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Augsburg, Germany
E-mail: dubkov@rf.unn.ru, hanggi@physik.uni-augsburg.de and
goychuk@physik.uni-augsburg.de

                 
                      
                     

                                        
                                    

Abstract. The non-linear dissipation corresponding to a non-Gaussian thermal
bath is introduced together with a multiplicative white noise source in the
phenomenological Langevin description for the velocity of a particle moving in
some potential landscape. Deriving the closed Kolmogorov’s equation for the
joint probability distribution of the particle displacement and its velocity by
use of functional methods and taking into account the well-known Gibbs form
of the thermal equilibrium distribution and the condition of ‘detailed balance’
symmetry, we obtain the exact master equation: given the white noise statistics,
this master equation relates the non-linear friction function to the velocity-
dependent noise function. In particular, for multiplicative Gaussian white noise
this operator equation yields a unique inter-relation between the generally non-
linear friction and the (multiplicative) velocity-dependent noise amplitude. This
relation allows us to find, for example, the form of velocity-dependent noise
function for the case of non-linear Coulomb friction.
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1. Introduction

One hundred years after its original introduction [1, 2] the Langevin approach continues to
present a fruitful and powerful tool for investigating the stochastic dynamics of complex
macroscopic systems (see e.g. [3]), such as the problem of non-linear Brownian motion [4].
In most cases the presence of the internal thermal fluctuations can be described by
introducing a linear dissipation mechanism and, at the same time, an additive Gaussian
white noise source; see in this context the recent analysis [5]. Moreover, the intensity
of such noise is strongly connected with the linear damping coefficient. This well-
known Sutherland–Einstein relation [6] is of the form of the linear fluctuation-dissipation
theorem [7], reflecting the fundamental relationship between equilibrium fluctuations
and macroscopic irreversibility. When the thermal bath is modeled by Gaussian colored
noise, the dissipation remains linear, but non-local, and the stochastic Langevin equation
transforms to the generalized Langevin equation with a memory of Kubo–Zwanzig
type [8]–[10].

The Gaussian thermal bath constitutes in many cases a good but nevertheless
idealized physical situation. Even in the simple case of a Brownian particle interacting
with the molecules of solvent, the random collisions can be described in terms of a
Poissonian rather than a Gaussian statistics. In the case of frequent and small collision
changes (weak collision limit) the central limit theorem then guarantees a Gaussian
statistics. On the other hand, infrequent and strong collisions then necessitate a master
equation description in terms of a linearized Boltzmann equation with a collision kernel.
Two typical such cases refer to the situation of gas in the Rayleigh limit, i.e. a heavy
particle colliding with a thermal bath of light particles, yielding a case for the weak
collision limit, and the Lorentz limit with a light particle colliding with a thermal bath of
heavy particles (strong collision limit); see section V in [10] and the insightful review on the
‘linear gas’ [11]. Such a situation with non-linear white non-Gaussian noise is omnipresent
for chemical reactions scenarios, i.e. the theme of unimolecular rate theory [10].
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On the other hand, according to non-linear fluctuation-dissipation theorems and
relations [12]–[17], the presence of a non-linear resistor in an electrical circuit intrinsically
implies the existence of high-order correlations in equilibrium current fluctuations. A
relatively small number of charge carriers in semiconductor thin films can provide a non-
Gaussian shot noise; i.e. the central limit theorem is inapplicable for such a situation.
Finally, the molecular vibrations in solids are in general anharmonic, and the Gaussian
approximation for such a thermal bath is not justified at higher temperatures.

Some first steps towards solving the problem of non-Gaussian thermal fluctuations
in non-linear systems by introducing in the Langevin equation, together with non-linear
friction, a multiplicative white Gaussian noise were taken in [3], [17]–[20] in the framework
of the theory of Markovian stochastic processes. In particular, many authors have tried
to construct the Langevin equation for an electrical circuit with a non-linear resistor
and condenser [21]–[28] on the basis of the known equilibrium probability distribution
and the detailed balance symmetry. They discussed also the possibilities of using the
master equation for this purpose and reconstructing the phenomenological voltage–current
characteristic for a non-linear diode from the stochastic model. Despite these prior works,
the extension of the phenomenological Langevin method to noisy non-linear dynamical
systems containing non-Gaussian thermal fluctuations still presents a partially unsolved
problem.

In this work the procedure for constructing a consistent Langevin description from a
thermodynamical viewpoint for the case of a Brownian particle interacting with a general
non-Gaussian thermal bath is proposed. Using the equilibrium Gibbs form of the thermal
equilibrium probability and the ‘detailed balance’ condition [17, 29] we find the general
integro-differential operator relationship involving the non-linear friction term and the
velocity-dependent noise intensity. The exact results reduce in the commonly used case
with linear velocity damping to the known result for an additive white Gaussian noise
source.

2. Derivation of basic relations

We consider a Brownian particle moving in the potential U(x) and interacting with a
thermal bath at temperature T . The stochastic dynamics is assumed to be governed by
the following phenomenological Langevin equation3:

mv̇ = −F (v) − dU (x)

dx
+ Ψ(v) ξ(t), (1)

where x(t) and v(t) = ẋ(t) are the displacement and the velocity of the particle
respectively. The symbol m denotes the mass of the particle, F (v) is an as yet unknown
non-linear dissipation function (the friction force with the minus sign in the case of additive
noise, Ψ(v) = const), and Ψ(v) ξ(t) denotes a multiplicative random force which can be
represented by a non-Gaussian white noise ξ(t) with the velocity-dependent strength Ψ(v).
We interpret the white noise ξ(t) as a time derivative of the generalized Wiener process
η(t) (the Lévy process) [31]–[33] with identically distributed and statistically independent
increments at non-overlapping time intervals (see [27]), i.e. ξ(t) = η̇(t). According to the

3 Throughout this work we will interpret this equation in the Stratonovich sense [30].
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theory of infinitely divisible distributions, the characteristic function of such increments
obeys the Lévy–Khinchin formula (see equation (6) in [31]):

θη (u) = 〈eiu[η(t)−η(0)]〉 = exp

{
t

∫ +∞

−∞

eiuz − 1 − iuz

z2
ρ(z) dz

}
. (2)

Here, the function ρ(z) represents a non-negative kernel function which is proportional
to the probability density of jumps and is uniquely determined by the statistics of noise.
Specifically, for an ordinary (continuous) Wiener process η(t) the kernel function takes
the form of a delta function ρ(z) = 2D δ(z), where 2D is the intensity of white Gaussian
noise ξ(t). Another widespread model in physics is the white Poissonian shot noise [18, 19]

ξ(t) =
∑

i

ai δ (t − ti) , (3)

where the point process {ti}, i = 1, 2, . . ., represents the Poissonian process of events with
the mean rate λ and random amplitudes ai which are statistically independent and have
the identical probability distribution Wa(z). In such a case the kernel function reads
ρ(z) = λz2Wa(z). For symmetric α-stable Lévy noise ξ(t) which generates anomalous
diffusion in the form of Lévy flights [33], one finds ρ(z) = K|z|1−α (0 < α < 2).

According to general fluctuation-dissipation relations [27] one expects definite
relationships to hold between the non-linear friction F (v) and the function Ψ(v) for a
given statistics of noise ξ(t), similar in spirit to the Sutherland–Einstein relation between
the linear damping coefficient and the intensity of additive Gaussian noise. Moreover, we
will base our analysis on two main working principles of statistical mechanics: (i) first, we
impose the Gibbs form for the resulting equilibrium distribution for the coordinate and
velocity of a particle; i.e.,

Pst(x, v) = Z0 e−H0(x,v)/kBT , (4)

where Z0 is the normalization constant and kB denotes the Boltzmann constant.
Substituting in equation (4) the Hamiltonian H0(x, v) = mv2/2 + U(x) of the system (1)
we arrive at well-known stationary Maxwell–Boltzmann probability distribution, reading

Pst(x, v) = Z0 e−mv2/2kBT−U(x)/kBT . (5)

The second principle (ii) is the ‘detailed balance’ condition [17], which has its origin in
microscopic reversibility. According to this principle and the even parity property (+1)
under time reversal transformation of the variable x and odd parity property (−1) of the
velocity variable v, the following relation for the joint, two-event equilibrium probability
density function with τ > 0 holds (see equation (4.3.6) in [17] and equation (6.85) in [29]):

Pst(x, v, τ ; x0, v0) = Pst(x,−v,−τ ; x0,−v0) = Pst(x0,−v0, τ ; x,−v). (6)

We next apply known functional methods [18] to the Langevin dynamics equation (1)
to obtain the closed equation for the joint probability density function P (x, v, t) [31]. In
doing so, we rewrite equation (1) in the form of the following set of equations:

ẋ = v,

v̇ = −F (v)

m
− U ′(x)

m
+

Ψ(v)

m
ξ(t).

(7)
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Using the expression for P (x, v, t) in the form of a statistical average, i.e.,

P (x, v, t) = 〈δ (x − x (t)) δ (v − v(t))〉 , (8)

and taking into account equations (7), we arrive at

∂P

∂t
= −v

∂P

∂x
+

1

m

∂

∂v
[F (v) P ] +

1

m
U ′(x)

∂P

∂v

− 1

m

∂

∂v
Ψ(v) 〈ξ(t)δ (x − x(t)) δ (v − v(t))〉 . (9)

To split further the average in equation (9) we use the following relation:

〈ξ(t)Rt[ξ]〉 =

∫ +∞

−∞

ρ(z)

z2
dz

∫ z

0

[〈
eyδ/δξ(t)Rt[ξ]

〉 − 〈Rt[ξ]〉
]

dy, (10)

derived in [31] for the correlation between a non-Gaussian white noise ξ(t) and an arbitrary
functional Rt[ξ], with the function ρ(z) defined in equation (2).

Because both x(t) and v(t) are functionals of the random process ξ(t), and moreover,
according to equation (7),

δx(t)

δξ(t)
= 0,

δv(t)

δξ(t)
=

Ψ(v)

m
, (11)

we obtain

δ

δξ(t)
δ (x − x (t)) δ (v − v(t)) = − 1

m

∂

∂v
Ψ (v) δ (x − x(t)) δ (v − v(t)) . (12)

Substituting Rt[ξ] = δ(x − x(t))δ(v − v(t)) in equation (10) and taking into account
equations (8) and (12) we find

〈ξ(t)δ (x − x(t)) δ(v − v(t))〉 =

∫ +∞

−∞

ρ(z)

z2
dz

×
∫ z

0

[
exp

{
− y

m

∂

∂v
Ψ(v)

}
− 1

]
P (x, v, t) dy. (13)

Using equation (13) in equation (9) and performing an integration with respect to y we
find the following Kolmogorov integro-differential equation for the probability density
function P (x, v, t):

∂P

∂t
= −v

∂P

∂x
+

1

m

∂

∂v
[F (v) P ] +

1

m
U ′(x)

∂P

∂v

+

∫ +∞

−∞

ρ(z)

z2

[
exp

{
− z

m

∂

∂v
Ψ(v)

}
− 1 +

z

m

∂

∂v
Ψ (v)

]
P (x, v, t) dz. (14)

On the basis of the forward and backward Kolmogorov equation we can rewrite the
‘detailed balance’ condition (6) in the form of an equivalence between two operators: the

kinetic L̂(x, v) and the adjoint L̂+(x, v) yielding the operator relation (see equation (3.7)
in [16] or also equation (6.81) in [29])

1

Pst(x, v)
L̂(x, v)Pst(x, v) = L̂+(x,−v). (15)
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This relation is meant to operate on an arbitrary function g(x, v). Substituting next
in equation (15) the equilibrium Maxwell–Boltzmann distribution from equation (5), using

the form of the kinetic operator L̂(x, v) from equation (14) and taking into account the
odd parity property of the friction function F (v) and the even parity property of the noise
amplitude function Ψ(v), we arrive after some manipulations at

d

dv

[
F (v)e−mv2/2kBT

]
+ 2F (v)e−mv2/2kBT d

dv

+ m

∫ +∞

−∞

ρ(z)

z2

[
exp

{
− z

m

d

dv
Ψ(v)

}
+

z

m

d

dv
Ψ (v)

]
e−mv2/2kBT dz

= m

∫ +∞

−∞

ρ(z)

z2
e−mv2/2kBT

[
exp

{
− z

m
Ψ (v)

d

dv

}
+

z

m
Ψ(v)

d

dv

]
dz. (16)

Equation (16) assumes the form of an equivalence between two integro-differential
operators. If all the relations given by

Bn =

∫ +∞

−∞
znρ(z) dz (17)

are finite, equation (16) can be rewritten in a more compact differential form:

d

dv

[
F (v)e−mv2/2kBT

]
+ 2F (v)e−mv2/2kBT d

dv
+

∞∑
n=2

(−1)n Bn−2

mn−1 n!

×
{ [

d

dv
Ψ(v)

]n

e−mv2/2kBT − e−mv2/2kBT

[
Ψ (v)

d

dv

]n}
= 0. (18)

These relations constitute the main result of our present work.

3. Applications

First, we analyze equation (18) for multiplicative Gaussian thermal noise. Substituting
ρ(z) = 2D δ(z) in equations (17) and (18) we obtain

d

dv

[
F (v)e−mv2/2kBT

]
+ 2F (v)e−mv2/2kBT d

dv

+
D

m

{[
d

dv
Ψ(v)

]2

e−mv2/2kBT − e−mv2/2kBT

[
Ψ (v)

d

dv

]2
}

= 0. (19)

After some rearrangements, equation (19) can be written in the form[
F (v)e−mv2/2kBT +

D

m
Ψ (v)

(
Ψ (v) e−mv2/2kBT

)′] ′

+ 2

[
F (v)e−mv2/2kBT +

D

m
Ψ (v)

(
Ψ (v) e−mv2/2kBT

)′] d

dv
= 0. (20)

From equation (20) we can now extract a unique fundamental relation between the non-
linear friction F (v) and the velocity-dependent noise intensity Ψ2(v), reading

F (v) =
Dv

kBT
Ψ2 (v) − D

2m

[
Ψ2(v)

]′
. (21)
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Figure 1. Coulomb friction case: dependence of the thermal multiplicative noise
strength Ψ(v) on the particle velocity v for different values of the parameter
κ = m/(kBT ): κ = 0.5 (green curve), κ = 1 (yellow curve), κ = 5 (red curve).
The parameter μ m/D = 1.

3.1. Linear friction

For an additive noise source (Ψ(v) = 1) we obtain from equation (21) the well-known
linear friction result

F (v) = γv, (22)

with the damping strength γ satisfying the Sutherland–Einstein relation

γ =
D

kBT
. (23)

3.2. Coulomb friction

More generally, we can readily solve the first-order linear differential equation (21) to find
for a given non-linear friction F (v) for the multiplicative function Ψ(v) in equation (1)
the result

Ψ2(v) =
2m

D
emv2/kBT

∫ +∞

v

F (u) e−mu2/kBT du. (24)

For example, for a Coulomb friction, reading F (v) = μ sgn(v) [34], we obtain from
equation (24)

Ψ2(v) =
μ m

D

√
π

κ
eκv2

erfc
(√

κ|v|) , (25)

where κ = m/(kBT ) and erfc(z) is the complementary error function. The velocity-
dependent noise amplitude Ψ(v) from equation (25) is depicted in figure 1 for different
values of dimensionless parameter κ. According to equation (25), for large values of the

particle velocity v the multiplicative noise strength Ψ(v) ∼ 1/
√ |v|.

doi:10.1088/1742-5468/2009/01/P01034 7



   
     

                
                                              

3.3. Non-Gaussian thermal shot noise

For a non-Gaussian thermal noise, such as white shot noise (3), equation (18) yields

d

dv

[
F (v)e−mv2/2kBT

]
+ 2F (v)e−mv2/2kBT d

dv
+ ν

∞∑
n=2

(−1)n 〈an〉
mn−1 n!

×
{ [

d

dv
Ψ(v)

]n

e−mv2/2kBT − e−mv2/2kBT

[
Ψ (v)

d

dv

]n}
= 0. (26)

This operator relation (26) evidently presents a complicated structure. Clearly, this
relation in our case seems not readily solvable. The same situation arises already for
additive, i.e. Ψ(v) = 1, non-Gaussian white noise. Thus, the problem of obtaining the
correct multiplicative noise structure remains open.

4. Conclusions

We have proposed a procedure for constructing a Langevin-type equation for a particle
moving in some potential and interacting with a non-Gaussian thermal bath. The
approach developed is based on two main principles of statistical mechanics: we use
the Gibbs form of the equilibrium distribution and detailed balance symmetry. We obtain
an exact operator expression relating the non-linear friction F (v) to the statistics of non-
Gaussian thermal noise in terms of its corresponding velocity-dependent noise strength
Ψ(v). For multiplicative white Gaussian noise this operator relation reduces to a single
equation which explicitly connects the non-linear dissipation function and the velocity-
dependent noise intensity. As an example, we evaluated this multiplicative velocity noise
function for the case of Coulomb friction. Unfortunately, however, for a non-Gaussian
white noise source this operator relation seemingly is difficult to solve; it may not even
possess a solution which is consistent with the ansatz given with equation (1). More
generally, one may be forced to generalize the ansatz in the Langevin equation (1)
by including a non-factorizing, velocity-dependent white noise source or even a sum of
multiplicative white noise sources, possessing quite different statistics. Alternatively,
one may start out directly from the physical master equation and then derive from
it the corresponding Langevin equation with generalized white noise sources [18]–[20].
Nevertheless, the stochastic Langevin equation so constructed can serve as a starting
point for future investigations of non-linear, non-Gaussian diffusion in different contexts.
In this sense, this Langevin approach provides a new playground for investigating thermal
non-linear Brownian motion.
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