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1  Introduction

Due to  their  intermediate  size  between the  macro-  and micro-world mesoscopic  systems exhibit  a  rich
variety of phenomena that are both of quantum and classical origin [1]. Herein, we elaborate on the phe-
nomenon of finite flux generation out of current fluctuations of zero average in a system of interacting
mesoscopic cylinders. More specifically, we consider a linear chain of coaxial mesoscopic cylinders that
are  coupled  by  mutual  inductances.  Recently,  the  idea  of  a  flux  phase  state  has  been  proposed  in  the
context with both superconductivity and the topic of non-transport ground state currents in a mesoscopic
normal metal samples [1, 2] of multiply connected mesoscopic cylinders, rings or even carbon nanotubes
[3]. The flux state [2] is characterized by a non-vanishing selfsustaining current in the system. Because
of thermal equilibrium fluctuations (Nyquist noise) these selfsustaining currents in mesoscopic cylinders
are – although long lasting – only metastable states of the system (in the sense that the averaged current
in an equilibrium state vanishes). Due to the time-reversal symmetry, the mean flux in a finite system is
always zero.  The situation changes drastically when co-operativity comes into play as  is  the case with
noise  induced  phase  transitions  within  the  “thermodynamic  limit”  of  an  infinite  number  of  interacting
cylinders. The model of an infinite chain of mesoscopic cylinders formed of long wires made of single-
wall carbon nanotubes presents an idealized archetype.

In mesoscopic systems of the cylindrical symmetry persistent currents can occur [5] due to the quan-
tum size effect resulting in the spatial quantisation of energy levels. Those currents emerge as a result of
the phase coherence among electrons, the so-called coherent electrons.  In the ground state, at tempera-
ture = 0T , the only electrons present in the system are coherent ones possessing a non-dissipative flow.
At non-zero temperature, > 0T , a part of those electrons become “normal” and their behavior is dissipa-
tive  resulting in  a  decrease of  the  amplitude of  the persistent  current.  This  feature  has  been confirmed
experimentally in mesoscopic rings connected to a current source [6].
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2  Model

To start, let us assume that the real 3-dimensional mesoscopic cylinder is modeled as a collection of cN
one dimensional rings (current channels) stacked along a certain axis. The geometry of cylinder is cho-
sen in order to obtain a thin-wall system with sufficiently large current-amplitude. The coherent current
is a sum of contributions of single channels which can produce currents being either paramagnetic for an
even number, or diamagnetic for an odd number eN  of coherent electrons. For simplicity, we assume that
the probability of finding a channel with an odd number of coherent electrons equals the probability of
finding  a  channel  with  an  even  number  of  coherent  electrons.  Thermal,  dissipative  conduction  causes
various sources of  random fluctuations [7].  There are  so-called universal  conductance fluctuations that
arise from the random quantum interference between many electron paths which contribute to the con-
ductance  in  the  diffusive  regime.  These  fluctuations  decay  algebraically  with  temperature  and  can  be
neglected at higher temperatures [8]. There is also a part of the current noise which is called shot noise
[7], the spectral density of which is proportional to mean current. This noise can be reduced by increas-
ing the size of rings [1]. Thermal motion of charge carriers in any conductor is a source of random fluc-
tuations  of  current  which  is  called  Nyquist  noise  [7].  This  thermal  equilibrium  noise  is  universal  and
exists in any conductor. Moreover, this noise increases with temperature. In the following we limit our
considerations to conditions of relatively high temperature and sufficiently large circumference xl  of the
cylinder when the only significant source of randomness is Nyquist noise [4].

For a system of N identical mesoscopic cylinders, fluxes and currents in the cylinders (in the absence
of an externally applied flux) are coupled according to the formula [9, 10]

f
=

=Â
1

,
N

i ik k
k

IM (1)

where fi  and  iI  are  flux  and  current  in  the  i -th  cylinder,  respectively.  The  coupling  coefficients
=ik kiM M  (forming  the  matrix  M)  denote  the  mutual  inductances  for  πi k  and  identical  self-

inductances = iiL M  for =i k  [10]. The current in the k -th cylinder consists of two contributions [11]:
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Herein, R  denotes  a  resistance  of  a  single  cylinder  [12],  Bk  is  the  Boltzmann  constant,  and  G ( )k t  de-

scribes fluctuations of the current; i.e. thermal Nyquist noise modeled by Gaussian white noise of zero

average G· Ò =( ) 0k t and the Dirac d -correlations G G d d· Ò = -( ) ( ) ( )k i kit s t s .  Its intensity 0 B2D k T R= /

is chosen to obey the fluctuation-dissipation theorem. The coherent electrons f= ,
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The characteristic temperature *T  is defined by the relation 2
B * 2Fk T D= / p , where FD  is the energy gap

at the Fermi surface and Fk  denotes the Fermi momentum. Inserting (2)–(4) into (1) yields
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where = 1...i N . This set of equations can be inverted to read

1
coh

1

1 d 2
( ) ( ) ( )

d

N

i B
i ij j i

j

k T
I T t

R t R

f
f f G

-

=

= , - + .Â M  (7)

Introducing the dimensionless flux 0i ix f f= /  and time t= / 0s t , where 0 Rt = /L , from (7) we obtain (the
dot indicates the derivative with respect to xi)
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0 0 2L  is  the  magnetic  energy  and  B 0* * 2D k T e= /  denotes  the
ratio of the characteristic thermal energy to the magnetic energy [4].  Both these characteristic energies
are of quantum origin: *T  is the temperature corresponding to the energy gap at the Fermi surface and e0

relates to the magnetic flux quantum f0 .

3  Fokker–Planck  equation

Due to the symmetry =ik kiM M , the set of Eqs. (8) is a gradient system independent of the specific con-
figuration of the cylinders. The case with = 1N  has been studied previously in [4] for which the potential
(9) is in general multi-stable. If the so-called flux trapping is absent, the potential (9), which is reflection
invariant,  can  be  either  mono-stable  or  bistable,  depending  whether  the  temperature  of  the  system  is
above or  below a  critical  temperature  cT .  The maxima of  the  corresponding probability  density  can be
interpreted as self-sustaining fluxes (or currents) in the system. They are long living states, provided the
time of thermal activation from one maximum to the other is huge in comparison with the decay time in
the basin of attraction of a single maximum [4, 13]; it is in this sense, that the mean flux or current does
vanish. The mean flux in a finite chain of mesoscopic cylinders also vanishes, due to the symmetry of the
potential  (9).  A  non-zero  mean  flux  can  occur  only  in  the  limit  of  infinitely  many  cylinders.  We  thus
consider a system of coaxially stacked interacting cylinders in the limit  Æ•N .  This scheme has suc-
cessfully been used for investigating equilibrium, non-equilibrium and non-thermodynamic phase transi-
tions,  see  e.g.  [14,  15].  The  Fokker–Planck  equation  for  the  probability  density  ,({ } )ip x s  of  the
N-cylinder system in Eq. (8) reads [16]
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Integration over all variables except kx  yields the nonlinear, steady-state equation for the 1-dimensional
probability density [17]
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where ( ) di k i s i k ix x x p x x x· | Ò = |Ú  is  a  stationary  conditional  expectation  value  of  ix  with  respect  to  the
conditional probability density ( )s i kp x x| . This equation is formally exact. It contains, however, the un-
known quantity  · | Òi kx x  which can be  determined only  via  an approximation scheme.  Thus,  we invoke
the  following  approximation:  We  rewrite  the  conditional  expectation  value  as  i k i ikx x x c· | Ò = · Ò + ,
wherein ik i k ic x x x= · | Ò - · Ò  accounts  for  correlations between i-th  and k-th cylinder.  In the limit,  when

Æ•N ,  the  system  becomes  statistically  homogeneous  so  that  the  stationary  average  · Ò = · Òkx x  no
longer depends on the index k. In this limit we shall neglect the correlations, i.e. we put = 0ikc . Follow-
ing  [17],  we  deduce  that  the  stationary  probability  density  for  = kx x  satisfies  the  non-linear  Fokker–
Planck equation [14],

2

2

d d
[ ( ) ] ( ) ( ) 0

d ds sV x T p x D p x
x x

lm, - + = ,¢  (12)

where

( ) dsx x p x xm
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is  the order  parameter  of  the system and 1( )ik
i k

l
-

π

= -Â L M  denotes  an effective coupling constant.  In

this sum, the index k is fixed and Œ -•,•( )i . However, for the system of infinitely many cylinders, the
result does not depend on k. Similarly, the parameter ai in the potential (9) does not depend in the index i,
a = ai  (below in  all  figures  we  take  a  =  1).  The  mutual  inductance  for  the  coaxial  alignment,  which  is
expressed  by a  complex formula  involving elliptic  integrals,  is  positive  [9],  > 0ikM .  The predominant
non-diagonal elements -1( )ikM  of the inverse matrix -1

M  are negative and as a result the coupling con-
stant is positive, i.e. l > 0 . Its value is typically small and for generic cases l < .0 1. We expect, never-
theless  a  “ferromagnetic”  state  of  the  system,  characterized  by  the  parallel  alignment  of  the  magnetic
moments induced by the currents flowing in the neighboring cylinders. Indeed, the solution of Eq. (12)
reads

[ ]m m lm= , = - , - / ,0( ) ( ) ( )exp ( ( ) )s sp x p x N V x T x D  (14)

where m0 ( )N  is the normalization constant and ∫ µ( )D D T T , see below (9).

4  State  equation

From (13) and (14) one finds the self-consistent steady-state equation

m m= ,( )F (15)

where

[ ]
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exp ( ( ) ) ( ) d

x V x T x D T x

F

V x T x D T x
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m
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•
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•
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- , - /
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- , - /

Ú

Ú

(16)

The closed form of this nonlinear equation allows one to study various regimes. The flux state is char-
acterized by the non-vanishing mean flux m = · Ò π 0x . If an external magnetic field is applied then trivi-
ally m π 0 . The non-trivial case emerges when the external flux is zero but m π 0 . Because the potential

, = - ,( ) ( )V x T V x T ,  the  Eq.  (15)  has  always  the  solution m = 0 .  This  solution becomes unstable,  how-
ever,  when the parameters  exceed a  critical  value:  a  bifurcation into two stable  states  characterized by
m π 0  is  then  expected.  These  states  are  symmetric  with  respect  to  the  inversion  of  the  current.  The
numerical  solution  of  (15)  depicted  with Fig. 1 indeed confirms our expectation. Therein, we elucidate
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both,  the  role  of  temperature  and  the  interaction  strength  for  two  sets  of  parameters.  The  temperature
affects the system via the ‘single particle potential’ ,( )V x T  and the noise intensity D. The coupling con-
stant l  depends on the distance between cylinders. The dimensionless parameters of the model are cho-
sen  so  as  to  yield  = . /0 001 *D T T  and  =0 1i  (the  potential  ,( )V x T  then  becomes  bistable  below
= .1 66 *T T ).
We note that the continuous phase transition does occur at the transition point determined by the rela-

tion

m

m

m
=

= .

0

d ( )
1

d
F

(17)

The critical coupling constant lc  is consequently obtained as

l = ,
· Ò2

0
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where
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The bifurcation diagram obtained from this equation is depicted with Fig. 2. We find that in the vicinity
of the transition point lc , the order parameter m| | behaves algebraically; i.e.

2
2 2

1
( )

c c
cK T

l l
m l l

l l

Ê ˆ È ˘= - , > ,Á ˜ Í ˙Ë ¯ Î ˚
 (20)

where the kurtosis

· Ò
= -

· Ò

4
0

2 2
0

( ) 1
3

x
K T

x
(21)

characterizes the deviation of the steady state of the non-interacting system from the Gaussian distribu-
tion. It is a monotonically decreasing function of temperature that starts from a positive value at = 0T
and successively diminishes towards zero as T increases (approaching the onset to the Gaussian regime).

Fig. 1  Phase  transition  from  disordered  (zero  flux)
to ordered (finite flux) states in the coaxial system of
coupled mesoscopic cylinders. The order parameter is
the  averaged  magnetic  flux  m  through  one  cylinder.
The corresponding state of the system is controlled by
the dimensionless temperature / *T T , or (see the inset)
by the coupling constant l .
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From (20) it follows that near the transition point bm l lµ -( )c  for l l> c , where the critical exponent
b = /1 2 , i.e. it assumes the classical value.

5  Summary

The studied system of mesoscopic cylinders presents a 3-dimensional many-degree-of-freedom system.
A  related  system  has  been  studied  in  [18].  Here,  we  have  reduced  its  description  to  the  quasi
1-dimensional system modeled by a set of Langevin equations (8). The properties of magnetic flux de-
pend on the mutual interplay of quantum coherence and dissipation. Classical dissipation at finite tem-
perature is taken into account via Eq. (3) and quantum mechanically via Eq. (4). The experimental verifi-
cation of this collective behavior can serve as an indirect evidence that the constituents, i.e. single cylin-
ders, are monostable or bistable systems. A wire made of single wall carbon nanotubes (e.g. a long nano-
tube with periodically distributed defects like carbon peapods [19]) or coaxial and uniradial loop-by-loop
winding of nanobelts [20] are proposed to be suitable test systems. Such systems have potential applica-
tions in investigating fundamental physical phenomena and could be used as “flux guides” or “magnetic
fibres” in close analogy to wave guides and optical fibres in modern photonics.

In  conclusion,  we  have  shown  that  the  co-operativity  between  mesoscopic-sized,  coaxially  coupled
cylinders  yields  critical  behavior  and  phase  transitions  from the  zero  mean  to  the  non-zero  mean  flux
state. A macroscopic stationary non-zero current can thus flow in absence of external driving.
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