0 and 〈p · v〉 = d/β , then95

Ui
[E ] = −

ξ i

|ξ|

N
β
; (C.12)

i.e., an observer located outside of the gas, who naively estimates Ui
[E ] from his photographic data, could erroneously

conclude that the gas is moving away from him (at a velocity proportional to the temperature). This effect96 should be taken
into consideration when estimating the velocities of astrophysical objects from photographs.
From the conceptual point of view, it is worthwhile to note that the hyperplane ‘‘backward light cone C(E )’’ is a

relativistically invariant object which is equally accessible for any inertial observer. Put differently, if a second observer,
moving relative to the first one, takes a snapshot at the same event E then her picture will reflect the same state of the
system — even though the colors will be different due to the Doppler effect caused by the observer’s relative motion [6].
Another advantage of light cone averages, as defined in Eq. (C.5c), lies in the fact that they can be generalized to

general relativity [5,6] in a straightforward manner, whereas it becomes very difficult to single out a globally acceptable
‘‘simultaneous’’ hyperplane in curved spacetime.97 In view of these benefits, light cone averages appear to be the better –
if not the best – suited candidates if one wishes to characterize a many-particle system by means of non-locally defined,
macroscopic variables within a relativistic framework.
However, since historically most authors considered either lab-simultaneously or observer-simultaneously defined

quantities, we will restrict ourselves in the remainder to discussing the implications of these two choices.
Entropy.Having identified the potential candidates for the thermodynamic state variables ‘energy’ and ‘momentum’, one still
needs to specify ‘entropy’. In the case of a Jüttner gas, one candefine an entropy density four-current per particle by [242,312]

sα( t, x)= −
∫
ddp
p0
pα f ( t, x, p)ln[hdf ( t, x, p)]. (C.13)

The ‘logarithmic’ form of this entropy current is specifically adapted [492] to the exponential form of the Jüttner distribu-
tion and/or vice versa, cf. Eq. (123a). Inserting the Jüttner function (118) into Eq. (C.13), one finds that the entropy current is
stationary in the lab frameΣ and given by

sα( t, x)= V−1 I(x;V)
{
ln(VZd/hd)+ β 〈ε〉d , α = 0,
0, α = 1, . . . , d. (C.14)

Hence, the current (C.14) satisfies the conservation law

∂αsα = 0. (C.15)

The thermodynamic entropy S is obtained by integrating Eq. (C.14) over some space-like or light-like hyperplaneH, yielding
the Lorentz invariant quantity

S[H] := N
∫

H

dσα sα( t, x)= N
∫

H

dσ ′α s
′α( t ′, x′)=: S′[H]. (C.16)

The conservation law (C.15) implies that the integral (C.16) is the same for the hyperplanes T(ξ 0), T′(ξ ′0)and C(E ), i.e.,

S[E ] = S′[E ] = S[ξ 0] = S′[ξ 0] = S[ξ ′0] = S′[ξ ′0]. (C.17)

The integral (C.16) is most conveniently calculated along H = T[ξ 0] inΣ , yielding

S = N
∫
ddx s0(ξ 0, x)= N ln(VZd/hd)+ β N 〈ε〉 . (C.18)

Heat and temperature. By means of the preceding considerations, we can now summarize and compare the most commonly
discussed versions of relativistic thermodynamics [121,122,127–149,156,158–160,165,166,169,171,172,178,214,215,217,
234,476]. As mentioned above, these versions are based on simultaneously defined averages, respectively. In spite of this
common feature, differences exist regarding

• the choice of the underlying hyperplane and/or
• the adopted definition of heat,

95 Note that Eqs. (C.12) and (C.8b) are consistent with Eq. (C.7b), as can be seen by letting ξ 1 � 0, ξ 2 = · · · = ξ d = 0 andw → 1 in Eq. (C.7b).
96 The effect becomes negligible if βmc2 � 1.
97 In the nonrelativistic limit case c → ∞, the light cone ‘‘opens up’’ so that photographic measurements become isochronous in any frame in this limit.
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leading, for example, to different temperature transformation laws. Taking into account the historical order, we begin by
recalling the Planck–Einstein formulation [121,122] of relativistic thermodynamics.
Guided by Eqs. (C.3), Planck and Einstein opted in 1907/08 for the following definition of heat {cf. Eq. (23) in [122]}

đQ′(w′) := dE ′ − w′dG′ + P ′dV ′ =: T ′dS′, (C.19a)

wherew′ = −w is the constant velocity98 of the thermodynamic system in the frameΣ ′, and99100

V ′(w′)= V/γ , (C.19b)

P ′(w′)= P , (C.19c)

S′(w′)= S, (C.19d)

E ′(w′)= γ
(
E + w′

2
PV

)
, (C.19e)

G′(w′)= γw′ (E + PV), (C.19f)

with γ = γ (w′)= γ (w)denoting the Lorentz-factor. The choice (C.19b)–(C.19f) corresponds to defining thermodynamic
energy and momentum observer-simultaneously as in Eq. (C.7a) and identifying the pressure as

PV = N 〈p · v〉 /d, (C.19g)

so that for a Jüttner gas we have

PV = Nβ−1.

Furthermore, substituting Eqs. (C.19b)–(C.19f) into Eq. (C.19a) gives

đQ′(w′)= γ−1 (dE + P dV)= γ−1 đQ = γ−1 T dS, (C.19h)

and comparing Eq. (C.19h) with (C.19a) leads to the temperature transformation formula of Planck [121]101

T ′ = γ−1 T = (1− w′2)1/2 T , (C.19i)

stating that a moving body appears cooler (for the Jüttner gas T = β−1). This formalism was criticized by Ott [127]
in 1963 and later also by van Kampen [150,152] and Landsberg [139,141] — mostly because the quantities (E ′,G′) and
(E,G) = (E ′(0),G′(0)) are not related by a Lorentz transformation. As discussed above, this drawback can be traced back
to the fact that E ′ and G′, if taken at different values ofw′, correspond to different hyperplanes, respectively [178].
To overcome this deficiency, van Kampen [150,152] proposed to define, instead of Eq. (C.19a), a thermal

energy–momentum transfer four-vector by

đQα
:= dEα − đAα, (C.20a)

where (đAα) := (PdV , 0) in the lab frameΣ , and Eα is chosen to be the lab-simultaneous energy–momentum vector from
Eqs. (C.6), i.e.,

Eα := Uα
[ξ 0]. (C.20b)

The particular choice (C.20b) singles out the lab-isochronous hyperplane T[ξ 0], and in a moving frame one then has

đQ′α = dE ′α − đA′α,

(dE ′α)= (γ E0, γw ′E0),

(đA′α)= (γPdV , γw ′PdV),

(C.20c)

with unprimed quantities referring to the lab frameΣ , defined byw ′ = 0.While essentially agreeing on Eqs. (C.20a)–(C.20c)
and also on the scalar nature of entropy S′ = S, van Kampen and Ott differ in how to define the temperature of a moving
system, i.e., how to formulate the (first part102 of the) second law. More precisely, Ott opted for the definition

T ′ dS′ := đQ′0 = γ
(
dE0 + P dV

)
= γ đQ0 = γ T dS, (C.21a)

98 For simplicity, we again consider a thermodynamic system that moves with velocity w ′ along the x′1-axis of Σ ′ , so that w ′ = (w′, 0, . . . , 0) =
(−w, 0, . . . , 0)= −w withw denoting the velocity ofΣ ′ relative to the rest-frameΣ of the system.
99 The scalar transformation (C.19c) of the pressure P is implied by the transformation laws of force and area [121,150].
100 After reinstating constants c in Eq. (C.19f), it becomes evident that G′(w′) → w′M in the nonrelativistic limit case c → ∞.
101 It seems that, in the later stages of his life, Einstein changed his opinion about the correct transformation laws of thermodynamic quantities, favoring
formulas which were later independently derived by Ott [127] and Arzelies [131,132]; cf. the corresponding discussion by Liu [181,182], Schröder and
Treder [175], and Requardt [176].
102 The ‘‘second part’’ [543] of the second law states that dS ≥ 0 in a closed system.
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yielding the modified temperature transformation law103

T ′ = γ T = (1− w′2)−1/2 T ; (C.21b)

i.e., according to Ott’s definition of heat and temperature a moving body appears hotter.
However, van Kampen was able to demonstrate by example [150] that the Eqs. (C.21) are not well-suited if one

wants to describe heat and energy–momentum exchange between systems that move at different velocities (hetero-tachic
processes). To obtain a more convenient description, he proposed to characterize the heat transfer by means of the scalar
quantity [150,152]

đQ′ := −w′αđQ
′α
= −wαđQα

= đQ = đQ0, (C.22a)

with (w′α)= (−γ , γw
′)denoting the velocity four-vector of the system in Σ ′, and reducing to (wα)= (−1, 0) in the lab

frameΣ . He then defined the temperature by

T ′dS′ := đQ′ = đQ = T dS, (C.22b)

so that, in view of S′ = S, van Kampen’s temperature is a scalar

T ′ = T ; (C.22c)

i.e., according to this definition a moving body neither hotter nor colder. Adopting this temperature definition, one can define
an inverse temperature four-vector by

β ′α := T ′
−1
w′α = T −1w′α, (C.23a)

which allows us to rewrite the second law in the compact covariant form

dS′ = −β ′αđQ
′α. (C.23b)

Thus, the thermodynamic formalisms proposed by Ott [127] and van Kampen [150,152] are based on the same lab-
isochronous hyperplane [178] but both formulations differ only in regard to their respective temperature definition. By
contrast, the Einstein–Planck formalism [121,122] is based on an observer-dependent hyperplane.
To summarize, the above discussion shows that whether a moving body appears hotter or not depends on how one

defines thermodynamic quantities. Of course, before comparing the results of experimental observations with theoretical
predictions, one should make sure that the applied measurement procedures are consistent with the definitions employed
in the theory (choice of the hyperplane, definitions of heat and work etc.).
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