Isotropic ppmc immersions

J.-H. Eschenburg *, M.J. Ferreira, R. Tribuzy
Institut fïr Mathematik, Universität Augsburg, D-86135 Augsburg, Germany CMAF-Complexo Interdisciplinare, Universidade de Lisboa, Av. Porf. Goma Pinto, 2, 1640-003 Lisboa, Portugal Departamento de Matemática, ICE, Universidade Federal do Amazonas, Av. Gen. Rodrigo Otávio, 3000, 69077000 Manaus AM, Brazil

1. Introduction

Let M be a Kähler manifold (not necessarily complete) and $T=T M$ its tangent bundle. The complex structure of M defines a parallel tensor field $J: T \rightarrow T$ with $J^{2}=-I$. This belongs to a one-parameter family of parallel rotations

$$
\begin{equation*}
R_{\theta}=(\cos \theta) I+(\sin \theta) J \tag{1}
\end{equation*}
$$

Now let $f: M \rightarrow \mathbb{R}^{n}$ be an isometric immersion with normal bundle N and second fundamental form $\alpha: S^{2} T \rightarrow N$ where S^{2} denotes the symmetric tensor product. Using R_{θ}, we may define a new tensor field $\tilde{\alpha}_{\theta}: S^{2} T \rightarrow N$,

$$
\begin{equation*}
\tilde{\alpha}_{\theta}(v, w)=\alpha\left(R_{\theta} v, R_{\theta} w\right) \tag{2}
\end{equation*}
$$

for any $v, w \in T$. We may ask when this happens to be also a second fundamental form, belonging to another isometric immersion $f_{\theta}: M \rightarrow \mathbb{R}^{n}$. However the normal bundles N and N_{θ} of f and f_{θ} will be different in general. Thus the

[^0]best we can ask for is that the second fundamental form α_{θ} of f_{θ} satisfies
\[

$$
\begin{equation*}
\alpha_{\theta}=\psi_{\theta} \tilde{\alpha}_{\theta}, \tag{3}
\end{equation*}
$$

\]

where $\psi_{\theta}: N \rightarrow N_{\theta}$ is a parallel vector bundle isomorphism.
Immersions f which allow such an "associated family" f_{θ} have been characterized in [1] in terms of pluri-mean curvature. The complexified tangent bundle T^{c} of a Kähler manifold M splits into the ($\pm i$)-eigenbundles of J, and the corresponding bundle decomposition $T^{c}=T^{\prime}+T^{\prime \prime}$ is Levi-Civita parallel. If $f: M \rightarrow \mathbb{R}^{n}$ is an isometric immersion, the restrictions of α to the parallel subbundles $S^{2} T^{\prime}, T^{\prime} \otimes T^{\prime \prime}, S^{2} T^{\prime \prime} \subset S^{2} T$ are called $\alpha^{(2,0)}, \alpha^{(1,1)}$, $\alpha^{(0,2)}$, respectively. The component $\alpha^{(1,1)}$ is called pluri-mean curvature; it collects the mean curvature vectors of the restrictions of f to all complex one-dimensional submanifolds (complex curves) in M. The immersion f is said to have parallel pluri-mean curvature (ppmc) if $\alpha^{(1,1)}$ is parallel. It turns out that an associated family of the above type (3) exists if and only if f is a ppmc immersion.

There is a special kind of ppmc immersions: those whose associated family (3) is constant, $f_{\theta}=f$. Those are called isotropic. They are characterized by the condition that the three components of α define a parallel orthogonal decomposition of $N^{c}=N \otimes \mathbb{C}$ of the form

$$
\begin{equation*}
N^{c}=N^{\prime} \oplus\left(N^{o}\right)^{c} \oplus N^{\prime \prime} \tag{4}
\end{equation*}
$$

such that $\alpha^{(2,0)}, \alpha^{(1,1)}, \alpha^{(0,2)}$ take values in these three subbundles, respectively (cf. Theorem 8 of [1]). In particular the real normal bundle splits orthogonally into parallel subbundles

$$
\begin{equation*}
N=N^{o}+N^{1} \tag{5}
\end{equation*}
$$

where N^{o} is the (real) image of $\alpha^{(1,1)}$ while $\alpha^{(2,0)}$ and $\alpha^{(0,2)}$ take values in the complexification of N^{1}.
In the present paper, we wish to show that such submanifolds must be very special: If f is not holomorphic and M does not locally split as a Riemannian product, it must be locally symmetric or a minimal surface in a sphere. The local symmetry is obtained by applying the holonomy theorem of Berger and Simons [8].

In the locally symmetric case we also get some information about the extrinsic geometry and we conjecture that f is in fact extrinsically symmetric, i.e. the whole second fundamental form α is parallel, not only its (1,1)-part.

2. The holonomy group

Theorem 1. Let M be a locally irreducible Kähler manifold (not necessarily complete) and $f: M \rightarrow \mathbb{R}^{n}$ an isotropic ppmc immersion. Then M is locally symmetric unless f is holomorphic with values in some $\mathbb{C}^{k} \subset \mathbb{R}^{n}$ or it is an (isotropic) minimal surface in a sphere $S^{n-1} \subset \mathbb{R}^{n}$.

Proof. We shall apply the holonomy theorem of Berger and Simons [8]. Recall that the holonomy group H of M consists of the parallel displacements τ_{γ} along all closed curves γ in M starting and ending at a point $p \in M$ fixed once and for all. Clearly H is a subgroup of the orthogonal group on the tangent space $T_{p}=T$ at p. Since the complex structure J is parallel, it is preserved by H and thus H is a subgroup of the unitary group on the complex vector space (T, J). Using a unitary basis we may identify T with \mathbb{C}^{m}. Local irreducibility means that there are locally no parallel subbundles of T which means that the identity component of H acts irreducibly on T. In order to show that M is locally symmetric, according to [8] we just have to prove that H does not act transitively on the unit sphere in T.

For any $\zeta \in N$ let $A_{\zeta}=-(\partial \zeta)_{T}$ be the Weingarten map. Note that A_{ζ} commutes (anticommutes) with J for $\zeta \in N^{o}$ (resp. $\zeta \in N^{1}$). In fact, if $\zeta \in N^{o}$, then $\left\langle A_{\zeta} T^{\prime}, T^{\prime}\right\rangle=\left\langle\alpha\left(T^{\prime}, T^{\prime}\right), \zeta\right\rangle \subset\left\langle N^{\prime}, N^{o}\right\rangle=0$. Since T^{\prime} is maximal isotropic, ${ }^{1}$ this implies that $A_{\zeta} T^{\prime} \subset T^{\prime}$. Likewise, for $\zeta \in N^{1}$ we have $\left\langle A_{\zeta} T^{\prime}, T^{\prime \prime}\right\rangle=\left\langle\alpha\left(T^{\prime}, T^{\prime \prime}\right), \zeta\right\rangle \in\left\langle N^{o}, N^{1}\right\rangle=0$, hence $A_{\zeta} T^{\prime} \subset T^{\prime \prime}$. Thus A_{ζ} preserves (resp. reverses) the eigenspaces of J which proves the statement. Let us agree that ξ and η always denote vectors in N^{1} and N^{o}, respectively.

We first consider three special cases. If $A_{\eta}=0$ for all $\eta \in N^{o}$, then $\alpha^{(1,1)}=0$, so f is pluriharmonic and isotropic, hence holomorphic (cf. [5]). More generally, if A_{η} is a multiple of the identity for all $\eta \in N^{o}$, then $A_{\eta}=0$ for all

[^1]$\eta \perp \eta_{o}$ where $\eta_{o}=$ trace α is the mean curvature vector of f. Hence f is a pluriharmonic immersion into a sphere in \mathbb{R}^{n}, and by [2] this must be a minimal surface (in particular $\operatorname{dim} M=2$).

Further, if $A_{\xi}=0$ for all $\xi \in N^{1}$, then $\alpha^{(2,0)}=0=\alpha^{(0,2)}$ since $\alpha^{(2,0)}$ and $\alpha^{(0,2)}$ take values in $N^{1} \otimes \mathbb{C}$. This implies that f is extrinsic hermitian symmetric, i.e. a standard embedding of some hermitian symmetric space (cf. [6]). ${ }^{2}$ In fact, in order to show $\nabla \alpha=0$ it is enough to compute $\left(\nabla_{Z} \alpha\right)(X, Y)$ for vector fields X, Y, Z taking values in $T^{\prime} \cup T^{\prime \prime}$. At least two of these vectors have the same type, say T^{\prime}. Since $\nabla \alpha$ is symmetric (Codazzi), we may assume $X, Y \in T^{\prime}$. Now $\left(\nabla_{Z} \alpha\right)(X, Y)=\nabla_{Z}(\alpha(X, Y))-\alpha\left(\nabla_{Z} X, Y\right)-\alpha\left(X, \nabla_{Z} Y\right)$ vanishes since $X, Y, \nabla_{Z} X, \nabla_{Z} Y \in T^{\prime}$. This shows that f is extrinsic symmetric. Further, from $\alpha^{(2,0)}=0$ we get $\alpha(J X, J Y)=\alpha(X, Y)$, hence by Ferus [6] we see that f is the standard embedding of a hermitian symmetric space.

Thus from now on we may assume that there are normal vectors $\eta \in N^{o}$ and $\xi \in N^{1}$ such that $A_{\xi} \neq 0$ and A_{η} has at least two different eigenvalues. Since N^{o}, N^{1} are parallel subbundles of N, the Weingarten maps A_{η} and A_{ξ} commute by the Ricci equation, and hence they have a compatible eigenspace decomposition. Let $F \subset T$ be an eigenspace of A_{ξ} corresponding to some nonzero eigenvalue λ. Further let

$$
\begin{equation*}
T=E_{1} \oplus \cdots \oplus E_{r} \tag{6}
\end{equation*}
$$

be the eigenspace decomposition with respect to A_{η}. Due to the compatibility we obtain a decomposition

$$
\begin{equation*}
F=F \cap E_{1} \oplus \cdots \oplus F \cap E_{r} \tag{7}
\end{equation*}
$$

with $r \geqslant 2$. We will show next that (7) still holds when F is replaced by the space $h F$ for any $h \in H$.
In fact, let $h \in H$ correspond to the parallel displacement along a curve γ on M starting and ending at p. Let \tilde{h} be the parallel displacement in N^{o} along the same curve γ. Since $\alpha^{(1,1)}$ is parallel and $\alpha^{(2,0)}, \alpha^{(0,2)}$ take values in $\left(N^{1}\right)^{c}$, the linear map $A=\left(\eta \mapsto A_{\eta}\right): N^{o} \rightarrow \operatorname{End}(T M)$ is also parallel. In fact, let η be a parallel normal field and v, w parallel tangent fields along some curve c in M. Then $\left\langle A_{\xi} v, w\right\rangle=\left\langle\alpha_{v w}, \xi\right\rangle=\left\langle\alpha_{v w}^{(1,1)}, \xi\right\rangle$ is constant, hence $A_{\xi} v$ is parallel along c. Thus A intertwines the parallel displacements of N^{o} and $\operatorname{End}(T)$. Therefore $A_{\tilde{h} \eta}=h A_{\eta} h^{-1}$, and the eigenspace decomposition corresponding to $A_{\tilde{h} \eta}$ is $T=h E_{1} \oplus \cdots \oplus h E_{r}$. Replacing η by $\tilde{h} \eta$ in (7), we get a decomposition $F=F \cap h E_{1}+\cdots+F \cap h E_{r}$. Hence putting $\tilde{F}=h^{-1} F$, we obtain

$$
\begin{equation*}
\tilde{F}=\tilde{F} \cap E_{1} \oplus \cdots \oplus \tilde{F} \cap E_{r} \tag{8}
\end{equation*}
$$

We call a subspace $\tilde{F} \subset T$ split if (8) holds. We just have shown that all $h F, h \in H$, are split.
Since the complex structure J anticommutes with A_{ξ}, the nonzero eigenvalues of A_{ξ} come in pairs $\pm \lambda$ and the corresponding eigenspaces F_{λ} and $F_{-\lambda}$ are interchanged by J. Hence $\hat{F}=F_{\lambda}+F_{-\lambda}$ is a complex subspace which is also split, and the same holds for $h \hat{F}$ for any $h \in H$. Now we have to consider two cases: $\hat{F} \neq T$ and $\hat{F}=T$.

Case 1. $\hat{F} \neq T$. Then it is an element of some complex Grassmannian $P=G_{k}(T)$ where $k=\operatorname{dim}_{\mathbb{C}} \hat{F}$. The H-orbit of \hat{F} is contained in a connected component of the set of split spaces. This is a proper totally geodesic submanifold $Q \subset P$, more precisely the Riemannian product of r Grassmannians $G_{k_{j}}\left(E_{j}\right)$ with $k_{j}=\operatorname{dim}_{\mathbb{C}}\left(\hat{F} \cap E_{j}\right)$. Let S be the smallest totally geodesic submanifold of Q containing the H-orbit $H \hat{F}=\{h \hat{F} ; h \in H\}$. Clearly, S is invariant under H. Let $G=U(m)$ be the unitary group on $T=\mathbb{C}^{m}$ which acts as the transvection group on the Grassmannian P, and let $G_{S}=\{g \in G ; g S=S\}$ be the subgroup leaving S invariant. The induced action of G_{S} on S (which need not be effective) contains the full transvection group of S; this must be a subgroup of $U\left(E_{1}\right) \times \cdots \times U\left(E_{r}\right)$ since S is totally geodesic in Q which is a product of r Grassmannians. Thus the action of the holonomy group H on S induces a Lie group homomorphism $\phi: H \rightarrow U\left(E_{1}\right) \times \cdots \times U\left(E_{r}\right)$. This is trivial only if $S=H \hat{F}=\{\hat{F}\}$ which is impossible since H acts irreducibly on T.

Case 2. $\hat{F}=T$. Then A_{ξ} has just two eigenspaces F and $J F$, and $T=F \oplus J F$. Thus F belongs to the set of maximal totally real subspaces of $T=\mathbb{C}^{m}$. These form another symmetric space $P^{\prime}=U(m) / O(m)$. In fact, F lies in the totally geodesic subspace $Q^{\prime} \subset P^{\prime}$ consisting of the split spaces (8); we have $Q^{\prime}=Q_{1} \times \cdots \times Q_{r}$ where

[^2]$Q_{i}=U\left(m_{i}\right) / O\left(m_{i}\right)$ with $m_{i}=\operatorname{dim}_{\mathbb{C}} E_{i}$. Since the full H-orbit of F is contained in Q^{\prime}, there is again a totally geodesic subspace $S^{\prime} \subset Q^{\prime}$ which is preserved by H and contains F, and as above we obtain a nontrivial Lie group homomorphism $\phi: H \rightarrow U\left(E_{1}\right) \times \cdots \times U\left(E_{r}\right)$.

Now if $H \subset U(m)$ acts transitively on the unit sphere, its identity component H_{o} is one of the three subgroups $U(m), S U(m), S p(m / 2)$. But $U(m)$ acts transitively on both P and P^{\prime} and hence it cannot preserve a proper totally geodesic subspace. The other two groups are simple. Since the homomorphism ϕ is nontrivial, one of its components $\phi_{i}: H_{o} \rightarrow U\left(E_{i}\right)$ must be nontrivial and hence injective. But there are no representations of $S U(m)$ or $\operatorname{Sp}(m / 2)$ with degree $<m$. Hence $\operatorname{dim} E_{i}=m$ and thus E_{i} is the whole space T in contradiction to our assumption that A_{η} has at least two different eigenvalues. Thus H does not act transitively on the sphere and M is locally symmetric.

Remark. The only known isotropic ppmc immersions (besides holomorphic maps and isotropic minimal surfaces in spheres) are the so called extrinsic symmetric ones, those with $\nabla \alpha=0$. They split into two subclasses: the standard embeddings of hermitian symmetric spaces where $\alpha^{(2,0)}=0$ and the Grassmannian $G_{2}\left(\mathbb{R}^{m+2}\right)$ of 2-planes in \mathbb{R}^{m+2}, doubly covered by the complex quadric Q^{m} (the space of oriented 2-planes) and embedded as symmetric rank 2 projection matrices into the euclidean space of all symmetric endomorphisms with trace 2 on \mathbb{R}^{m+2}. This is an example for the second case $\hat{F}=T$ of the previous proof, and it is the only known case (besides surfaces) where both N^{o} and N^{1} are nontrivial. We conjecture that there are no other examples. This would require to prove $\nabla \alpha=0$ for locally symmetric isotropic ppmc immersions. In the following we give some evidence for this conjecture (see also [4]).

3. Extrinsic geometry

Theorem 2. Let M be a locally symmetric Kähler manifold and $f: M \rightarrow \mathbb{R}^{n}$ an isotropic ppme immersion. Then at every point $p \in M$, the values of $\nabla \alpha$ are perpendicular to the first normal space spanned by the values of α.

Proof. Let $X, Y, Z, W, V \in T^{\prime}$. From the Gauss equation we get

$$
\begin{equation*}
\left\langle R_{X \bar{Y}} Z, \bar{W}\right\rangle=\left\langle\alpha_{X \bar{W}}, \alpha_{\bar{Y} Z}\right\rangle-\left\langle\alpha_{X Z}, \alpha_{\bar{Y} \bar{W}}\right\rangle \tag{9}
\end{equation*}
$$

Taking covariant differentiation on both sides we get from $\nabla_{V} R=0$:

$$
\begin{equation*}
0=-\left\langle\left(\nabla_{V} \alpha\right)_{X Z}, \alpha_{\bar{Y} \bar{W}}\right\rangle \tag{10}
\end{equation*}
$$

recall that by Codazzi equations, $\left(\nabla_{A} \alpha\right)_{B C}=0$ for all $A, B, C \in T^{\prime} \cup T^{\prime \prime}$ unless A, B, C have the same type. Thus the values of $(\nabla \alpha)^{(3,0)}$ are perpendicular to the values of $\alpha^{(2,0)}$ (with respect to the hermitian inner product $(A, B)=$ $\langle A, \bar{B}\rangle$). On the other hand let us recall that the three components of α take values in mutual orthogonal parallel subbundles of N^{c}, hence the values of $(\nabla \alpha)^{(3,0)}$ are also perpendicular to those of $\alpha^{(1,1)}$ and $\alpha^{(0,2)}$.

Theorem 3. Let M be a locally irreducible Kähler manifold and $f: M \rightarrow \mathbb{R}^{n}$ an isotropic ppmc immersion of codimension $\leqslant 6$. Then $f(M)$ is extrinsically symmetric or a minimal surface in a sphere or f is holomorphic.

Proof. If f is a minimal immersion, then it is pluriminimal, i.e. $\alpha^{(1,1)}=0$ (cf. [7]) and moreover isotropic and hence holomorphic (cf. [5]). Thus we may assume $\eta_{o}:=\operatorname{trace} \alpha \neq 0$. Since $\eta_{o}=\sum \alpha\left(E_{i}, \bar{E}_{i}\right)$ for some unitary basis E_{1}, \ldots, E_{m} of T^{\prime}, we see that $\eta_{o}=\operatorname{trace} \alpha^{(1,1)} \in N^{o}$ is parallel. But for any parallel section η of N^{o}, the corresponding Weingarten map A_{η} is parallel too since $\left\langle A_{\eta} v, w\right\rangle=\left\langle\alpha_{v w}, \eta\right\rangle=\left\langle\alpha_{v w}^{(1,1)}, \eta\right\rangle$ for any two tangent vectors v, w (the other components of $\alpha_{v w}$ are perpendicular to η). The eigendistributions of A_{η} would give a product decomposition of M. Thus by irreducibility, $A_{\eta}=\lambda \cdot I$ for some $\lambda \in \mathbb{R}$. For $\eta=\eta_{o}$, this constant is nonzero by assumption which shows that $f(M)$ lies in a sphere S^{n-1} of radius $r=1 /|\lambda|$. If $\operatorname{dim} N^{o}=1$, then f is pluriminimal or $(1,1)$-geodesic in a sphere and hence a minimal surface, cf. [3]. If $\operatorname{dim} N^{o}=2$, the same conclusion holds: There is (up to multiples) just one other parallel section $\eta \perp \eta_{o}$ in N^{o}, thus $A_{\eta}=\lambda \cdot I$. But this time we have $\lambda=0$ since trace $A_{\eta}=\langle$ trace $\alpha, \eta\rangle=\left\langle\eta_{o}, \eta\right\rangle=0$. Thus f is again pluriminimal in a sphere and thus a minimal surface.

Hence we may assume $\operatorname{dim} N^{o} \geqslant 3$. By Theorem 1 we know that M is locally symmetric. We consider the decomposition (4) of the complexified normal bundle N^{c}. By Theorem 2, the subbundle N^{\prime} contains two mutually orthogonal
subbundles N_{1}^{\prime} and N_{2}^{\prime} containing the values of $\alpha^{(2,0)}$ and $(\nabla \alpha)^{(3,0)}$, respectively. If both tensors are nonzero, the dimension of N^{\prime} is at least 2 , and since the same holds for $N^{\prime \prime}=\overline{N^{\prime}}$, the dimension of N^{c} (the codimension of f) must be at least $3+2+2=7$. Otherwise either $\alpha^{(2,0)}=0$ and f is a standard embedding of an hermitian symmetric space, cf. [6], or $(\nabla \alpha)^{(3,0)}=0$ and hence $\nabla \alpha=0$ (by the vanishing of $\nabla\left(\alpha^{(1,1)}\right)$ and Codazzi) and f is extrinsic symmetric.

Acknowledgement

Part of this paper was prepared during a stay of the first and the third named author at Abdus Salam ICTP Trieste. It is a pleasure for us to thank for this hospitality and financial support.

References

[1] F.E. Burstall, J.-H. Eschenburg, M.J. Ferreira, R. Tribuzy, Kähler submanifolds with parallel pluri-minimal curvature, Differential Geom. Appl. 20 (1) (2004) 47-66.
[2] M. Dacjzer, L. Rodrigues, Rigidity of real Kähler manifolds, Duke Math. J. 53 (1986) 211-220.
[3] M. Dacjzer, G. Thorbergsson, Holomorphicity of minimal submanifolds in complex space forms, Math. Ann. 277 (1987) 353-360.
[4] J.-H. Eschenburg, M.J. Ferreira, R. Tribuzy, A characterization of the standard embedding of $\mathbb{C P}^{2}$, Preprint, 2007.
[5] J.-H. Eschenburg, R. Tribuzy, Associated families of pluriharmonic maps and isotropy, Manuscripta Math. 95 (1998) $295-310$.
[6] D. Ferus, Symmetric submanifolds of euclidean space, Math. Ann. 247 (1980) 81-93.
[7] M.J. Ferreira, R. Tribuzy, Kählerian submanifolds of \mathbb{R}^{n} with pluriharmonic Gauss map, Bull. Soc. Math. Belg. 45 (1993) $183-197$.
[8] J. Simons, On the transitivity of holonomy systems, Ann. of Math. 76 (1962) 213-234.

[^0]: * Corresponding author.

 E-mail addresses: eschenburg @ math.uni-augsburg.de (J.-H. Eschenburg), mjferr@ ptmat.lmc.fc.ul.pt (M.J. Ferreira), rtribuzy @ yahoo.com.br (R. Tribuzy).

[^1]: ${ }^{1}$ This means that T^{\prime} is maximal among all those linear subspaces of T^{c} where the complexified metric \langle,$\rangle vanishes.$

[^2]: ${ }^{2}$ If M is a hermitian symmetric space, the complex structure J_{p} in every tangent space T_{p} is a derivation of the curvature tensor and hence can be considered as an element of the Lie algebra \mathfrak{g} of the isometry group of M. The standard embedding is the map $f: M \rightarrow \mathfrak{g}, p \mapsto J_{p} \in \mathfrak{g}$.

