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1. Introduction

Let M be a Kihler manifold (not necessarily complete) and 7 = 7'M its tangent bundle. The complex structure of

M defines a parallel tensor field J : T — T with J2 = —1I. This belongs to a one-parameter family of parallel rotations

Ry = (cosO)I + (sinH)J. (D

Now let f: M — R” be an isometric immersion with normal bundle N and second fundamental form « : ST — N
where S? denotes the symmetric tensor product. Using Ry, we may define a new tensor field g : ST — N,

ag(v, w) = a(Rgv, Ryw) )

for any v, w € T. We may ask when this happens to be also a second fundamental form, belonging to another isometric
immersion fp: M — R". However the normal bundles N and Ny of f and fy will be different in general. Thus the

* Corresponding author.
E-mail addresses: eschenburg@math.uni-augsburg.de (J.-H. Eschenburg), mjferr@ptmat.Imc.fc.ul.pt (M.J. Ferreira), rtribuzy @yahoo.com.br

(R. Tribuzy).


mailto:eschenburg@math.uni-augsburg.de
mailto:mjferr@ptmat.lmc.fc.ul.pt
mailto:rtribuzy@yahoo.com.br

352

best we can ask for is that the second fundamental form g of fy satisfies

ag =Yg dy, 3)

where ¥ : N — Ny is a parallel vector bundle isomorphism.

Immersions f which allow such an “associated family” fy have been characterized in [1] in terms of pluri-mean
curvature. The complexified tangent bundle 7¢ of a Kdhler manifold M splits into the (&i)-eigenbundles of J,
and the corresponding bundle decomposition T¢ = T’ + T"” is Levi-Civita parallel. If f: M — R" is an isometric
immersion, the restrictions of « to the parallel subbundles S27’, T'® T”, S>T” C S*T are called «*9, (1D,
a©2) | respectively. The component > is called pluri-mean curvature; it collects the mean curvature vectors of
the restrictions of f to all complex one-dimensional submanifolds (complex curves) in M. The immersion f is said
to have parallel pluri-mean curvature (ppme) if 1>V is parallel. It turns out that an associated family of the above
type (3) exists if and only if f is a ppmc immersion.

There is a special kind of ppmc immersions: those whose associated family (3) is constant, fy = f. Those are
called isotropic. They are characterized by the condition that the three components of « define a parallel orthogonal
decomposition of N = N ® C of the form

NC — N/ @ (N{))L‘ @ N// (4)

such that ¢, @D ©0.2) take values in these three subbundles, respectively (cf. Theorem 8 of [1]). In particular
the real normal bundle splits orthogonally into parallel subbundles

N=N°+N! )

where N° is the (real) image of a(l'D while «®? and o(*?) take values in the complexification of N!.

In the present paper, we wish to show that such submanifolds must be very special: If f is not holomorphic and
M does not locally split as a Riemannian product, it must be locally symmetric or a minimal surface in a sphere. The
local symmetry is obtained by applying the holonomy theorem of Berger and Simons [8].

In the locally symmetric case we also get some information about the extrinsic geometry and we conjecture that
f is in fact extrinsically symmetric, i.e. the whole second fundamental form « is parallel, not only its (1, 1)-part.

2. The holonomy group

Theorem 1. Let M be a locally irreducible Kdhler manifold (not necessarily complete) and f : M — R" an isotropic
ppmc immersion. Then M is locally symmetric unless f is holomorphic with values in some CK C R" or it is an
(isotropic) minimal surface in a sphere S"~! C R”.

Proof. We shall apply the holonomy theorem of Berger and Simons [8]. Recall that the holonomy group H of M
consists of the parallel displacements 7, along all closed curves y in M starting and ending at a point p € M fixed
once and for all. Clearly H is a subgroup of the orthogonal group on the tangent space 7, = T at p. Since the complex
structure J is parallel, it is preserved by H and thus H is a subgroup of the unitary group on the complex vector space
(T, J). Using a unitary basis we may identify 7" with C™. Local irreducibility means that there are locally no parallel
subbundles of T which means that the identity component of H acts irreducibly on 7'. In order to show that M is
locally symmetric, according to [8] we just have to prove that H does not act transitively on the unit sphere in 7.

For any ¢ € N let A, = —(9¢)7 be the Weingarten map. Note that A, commutes (anticommutes) with J for
¢ € N° (resp. £ € NY). In fact, if ¢ € N°, then (A, T', T') = («(T', T"), £) C (N’, N°) = 0. Since T’ is maximal
isotropic,! this implies that A, 7’ C T'. Likewise, for ¢ € N! we have (A;T', T") = («(T', T"), ¢) € (N°, N!) =0,
hence A; T’ C T”. Thus A, preserves (resp. reverses) the eigenspaces of J which proves the statement. Let us agree
that £ and 7 always denote vectors in N! and N, respectively.

We first consider three special cases. If A, =0 for all n € N°, then a®:D =0, so0 f is pluriharmonic and isotropic,
hence holomorphic (cf. [5]). More generally, if A, is a multiple of the identity for all n € N°, then A, =0 for all

! This means that 7’ is maximal among all those linear subspaces of T¢ where the complexified metric (, ) vanishes.
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n L n, where n, = trace« is the mean curvature vector of f. Hence f is a pluriharmonic immersion into a sphere
in R", and by [2] this must be a minimal surface (in particular dim M = 2).

Further, if A =0forall§ e N I then @9 =0 = a2 since «®? and o2 take valuesin N! ® C. This implies
that f is extrinsic hermitian symmetric, i.e. a standard embedding of some hermitian symmetric space (cf. [6]).> In
fact, in order to show Va = 0 it is enough to compute (Vza) (X, Y) for vector fields X, Y, Z taking values in 7" U T” .
At least two of these vectors have the same type, say 7’. Since Vu is symmetric (Codazzi), we may assume X, Y € T'.
Now (Vza)(X,Y)=Vz(a(X,Y))—a(VzX,Y)—a(X, VzY) vanishes since X, Y, Vz X, VzY € T’. This shows that
f is extrinsic symmetric. Further, from @9 =0 we geta(JX,JY)=a(X,Y), hence by Ferus [6] we see that f is
the standard embedding of a hermitian symmetric space.

Thus from now on we may assume that there are normal vectors n € N° and & € N'! such that Ag #0and A has at
least two different eigenvalues. Since N°, N'! are parallel subbundles of N, the Weingarten maps Ay, and Ag commute
by the Ricci equation, and hence they have a compatible eigenspace decomposition. Let F C T be an eigenspace of
Ag corresponding to some nonzero eigenvalue A. Further let

T=E & - DE, (6)
be the eigenspace decomposition with respect to A;. Due to the compatibility we obtain a decomposition
F=FNE & --®FNE, )

with » > 2. We will show next that (7) still holds when F is replaced by the space h F forany h € H.
_ In fact, let h € H correspond to the parallel displacement along a curve y on M starting and ending at p. Let
h be the parallel displacement in N° along the same curve y. Since a1 is parallel and «>?, (2 take values

in (N1)¢, the linear map A = ( — A;):N° — End(T M) is also parallel. In fact, let n be a parallel normal field and

v, w parallel tangent fields along some curve ¢ in M. Then (Azv, w) = (yy, &) = (ai},ﬂ’, &) is constant, hence Agv

is parallel along c. Thus A intertwines the parallel displacements of N° and End(T). Therefore Aj, N = hA,,h_l, and
the eigenspace decomposition corresponding to Afm is T =hE| & ---® hE,. Replacing n by hn in (7), we get a
decomposition F = FNhE| +---+ F NhE,. Hence putting F = h~' F, we obtain

F=FNE & - ®FNE,. (®)

We call a subspace F C T split if (8) holds. We just have shown that all 2 F, h € H, are split.

Since the complex structure J anticommutes with Ag, the nonzero eigenvalues of Ag come in pairs +A and the
corresponding eigenspaces F), and F_, are interchanged by J. Hence F=F +F_isa complex subspace which is
also split, and the same holds for hF for any h € H. Now we have to consider two cases: F # T and F=T.

CasAe 1. F = T. Then it is an element of some complex Grassmannian P = G(T) where k = dim¢ F. The H-orbit
of F is contained in a connected component of the set of split spaces. This is a proper totally geodesic submanifold
Q C P, more precisely the Riemannian product of r Grassmannians G, (E;) with kj = dimc(F N Ej). Let S be

the smallest totally geodesic submanifold of Q containing the H-orbit H F ={hF; h e H). Clearly, S is invariant
under H. Let G = U (m) be the unitary group on 7 = C™ which acts as the transvection group on the Grassmannian P,
and let Gg = {g € G; gS = S} be the subgroup leaving S invariant. The induced action of Gg on S (which need not
be effective) contains the full transvection group of S; this must be a subgroup of U(E) x --- x U(E}) since S is
totally geodesic in Q which is a product of r Grassmannians. Thus the action of the holonomy group H on S induces
a Lie group homomorphism ¢p: H — U(E1) X --- X U(E,). This is trivial only if § = HF = {1:"} which is impossible
since H acts irreducibly on T'.

Case 2. F = T. Then Ag has just two eigenspaces F and JF, and T = F ® JF. Thus F belongs to the set of
maximal totally real subspaces of T = C™. These form another symmetric space P’ = U (m)/O(m). In fact, F lies
in the totally geodesic subspace Q' C P’ consisting of the split spaces (8); we have Q' = Q1 x --- x Q, where

2 If M is a hermitian symmetric space, the complex structure J), in every tangent space T}, is a derivation of the curvature tensor and hence can
be considered as an element of the Lie algebra g of the isometry group of M. The standard embedding is the map f:M — g, p+—> Jp € g.
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Qi = U(@m;)/O(@m;) with m; = dim¢ E;. Since the full H-orbit of F is contained in Q’, there is again a totally
geodesic subspace S’ C Q” which is preserved by H and contains F, and as above we obtain a nontrivial Lie group
homomorphism ¢: H — U(E1) x --- x U(E}).

Now if H C U(m) acts transitively on the unit sphere, its identity component H, is one of the three sub-
groups U (m), SU(m), Sp(m/2). But U (m) acts transitively on both P and P’ and hence it cannot preserve a proper
totally geodesic subspace. The other two groups are simple. Since the homomorphism ¢ is nontrivial, one of its
components ¢; : H, — U (E;) must be nontrivial and hence injective. But there are no representations of SU(m) or
Sp(m/2) with degree < m. Hence dim E; = m and thus E; is the whole space T in contradiction to our assump-
tion that A, has at least two different eigenvalues. Thus H does not act transitively on the sphere and M is locally
symmetric. O

Remark. The only known isotropic ppmc immersions (besides holomorphic maps and isotropic minimal surfaces in
spheres) are the so called extrinsic symmetric ones, those with Vo = 0. They split into two subclasses: the standard
embeddings of hermitian symmetric spaces where a®? = 0 and the Grassmannian G(R”*2) of 2-planes in R"*2,
doubly covered by the complex quadric Q™ (the space of oriented 2-planes) and embedded as symmetric rank 2
projection matrices into the euclidean space of all symmetric endomorphisms with trace 2 on R”*2. This is an example
for the second case ' = T of the previous proof, and it is the only known case (besides surfaces) where both N and
N are nontrivial. We conjecture that there are no other examples. This would require to prove Vo =0 for locally
symmetric isotropic ppmc immersions. In the following we give some evidence for this conjecture (see also [4]).

3. Extrinsic geometry

Theorem 2. Let M be a locally symmetric Kdhler manifold and f: M — R" an isotropic ppmc immersion. Then at
every point p € M, the values of Va are perpendicular to the first normal space spanned by the values of «.

Proof. Let X, Y, Z, W,V € T'. From the Gauss equation we get

(RyyZ, W) = (ayy ¥yz) — (@xz, dpp). )

Taking covariant differentiation on both sides we get from Vy R = 0:

0=—((Vva)xz, ayy)s (10)

recall that by Codazzi equations, (Vaa)gc =0 forall A, B,C € T"UT" unless A, B, C have the same type. Thus
the values of (V)9 are perpendicular to the values of «>? (with respect to the hermitian inner product (A, B) =
(A, B)). On the other hand let us recall that the three components of « take values in mutual orthogonal parallel
subbundles of N¢, hence the values of (Va)®? are also perpendicular to those of """ and «®?. O

Theorem 3. Let M be a locally irreducible Kdhler manifold and f: M — R”" an isotropic ppmc immersion of codi-
mension < 6. Then f (M) is extrinsically symmetric or a minimal surface in a sphere or f is holomorphic.

Proof. If f is a minimal immersion, then it is pluriminimal, i.e. oD =0 (cf. [7]) and moreover isotropic and
hence holomorphic (cf. [5]). Thus we may assume 1, := trace o # 0. Since 7, = > «(E;, E,-) for some unitary basis
Ei,...,Eyof T', we see that i, = tracea!*!) € N? is parallel. But for any parallel section 5 of N°, the corresponding
Weingarten map A, is parallel too since (A,v, w) = {otyy, 1) = (ozl(}]u’,]), n) for any two tangent vectors v, w (the other
components of a,,, are perpendicular to n). The eigendistributions of A, would give a product decomposition of M.
Thus by irreducibility, A, = A - I for some A € R. For n = n,, this constant is nonzero by assumption which shows that
f (M) lies in a sphere $"~! of radius r = 1/|A|. If dim N° = 1, then f is pluriminimal or (1, 1)-geodesic in a sphere
and hence a minimal surface, cf. [3]. If dim N = 2, the same conclusion holds: There is (up to multiples) just one other
parallel section n L 1, in N°, thus A;; = A - I. But this time we have A = 0 since trace A, = (trace o, n) = (1,, n) =0.
Thus f is again pluriminimal in a sphere and thus a minimal surface.

Hence we may assume dim N° > 3. By Theorem 1 we know that M is locally symmetric. We consider the decom-
position (4) of the complexified normal bundle N¢. By Theorem 2, the subbundle N’ contains two mutually orthogonal
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subbundles N| and N, containing the values of @9 and (V)39 respectively. If both tensors are nonzero, the di-
mension of N’ is at least 2, and since the same holds for N” = N’, the dimension of N°¢ (the codimension of f)
must be at least 3 +2 4 2 = 7. Otherwise either «>? =0 and f is a standard embedding of an hermitian symmetric
space, cf. [6], or (Va)@9 =0 and hence Vo =0 (by the vanishing of V(ae!:D) and Codazzi) and f is extrinsic
symmetric. O
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