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Abstract
Voltage-dependent ion channels determine the electric properties of axonal cell membranes.
They not only allow the passage of ions through the cell membrane, but also contribute to an
additional charging of the cell membrane resulting in the so-called capacitance loading. The
switching of the channel gates between an open and a closed configuration is intrinsically
related to the movement of gating charge within the cell membrane. At the beginning of an
action potential, the transient gating current is opposite to the direction of the current of
sodium ions through the membrane. Therefore, the excitability is expected to become reduced
due to the influence of a gating current. Our stochastic Hodgkin–Huxley-like modeling takes
into account both the channel noise—i.e. the fluctuations of the number of open ion
channels—and the capacitance fluctuations that result from the dynamics of the gating charge.
We investigate the spiking dynamics of membrane patches of a variable size and analyze the
statistics of the spontaneous spiking. As a main result, we find that the gating currents yield a
drastic reduction of the spontaneous spiking rate for sufficiently large ion channel clusters.
Consequently, this demonstrates a prominent mechanism for channel noise reduction.

1. Introduction

Following the study of Hodgkin and Huxley [1], most of the
models of axons have treated the generation and propagation
of action potentials using deterministic differential equations.
Since the work of Lecar and Nossal [2] it has become
increasingly evident, however, that not only the synaptic noise
but also the randomness of the ion channel gating itself may
cause threshold fluctuations in neurons [3, 4]. Therefore,
channel noise which originates in the stochastic nature of the
ion channel dynamics should be taken into account [3, 4].
For example, in mammalian ganglion cells both the synaptic
noise and the channel noise might equally contribute to the
neuronal spikes variability [5]. Due to a finite size, the origin
of the channel noise is basically due to fluctuations of the mean
number of open ion channels around the corresponding mean
values. Therefore, the strength of the channel noise is mainly
determined by the number of ion channels participating in
the generation of action potentials. Channel noise impacts,
for example, such features as the threshold to spiking

and the spiking rate itself [6–12], the anomalous noise-
assisted enhancement of transduction of external signals, i.e.
the phenomenon of stochastic resonance [13–24], and the
efficiency for synchronization [25]. Interestingly enough,
there exist optimal patch sizes for which the spike production
becomes more regular, or the response to external stimuli
optimizes [15, 16, 21–23, 26]. The objective of this work
is to investigate the spontaneous spiking of cell membrane
patches when gating charge effects are also considered.

When an ion channel opens or closes, an effective gating
charge is moved across the membrane [27]. This motion
creates the so-called gating current which is experimentally
measurable [28–30]. The influence of gating currents was
not explicitly considered in the original Hodgkin–Huxley
(HH) model [1]. In 1975 Hodgkin [31] and, independently,
Adrian [32], firstly inquired theoretically into the influence
of the ion channel density on the velocity of the action
potential propagation along the squid giant axon by taking
into consideration the gating currents of sodium ion channels
(via an effective capacitance loading caused by ion channels,
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see also [33]). Remarkably, they found an optimal ion channel
density for which the signal velocity is maximal [31, 32, 34–
36]. This led to the emergence of the Hodgkin’s maximum
velocity hypothesis, i.e. that the living species can adopt
optimal densities of ion channels to maximize the rate of
neuronal information transduction.

In this work we investigate the influence of both the gating
currents and the channel noise on the spontaneous spiking. At
the initiation of a spike, there occur two competitive currents
in the presence of ion channels. First, an ionic current, which
is caused by the influx of positively charged sodium ions
through open sodium ion channels into the cell, and second,
a gating current that flows in the opposite direction during
the transition of sodium ion channels from closed to open
state. The latter one is due to the movement of the positive
gating charge from the inside of the cell membrane to the
outside. This current actually precedes the first one, and
terminates when the channel is in its open state. However,
due to spontaneous fluctuations between the channel’s states,
a stochastic component of gating current also emerges.
Moreover, there are also gating currents due to potassium
channels which have been neglected within the macroscopic,
noise-free model [31, 32, 34, 35]. These polarization currents
of membrane-bound charges can substantially contribute to
the overall polarization current across the membrane, which
can be considered as an electrical capacitor. Therefore, the
influence of gating currents on the excitability of small ion
channel clusters is a priori not clear and necessitates further
research.

In section 2 we show how channel noise can be taken into
account within a Langevin equation approach. Section 3 deals
with the extensions to the standard HH model with respect
to gating charge effects. We discuss the influence of gating
charge on the dynamics with respect to excitability due to a
constant stimulus and as well as on the deterministic spiking
period. Thenceforth, in section 4 we consider the situation
where both channel noise and gating charge are considered
and demonstrate the influence on the mean interspike interval.
The effect of intrinsic coherence resonance in the presence of
gating currents is discussed in section 5.

2. A stochastic generalization of the
Hodgkin–Huxley model

According to the standard HH model, the dynamics of the
membrane potential V follows

C
d

dt
V + GK(n)(V − EK) + GNa(m, h)(V − ENa)

+ GL(V − EL) = Iext(t), (1)

with the potassium and sodium conductances given by

GK(n) = gmax
K n4, GNa(m, h) = gmax

Na m3h. (2)

In equation (1), V denotes the membrane potential measured
throughout this work in mV and C = 1 µF cm−2 is the
capacity of the cell membrane. The time t is scaled in ms.
Furthermore, ENa = 50 mV, EK = −77 mV and
EL = −54.4 mV are the reversal potentials for the sodium,

potassium and leakage currents, respectively. The leakage
conductance is assumed to be constant. GL = 0.3 mS cm−2,
and gmax

K = 36 mS cm−2 and gmax
Na = 120 mS cm−2,

respectively, denote the maximal potassium and sodium
conductances, when all ion channels are open. Iext(t) indicates
an external current stimulus. Equation (1) is nothing but a
Kirchhoff law for an electrical circuit made of a membrane
capacitor and variable nonlinear conductances assuming that
the conductances of open ion channels are Ohmic, i.e. all the
nonlinearity comes from their gating behavior.

The gating variables n,m and h, cf equations (1) and (2),
describe the mean ratios of the open gates of the specific ion
channels. Assuming gate independence, the factors n4 and
m3h are the mean portions of the open ion channels within a
membrane patch. The dynamics of the gating variables are
determined by voltage-dependent opening and closing rates
αx(V ) and βx(V )(x = m,h, n). Taken at T = 6.3 ◦C, they
read [1, 42, 43]

αm(V ) = 0.1
V + 40

1 − exp{−(V + 40)/10} , (3a)

βm(V ) = 4 exp{−(V + 65)/18}, (3b)

αh(V ) = 0.07 exp{−(V + 65)/20}, (3c)

βh(V ) = 1

1 + exp{−(V + 35)/10} , (3d)

αn(V ) = 0.01
V + 55

1 − exp{−(V + 55)/10} , (3e)

βn(V ) = 0.125 exp{−(V + 65)/80}. (3f )

The dynamics of the mean fractions of open gates reduces in
the standard HH model to relaxation dynamics:

d

dt
x = αx(V )(1 − x) − βx(V )x, x = m,h, n. (4)

Such an approximation is valid for very large numbers of ion
channels and whenever fluctuations around their mean values
are negligible.

However, each channel defines in fact a bistable stochastic
element which fluctuates between its closed and open states.
The same is valid for the gates which are assumed to be
independent in the HH model. The number of open gates
undergoes a birth-and-death-like process. The corresponding
master equation can readily be written down [10]. The use
of a Kramers–Moyal expansion in that equation results in
a corresponding Fokker–Planck equation which provides a
diffusional approximation to the discrete dynamics. The
corresponding Langevin equations then reads

d

dt
x = αx(V )(1 − x) − βx(V )x + ξx(t), x = m,h, n.

(5)

Here, ξx(t) are independent Gaussian white noise sources of
vanishing mean. For an excitable membrane patch with NNa

sodium and NK potassium ion channels, the noise correlations
assume the following form:

〈ξm(t)ξm(t ′)〉 = 1

NNa
[αm(V )(1 − m) + βm(V )m]δ(t − t ′),

(6a)
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〈ξh(t)ξh(t
′)〉 = 1

NNa
[αh(V )(1 − h) + βh(V )h]δ(t − t ′), (6b)

〈ξn(t)ξn(t
′)〉 = 1

NK
[αn(V )(1 − n) + βn(V )n]δ(t − t ′). (6c)

The stochastic equation (5) replaces equation (4). Note that
the correlations of the stochastic forces in these Langevin
equations contain the corresponding state-dependent variables
and thus should be Itô-interpreted because it is derived in
a diffusional approximation of a jump process which is
intrinsically a white noise problem [37–40], and does not result
from a white noise limit of a colored noise problem [41].

Within the approximation of homogeneous ion channel
densities, ρNa = 60 µm−2 and ρK = 18 µm−2, the ion channel
numbers are given by NNa = ρNaS, NK = ρKS, with S being
the size of the membrane patch. The number of ion channels,
or the size of the excitable membrane patch S, determines
the strength of the fluctuations and thus the channel noise
level. With a decreasing patch size, i.e. decreasing number
of ion channels, the noise level caused by fluctuations of the
number of open ion channels increases, cf equations (6a)–
(6c). Within this modeling, the rate for spontaneous spiking
depends monotonically on the patch size [15, 21, 25].

3. Gating charges and currents in a modified
Hodgkin–Huxley model

Our starting point for the derivation of the gating charge
values are the opening and closing rates, equations (3a)–
(3f ), of the standard HH model. Conformational changes
of the ion channel in order to switch between open and closed
configurations come along with the movement of gating charge
[1, 27]. Assuming Arrhenius-like dependences, the transition
rates are [27]

α(V ) = α0 exp

{
qz · V

kBT

}
, (7a)

β(V ) = β0 exp

{−q(1 − z) · V

kBT

}
, (7b)

containing the voltage-independent parts α0, β0, the gating
charge q, and the asymmetry parameter z with z ∈ (0, 1).
The two latter parameters can be deduced by a comparison
of equations (7a)–(7b) with equations (3a)–(3f ) in the high
activation barrier limit, being assumed at large negative voltage
values [42, 43], yielding

αn(V ) ∝ exp{+V/10}, βn(V ) ∝ exp{−V/80}, (8a)

αh(V ) ∝ exp{−V/20}, βh(V ) ∝ exp{+V/10}, (8b)

αm(V ) ∝ exp{+V/10}, βm(V ) ∝ exp{−V/18}. (8c)

The corresponding gating charges then follow as

qn = 2.709e, (9a)

qh = −3.612e, (9b)

qm = 3.746e, (9c)

with the elementary charge e = 1.6022 × 10−19 A s. In
particular, qm and qn correspond to motion of effective positive
charges during the gate openings [27] from the interior side of
cell membrane to the exterior one (outward motion). The total
gating charges are

Q
n-charge
K = qn × 4NK, (10a)

Q
m-charge
Na = qm × 3NNa, (10b)

Q
h-charge
Na = qh × 1NNa. (10c)

To obtain the gating currents, one has to multiply the gating
charges with time derivatives of the corresponding gating
variables. Adding the corresponding current densities (per
unit area) to the equation for voltage variable (1), we find

Iext(t) = C
dV (t)

dt
+ gmax

Na m3h(V − VNa)

+ gmax
K n4(V − VK) + gl(V − Vl)

+ ρNa3
dm

dt
qm + ρNa

dh

dt
qh + ρK4

dn

dt
qn, (11)

where ρX are the specific ion channel densities. The
dynamics of the gating variables are given by equation (5) and
equations (6a)–(6c). Taken together, all these equations
constitute a stochastic generalization of the HH model which
accounts for gating current effects being considered in the
present work for the first time.

3.1. Deterministic case: neglecting channel noise

In order to study the influence of gating charge on the
generation of action potentials in more detail we consider the
case of constant current driving, i.e. Iext(t)=const. Figure 1
depicts the bifurcation scenario for spike occurrence in the
original HH model and in the generalized model which takes
gating charge into account. As, for the moment, we want
to neglect channel noise (which corresponds to the limit of
infinite patch size or infinite numbers of ion channels), the
gating dynamics, equation (5), reduces to that in equation (4).

While the existence of the fixed point solution is not
affected by the gating charge effects, both its stability range
and the emergence of the oscillatory spiking solution are
shifted toward larger values of the external driving current,
cf figure 1(a). This again verifies the inhibitory functionality
of the gating charge. For the present case, the critical
current value at which the fixed point loses stability is
Iext ≈ 10.81 µA cm−2, whereas in the standard HH model
it occurs at Iext ≈ 9.76 µA cm−2 [44, 45]. Yet, before this
happens in both models in (1) and (11), a periodic, spiking
solution emerges via a subcritical Hopf bifurcation. Then
both the fixed point solution and the limit cycle, i.e. the spiking
solution, coexist for a certain range of driving currents. The
periods of the solutions are depicted in figure 1(b). The spiking
period versus the driving current is also shifted toward higher
values of the driving current.

Figure 1 demonstrates that the gating charge does not
affect the rest potential. It impedes, however, the system’s
excitability. For a given Iext the threshold for excitation is
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Figure 1. The bifurcation diagrams for the original deterministic
HH model in (1) (black lines) and the deterministic generalized
model (gray lines) in (11), which takes gating charge effects into
account, are plotted versus the external constant driving current Iext.
The continuous lines correspond to stable solutions; the dotted lines
refer to the unstable solutions. In (a) the minimal and maximal
membrane potentials are plotted. In (b) the period of the spiking is
depicted. A horizontal line at zero indicates the existence of a
non-spiking solution.

increased, meaning that the excitability in the case of a gating
charge dynamics becomes decreased as compared to the case
when no gating charge effects are present. In addition, the
time period of an oscillatory spiking solution is increased.

3.2. Deterministic case: increment of the membrane time
constant

At the beginning of an excitation the m gates open, therefore
dm
dt

> 0. Consequently, the m-gating current is positive
(corresponding to an outward motion of positive charges),
i.e. I

m-gating
Na = 3NNaqm

dm
dt

> 0 (qm > 0). The opening
of sodium channels enables transport of positively charged
sodium ions into the cytoplasm (implying a negative current
by standard convention). Thus, these two currents (the gating
or the polarization current stemming from the ion channels
and the ion current) are oppositely directed. At the very
beginning of the spike initiation (the gating variable m is
about 0.1 at the threshold), the absolute value of the gating
current is around 10% of the ionic current. The reason
is that the gating current is proportional to the m variable,
whereas the averaged ion current scales with m3. Moreover,

the gating current enhances the overall polarization current
across the membrane. As a result, the membrane time
constant becomes effectively enhanced as it can be deduced
from the following reasoning: to study the spike initiation,
only the fastest gating variable m(t), which rapidly adjusts to
the steady state value, m∞(V ) = αm(V )/ [αm(V ) + βm(V )]
should be taken into account. Note also that n(t) and h(t)

exhibit slow dynamics, and their values can be taken at the
rest potential Vrest = −65.0 mV. It then follows, using
dm(V (t))

dt
≈ dm∞(V )

dV
dV
dt

, that the influence of gating currents can
be accounted for by a voltage-dependent contribution to the
membrane capacitance. Consequently, taking this m-gating
charge contribution into account, the effective membrane
capacitance reads Ceff(V ) = C + Cg(V ), where

Cg(V ) = 3ρNaqm

dm∞(V )

dV

= 3ρNaqmm∞(V )[1 − m∞(V )]
d

dV
ln

αm(V )

βm(V )
. (12)

This latter relation assumes a simple and insightful form in the
approximation of equations (7a), (7b):

Cg(V ) ≈ 3ρNa
q2

m

kBT
m∞(V )[1 − m∞(V )]. (13)

This expression evidences that Cg(V ) is maximal when the
sodium m-gates are half-open, i.e. m∞ = 1/2. For qm given
in equation (9c) and with T = 6.3 ◦C, we have Cg ≈
2.8 × 10−16ρNam∞(V )[1 − m∞(V )] F. Furthermore, for
ρNa = 60 µm−2, and for m∞ ≈ 0.05 at the resting potential,
Cg(Vrest) ≈ 0.085 µF cm−2, i.e. the additional capacitance
loading caused by sodium channels amounts to about 8.5% of
the bare membrane capacitance at the rest potential. However,
it can transiently be almost 42% of the bare capacitance
when one-half of the sodium gates is open. The membrane
time constant at rest τrest = Crest/Grest, where Grest is the
corresponding membrane slope conductance, is increased
accordingly. Therefore, the spiking dynamics slows down,
cf figure 1(b).

4. Channel noise and gating charge effects

The behavior predicted by the deterministic model should also
carry implications for the spontaneous spiking in the absence
of stimulus, i.e. Iext = 0. Especially, we expect a reduction of
the spiking activity due to gating charge effects for membrane
patches of a finite size. This indeed is the case as we shall
demonstrate below.

One of the major consequences of intrinsic channel noise
is the initiation of spontaneous action potentials [3, 6–9, 11]. A
quantitative measure for the occurrence of the action potentials
is the mean interspike interval, i.e.

〈T 〉 = 1

N

N∑
i=1

(ti − ti−1), (14)

where ti, i = 1, . . . , N , are the times for the occurrence of
spike events and we set t0 = 0. Since the strength of the
channel noise depends on the size of the membrane patch, 〈T 〉
is a function of the patch size S. With an increasing noise level
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Figure 2. The dependence of the mean interspike interval 〈T 〉 on
the size S of the membrane patch is depicted. The accuracy of the
numerical simulation results is indicated by the error bars. If gating
currents are considered, the spontaneous spiking activity, see the
gray line, is reduced compared to the case for which gating charge
effects are neglected, as indicated by the black line. Especially, for
large patch sizes or large numbers of ion channels, gating charge
effects lead to a drastically reduced spontaneous spiking activity. In
the inset, we depict the same data on the log–log scale.

or decreasing patch sizes S, the spike production increases and
thus the mean interspike interval 〈T 〉 decreases and even can
approach the refractory time [15, 16].

The spike occurrences ti are extracted from the voltage
train V (t) which we obtain from a numerical integration of
the generalized HH model, cf equations (11), (5) and (6a)–
(6c). The integration is carried out by a standard stochastic
Euler algorithm with a step size of 1 µs. The Gaussian
random numbers are generated by the ‘numerical recipes’
routine ran2 using the Box–Muller algorithm [46]. To ensure
the confinement of the gating variables between 0 (all gates
are closed) and 1 (all gates are open), we have implemented
numerically reflecting boundaries at 0 and 1. The occurrences
of action potentials are determined by upward crossings of the
membrane potential V of a certain detection threshold. Due
to the very steep increase of membrane potential at firing, the
actual choice of the detection threshold does not affect the
results. For each trajectory, we performed 228 simulation time
steps. Moreover, an ensemble averaging over 100 different
trajectories was done.

In figure 2 we depict the dependence of the mean
interspike interval 〈T 〉 on the patch size S. Due to the inhibitory
nature of the gating charge, the mean interspike interval
for a given membrane patch is significantly increased as
compared to the case where gating charge effects are neglected.
This leads to a diminishing strength of the channel noise
component, mostly responsible for stochastic self-excitation.
To put it differently, stochastic fluctuations of the membrane
capacitance partially compensate the channel noise effect.
Because the mean interspike interval is exponentially sensitive
to the channel noise intensity, even a small relative reduction
of noise intensity results in an exponentially large effect
for large membrane patches. Therefore, the spontaneous
spiking activity is drastically reduced. For example, for patch
sizes around 45 µm2 the probability of an occurrence of a

0.4

0.5

0.6

0.7

0.8

0.9

1

C
V

C
V

0.1 0.2 0.5 1 2 5 10 20 50

S[µm2]S[µm2]

Figure 3. Same stochastic data as in figure 2, but evaluated for the
coefficient of variation CV ; cf equation (15).

spontaneous action potential is one order of magnitude less
in the case of gating charge effects as compared to the case
when gating charge effects are neglected. For larger patch
sizes, the discrepancy becomes ever more striking. In clear
contrast, the gating charge effects can safely be neglected for
very small patch sizes for which the channel noise rules the
dynamics. Note that even though in this region a discrete
stochastic modeling is more appropriate, recent results show
that the Langevin approach does work quite well also for small
patch sizes [23].

5. Coherence of spontaneous spiking activity

Next we investigate the influence of the gating charge on the
regularity of the spontaneous spiking. A proper measurement
is provided by the coefficient of variation, CV , which is given
as the ratio of standard deviation to the mean value of the
interspike intervals, i.e.

CV =
√

〈T 2〉 − 〈T 〉2

〈T 〉 , (15)

with the mean squared interspike interval given by 〈T 2〉 :=
1
N

∑
(ti − ti−1)

2. For a fully disordered point process, like a
Poisson process, the coefficient of variation CV assumes the
value CV = 1. For a more ordered process CV attains a
smaller value, and for a deterministic signal it vanishes.

Previous studies [15, 16], where such gating current
effects have been neglected, have demonstrated that the
CV exhibits a distinct minimum for an optimal patch size
S ≈ 1 µm2. In our case again, the spiking is mostly regular at
almost the same value, cf figure 3. This phenomenon has been
termed intrinsic coherence resonance [15, 47, 48]. In figure 3,
the coefficient of variation is plotted versus the patch sizes
for the two cases, with and without the gating charge effect
considered; the CV shows a distinct minimum for both cases.
Though the most regular spiking could be observed at almost
the same patch size, namely S = 1 µm2, the spiking coherence
slightly deteriorates due to the gating currents’ influence. The
main effect of gating charge on stochastic dynamics is thus to
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slow down the spiking activity and this effect can be essential,
cf figure 2.

6. Conclusion and outlook

We extended a stochastic description of the HH model
accounting for inherent channel noise by including gating
current effects, which equivalently can be described in terms
of capacitance fluctuations; see in equation (12). Our study
revealed that while the deterministic HH model with gating
charge effects does not differ dramatically from the original
model for the standard set of parameters, the corresponding
stochastic model does behave very differently for intermediate-
to-large membrane patch sizes. A main finding is that
spontaneous spiking activity becomes drastically reduced. The
physical reason of this is that the gating current of translocated
gating charges in sodium channels is counter-directed to the
electrical current of sodium ions, finally leading to excitation
after the whole system is driven by external current beyond a
threshold. This results in the reduced channel noise intensity.
Simultaneously, there occurs a rise of the membrane time
constant resulting in longer spiking periods for supra-threshold
driving.

For the parameters studied, i.e. for the original HH
parameters, the effects are relatively small in the noiseless case.
Nevertheless, even deterministically, gating charge effects
ultimately lead to the existence of optimal ion channel densities
for neuronal information transduction [31, 32]. Notably, an
increase of the sodium channel density by a factor of 20 (as in
mammalian Ranvier nodes) would cause gating charge effects
of increased importance. The striking feature revealed in this
work is that the gating charge effects can play a fundamental
role in the spontaneous spiking dynamics of intermediate-
to-large membrane patches even if they are still relatively
minor deterministically. The reduction of spontaneous spiking
exceeds one order of magnitude starting from a patch size
around 45 µm2 for the parameters studied. This provides
an inherent mechanism for the channel noise reduction in
neurons. This might explain the discrepancy between the
theoretical predictions of a stochastic HH model and some
experimental results for real neurons, e.g. see [49]. However,
the effect of intrinsic coherence resonance as a signature of
the influence of channel noise in excitable membranes still
remains.

We share the confident belief that our investigations of the
influence of gating charge effects on the channel noise-induced
spiking activity in an archetypal model provide some new
insights into the underlying physical principles and mechanism
of neuronal signaling.
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Glossary

Coherence resonance. Noise-induced improvement of the
regularity of the system’s output. If the noise stems from
internal dynamics, the effect is called intrinsic coherence
resonance.

Hopf-bifurcation. A change from a topology with a fixed
point solution to a topology with an oscillatory solution under
a small variation of a parameter within a nonlinear system.

Itô–Stratonovich dilemma. Interpretation problem which
arises in the context of Langevin equations in the case of
multiplicative Gaussian white noise.

Kramers–Moyal expansion. Procedure to transform a
master equation for a discrete stochastic process into a
Fokker–Planck equation for an approximate continuous
stochastic process.

Poisson process. A stochastic process which is memory-
less (Markovian) with exponentially distributed waiting times
between two successive events.

Stochastic resonance. An anomalous, noise-assisted
enhancement of transduction of weak (deterministic or
stochastic) signals.
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