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Igor Goychuk,1 Jesús Casado-Pascual,2 Manuel Morillo,2 Jörg Lehmann,3 and Peter Hänggi1
1Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany
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We study, within the spin-boson dynamics, the synchronization of a quantum tunneling system with an
external, time-periodic driving signal. As a main result, we find that at a sufficiently large system-bath
coupling strength (i.e., for a friction strength �> 1) the thermal noise plays a constructive role in yielding
forced synchronization. This noise-induced synchronization can occur when the driving frequency is
larger than the zero-temperature tunneling rate. As an application evidencing the effect, we consider the
charge transfer dynamics in molecular complexes.
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The study of the different versions of synchronization
appearing in nonlinear classical systems has gained im-
portance over the past decade [1–4]. A special class of
problems is provided by noise-induced forced synchroni-
zation in driven bistable nonlinear systems [2,5,6]. Here a
stochastic phase process can be associated with the jump-
ing events between two domains of attraction. The locking
of the average frequency of the phase process to that of the
external driving and the smallness of the phase-diffusion
coefficient in a corresponding interval of noise strengths
are the fingerprints of such noise-induced forced synchro-
nization [7–9]. Another manifestation of the rich dynamics
of such systems is stochastic resonance (SR) [10], which
recently has been generalized to the quantum regime [11–
13]. Its experimental realization on the level of a nano-
mechanical quantum memory element is now feasible [14].
Although synchronization and SR are related, the existence
of SR does not necessarily imply a (phase) synchroniza-
tion, as emphasized in Ref. [5]. The extension of noise-
induced synchronization into the realm of quantum physics
has not been considered thus far. This latter task presents a
challenge which, apart from prominent academic interest,
also comprises a great potential for nanoscience with bene-
ficial applications ranging from quantum control to quan-
tum information processing. With this work, we undertake
a first step in this direction.

Dissipative quantum tunneling changes radically the
physics of classical synchronization. At zero temperature,
the system can only tunnel towards its lowest energy state
when a biasing dc signal is applied. As the bias periodically
changes its sign due to the action of a driving field, tunnel-
ing causes the particle to move periodically towards its
corresponding lowest energy state, as long as the driving
period is much longer than the typical time scale for
tunneling. Consequently, one expects that the system
may synchronize when driven by a periodic, e.g.,
rectangular-shaped, signal. By contrast, in the absence of
thermal noise, synchronization in overdamped classical

bistable systems driven by subthreshold signals fails as
no overbarrier transitions occur.

Two interesting questions now emerge: What is the
effect of the generally deteriorating thermal quantum noise
at finite temperatures on synchronization? How does the
time scale of the external driving period impact the quality
for (phase) synchronization? Quantum bath fluctuations at
finite temperature surely will disturb the above mentioned
perfect (phase) synchronization as imposed by the rocking
driving field. At the same time, when the driving period
becomes shorter than the tunneling time, the zero-
temperature synchronization will also be weakened. It
might become likely, nevertheless, that finite temperature
quantum noise does promote and assist synchronization
upon decreasing driving period.

We demonstrate in this Letter that this is indeed the case
within the following archetype setup of a dissipative,
driven two-level system (TLS) [13,15–17]:
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Herein, the operators �̂z and �̂x denote the standard Pauli
operators, ��t� is a time-dependent energy bias, and @� is
the tunnel matrix element. The bath Hamiltonian [last term
in Eq. (1)] is expressed in terms of the operators b̂�j and b̂j
associated to the jth bath normal mode with frequency !j.
The stochastic influence of the quantum thermal bath is
captured by an operator random force �̂�t� �P
j�j�b̂

y
j e

i!jt � b̂je�i!jt�. It can be characterized by the
spectral density J�!� � ��=@�

P
j�

2
j��!�!j�. We as-

sume that J�!� acquires the Ohmic form J�!� �
2�@�!e�!=!c , with friction strength � and an exponential
cutoff. Because of the Gaussian character of a harmonic
bath, the statistical properties of the quantum noise are
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determined solely by its equilibrium autocorrelation func-
tion h�̂�t��̂�0�iT � �@=��

R
1
0 J�!��coth�@!=�2kBT���

cos�!t� � i sin!t�d!. This driven spin-boson
Hamiltonian (1) describes an abundance of applications
[18] such as, e.g., the electron transfer (ET) in a molecular
dimer in azurin crystals [19]. There the low-frequency
molecular vibrations provide the bath, and the time-
dependent energy bias is given by ��t� � reE�t�, where r
is the tunneling distance, e denotes the charge transferred,
and E�t� is the time-dependent, applied electric field.

In the incoherent tunneling regime, the populations of
the localized states obey a nonstationary, Markovian dy-
namics. In the presence of a time-dependent bias, this
description holds true for Ohmic friction at an arbitrary
temperature if the tunnel coupling remains small, i.e., �	
!c, and the coupling to the heat bath is sufficiently strong,
�> 1=2 [17]. The populations p��t� 
 p��t� �
�1� h�̂z�t�iT�=2 obey the balance equations [13,15,20]

 

_p ��t� � W���t�p���t� �W��t�p��t�; (2)

where the time-dependent relaxation ratesW��t�within the
golden rule approximation read:
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The functions Q0�t� and Q00�t� denote the real and imagi-
nary parts of the dissipation kernel
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wherein 
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0 d!J�!�=��!� is the bath reorganization

energy [20]. With 
 � 2�@!c, one finds that
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 Q00�t� � 2� arctan�!ct�: (6)

In Eq. (5), ��z� denotes the Gamma function, !T �
kBT=@, and � � !T=!c. The most relevant regime for
our purpose corresponds to @�	 @!c; 
 and �> 1.
Note that in the limit of an adiabatic driving, varying on
a time scale T obeying !cT , �!TT  1, the time-
dependent transition rates W��t� follow the instantaneous
value of the bias ��t�. In this limit, which in the following is
assumed throughout, the relaxation rates W��t� obey the
Boltzmann relation W��t� � exp����t�=�kBT��W��t�.
Furthermore, in the high-temperature limit kBT  @!c

and the quasistatic noise approximation, i.e., h�̂�t��̂�0�iT �
h��̂�0��2iT in Eq. (4), Eq. (3) reduces to a generalized
Marcus-Levich-Dogonadze form, reading W��t� �
��=2�@�2=

������������������
4�
kBT
p

exp������t� � 
�2=�4
kBT��. For
kBT � @!c, explicit analytical expressions for the rates
are generally not available, except for T � 0 [17].

Typically, those must be determined numerically from
Eq. (3). The quantum rate W� displays a non-Arrhenius
dependence on temperature, being rather a power law that
typifies the low-temperature limit.

Using the Marcus-Levich-Dogonadze formula for an
undriven molecular system yields an estimate for the rele-
vant parameter values. For ET occurring in an azurin
dimer, the values are 
 � 0:25 eV and @� � 5�
10�6 eV [19]. In molecular systems, the cutoff frequency
of low-frequency molecular vibrations ranges between
@!c � 5 and 20 meV. Choosing @!c � 12:5 meV yields
� � 10, being consistent with an incoherent tunneling
dynamics.

It is worth noting that the present incoherent limit for the
tunneling dynamics of a driven, dissipative TLS allows for
an effective quasiclassical interpretation in terms of a
classical, time-inhomogeneous random telegraph process.
Its transition rates, however, are governed by a manifest
quantum dynamics, as detailed with Eq. (3). Our setup thus
mimics the quantum analogue of a classical (phase) syn-
chronization behavior elaborated in Refs. [7–9]. A
thought-experimental setup is that of a particle tunneling
between two localized states and subjected to an external
periodic rectangular field with amplitude E0 and period T
(frequency � � 2�=T ). One then counts the number of
jumps n�t� within a time window �t0; t�. We introduce the
random phase ��t; t0� � �n�t�, which increases by � at
each switching event (two subsequent switches correspond
to a 2� cycle of random duration) and define the average
frequency and diffusion coefficients associated to the sto-
chastic phase process as ��ph :� limt!1h��t; t0�i=�t� t0�
and 2 �Dph :� limt!1�h�2�t; t0�i � h��t; t0�i2�=�t� t0�, re-
spectively. To evaluate these quantities, one considers the
joint probability P�;n�t� to be in the state � at time t and to
have undergone n jumps within the time interval �t0; t�.
These probabilities can be obtained by integrating the
multitime probability densities of the corresponding sto-
chastic trajectories [21]. They satisfy the normalization
condition

P
1
n�0

P
��� P�;n�t� � 1 and obey for n � 1

the master equation:

 

_P �;n�t� � W���t�P��;n�1�t� �W��t�P�;n�t�; (7)

whereas _P�;0�t� � �W��t�P�;0�t�. The populations of the
states can be obtained as p��t� �

P
1
n�0 P�;n�t�, and the

probability Pn�t� for n jumps is Pn�t� � P�;n�t� � P�;n�t�.
Given Pn�t�, the moments are hnk�t�i :�

P
1
n�0 n

kPn�t�
(k � 1; 2; . . . ). Deriving explicit analytical expressions,
however, presents a nontrivial task. Fortunately, the first
two moments present exceptions to this rule. In particular,
from Eqs. (2) and (7), it follows that the (phase) frequency
�ph�t� :� ��d=dt�hn�t�i can be expressed as

 �ph�t� � ��W��t�p��t� �W��t�p��t��: (8)

For the averaged phase, we find h��t; t0�i �
R
t
t0

�ph�t0�dt0.

To obtain ��ph, we take the limit ��ph �
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limt!1h��t; t0�i=�t� t0�. With a periodic driving the
asymptotic solutions for both, p��t� and �ph�t� are peri-

odic functions in time with the period T . Thus, ��ph �

�1=T �
R
T
0 dt��1�ph �t�, where ��1�ph �t� is given by Eq. (8)

with p��t� replaced by the asymptotic solution p�1�� �t� of
the master equation (2), which formally is obtained by
letting t0 ! �1.

For Dph�t� :� ��2=2��d=dt��hn2�t�i � hn�t�i2�, a cum-
bersome evaluation following Ref. [8] yields
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(9)

where �W�t� � W��t� �W��t� and W�t� � W��t� �
W��t�. The evaluation of the mean phase-diffusion coeffi-
cient �Dph proceeds similarly to ��ph. For the considered
case of a rectangular-shaped driving of strength �0, i.e.,
��t� � ��0, our results are
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and
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where W denotes the sum of the forward and backward
rates in Eq. (3) for a fixed value of the field E0, i.e., for
��t� � �0 � erE0, and �peq � tanh��0=�2kBT�� is the ab-
solute value of the difference of the equilibrium popula-
tions. The inverse Fano factor of the counting process
R :� � ��ph=�2 �Dph� provides a reliable quality measure of
forced synchronization [5,6].

The quantum features of synchronization are rooted in
the quantum rate expressions entering Eqs. (10) and (11).
Using the analogy with quantum stochastic resonance in
symmetric quantum systems [11], one would then expect
that no thermal noise-assisted synchronization occurs for
� � 1. Indeed, we could not identify noise-assisted syn-
chronization within this parameter regime. On the same
token, we expect synchronization to emerge for friction
strength �> 1 [12].

Indeed, for �> 1, the synchronization scenario sensi-
tively depends on the value of the driving frequency. As
discussed above, for driving frequencies much smaller than
the tunneling rate at T � 0, i.e., �	 WT�0 �

��2�2!c��2���
�1��0=�@!c��

2��1 exp���0=�@!c��, ��ph

matches the external frequency for sufficiently low tem-
peratures. This is depicted in Fig. 1(a), where the behavior

of �Dph is presented as well. Notice that quantum synchro-
nization at sufficiently low temperature is impressively
achieved, as manifested by the large values of the R factor;
see Fig. 1(c). As the temperature increases above a certain
threshold value, however, the R factor diminishes and the
quality of synchronization deteriorates.

Upon increasing the driving frequency further, beyond
the regime �	 WT�0, we enter the regime of thermally
induced phase synchronization in the quantum regime, as
depicted in Fig. 1(b). We detect a whole temperature
interval where the external frequency � and ��ph ideally
coincide. Moreover, the accompanying phase-diffusion co-
efficient exhibits a distinct, cusplike minimum. These re-
sults convincingly illustrate the constructive role of
quantum thermal noise for quantum synchronization.
Notice that with increasing driving frequency the quality
factor associated to the synchronization effect decreases;
see Fig. 1(c). Furthermore, numerics indicate that the
temperature range for frequency locking shrinks. The qual-
ity factor R displays a cusplike feature for large Rmax

values at maximum, which is similar in spirit to the one
revealed recently by Park and Lai [22] within classical,
forced stochastic synchronization [23].

Increasing the driving frequency further, the tunneling
rate is too slow in order to follow the external driving;
consequently, quantum synchronization is lost. This be-
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FIG. 1. (a)–(c) Stochastic frequency of quantum tunneling
jumps ��ph, phase-diffusion coefficient �Dph, and the synchroni-
zation quality factor R vs the scaled temperature � � kBT=@!c
for two values of the angular driving frequency �. (d) Quality
factor R vs driving frequency � at the fixed temperature � � 0:3
and for four driving strengths �0 � 1, 2, 3, and 5. The arrows
indicate the resonant driving frequencies which are expected
from matching the inverse tunneling rate 1=W���0� with the
driving half-period, i.e., �W� � �SR. The used parameter val-
ues are � � 10, � � 4� 10�4, and �0 � 5 (a)–(c). The fre-
quencies are scaled with !c and the energies with @!c. For
@!c � 12:5 meV, !c � 1:9� 1013 1= sec, and r � 14:9 �A
(chosen to match the charge transfer in molecules from
Ref. [19]), one obtains a field strength of E0 � 4:19�
104 V=cm. The value � � 1 corresponds to 145 K.
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havior is depicted in Fig. 1(d) for different driving
strengths at a fixed temperature. The range of synchroni-
zation corresponds to the linearly rising part of the R���
dependence. The optimum of synchronization occurs at
frequencies �max lying below the corresponding frequen-
cies �SR that optimize SR. This is so because SR requires a
matching of the mean tunneling time with the driving half-
period T =2, whereas for phase synchronization the parti-
cle must tunnel before the bias alternates. Very probable is,
however, that during T =2 the tunneling is not yet com-
pleted. This leads to desynchronization at �SR. Moreover,
synchronization is also lost in Fig. 1(d) for a driving
strength �0 � 1 (no frequency locking is present) although
R��� displays a resonantlike behavior, a feature which can
be correlated with SR [9].

In conclusion, we have unravelled the existence of a
quantum stochastic synchronization in a driven spin-boson
system undergoing tunneling transitions between two
states. We exemplified the phenomenon for nonadiabatic
charge transfer in molecular complexes. The estimates of
parameter values for an experimental test of our theoreti-
cal predictions are (cf. Fig. 1 caption) driving frequencies
�� 10�1–103 s�1, electrical field strength E0 �
104–105 V=cm, and temperatures T � 20–100 K, which
are all readily achieved in the laboratory. The main quan-
tum features of the discussed synchronization phenomenon
are robust, and they are not critically dependent on the
details of the underlying dissipation mechanism. This is so
because the phenomenon of quantum synchronization is
primarily based on the existence of a low-temperature limit
of the tunneling rates. We thus expect our very general
results to be of constructive use in different contexts such
as, e.g., for optimizing the noisy dynamics of nanomechan-
ical systems in the quantum regime [14]. The authors are
confident that these riveting findings for quantum synchro-
nization will spur experimental interests for diverse sys-
tems that involve a controllable quantum tunneling
between distinct quantum states.

J. C.-P. and M. M. acknowledge the support of the
Ministerio de Educación y Ciencia of Spain
(No. FIS2005-02884) and the Junta de Andalucı́a. I. G.
and P. H. acknowledge support by the DFG through
No. SFB 486 and the ESF program ‘‘Stochdyn.’’

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchro-
nization: A Universal Concept in Nonlinear Science
(Cambridge University Press, Cambridge, England, 2001).

[2] V. Anishchenko, A. Neiman, A. Astakhov, T. Vadiavasova,
and L. Schimansky-Geier, Chaotic and Stochastic
Processes in Dynamic Systems (Springer, Berlin, 2002).

[3] S. Boccaletti et al., Phys. Rep. 366, 1 (2002).
[4] S. Strogatz, Sync: The Emerging Science of Spontaneous

Order (Hyperion, New York, 2003).

[5] J. A. Freund, L. Schimansky-Geier, and P. Hänggi, Chaos
13, 225 (2003).

[6] B. Lindner, J. Garcia-Ojalvo, A. Neiman, and
L. Schimansky-Geier, Phys. Rep. 392, 321 (2004).

[7] J. A. Freund, A. B. Neiman, and L. Schimansky-Geier,
Europhys. Lett. 50, 8 (2000).

[8] J. Casado-Pascual et al., Phys. Rev. E 71, 011101 (2005);
J. Casado-Pascual, J. Gómez-Ordóñez, and M. Morillo,
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