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1. Introduction

Let M be a Kähler manifold (not necessarily complete) and T = T M its tangent bundle. The complex structure of
M defines a parallel tensor field J :T → T with J 2 = −I . This belongs to a one-parameter family of parallel rotations

(1)Rθ = (cos θ)I + (sin θ)J.

Now let f :M → R
n be an isometric immersion with normal bundle N and second fundamental form α :S2T → N

where S2 denotes the symmetric tensor product. Using Rθ , we may define a new tensor field α̃θ :S2T → N ,

(2)α̃θ (v,w) = α(Rθv,Rθw)

for any v,w ∈ T . We may ask when this happens to be also a second fundamental form, belonging to another isometric
immersion fθ :M → R

n. However the normal bundles N and Nθ of f and fθ will be different in general. Thus the
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best we can ask for is that the second fundamental form αθ of fθ satisfies

(3)αθ = ψθ α̃θ ,

where ψθ :N → Nθ is a parallel vector bundle isomorphism.
Immersions f which allow such an “associated family” fθ have been characterized in [1] in terms of pluri-mean

curvature. The complexified tangent bundle T c of a Kähler manifold M splits into the (±i)-eigenbundles of J ,
and the corresponding bundle decomposition T c = T ′ + T ′′ is Levi-Civita parallel. If f :M → R

n is an isometric
immersion, the restrictions of α to the parallel subbundles S2T ′, T ′ ⊗ T ′′, S2T ′′ ⊂ S2T are called α(2,0), α(1,1),
α(0,2), respectively. The component α(1,1) is called pluri-mean curvature; it collects the mean curvature vectors of
the restrictions of f to all complex one-dimensional submanifolds (complex curves) in M . The immersion f is said
to have parallel pluri-mean curvature (ppmc) if α(1,1) is parallel. It turns out that an associated family of the above
type (3) exists if and only if f is a ppmc immersion.

There is a special kind of ppmc immersions: those whose associated family (3) is constant, fθ = f . Those are
called isotropic. They are characterized by the condition that the three components of α define a parallel orthogonal
decomposition of Nc = N ⊗ C of the form

(4)Nc = N ′ ⊕ (No)c ⊕ N ′′

such that α(2,0), α(1,1), α(0,2) take values in these three subbundles, respectively (cf. Theorem 8 of [1]). In particular
the real normal bundle splits orthogonally into parallel subbundles

(5)N = No + N1

where No is the (real) image of α(1,1) while α(2,0) and α(0,2) take values in the complexification of N1.
In the present paper, we wish to show that such submanifolds must be very special: If f is not holomorphic and

M does not locally split as a Riemannian product, it must be locally symmetric or a minimal surface in a sphere. The
local symmetry is obtained by applying the holonomy theorem of Berger and Simons [8].

In the locally symmetric case we also get some information about the extrinsic geometry and we conjecture that
f is in fact extrinsically symmetric, i.e. the whole second fundamental form α is parallel, not only its (1,1)-part.

2. The holonomy group

Theorem 1. Let M be a locally irreducible Kähler manifold (not necessarily complete) and f :M → R
n an isotropic

ppmc immersion. Then M is locally symmetric unless f is holomorphic with values in some C
k ⊂ R

n or it is an
(isotropic) minimal surface in a sphere Sn−1 ⊂ Rn.

Proof. We shall apply the holonomy theorem of Berger and Simons [8]. Recall that the holonomy group H of M

consists of the parallel displacements τγ along all closed curves γ in M starting and ending at a point p ∈ M fixed
once and for all. Clearly H is a subgroup of the orthogonal group on the tangent space Tp = T at p. Since the complex
structure J is parallel, it is preserved by H and thus H is a subgroup of the unitary group on the complex vector space
(T , J ). Using a unitary basis we may identify T with C

m. Local irreducibility means that there are locally no parallel
subbundles of T which means that the identity component of H acts irreducibly on T . In order to show that M is
locally symmetric, according to [8] we just have to prove that H does not act transitively on the unit sphere in T .

For any ζ ∈ N let Aζ = −(∂ζ )T be the Weingarten map. Note that Aζ commutes (anticommutes) with J for
ζ ∈ No (resp. ζ ∈ N1). In fact, if ζ ∈ No, then 〈Aζ T

′, T ′〉 = 〈α(T ′, T ′), ζ 〉 ⊂ 〈N ′,No〉 = 0. Since T ′ is maximal
isotropic,1 this implies that Aζ T

′ ⊂ T ′. Likewise, for ζ ∈ N1 we have 〈Aζ T
′, T ′′〉 = 〈α(T ′, T ′′), ζ 〉 ∈ 〈No,N1〉 = 0,

hence Aζ T
′ ⊂ T ′′. Thus Aζ preserves (resp. reverses) the eigenspaces of J which proves the statement. Let us agree

that ξ and η always denote vectors in N1 and No, respectively.
We first consider three special cases. If Aη = 0 for all η ∈ No, then α(1,1) = 0, so f is pluriharmonic and isotropic,

hence holomorphic (cf. [5]). More generally, if Aη is a multiple of the identity for all η ∈ No, then Aη = 0 for all

1 This means that T ′ is maximal among all those linear subspaces of T c where the complexified metric 〈 , 〉 vanishes.
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η ⊥ ηo where ηo = traceα is the mean curvature vector of f . Hence f is a pluriharmonic immersion into a sphere
in R

n, and by [2] this must be a minimal surface (in particular dimM = 2).
Further, if Aξ = 0 for all ξ ∈ N1, then α(2,0) = 0 = α(0,2) since α(2,0) and α(0,2) take values in N1 ⊗ C. This implies

that f is extrinsic hermitian symmetric, i.e. a standard embedding of some hermitian symmetric space (cf. [6]).2 In
fact, in order to show ∇α = 0 it is enough to compute (∇Zα)(X,Y ) for vector fields X,Y,Z taking values in T ′ ∪ T ′′.
At least two of these vectors have the same type, say T ′. Since ∇α is symmetric (Codazzi), we may assume X,Y ∈ T ′.
Now (∇Zα)(X,Y ) = ∇Z(α(X,Y ))−α(∇ZX,Y)−α(X,∇ZY) vanishes since X,Y,∇ZX,∇ZY ∈ T ′. This shows that
f is extrinsic symmetric. Further, from α(2,0) = 0 we get α(JX,JY ) = α(X,Y ), hence by Ferus [6] we see that f is
the standard embedding of a hermitian symmetric space.

Thus from now on we may assume that there are normal vectors η ∈ No and ξ ∈ N1 such that Aξ �= 0 and Aη has at
least two different eigenvalues. Since No,N1 are parallel subbundles of N , the Weingarten maps Aη and Aξ commute
by the Ricci equation, and hence they have a compatible eigenspace decomposition. Let F ⊂ T be an eigenspace of
Aξ corresponding to some nonzero eigenvalue λ. Further let

(6)T = E1 ⊕ · · · ⊕ Er

be the eigenspace decomposition with respect to Aη. Due to the compatibility we obtain a decomposition

(7)F = F ∩ E1 ⊕ · · · ⊕ F ∩ Er

with r � 2. We will show next that (7) still holds when F is replaced by the space hF for any h ∈ H .
In fact, let h ∈ H correspond to the parallel displacement along a curve γ on M starting and ending at p. Let

h̃ be the parallel displacement in No along the same curve γ . Since α(1,1) is parallel and α(2,0), α(0,2) take values
in (N1)c, the linear map A = (η �→ Aη) :No → End(T M) is also parallel. In fact, let η be a parallel normal field and

v,w parallel tangent fields along some curve c in M . Then 〈Aξv,w〉 = 〈αvw, ξ 〉 = 〈α(1,1)
vw , ξ 〉 is constant, hence Aξv

is parallel along c. Thus A intertwines the parallel displacements of No and End(T ). Therefore A
h̃η

= hAηh
−1, and

the eigenspace decomposition corresponding to A
h̃η

is T = hE1 ⊕ · · · ⊕ hEr . Replacing η by h̃η in (7), we get a

decomposition F = F ∩ hE1 + · · · + F ∩ hEr . Hence putting F̃ = h−1F , we obtain

(8)F̃ = F̃ ∩ E1 ⊕ · · · ⊕ F̃ ∩ Er .

We call a subspace F̃ ⊂ T split if (8) holds. We just have shown that all hF , h ∈ H , are split.
Since the complex structure J anticommutes with Aξ , the nonzero eigenvalues of Aξ come in pairs ±λ and the

corresponding eigenspaces Fλ and F−λ are interchanged by J . Hence F̂ = Fλ + F−λ is a complex subspace which is
also split, and the same holds for hF̂ for any h ∈ H . Now we have to consider two cases: F̂ �= T and F̂ = T .

Case 1. F̂ �= T . Then it is an element of some complex Grassmannian P = Gk(T ) where k = dimC F̂ . The H -orbit
of F̂ is contained in a connected component of the set of split spaces. This is a proper totally geodesic submanifold
Q ⊂ P , more precisely the Riemannian product of r Grassmannians Gkj

(Ej ) with kj = dimC(F̂ ∩ Ej ). Let S be

the smallest totally geodesic submanifold of Q containing the H -orbit HF̂ = {hF̂ ; h ∈ H }. Clearly, S is invariant
under H . Let G = U(m) be the unitary group on T = C

m which acts as the transvection group on the Grassmannian P ,
and let GS = {g ∈ G; gS = S} be the subgroup leaving S invariant. The induced action of GS on S (which need not
be effective) contains the full transvection group of S; this must be a subgroup of U(E1) × · · · × U(Er) since S is
totally geodesic in Q which is a product of r Grassmannians. Thus the action of the holonomy group H on S induces
a Lie group homomorphism φ :H → U(E1)×· · ·×U(Er). This is trivial only if S = HF̂ = {F̂ } which is impossible
since H acts irreducibly on T .

Case 2. F̂ = T . Then Aξ has just two eigenspaces F and JF , and T = F ⊕ JF . Thus F belongs to the set of
maximal totally real subspaces of T = C

m. These form another symmetric space P ′ = U(m)/O(m). In fact, F lies
in the totally geodesic subspace Q′ ⊂ P ′ consisting of the split spaces (8); we have Q′ = Q1 × · · · × Qr where

2 If M is a hermitian symmetric space, the complex structure Jp in every tangent space Tp is a derivation of the curvature tensor and hence can
be considered as an element of the Lie algebra g of the isometry group of M . The standard embedding is the map f :M → g, p �→ Jp ∈ g.
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Qi = U(mi)/O(mi) with mi = dimC Ei . Since the full H -orbit of F is contained in Q′, there is again a totally
geodesic subspace S′ ⊂ Q′ which is preserved by H and contains F , and as above we obtain a nontrivial Lie group
homomorphism φ :H → U(E1) × · · · × U(Er).

Now if H ⊂ U(m) acts transitively on the unit sphere, its identity component Ho is one of the three sub-
groups U(m), SU(m), Sp(m/2). But U(m) acts transitively on both P and P ′ and hence it cannot preserve a proper
totally geodesic subspace. The other two groups are simple. Since the homomorphism φ is nontrivial, one of its
components φi :Ho → U(Ei) must be nontrivial and hence injective. But there are no representations of SU(m) or
Sp(m/2) with degree < m. Hence dimEi = m and thus Ei is the whole space T in contradiction to our assump-
tion that Aη has at least two different eigenvalues. Thus H does not act transitively on the sphere and M is locally
symmetric. �
Remark. The only known isotropic ppmc immersions (besides holomorphic maps and isotropic minimal surfaces in
spheres) are the so called extrinsic symmetric ones, those with ∇α = 0. They split into two subclasses: the standard
embeddings of hermitian symmetric spaces where α(2,0) = 0 and the Grassmannian G2(R

m+2) of 2-planes in R
m+2,

doubly covered by the complex quadric Qm (the space of oriented 2-planes) and embedded as symmetric rank 2
projection matrices into the euclidean space of all symmetric endomorphisms with trace 2 on R

m+2. This is an example
for the second case F̂ = T of the previous proof, and it is the only known case (besides surfaces) where both No and
N1 are nontrivial. We conjecture that there are no other examples. This would require to prove ∇α = 0 for locally
symmetric isotropic ppmc immersions. In the following we give some evidence for this conjecture (see also [4]).

3. Extrinsic geometry

Theorem 2. Let M be a locally symmetric Kähler manifold and f :M → R
n an isotropic ppmc immersion. Then at

every point p ∈ M , the values of ∇α are perpendicular to the first normal space spanned by the values of α.

Proof. Let X,Y,Z,W,V ∈ T ′. From the Gauss equation we get

(9)〈RXȲ Z,W̄ 〉 = 〈αXW̄ , αȲZ〉 − 〈αXZ, αȲ W̄ 〉.
Taking covariant differentiation on both sides we get from ∇V R = 0:

(10)0 = −〈
(∇V α)XZ, αȲ W̄

〉
,

recall that by Codazzi equations, (∇Aα)BC = 0 for all A,B,C ∈ T ′ ∪ T ′′ unless A,B,C have the same type. Thus
the values of (∇α)(3,0) are perpendicular to the values of α(2,0) (with respect to the hermitian inner product (A,B) =
〈A, B̄〉). On the other hand let us recall that the three components of α take values in mutual orthogonal parallel
subbundles of Nc, hence the values of (∇α)(3,0) are also perpendicular to those of α(1,1) and α(0,2). �
Theorem 3. Let M be a locally irreducible Kähler manifold and f :M → R

n an isotropic ppmc immersion of codi-
mension � 6. Then f (M) is extrinsically symmetric or a minimal surface in a sphere or f is holomorphic.

Proof. If f is a minimal immersion, then it is pluriminimal, i.e. α(1,1) = 0 (cf. [7]) and moreover isotropic and
hence holomorphic (cf. [5]). Thus we may assume ηo := traceα �= 0. Since ηo = ∑

α(Ei, Ēi) for some unitary basis
E1, . . . ,Em of T ′, we see that ηo = traceα(1,1) ∈ No is parallel. But for any parallel section η of No, the corresponding
Weingarten map Aη is parallel too since 〈Aηv,w〉 = 〈αvw, η〉 = 〈α(1,1)

vw , η〉 for any two tangent vectors v,w (the other
components of αvw are perpendicular to η). The eigendistributions of Aη would give a product decomposition of M .
Thus by irreducibility, Aη = λ · I for some λ ∈ R. For η = ηo, this constant is nonzero by assumption which shows that
f (M) lies in a sphere Sn−1 of radius r = 1/|λ|. If dimNo = 1, then f is pluriminimal or (1,1)-geodesic in a sphere
and hence a minimal surface, cf. [3]. If dimNo = 2, the same conclusion holds: There is (up to multiples) just one other
parallel section η ⊥ ηo in No, thus Aη = λ · I . But this time we have λ = 0 since traceAη = 〈traceα,η〉 = 〈ηo, η〉 = 0.
Thus f is again pluriminimal in a sphere and thus a minimal surface.

Hence we may assume dimNo � 3. By Theorem 1 we know that M is locally symmetric. We consider the decom-
position (4) of the complexified normal bundle Nc . By Theorem 2, the subbundle N ′ contains two mutually orthogonal
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subbundles N ′
1 and N ′

2 containing the values of α(2,0) and (∇α)(3,0), respectively. If both tensors are nonzero, the di-
mension of N ′ is at least 2, and since the same holds for N ′′ = N ′, the dimension of Nc (the codimension of f )
must be at least 3 + 2 + 2 = 7. Otherwise either α(2,0) = 0 and f is a standard embedding of an hermitian symmetric
space, cf. [6], or (∇α)(3,0) = 0 and hence ∇α = 0 (by the vanishing of ∇(α(1,1)) and Codazzi) and f is extrinsic
symmetric. �
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