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1 The understanding of the microscopic dynamics of
supercooled  liquids  and  of  its  relation  with  the  glass
transition is one of the problems that remain open in the
physics of the condensed matter, which has led to the
performance of numerous experimental [1–3] and the-
oretical investigations [4]. Although different details of
the microdynamics of supercooled liquids and glasses
have  been  essentially  exactly  determined,  much
remains  unclear  even  now.  So,  for  example,  even
though  the  relation  between  the  phenomenology  of
glass  transition  and  the  long-time dynamics  has  been
almost clarified, the effect of “the structural arrest” on
the  high-frequency  collective  vibrational  motion  and
the  role  of  memory  effects  in  structural  relaxation  is
much less clear [5–7]. The present paper is devoted to
the study of this issue.

The most convenient way to study the dynamics of
density fluctuations is to determine the dynamic struc-
ture  factor S(k, ω),  which  can  be  experimentally
obtained by means of the scattering of light, neutrons,
and x rays. One of the common features established for
glass and supercooled liquids via the above-mentioned
experimental techniques consists in the fact that acous-
tic-like excitations in these systems are propagated up
to  a  value  of  the  wavenumber k corresponding to  the
interparticle distances. As this takes place, the broaden-
ing of high-frequency peaks corresponding to these col-
lective excitations follows a power law Dk2, where D is
practically  independent  of  temperature.  We  need  to
note that similar features were earlier established in the
microdynamics of density fluctuations in liquid alkali
metals [8–10]. From the theoretical point of view, S(k,
ω) can be found from the generalized Langevin equa-

1 The text was submitted by the authors in English.

tion  [11]  for  the  normalized  density  correlator φ(t)  =
〈δρk(t)δρ–k(0)〉/〈|δρk(0)|2〉

(1)

where M2(k, t)  is  the  second-order  memory  function,

(k) and (k) are the frequency relaxation parame-
ters,  which are  expressed through the even frequency
moments of S(k, ω),

(2)

Namely,

(3)

(4)

As was recently shown (see [7], and [12, Eq. (7)]), the

Laplace  transform,  (s)  =  ,  of  the  non-

Markovian equation (1)  for  the  case of  nonergodicity
glass systems allows one to obtain the dynamic struc-
ture factor in the following form:
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Abstract—A study of the microdynamics of supercooled liquids and glasses is executed through calculations
of the dynamic structure factor S(k, ω). The theory developed on the basis of a self-consistent approach in the
framework  of  the  memory  function  formalism is  applied  to  define  the  frequency  spectra  (m/kBT)S(k, ω)  of
supercooled  argon  at  the  temperature T =  5  K  for  the  wavenumber  region  from  2  to  8.5nm–1.  The  results
obtained are in good agreement with the molecular dynamics simulation data.
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(5)

where  (k, iω)  =  (k, ω)  +  (k, ω); S(k)  =

〈|δρk(0)|2〉  is  the static  structure factor;  and f(k)  is  the
nonergodicity  factor,  which  is  expressed  thorough

(k) and (k) [4, 6]:

(6)

Then,  the  problem  of  defining  the  dynamic  structure
factor S(k, ω)  is  reduced  to  finding  the  second-order
memory  function  M2(k, t)  (or  its  Laplace  transform),
which is also the time correlation function describing
the corresponding relaxation process. From the point of
view  of  the  Zwanzig–Mori  formalism  [13,  14],  the
Laplace transforms of the whole set of memory func-
tions arising in a hierarchical chain of non-Markovian
equations  are  interrelated  by  the  following  recurrent
relation:

(7)

where  (k) is the relaxation parameter of the n order.
The finding of the term M2(k, t) can also be executed in
the framework of a self-consistent approach based on
an assumption regarding the equalization of time scales
of high-order memory functions, τ3(k) and τ4(k), where

τn(k) = (k, t) [8].2 As a result, we obtain the ter-

mination in the recurrent relation (7) and find exactly
the following expression for M2(k, t) without any trivial
approximations  for  the  memory  function  M2(k, t)  (or
M2(k, s))  by  different  model  time  (frequency)  depen-
dences:

(8)

Now,  the  spectra  S(k, ω)  can  be  deduced through the
simple substitution of Eq. (8) into Eq. (5). So, the posi-

2 This interrelation between τ3(k) and τ4(k) is based on the assump-
tion the time scales for the TCF of energy current fluctuations and
its memory function are equal.
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Fig. 1. Frequency spectra of (m/kBT)S(k, ω) of supercooled argon for T = 5 K at k = (a) 2.0, (b) 2.9, (c) 5.0, and (d) 8.5 nm–1. Circles
are the data from molecular dynamics simulations [6], and the solid line is our theoretical results.
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tion, as well as the broadening, and the amplitude of the
high-frequency  peak  of  S(k, ω)  in  this  approach  are
interrelated terms determined by the frequency relax-

ation  parameters  (k)  and  (k).  We  need  to  note
that,  as  was  recently  shown  in  [15],  this  approach
allows one to obtain the second-order memory function
in terms of simple relaxation functions. This is in full
agreement with the concepts of mode-coupling theory
[16].  In  accordance  with  the  presented  approach,  the
spectra of the dynamic structure factor S(k, ω) were cal-
culated by Eqs. (5) and (8) for supercooled argon at a
temperature T = 5 K for wavenumbers k = 2.0, 2.9, 5.0,

and  8.5  nm–1.  The  parameter  (k)  was  determined
exactly from Eq. (3), whereas the numerical values of

Ω3
2 Ω4

2

Ω1
2

the  second-order  relaxation  parameter  (k)  were

taken  from  [6].  The  frequency  parameters  (k)  and

(k) were determined from a comparison of the the-
oretical results with the molecular dynamics simulation
data.  The  theoretical  results  obtained  for  the  reduced
dynamical  structure  factor  (m/kBT)S(k, ω)  (solid  line)
together  with  the  results  of  the  molecular  dynamics
simulation (circles) [6] are presented in Fig. 1. We need
to note that the molecular dynamics study from [6] was
performed for a system of N = 2048 argon atoms inter-
acting via a Lennard–Jones potential (�/kB = 125.2 K,
σ  = 3.405 Å). It is obvious that the theoretical curves
are  in  good  agreement  with  the  molecular  dynamics
data  for  the  whole  range  of  wavenumber  values.  The
insignificant  oscillations  observed  in  the  data  from
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Fig. 2. (a) Dispersion of the side peak of the dynamic structure factor for supercooled argon (T = 5 K), (b) k dependence of the side
peak amplitude, and (c) dependence of the side peak amplitude hc on the frequency of collective excitations ωc/2πc. The solid line
represents theoretical results, and circles are the data from molecular dynamics simulations [6].
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molecular dynamics simulations for the low-frequency
regions  of  the  dynamic  structure  factor  spectra  are
related  to  errors  that  arise  at  the  numerical  Laplace
(Fourier)  transform  of  data  for  the  density  correlator
[6]. Good agreement between theory and the molecular
dynamics simulation data are also seen in Fig. 2, where
dispersion  of  the  high-frequency  peak  of  the  dynamic
structure factor (see Fig. 2a) and the dependences of the
side  peak  amplitude  hc  on  the  wavenumber  k  (see
Fig. 2b) and on the frequency ωc/2πc at fixed values of
k (see Fig. 2c) are presented. In Fig. 3, we present the
numerical  values of  the frequency relaxation parame-

ters  (k), n = 1, 2, 3, and 4 used in our calculations.
We  need  to  note  here  that  all  frequency  relaxation
parameters have the same k dependence. A similar sce-
nario was found earlier for the description of the micro-
scopic  dynamics  of  liquid  alkali  metals  (lithium,
sodium, rubidium, cesium) near their melting tempera-
tures [8–10, 15].

In conclusion, this paper is devoted to the develop-
ment  of  a  self-consistent  approach  executed  in  the
framework of the memory function formalism and sug-
gested earlier for description of the microdynamics of
liquid  alkali  metals  for  finding  the  dynamic  structure
factor of supercooled liquids. The results of the theoret-
ical  analysis  of  S(k, ω)  performed  for  supercooled
argon at the temperature T = 5 K for wavenumbers val-
ues ranging from 2.0 to 8.5 nm–1 are in good agreement
with  the  data  from  molecular  dynamics  simulation.
This allows us to make the following inferences.

(1)  It  is  possible  to  use  the  quasi-hydrodynamic
approach for the description of “instantaneous” dynam-
ical processes in supercooled liquids and glasses on a
time scale of 10–12 s in microscopical spaces.

Ωn
2

(2)  Microscopic  processes  and  the  corresponding
collective  excitations  observed  in  the  terahertz  fre-
quency region of the dynamic structure factor spectra
have a common origin in liquid alkali metals, as well as
in supercooled liquids, which can serve as convincing
proof of the benefit of the assumptions made in [17].
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