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ABSTRACT. An adaptive mixed finite element method (AMFEM) is designed
to guarantee an error reduction, also known as saturation property: after each
refinement step, the error for the fine mesh is strictly smaller than the error
for the coarse mesh up to oscillation terms. This error reduction property is
established here for the Raviart—Thomas finite element method with a reduc-
tion factor p < 1 uniformly for the L2 norm of the flux errors. Our result
allows for linear convergence of a proper adaptive mixed finite element algo-
rithm with respect to the number of refinement levels. The adaptive algorithm
surprisingly does not require any particular mesh design, unlike the conform-
ing finite element method. The new arguments are a discrete local efficiency
and a quasi-orthogonality estimate. The proof does not rely on duality or on
regularity.

1. INTRODUCTION

An adaptive finite element method consists of successive loops of the following
sequence:

(1.1) SOLVE — ESTIMATE — MARK — REFINE.

The a posteriori error control in the step ESTIMATE has been developed over the
last decades (cf. [1, 3, 6, 12, 17] and the references therein). The convergence
analysis of the full algorithm (1.1), however, is restricted to the conforming finite
element method [15, 16].

This paper investigates convergence properties of such a loop for the mixed finite
element method (MFEM) in a 2D model Poisson problem

(1.2) f+Au=0 inQ and u=0 on ON.

Given a (coarse) mesh 7y, a shape-regular triangulation of Q into triangles, py
and upy approximate the exact flux p := Vu € H(div,Q) and the exact dis-
placement field u € H{(Q2) of (1.2). In step SOLVE one computes (py,uy) €
RTy(Ty) x Po(Ty) that satisfies the discrete problem [(e, ®) 2 abbreviates the L2
scalar product]

(pa,qm) 2 + (uy, divgy) o) =0 for all gy € RTy(7y),

1.3 .
(13) (divpu,vu)r2) = —(f,vn) L2 for all vy € Po(Th).

Details on the lowest-order Raviart—Thomas finite element space RTy (7x) [8]
can be found below in Section 2; Py(7y) denotes the piecewise constants. MATLAB
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FIGURE 1. Possible refinements of one triangle T' in the step REFINE.

implementations and documentations of the step SOLVE are provided in [5]. In
this paper, for the ease of discussion, the step ESTIMATE is the postprocessing to
compute the residual-based explicit error estimator [2, 9, 18]

(1.4) ne = ( Z n%)l/g with 77% = hEHU)H]E”%z(E).
Eety

Here and throughout, [py] denotes the jump [py] := ppu|r, —pulr_ of the discrete
flux over an interior edge F := Ty NT_ of length hp := diam(FE) shared by the two
neighboring (closed) triangles Ty € 7y Furthermore let f,, := |wp|~" [, f(2)da
denote the integral mean of f over the patch wg := int(T4 UT-) of area |wg| =
|T+| + |7-| and let £ denote the set of all interior edges in 7g.

The bulk criterion in the step MARK was introduced and analyzed in [7, 11, 15]
for displacement-based AFEMs. Here, it leads to a selection of a subset M of edges
&g such that

(1.5) Oy < D 0
EeMm

for some universal constant 0 < 6 < 1. It came much as a surprise to the authors
that the step REFINE does not need any further specification or restriction. It
suffices when the output of REFINE satisfies that, for each marked edge F € M,
its midpoint mid(E) is a new node in the new triangulation 7j,.

Typical refinements of one triangle T' € 7T are displayed in Figure 1.

We further set hy := diam(T') and refer to ||H f||12(q) as the first-order term
given by

. _ 1/2
(1.6) ||HfH||L2(Q) 2:( Z }I%|T| l|/f(.’l7)d.7}|2) / .
TeETy T
while the data oscillations read
(1.7) osci = (Y hpllf = foulTogn) >
Ee&y

It is the milestone of this paper to prove the following error reduction property
(1.8).

Theorem 1.1 (Error reduction property). Let p, and py be the MFEM flux ap-
proximations to p with respect to 1, and Ty. Then, there exist positive constants
p < 1 and C depending only on 0 and on the shape regularity of T, and Tg such
that

(1.8) Ip = prllT20)y < pllp = prll72() + C(1H frllL2() + oscr ) oscr -

The remaining part of this paper is organized as follows. Section 2 discusses sev-
eral aspects of AMFEM as well as particularities and generalizations of our analysis.



Section 3 presents the necessary details on the notation. The key ingredients of the
proof are the strict discrete local efficiency, the quasi-orthogonality, and an estimate
for the fluxes, of Section 4 and 5. The proof of the error reduction property (1.8)
concludes the paper in Section 6.

2. COMMENTS

Some remarks are given before the subsequent sections are devoted to the tech-
nical details of the proof of Theorem 1.1.

2.1. Data oscillations. For f € H'(Q), we note that the data oscillation (1.7) is
of quadratic order and so of higher order when compared to the first-order errors
lp — prllH(div) OF |u—ugllL2(q) or the first-order data term [|H fg|2(q)-

Hence, Theorem 1.1 asserts that the error on the fine mesh is bounded by a
factor p!/? times the error on the coarse mesh plus higher-order terms.

We also point out that the oscillations (1.7) of f are patch-oriented while those
in the reliability and efficiency estimate of Theorem 3.2 below are element-oriented
(and so possibly smaller than (1.7)).

It is an important property of the data oscillation that the mesh-sizes enter
explicitly. Given 0 < ¢ < 1 and a coarse mesh 7, it is therefore easy to design a
fine mesh 7}, with oscillations oscj, < ¢ oscy, where oscy, and oscy denote the data
oscillation of the fine and coarse mesh, respectively. The same remark applies to

| H fa L2 )

2.2. A convergent AMFEM. In order to guarantee linear convergence in terms
of the refinement levels, suppose that (1.1) is employed successively. At the refine-
ment level j, there is an MFEM solution p; with error e; := [|p — pj||r2(q) With
respect to a mesh 7; and a data oscillation osc; such that (1.8) reads

(2.1) e, <pe;+Cd;  forj=0,1,2,...,

where d; abbreviates the data term (||H; fg,||12(q) + 0sc;) osc; with respect to 7;.
Moreover, suppose that MARK provides (1.5) plus (possibly) additional refinements
to guarantee

(2.2) dii1 < od; for j =0,1,2,...

with some universal constant 0 < ¢ < 1 (this is always possible, as indicated at the
end of the previous subsection).
Mathematical induction proves that (2.1)—(2.2) imply

j—1
e? < pjeg + Cd, Zpkgj_l_k and d; < doo’,
k=0

and so R-linear convergence (with any reduction factor between max{p, o}'/? and

1)
(2.3) e? < p?ed + Cdyjmax{p, o} " forj=1,2,....



2.3. Numerical experiments. Numerical experiments throughout the literature
are frequently based on the element-oriented maximum criterion in the step MARK,
i.e., one marks an element 7" if the estimator 7y associated with 7" satisfies Tol < np
and Tol is 6 times the largest of such contributions. In the context of AMFEM, data
oscillations have not been involved so far. We refer to [5] for algorithmic details
and MATLAB routines and to [2, 10, 18, 13] for empirical examples.

Tt is the authors’ overall impression that the AMFEM is very robust in changing
algorithmic details in practice. The numerical experiments in [15, 16] with a real-
ization of (2.1)—(2.2) from the previous subsection for conforming AFEM anticipate
that the new algorithms perform as optimally as the frequently employed ones. But
there is no mathematical justification for that.

2.4. Optimal complexity. The adaptive algorithm is linear convergent with re-
spect to the number of refinement steps. This does not imply any control of the
number of degrees of freedom. Based on additional coarsening steps, there exists
an algorithm of optimal complexity for the conforming AFEM [7]. The authors
anticipate that their results carry over to the present situation, because it is the
universal coarsening step that yields the control of the degrees of freedom. Numer-
ical wisdom, however, tells us that coarsening is not needed in practice, leaving an
open gap between theory and practice.

2.5. Generalizations. The arguments below are illustrated by a simple 2D model
example only, but they apply to more general boundary value problems as well. In
the presence of Neumann boundary data or for nonconstant coefficients, the data
oscillations apply to such terms as well. The arguments are not restricted to 2D;
for instance, Lemma 3.1 also holds true in 3D [5].

The use of alternative refinement indicators [10, 18] is also possible, as long as
they are globally reliable and locally controlled by the residual-based estimators.

2.6. Uzawa algorithms. The well-established Uzawa algorithm for the iterative
solution of the mixed problem on the continuous level consists of two steps: a
Poisson solve and an update formula. The substitute of the Poisson solve by some
AFEM allows a perturbation of the convergence on the continuous level [4]. The
advantage is that even unstable finite element schemes can be employed. The
disadvantage is the possibly slow convergence of the Uzawa algorithm relative to
multilevel solver [13].

3. NOTATION AND PRELIMINARIES

Throughout this paper suppose that 7y and 7}, are two shape regular triangula-
tions of the planar Lipschitz domain Q with polygonal boundary 952 into triangles,
where 7}, is some refinement of 7z such that the refinement T'|7, := {K € 7j, : K C
T} of each element T in Ty is depicted in Figure 1. Moreover, let py € RTy(7x)
denote the discrete MFEM solution on the coarse triangulation 7. A regular tri-
angulation 7 in triangles, d = 2, is a set of closed triangles T' of positive area |T|
such that any two distinct triangles T} and T5 are either disjoint Ty N Th = @ or
share exactly one vertex z, Ty Ty = {2}, or have one edge £ = T} NT5 in common.
The set of all edges is denoted by &£, and the set of nodes is denoted by N. Each
edge is associated to a length hy := diam(FE) and a unit normal and unit tangential
vector vg and 7. The subindices H and h refer to the coarse and fine triangulation




Ty and Ty, respectively. The words mesh and triangulation are used as synonyms
of each other.
The Raviart—Thomas MFEM space and the piecewise constant space read

RTy(Ty) = {qu € H(div,Q): VI € Ty 3a € R*Ib € RVz € T,
qu(z) =a+bux},
Po(Tg) = {vg € L*(Q): VT € Ty3a € RVz € T, vy (x) = a}.

(Analogous notation for 7y, is not displayed.) The Crouzeix—Raviart FEM space on
Ty reads

Vév .= {vg € Pi(7y) : vy continuous at mid(E) for FE € &y,
and vy (mid(E)) =0 for E € £ with E C 9Q}.

Since V¥ ¢ H'(Q), the distributional gradient of v, € V4’ is different from its
elementwise gradient Dyvy € PO(TH)d.
Let u¥ denote the Crouzeiz—Raviart FEM solution of

(DHug,DHvﬁ)Lz(Q) = (fH,vg)Lzm) for all vY € V.
The discrete fluxes p := Dyul} and py from (1.3) are related.
Lemma 3.1 ([14, 5]). Let fr, = fT:t f(z)dz/|Ty| and let zg. = mid(Ty) denote
the barycenter of T4.. Then there holds
pulr, (¥) = Dyuf|r. — %fTi (x—p,) forzeTy. O
In this context, fyg € Py(7y) and fr, € Py(7;) denote the piecewise integral
means, e.g., [i|r = fr = [, f(x)dz/|T| for T € Ty.
Theorem 3.2 (Reliability and efficiency [2, 9]). With (1.4) and (1.7), there holds
ng Sllp - PH||L2(Q) < nmg + oscy .

Here and throughout this paper, A < B abbreviates A < CB with a mesh-size
independent, generic constant C' > 0. Finally, A &~ B abbreviates A < B < A. The
paper adopts standard notation for Lebesgue and Sobolev spaces and norms.

4. DISCRETE LOCAL EFFICIENCY

This section provides the first of two main arguments for error reduction. Unlike
for the conforming AFEM, there is no request for further restriction in REFINE.
Theorem 4.1 (Strict discrete local efficiency). Suppose that E = 0T N IT_ €
& is an edge in Ty (shared by the triangles Ty, T_ € Ty) and bisected in the
refinement, i.e., E = By U Ey & &, and mid(E) = E; N Ey € Ny, for two distinct
FE,Ey € &,. Then there holds

1/2
hE/ Ipalllee) S llon — pullp2ws) +hellf — fopllz2ws)-

The remaining part of this section is devoted to the proof of Theorem 4.1. Ob-
serve that [pg| - vep = 0 for the unit normal vector vg L E since py € H(div, Q).
Therefore, denoting by 7 L vg the tangential vector, the jump

lpul = (pulr, —pulr ) along E=T,NT_
(and formally [py] := 0 along E C 99Q) satisfies

Ipalllzze = lpa] - TRl L2 (1)



Taking into account that [py] - 7z is an affine function along the edge E, we have
(lpr] - me)(@) =a+ - (v —mid(E)) forallz e FE
with fixed o € R and 3 € R2.
Lemma 4.2. There holds
hllE‘/Q”O‘”L?(E) S llpn _pH”L?(wE)-

Proof. Let ¢ denote the nodal basis function in the conforming P, FEM space
with respect to the node mid(F) and with respect to the fine mesh 7. Then, g, :=
Curl ¢ belongs to Py(7)NH (div, Q) with divg, = 0. Since o = fE pu]-TEds/hg,
one deduces

/ appds = / [pu] - TEVE ds = (pH, qn)12(0)
E E

with an elementwise integration by parts. Since q, = Curlorp € RTy(7p) is an
admissible test function, the discrete MFEM problem with respect to the fine mesh
T, reduces to

(Phyqn)r2(0) = 0.
Altogether, one obtains the key identity
(1/ v ds = (pPH — Phyqn)L2(Q)-
E

The shape regularity allows the estimates

}I/ES/ ppds and lgnl[r2we) S 1.
E

The foregoing key identity therefore leads to the assertion

el = ([ e 2o [ opas?

< (pw — pth}l)%z(ﬂ)

< ||Qh||%2(wE)||ph _pH||2L2(wE)

S llpn — pH||%2(wE)- 0
Lemma 4.3. There holds

L, -
18] < ST 7" + [T Y2 = foullz )

Proof. The differences of the representation formula of Lemma 3.1 for z € E lead
to

1
/8 = §(fT_ — fT+) TE S RQ.
Consider the piecewise constant function

—|T+|_1 fOI‘ZEETJ,_,
g(z) =< +|T-|7t forzeT_,
0 for z ¢ Wg

and note that wa g(x) dx = 0. The definition of the piecewise integral means that
Jro = fTﬂ: f(z) dz/|Tx| then implies the identity

fro = fry = (9, )Lz



Since (g,1)r2(q) = 0 and f,,,, is constant on wg,
fT_ - fT+ = (gaf - wa)Lz(wE)'
Cauchy’s inequality and ”9”%2@,@) = |T, |71 +|T_|7! conclude the proof:
218 < (1T |7+ [T-1 ™) Y2If = forllzzn)- O

The proof of Theorem 4.1 immediately follows from Lemmas 4.2 and 4.3: since
a and 3 - (e — mid(E)) are L?(E) orthogonal, there holds

helllpall7zm) = helllpal - mel22 )
= hgllalliz g + helB - (e — mid(E))|72 g
S llon = prllizp + hpt (e = mid(EN|Z2e [1f = for 720y O

5. QUASI-ORTHOGONALITY

The second main argument for error reduction is a generalization of the Galerkin
orthogonality in the conforming AFEM [11, 15, 16].

Theorem 5.1 (Quasi-orthogonality). There holds
\(p = pr,pr — pr) 2yl SNH(fr — fr)llee@)
X (Ilp = pall2) + lp — pH L2(00) + ||HfH||)Lz(Q) .

Theorem 5.1 is an immediate consequence of Lemmas 5.4 and 5.5 below.
Throughout the rest of this section set pY := Dpul for the Crouzeiz—Raviart
FEM solution uf in VN with respect to 7j,.

Lemma 5.2. There holds
(p - th;pH - ph)Li’(Q) = (u - u;,,v, fo— fh)LQ(Q)-

Proof. Since p = Du, —divpy = fg, and —divpy, = f3, the assertion follows from
an elementwise integration by parts. The edge contributions vanish indeed: given
any E € &, the resulting boundary term over E reads

/[u—um<pH—ph>~uEds.
E

This is zero because [, [u — u]ds = 0 by construction of V' and since py - vg
and py, - vg are continuous from both sides of E' and constant along E. d

Lemma 5.3. There holds
(w—up, fu — )z SIH (= o)z
% (Ip =2l 20y + 1ok = P l12co )-

Proof. To estimate (v — ulY, fu — fr) r2(q) note that [.(fg — fu)dx = 0 for any
T € Ty. Hence, for some & € Py(7) with

edlr = /T (u(z) — u (2)) da/|T|



and eﬁ =u— ug, a Poincaré inequality on T shows in total that
((u—ufy, fir = fu) 2@l = (el — 8, fu — fr) o)
<1/mlp = PRl 1 H(fr — fi)llr2)-

The remaining term reads (u}] — uf, fir — fn)12(q) and is analyzed separately for
each T € Ty. In fact, let V,N(T) := {vp|r : vy € Pi(Tp|r) continuous at mid(E)
for all E € &,} and note that u}y — ulY € VN (T). Moreover, for any v, € V,;N(T)
set

o1(vp) == min op —wlz2¢ry and  o2(va) = hel|Dponlrzcr).-

This defines two semi-norms 91, g5 on the finite-dimensional space VhN (T). Conse-
quently, 01 = p2. Therein, the equivalence constants are independent of Ay accord-
ing to a scaling argument (transform to a reference triangle T ¢ first and note that
there exists only a finite number of possible refinements, compute the constants,
and transform back). In particular, for some average ¢ := [.(ufy —ujy ) dz/|T],

[(up — ugy, fr — fu) el = (upy —up —c, fu — fn)e2 )l
< o1(ufy —uy) | fu — fullL2er)
S ||Dh(uﬁ - Uflv)||L2(T)||hT(fh - fH)||L2(T)-

The sum over all T' € Ty shows that
((ugr —ups fru = f) eyl S PR — pRllcz) 1 H (fn — fu)llrz@)- O
Lemma 5.4. There holds
((p— i, o — pr)r2y| S NH(fn — i)z
X (||P = pullez) + 1P — prllz2) + 1H frllz2) + ||hfh||L'~’(Q)>'
Proof. The combination of Lemmas 5.2 and 5.3 readily gives
((p— 8o — pr)p2y| S NH(f — fu)ll 22
x (lIp = PR lay + oY~ p¥llza@ )-

An immediate consequence of Lemma 3.1 is that

2
llp _pg”L%Q) —[lp —pH||L2(Q> ‘ < Z |fT|2|| b —ITHQL?(T)
TeTH

< HfulZ20-

A similar estimate also holds true with H replaced by h. The combination of those
two estimates with a triangular inequality concludes the proof of the lemma. [

Lemma 5.5. There holds
(o8 = pr.pir — pr)r2y| S Afallze) 1M(fn = fir)lz2(-

Proof. Let 2y € Py(T;;R?) and x;, € Py(T,;R?) denote the piecewise center of
inertia, e.g., g |p := mid(7T") for T' € Ty. Then, Lemma 3.1 results in

pu () —pﬁ(z) = _%fH (x—zpy) forxzeQ



plus a corresponding equation with H replaced by h. Then,
1,
(PhN — PhsPH — ])h)LZ(Q) = i(fh(' - -Th)apg - PhN)L‘Z(Q)

+ Un(o = an), fuls =) = furlo = 21)) 120y,

The first term on the right-hand side vanishes because p}} — pi¥ is constant and
Jp(x —xp)dx = 0 for each T € Tj,. The same argument shows (fx(e — zp), 2m —
wp)r2(q) = 0. There remains

4(PhN — Ph, o —Pr)rz) = (fr(® —2n), (fn — fu)(® — zn))L2(0)-

An elementwise Cauchy inequality in the previous identity concludes the proof. [

6. PROOF OF ERROR REDUCTION PROPERTY

This section is devoted to the proof of the error reduction property (1.8) in
Theorem 1.1.

Proof. The proof starts with the reliability from Theorem 3.2 and continues with
the bulk criterion (1.5), i.e.,

(6.1) =Y hellpalliiee S Y helleallie,
Eeény FEeM
for the set M of marked edges. This leads to

Ip = prllZz) S7° +osch < Z hellpalllfs (e + oscir -
EeM

The discrete local efficiency of Theorem 4.1 plus the finite overlap of the edge-
patches (wp : F € &) show

p _pH||2L2(Q) S Z llpn —pH”im;E) +osc < [lpn _pHH%Z(Q) + oscl; -
EEM

With some constant ¢, this reads
lp— pH”%?(Q) < aillpn — pH||i2(Q) +croscy -
On the other hand,
lpn — PH||%2(Q) =|p- pHH%Z(Q) —lp— Ph||%2(n) = 2(p = PhyPh — PH)L2(92),

and the last term can be bounded with the quasi-orthogonality. With some constant
ca, Theorem 5.1 leads to

Ipn — pulli2) < llp = polli20) — I = Prlliz0)
+eallp = pullez) + lp — prllze) + 1H fr L2 ) oscr -
The combination with the preceding inequality plus a Young inequality yield

cillp = prlliz )< (er = Dllp — palliaq) + c1osch;

+ cocy (||P —pullr2) + lp — prlIL20Q) + ||HfH||L2(Q)) oscy
<1 2 2
< <llp = prllzz) + (a0 = 1/2)[lp = palliz o)

+ C4(||HfH||L2(Q) + OSCH) oscy -



This proves

(c1 = 1/9)p = pullia() < (er = 1/2)lIp = pullieo) + ca(lH fill 20 + osenr) ose,

and so the theorem with
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