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Abstract
In order to optimize the directed motion of an inertial Brownian motor, we
identify the operating conditions that both maximize the motor current and
minimize its dispersion. Extensive numerical simulation of an inertial rocked
ratchet displays that two quantifiers, namely the energetic efficiency and the
Péclet number (or equivalently the Fano factor),suffice to determine the regimes
of optimal transport. The effective diffusion of this rocked inertial Brownian
motor can be expressed as a generalized fluctuation theorem of the Green–Kubo
type.

                                                              

1. Introduction

The theoretical concepts of Brownian motors and ratchet transport [1] have been experimentally
realized in a variety of systems. Examples are cold atoms in optical lattices [2],
colloidal particles in holographic optical trapping patterns [3], ratchet cellular automata [4],
superconducting films with periodic arrays of asymmetric pinning sites [5, 6], to mention only
a few.

When we study the motion of Brownian motors, the natural transport measure is a
conveniently defined average asymptotic velocity 〈v〉 of the Brownian motors. It describes how
much time the typical particle needs to overcome a given distance in the asymptotic (long-time)
regime. This velocity, however, is not the only relevant transport criterion. Other attributes
can also be important. In order to establish these, we consider the two following aspects: the
quality of the transport and the energetic efficiency of such a system.

In figure 1, one can identify two different groups A and B of random trajectories of the
Brownian particle; both possess the same average drift velocity 〈v〉. However, it is obvious
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Figure 1. Two sets of illustrative trajectories of an inertial, rocked Brownian motor (see in text).
Both sets of trajectories A and B possess the same average asymptotic velocity, but exhibit a distinct
different diffusion behaviour.

upon inspection that the dynamical properties of these two groups of trajectories are different.
The particles from group A travel more or less coherently together while the particles from
group B spread out as time goes by. If we fix the distance x = x1 then most particles from
group A reach this distance at about the same time t = t1, while for t = t1 most of the B
trajectories either stay behind or have already proceeded to more distant positions. It is thus
evident that the noise-assisted, directed transport for the particles in group A is more effective
than in group B.

There is still another efficiency aspect related to Brownian motor transport. This refers
to the external energy input into the system which may be essential in practical applications.
We like to know how much of this input energy is converted into useful work, namely into
directed cargo transport, and how much of it gets wasted. Since motors move in a dissipative
environment, we need to know how much of the input energy is being spent for moving a
certain distance against the acting friction force. Figure 2 depicts trajectories representing
different motor scenarios. Motor C moves forward unidirectionally, while motor D moves in a
more complicated manner: its motion alternates small oscillations and fast episodes, mostly in
the forward direction, but sometimes also in the backward direction. Again the mean velocity
in both cases is the same; however, particle C uses energy pumped from the environment to
proceed constantly forward while particle D wastes part of its energy to perform oscillations
and back-turns. By simply inspecting these schematic pictures one can guess immediately
when directed transport is more effective.

We note that, in figure 1, the cases A and B can be characterized by the effective diffusion
coefficient Deff , i.e., by the spreading of fluctuations in the position space, while the cases C
and D in figure 2 can be characterized by the variance of velocity σ 2

v = 〈v2〉 − 〈v〉2. The
three quantities 〈v〉, Deff and σ 2

v can be combined to define two important characteristics of
transport, namely the efficiency of noise rectification and the so-called Péclet number [7].

Our work is organized as follows. In the following section, we detail the model of an
inertial rocked Brownian motor. In section 3, we present a general discussion of the efficiency
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Figure 2. Typical trajectories of an inertial, rocking Brownian motor; both sets assume the same
average velocity but differing velocity fluctuations.

measures of Brownian motors. In section 4, a description of the ratchet based on point processes
is introduced. In sections 5 and 6, our numerical findings are analysed in the context of the
optimization conditions for transport of inertial Brownian motors. A summary is provided in
section 7.

2. Inertial rocked Brownian motors

The archetype of the inertial Brownian motor is represented by a classical particle of mass m
moving in a spatially periodic and asymmetric potential V (x) = V (x + L) with period L and
barrier height �V [8, 9]. The particle is driven by an external, unbiased, time-periodic force
of amplitude A and angular frequency � (or period T0 = 2π/�). The system is additionally
subjected to thermal noise ξ(t). The dynamics of the system is modelled by the Langevin
equation [10]

mẍ + γ ẋ = −V ′(x) + A cos(�t) +
√

2γ kBT ξ(t), (1)

where a dot denotes differentiation with respect to time and a prime denotes a differentiation
with respect to the Brownian motor coordinate x . The parameter γ denotes the Stokes friction
coefficient, kB is the Boltzmann constant and T is the temperature. The thermal fluctuations due
to the coupling of the particle with the environment are modelled by a zero-mean, Gaussian
white noise ξ(t) with auto-correlation function 〈ξ(t)ξ(s)〉 = δ(t − s) satisfying Einstein’s
fluctuation–dissipation relation.

Upon introducing characteristic length scale and time scale, equation (1) can be rewritten
in dimensionless form, namely

¨̂x + γ̂ ˙̂x = −V̂ ′(x̂) + a cos(ωt̂) +
√

2γ̂ D0 ξ̂ (t̂), (2)

with [11]

x̂ = x

L
, t̂ = t

τ0
, τ 2

0 = mL2

�V
. (3)
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Figure 3. Schematic picture of a rocking ratchet with the potential V (x, t) = V (x) − xa cos(ωt);
cf equations (2) and (4).

The characteristic time τ0 is the time a particle of mass m needs to move a distance L/2 under
the influence of the constant force �V/L when starting with velocity zero. The remaining
rescaled parameters are:

• the friction coefficient γ̂ = (γ /m)τ0 = τ0/τL is the ratio of the two characteristic times,
τ0 and the relaxation time of the velocity degree of freedom, i.e., τL = m/γ ,

• the potential V̂ (x̂) = V (x)/�V = V̂ (x̂ + 1) has unit period and unit barrier height
�V̂ = 1,

• the amplitude a = AL/�V and the frequency ω = �τ0 (or the period T = 2π/ω),
• the zero-mean white noise ξ̂ (t̂) has auto-correlation function 〈ξ̂ (t̂)ξ̂ (ŝ)〉 = δ(t̂ − ŝ) with

rescaled noise intensity D0 = kBT/�V .

From now on, we will use only the dimensionless variables and omit the ‘hat’ for all
quantities in equation (2).

For the asymmetric ratchet potential V (x) we consider a linear superposition of three
spatial harmonics [11],

V (x) = V0[sin(2πx) + c1 sin(4πx) + c2 sin(6πx)], (4)

where V0 normalizes the barrier height to unity and the parameters c1 and c2 determine the
ratchet profile. Below, we analyse the case when c1 = 0.245 and c2 = 0.04. Then V0 = 0.461.
This potential is shown as a bold (red) line in figure 3.

3. Quantifiers characterizing optimal transport of Brownian motors

As already elucidated above, there are several quantities that characterize the effectiveness of
directed transport. The effective diffusion coefficient, describing the fluctuations around the
average position of the particles, is defined as

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
, (5)

where the brackets 〈· · ·〉 denote an average over the initial conditions of position and velocity
and over all realizations of the thermal noise. The coefficient Deff can also be introduced via a
generalized Green–Kubo relation which we detail in the appendix. Intuitively, if the stationary
velocity is large and the spread of trajectories is small, the diffusion coefficient is small and
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the transport is more effective. To quantify this, we can introduce the dimensionless Péclet
number Pe [7, 12] by use of a double-averaging procedure, i.e.,

Pe = L〈〈v〉〉
Deff

, (6)

where the ‘double-average’ 〈〈v〉〉 denotes the average of the asymptotic velocity over one cycle
of the external drive, i.e.,

〈〈v〉〉 = lim
t→∞

1

t

∫ t

0
〈v(t ′)〉 dt ′ = ω

2π

∫ 2π/ω

0
〈v(t ′)〉as dt ′, (7)

where the average 〈· · ·〉as in the second integral refers to the asymptotic periodic state.
Originally, the Péclet number Pe arises in problems of heat transfer in fluids where it

stands for the ratio of heat advection to diffusion. When the Péclet number is small, the
random motion dominates; when it is large, the ordered and regular motion dominates. The
value of the Péclet number depends on some characteristic length scale of the system. Dealing
with ratchets, the most adequate choice for such a length scale is the period of the periodic
potential, which in rescaled units is equal to 1.

The second aspect of the motor trajectories we want to control has to do with the
fluctuations of the velocity v(t). In the long-time regime, it is characterized by the variance
σ 2

v = 〈〈v2〉〉−〈〈v〉〉2 . The Brownian motor moves with an actual velocity v(t), which is typically
contained within the interval

v(t) ∈ (〈〈v〉〉 − σv, 〈〈v〉〉 + σv). (8)

Now, if σv > 〈〈v〉〉, the Brownian motor may possibly move for some time in the direction
opposite to its average velocity 〈〈v〉〉 and the directed transport becomes less efficient. If we
want to optimize the effectiveness of the motor motion we must introduce a measure for the
efficiency η that accounts for the velocity fluctuations, too, namely [13]

η = 〈〈v〉〉2

|〈〈v〉〉2 + σ 2
v − D0| = 〈〈v〉〉2

|〈〈v2〉〉 − D0| . (9)

This definition follows from an energy balance of the underlying equation of motion (2) (see
the appendix of [11]). If the variance of velocity σv is reduced, the energetic efficiency (9)
increases and the transport of the Brownian motor becomes more efficient.

4. A corresponding point process related to the rocked Brownian motor dynamics

The running trajectories can be characterized in a coarse-grained way by only counting the
events when a trajectory traverses from one potential well into a neighbouring one, and by
disregarding the details of the intra-well motion, see figure 4. In this way, a point process can
be introduced that can be investigated in a standard way [14]. Most, though not all, of the
quantities describing the original continuous process can be retrieved from the so-defined point
process. For this purpose we introduce two random, natural numbers Nα

k , where α = {R, L}
stands for right (R) and left (L). The number NR

k is given by the number of barrier crossings
towards the right within the kth period of the driving, i.e., in the time between (k − 1)T and
kT . The respective number of barrier crossings to the left is denoted by NL

k . The difference

Nk = NR
k − NL

k (10)

indicates that during a temporal periodT the particle has covered the distance xk = Nk L = Nk .
Hence the average, asymptotic velocity is given by



S3746             

LT RT

LT RT

N ; N N ; N + 1

Figure 4. The point process related to rocked Brownian motor dynamics. Two thresholds LT and
RT are the corresponding maxima, to the left and to the right of the particle position. If the particle
jumps over the right neighbouring barrier, the number NR

k increases to NR
k + 1 and the previous

right-sided threshold assumes the role of the left-sided threshold.

〈〈v〉〉 = lim
t→∞

1

t

∫ t

0
〈v(t ′)〉 dt ′ = lim

K→∞
1

KT

K∑

k=1

∫ kT

(k−1)T
〈v(t ′)〉 dt ′

= lim
K→∞

1

KT

K∑

k=1

xk = lim
K→∞

1

T K

K∑

k=1

Nk = 〈N〉
T

. (11)

Analogously, the effective diffusion coefficient is determined by the relation

Deff = 〈δN2〉
2T

= 〈N2〉 − 〈N〉2

2T
. (12)

A related quantity is the Fano factor F [15], defined here as the fluctuation to the first moment
ratio

F = 〈δN2〉
〈N〉 . (13)

As such, the Fano factor provides a quantitative measure of the relative number fluctuations
or the relative randomness of the process; in the case of a Poisson process F = 1.

On the other hand, from (6), (11) and (12) it follows that the Péclet number can be expressed
as

Pe = 2〈N〉
〈δN2〉 . (14)

This quantifier is thus related to the Fano factor via the relation Pe = 2/F .

5. Numerical analysis

The noiseless, deterministic inertial rocked ratchet shows a rather complex behaviour and,
in distinct contrast to overdamped rocked Brownian motors [16], often exhibits a chaotic
dynamics [8, 17]. By adding noise, one typically activates a diffusive dynamics, thus allowing
for stochastic escape events among possibly coexisting attractors. As analytical methods to
handle these situations effectively do not exist, we carried out extensive numerical simulations.
We have numerically integrated equation (2) by the Euler method with time step h = 5×10−4T .
The initial conditions for the coordinate x(t) were chosen according to a uniform distribution
within one cell of the ratchet potential. The starting velocities of the particles were also
distributed uniformly in the interval [−0.2, 0.2].
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Figure 5. Brownian trajectories of the rocked particle moving in the asymmetric ratchet potential
V (x) = V0[sin(2π x)+ 0.245 sin(4π x)+ 0.04 sin(6π x)], where V0 � 0.461 normalizes the barrier
height to unity. The forces stemming from such a potential range between −4.67 and 1.83. The
two angular frequencies at the well bottom and at the barrier top are the same, reading 5.34. The
remaining parameters are: γ = 0.9, ω = 4.9 and D0 = 0.001. The values of the driving amplitude
are a = 3.29, 3.37, 3.70, 4.41, 4.55, 4.73. One can see that for a = 3.29 and 4.73 in part (a) (in blue
online), the particles usually oscillate in a potential well, most of the time performing only a few
steps. This results in an almost zero mean velocity, a very small effective diffusion but with rather
large velocity fluctuations. For another set of driving amplitudes: a = 3.37 and 4.55 in part (b) (in
green online) the mean velocity is large, σv becomes suppressed, but the effective diffusion exhibits
an enlargement due to a ’battle between attractors’. Part (c): the cases a = 3.70 and a = 4.41
(in red online) correspond to the optimal modus operandi of the inertial Brownian motor—the net
drift is maximal and fluctuations get suppressed.

The first 103 periods T of the external force were skipped in order to avoid transient
effects. We employed two tactics of extracting the above characteristics from the generated
trajectories. For the estimation of the energetic efficiency (or velocity fluctuations) the usual
averages over time (105T ) and 333 different realizations were taken. In the case of the Péclet
number (or effective diffusion) we used the point process approach (see previous section for
details); therefore, only one time average of long-time runs (106T ) was required.

Typically, there are two possible dynamical states of the ratchet system: a locked state,
in which the particle oscillates mostly within one potential well (cf the case with amplitude
a = 4.73 in figure 5), and a running state, in which the particles surmount the barriers of
the potential. Moreover, one can distinguish two classes of running states: either the particle
overcomes the barriers without any back-turns (cf the case with an amplitude a = 3.70 in
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Figure 6. Left top: the average, dimensionless velocity 〈v〉 of the inertial, rocked Brownian
motor under non-adiabatic driving conditions. Left bottom: corresponding velocity fluctuations σv
(dotted line) and corresponding diffusion coefficient Deff (solid line). Right top: Brownian motor
efficiency η. Right bottom: the Péclet number Pe, being proportional the inverse of the Fano
factor. All quantities are plotted versus the external driving amplitude a. Values of the remaining
parameters are the same as in figure 5; e.g. the thermal noise strength here is D0 = 0.001. The
numerical errors are within the line width.

figure 5) or it undergoes frequent oscillations and back-scattering events (cf the case with
amplitude a = 4.55 in figure 5). For a small driving amplitude, we find that the locked
behaviour is generic, implying that the average motor velocity is almost zero; see figure 5.
If the amplitude is increased up to some critical value, here a = 3.25, the running solutions
emerge. Around that critical point, there occurs a ’battle of attractors’ and the particle burns
energy for both barrier crossings and intra-well oscillations. This behaviour is reflected in an
enormous enhancement of the effective diffusion [18].

If the driving amplitude is further increased, a regime of optimal transport sets in. The
rapid growth of the average velocity is accompanied by a decline of both the position and
the velocity fluctuations. This means that the trajectories bundle closely together; note the
case a = 3.70 in figure 5. Because there are no intra-well oscillations, the energy that gets
dissipated per unit distance is minimal.

At even larger drive amplitudes an upper threshold is approached (in the present case this
threshold is located at around a = 4.7) where the velocity sharply decreases to a value close
to zero. Moreover, the diffusion coefficient is small and the velocity fluctuations are large; cf
the case with amplitude a = 4.73 in figure 5. In this regime, the particle dangles around its
actual position, as it occurs for a < 3, meaning that its motion is confined mostly to one well.
We note, however, that the amplitude of the intra-well oscillations becomes much larger, so
the corresponding velocity fluctuations are also large.

We conclude that the diffusion coefficient is small for cases when the particle performs
either locked motion or running motion without back-turns.

All these considerations are accurately encoded and described by the two previously
discussed measures, namely, the efficiency (9) and the Péclet number Pe in (6) or in (14). It is
found that the optimal regime for the ideal modus operandi of the Brownian motor is achieved
when both the efficiency and the Péclet number become maximal; see in figure 6. Indeed,
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Figure 7. The same as in figure 6 but here for a five times larger temperature, i.e., D0 = 0.005.

in this regime of optimal performance, the particle moves forward steadily, undergoing rare
back-turns [19]; see the case a = 3.70 in figure 5.

6. Role of temperature

We next address the dependence on the strength of thermal noise. In figure 7, we present our
numerical results for the noise-assisted, directed transport at a larger temperature, namely for
D0 = 0.005. The potential barrier height is still rather high in comparison to the thermal
energy. In this regime, a so-called current reversal, i.e., a change of the transport direction,
occurs as a function of the driving amplitude. Otherwise, the behaviour remains qualitatively
the same as for lower noise D = 0.001. The diffusion coefficient exhibits three maxima
and two minima in the corresponding interval of the drive amplitudes. However, the optimal
regime corresponds to the neighbourhood of the second minimum of the diffusion coefficient.
In contrast, we notice that at lower noise D = 0.001, the optimal regime set in within the
neighbourhood of the first minimum of Deff .

Under higher temperature operating conditions, optimal transport also occurs when both
the efficiency η and the Péclet number Pe are maximal.

7. Summary

In this work, criteria for the optimal transport of an inertial rocked ratchet were established using
two characteristic quantifiers: the energetic efficiency (9) and the Péclet number (6). Adapting
the methods of point processes to rocked Brownian motors, we expressed the averaged motor
velocity and the position-diffusion coefficient by corresponding averages of the point process
Nk . Both these measures can be obtained from simulations of the driven Langevin dynamics (2).

The Fano factor F used in the theory of point processes is related to the Péclet number in a
simple manner via Pe = 2/F . In our case, it is more convenient to employ the Péclet number
because in regimes where the average velocity is very small the Péclet number assumes values
close to zero, while the Fano factor would diverge. From our numerical analysis it follows that
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the optimal modus operandi for the inertial Brownian motor is obtained when the efficiency η

and the Péclet number simultaneously assume maximal values.
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Appendix

In the present paper we have considered the effective diffusion coefficient, which is defined as

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
, (15)

where the brackets 〈· · ·〉 denote an average over the initial conditions of position and velocity
and over all realizations of the thermal noise. Another definition of the diffusion coefficient is
given by the formula

D = lim
t→∞

〈[δx(t) − δx(0)]2〉
2t

, (16)

where δx(t) = x(t) − 〈x(t)〉. By inspection one finds

Deff = D (17)

if

lim
t→∞

1

t
〈δx(t)δx(0)〉 = 0. (18)

In our case, this term vanishes because of the presence of thermal noise and dissipation. More
generally, |〈δx(t)δx(0)〉| may increase at most as t1/2 if the diffusion coefficient D as defined
in (16) is finite. Consequently, for such processes equation (17) also holds.

We now show that the diffusion constant D is related to the auto-correlation function of the
velocity via a Green–Kubo relation, in spite of the fact that the system is far from equilibrium.
For a system with periodic driving, D takes the form

D =
∫ ∞

0
ds C(s), (19)

where

C(s) = 1

T

∫ T

0
dτ Cas(τ, s) (20)

denotes the time average of the velocity correlation function Cas(τ, s) over one period
T = 2π/ω of the driving and where

Cas(t, s) = 〈δv(t)δv(t + s)〉as = 〈δv(t + s)δv(t)〉as (21)

is the non-equilibrium asymptotic velocity–velocity correlation function. In the case of
periodic driving, this function is periodic with respect to the first argument, i.e.,

C(t, s) = C(t + T , s). (22)
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To show the Green–Kubo relation, we start from the expression ẋ(t) = v(t), from which it
follows that

δx(t) − δx(0) =
∫ t

0
ds δv(s). (23)

Therefore (16) takes the form

2D = lim
t→∞

1

t

∫ t

0
ds1

∫ t

0
ds2 〈δv(s1)δv(s2)〉 = lim

t→∞
1

t

∫ t

0
ds1

∫ t

0
ds2 C(s2, s1 − s2), (24)

where

C(t, s) = 〈δv(t)δv(t + s)〉. (25)

Changing the integration variables (s1, s2) → (s = s1 − s2, τ = s2) and exploiting the
symmetry of the correlation function, C(t, s) = C(t + s,−s), one obtains

D = lim
t→∞

1

t

∫ t

0
ds

∫ t−s

0
dτ C(τ, s)

= lim
t→∞

1

t

∫ t

0
ds

∫ t

0
dτ C(τ, s) − lim

t→∞
1

t

∫ t

0
ds

∫ t

t−s
dτ C(τ, s). (26)

We assume that the diffusion coefficient is finite. Therefore the second term in the second
line of (26) tends to zero as t → ∞, so

D =
∫ ∞

0
ds lim

t→∞
1

t

∫ t

0
dτ C(τ, s). (27)

For t = KT , one splits the second integral into sum over subsequent periods,

lim
t→∞

1

t

∫ t

0
dτ C(τ, s) = lim

K→∞
1

KT

K∑

k=1

∫ kT

(k−1)T
dτ C(τ, s) = 1

T

∫ T

0
dτ Cas(τ, s) = C(s)

(28)

where

Cas(τ, s) = lim
K→∞

1

K

K∑

k=0

C(τ + kT , s). (29)

Equations (25), (27)–(29) represent the generalized Green–Kubo relation for the diffusion
coefficient of such periodically driven processes x(t); notably, these per se constitute far from
equilibrium processes.
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