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Abstract. A substantial proper submanifold M of a Riemannian symmetric space

S is called a curved Lie triple if its tangent space at every point is invariant under the

curvature tensor of S, i.e. a sub-Lie triple. E.g. any complex submanifold of complex

projective space has this property. However, if the tangent Lie triple is irreducible and

of higher rank, we show a certain rigidity using the holonomy theorem of Berger and

Simons: M must be intrinsically locally symmetric. In fact we conjecture that M is an

extrinsically symmetric isotropy orbit. We are able to prove this conjecture provided

that a tangent space of M is also a tangent space of such an orbit.

0. Introduction.

There is an essential di¤erence between submanifold theory in Euclidean and

symmetric spaces. In Euclidean space or another space of constant curvature, the

tangent spaces do not contain any distinguished subspaces, and the only geometric

invariant of a subspace is its dimension. In fact, the main invariant for di¤er-

ential geometry, the curvature tensor, is zero or pointwise induced by the inner

product. This is di¤erent in a symmetric space S of nonconstant curvature. On

each tangent space TpS, the curvature tensor RS can be viewed as an algebraic

structure, a triple product (i.e. a product with three factors) satisfying the curva-

ture identities and the additional property that RSðv;wÞ is a derivation of RS for

any v;w; this is called a Lie triple product. Now there are distinguished subspaces

of TpS, namely those which are invariant under this triple product RS; they will

simply be called Lie triples.

So the following question is natural: What are the submanifolds whose

tangent spaces are Lie triples at every point? It is well known (cf. [H]) that Lie

triples are always tangent spaces of totally geodesic submanifolds, but we want to

exclude these by requiring that the submanifold is substantial, i.e. not contained

in any proper totally geodesic submanifold. The simplest nontrivial example is

S ¼ CPn where the curvature tensor RS is determined by the inner product and
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the complex structure only. The distinguished subspaces, the Lie triples, are just

the complex and the totally real subspaces. The family of submanifolds all of

whose tangent spaces are complex is very large: complex submanifolds are locally

given in terms of almost arbitrary convergent power series, and likewise there are

many totally real submanifolds. Another very large class which has been treated

for more general symmetric spaces (cf. [BHPP ]) contains the submanifolds where

RS is actually zero on all tangent spaces; they are called curved flats. Analo-

gously, submanifolds all of whose tangent spaces are Lie triples will be called

curved Lie triples. It turns out that all tangent spaces of a curved Lie triple are

conjugate under the isometry group of S, so the type of Lie triple is fixed along

the submanifold.

Lie triples always contain subspaces where RS is zero, called flats. The

maximal dimension of a flat is the rank of a Lie triple. In the present paper

we will consider Lie triples which are irreducible (not a direct sum of proper

subtriples) and of rankb 2. We will show that the corresponding curved Lie

triples are very di¤erent from the examples above: they are quite rigid. In fact,

the intrinsic local geometry is completely determined (Theorem 1). In fact we can

show that RS is parallel along the submanifold which causes a restriction of the

holonomy; then we can apply the holonomy theorem of Berger and Simons. For a

special class of Lie triples (the tangent spaces of symmetric R-spaces or extrinsic

symmetric spaces) we can even determine all corresponding curved Lie triples up to

congruence: They formaone-parameter family of very singular orbits of the isotropy

group of S (cf. Theorem 3 and its Corollary, Chapter 6). We conjecture that

these are the only substantial higher rank curved Lie triples.

This conjecture is supported by the work of H. Naitoh (cf. [N] and its ref-

erences) who has studied curved Lie triples where the normal spaces are also Lie

triples (we call those normal curved Lie triples). By a case-by-case study he proved

in particular that normal curved Lie triples of higher rank can be substantial only if

they belong to the special class mentioned above ([N], p. 562). Using this result,

we have determined all irreducible higher rank normal curved Lie triples. Our

article was partially motivated also by the work of Carlson and Toledo who solved

another special case (Hermitian normal curved Lie triples) by di¤erent methods

as one step to prove rigidity of certain harmonic maps (cf. [CT], pp. 108, 131).

It is my pleasure to thank several people for contributing to this article by

valuable hints and discussion: Martina Brück, Fran Burstall, Ernst Heintze, Ber-

nardo Molina, Carlos Olmos and the Referee.

1. Curved Lie triples.

Let S ¼ G=K be a symmetric space of compact type with curvature tensor

RS. An immersion f : M ! S will be called a curved Lie triple if any tangent
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space tp ¼ dfpðTpMÞ is invariant under RS, i.e. RSðtp; tpÞtp H tp. In other words,

each tp HTf ðpÞS is a Lie triple and thus (cf. [H]) for any p A M there is a totally

geodesic submanifold S 0 ¼ G 0=K 0
HS tangent to f at p. We will call such an

immersion f a curved Lie triple. Of course, totally geodesic immersions are also

curved Lie triples, but we will consider only those which are substantial, i.e. not

lying in a proper totally geodesic subspace of S. Are there such immersions, and

what are they like?

If S is a sphere, this is no condition at all; any submanifold is a curved Lie

triple. For S ¼ CPn, there are two types of Lie triples, complex and totally real

subspaces, and the corresponding curved Lie triples are complex or totally real

(immersed) submanifolds, and there are similar examples in HPn. Examples of

curved Lie triples in a more general symmetric space S are obtained by restrict-

ing the exponential map of S to an extrinsic symmetric submanifold in a tangent

space of S, cf. Chapter 2.

In the present paper we will consider mainly curved Lie triples of higher

rank. More precisely we will assume that every tp is a Lie triple without flat

factor such that all irreducible components have rankb 2. (Recall that the rank

of a Lie triple is the dimension of its maximal flat subspaces.) The extrinsic

symmetric examples mentioned above are the only substantial higher rank curved

Lie triples we know and we conjecture that these are the only possible examples.

The evidence for this conjecture is an intrinsic rigidity given by Theorem 1 below

which relies on the following Lemma. In order to simplify notation we drop the

immersion f and consider M as a submanifold of S. This is no restriction of

generality since everything is local.

Lemma 1. Let MHS be a curved Lie triple, i.e. TM is stable under the

curvature tensor RS. Then RSjTM is parallel with respect to the Levi Civita con-

nection of the induced metric on M.

Proof. Let D and ‘ denote the Levi-Civita connections of S and M, re-

spectively. Consider a curve pðtÞ on M and let a; b; c; d be ‘-parallel tangent

vector fields of M along that curve. It is su‰cient to show RSða; b; c; dÞ :¼

hRSða; bÞc; di ¼ const: We compute its derivative with respect to the parameter t

denoting by a 0; b 0; c 0; d 0 the D-derivative of a; b; c; d. Since DRS ¼ 0, we have

RSða; b; c; dÞ 0 ¼RSða 0; b; c; dÞþRSða; b 0; c; dÞþRSða; b; c 0; dÞþRSða; b; c; d 0Þ, and

all these terms vanish since a 0; b 0; c 0; d 0 are normal vector fields, but

RSðTM;TMÞTMHTM. r

Consequently, if MHS is a curved Lie triple, then any parallel displacement

on M preserves RSjTM . Hence all the Lie triples ðTpM;RSjTpM
Þ for various
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p A M are isomorphic, and we may assign to M a Lie triple p 0
H p, fixing a

Cartan decomposition g ¼ kþ p corresponding to S.

Theorem 1. Let MHS be a higher rank curved Lie triple, i.e. the cor-

responding Lie triple p 0 is semisimple and all irreducible factors have rankb 2.

Then M with its induced metric is locally symmetric. If p 0 itself is irreducible,

the curvature tensors RM and RSjTM are proportional.

Proof. Fix any p A M. We may assume that p is the base point of

S ¼ G=K . Let p ¼ TpS and p 0 ¼ TpM and let S 0 ¼ G 0=K 0
HS be the corre-

sponding totally geodesic submanifold with tangent space p 0. By Lemma 1, the

local holonomy group H of M at p leaves RSjp 0 invariant. Thus HHK 0, and

since S 0 has higher rank, none of the irreducible subrepresentations of H can act

transitively on the unit sphere in the corresponding subspace. Thus by the holo-

nomy theorem of Berger and Simons (cf. [S]), M is locally symmetric. In fact,

ðp 0;RM ;HÞ is a non-transitive holonomy system, hence symmetric. But the same

holds for the holonomy system ðp 0;RM ;K 0Þ, thus this is also symmetric which im-

plies H ¼ K 0. If RSjp 0 is indecomposable this shows that RSjp 0 is proportional

to RM . r

2. Normal curved Lie triples.

Now we restrict our attention to a special type of Lie triples. Consider the

Cartan decomposition g ¼ kþ p corresponding to a compact symmetric space

S ¼ G=K . A Lie triple p 0
H p will be called normal if p 00 ¼ ðp 0Þ? H p is also a

Lie triple. It is easy to see (cf. [E]) that in this case the reflections at the

subspaces p 0 and p 00 are order two automorphisms of RS. Conjugation with

these automorphisms give involutions of k inducing an orthogonal eigenspace

decomposition k ¼ k 0 þ q where the elements of k 0 preserve p 0 and p 00 while the

elements of q map p 0 into p 00 and vice versa. Hence we obtain three symmetric

pairs with the same isotropy Lie algebra k 0, corresponding to the Cartan decom-

posed Lie subalgebras g 0
:¼ k 0 þ p 0 and gþ :¼ k 0 þ p 00 and k ¼ k 0 þ q.

A special case of normal Lie triples are tangent spaces of extrinsic sym-

metric spaces. Recall that a submanifold MHR
n is called extrinsic symmetric if

M is invariant under reflection at any of its a‰ne normal spaces. By a theorem

of D. Ferus (cf. [F], [EH1]), any such M is a particular orbit under the isotropy

representation of another symmetric space. More precisely, MHR
n is extrinsic

symmetric if and only if there exists a symmetric space S¼G=K with base point

o and an isometric identification of its tangent space p ¼ ToS with R
n such that

M ¼ AdðKÞq where q A p satisfies adðqÞ3 ¼ �b2 � adðqÞ for some b > 0.

To see the normal Lie triple, extend the inner product on p to an AdðGÞ-

invariant inner product on g. Let p 0 ¼ ½k; q� be the tangent space and p 00 ¼

ðp 0Þ? ¼ ½k; q�? the normal space of MH p. Then adðqÞp 00 ¼ 0 since hk; ½q; p 00�i ¼
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h½k; q�; p 00i¼ 0, and on p 0 ¼ ½q; k� we have adðqÞ2 ¼�b2 � I since adðqÞ2ðadðqÞAÞ ¼

adðqÞ3A ¼�b2 � adðqÞA. Further, adðqÞ vanishes on k 0 ¼ fA A k; ½A; q� ¼ 0g which

is the isotropy Lie algebra of M, and the orthogonal complement q ¼ ðk 0Þ? H k

is mapped isomorphically onto the tangent space p 0 by adðqÞ which is the di¤er-

ential of the di¤eomorphism K=K 0 ! AdðKÞq. Thus the kernel of adðqÞ is pre-

cisely gþ :¼ p 00 þ k 0, so we have adðqÞ2 ¼ �b2 � I on the orthogonal complement

g� :¼ p 0 þ q, and adðqÞ=b is a complex structure on g� interchanging p 0 and q.

Hence for any s A R the g-automorphism rs ¼ es�adðqÞ=b fixes gþ and rotates g� by

the angle s. In particular, rp is the reflection at gþ inducing on p the reflection

at the normal space p 00, and of course �rp is the reflection at the tangent space

p 0. Thus p 0 is a normal Lie triple. It has the additional property that there is

an isometric AdðK 0Þ-equivariant Lie triple isomorphism between p 0 and q, namely

adðqÞ=b.

Now a curved Lie triple MHS will be called normal if the corresponding

Lie triple p 0 is normal, i.e. all normal spaces of M are also Lie triples. Examples

of substantial normal curved Lie triples arise by exponentiating an extrinsic sym-

metric space MH p ¼ ToS into S. In fact, consider the K-equivariant map f ¼

expojM : M ! S which is an immersion if jqj is not too large. The Jacobi field

equation shows that tq ¼ dfqðTqMÞHTf ðqÞS is the parallel translate of TqMH

ToS along the geodesic gðsÞ ¼ expoðsqÞ in S (for details see Lemma 6 at the end

of this paper). But the parallel transport in a symmetric space is done by iso-

metries of S. Therefore tq and t?q are Lie triples, being conjugate to p 0 and p 00

respectively, and the same is true at any point p ¼ AdðkÞq A M. Hence f is a

normal curved Lie triple.

In a series of papers (cf. [N] and its references), H. Naitoh classified the pos-

sible Lie triples which may occur as tangent spaces of substantial normal curved

Lie triples; in particular, if they have higher rank they are tangent spaces of ex-

trinsic symmetric spaces (Theorem 2.2, p. 562 in [N]). But it remains to deter-

mine the corresponding submanifolds.

The following improvement of Lemma 1 is basic. Consider the vector

bundle TSjM ¼ TM þNM. It has two canonical connections: the Levi-Civita

connection D of S and the connection ‘ which is the direct sum of the tangent

and normal connections: For any tangent vector field V we put ‘VX ¼ ðDVX ÞT

and ‘Vx ¼ ðDVxÞ
N where X and x denote tangent and normal vector fields, re-

spectively. Then L :¼ D� ‘ is just the second fundamental form a or the Wein-

garten map A; in fact LVX ¼ aðV ;XÞ ¼ aVX and LVx ¼ �AxV .

Lemma 2. Let MHS be a normal curved Lie triple. Then RS is parallel

along M with respect to both connections D and ‘. Consequently, if we restrict

attention to some p A MHS considered as base point of S, then L ¼ D� ‘ takes

values in k; more precisely, it is a linear map L : p 0 ! q.
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Proof. We have DRS ¼ 0 since S is symmetric. In order to show

‘RS ¼ 0, we take ‘-parallel vector fields a; b; c; d along a curve pðtÞ in M as in

the proof of Lemma 1, but now these may take values in the full bundle TSjM .

We may assume that either of them is a tangent or a normal vector field. Again

we have to di¤erentiate the expression r :¼ hRSða; bÞc; di using the D-derivative.

Recall that the D-derivative of a ‘-parallel tangent vector is normal and vice

versa. If all four vector fields are tangent (or all normal), we have shown r 0 ¼ 0

in Lemma 1; recall that also the normal spaces are Lie triples. If three of them

are tangent and one is normal (or vice versa), then r ¼ 0. If two are tangent

and the other two normal, all terms of r 0 consists of either three tangent and one

normal vector or vice versa, hence we have again r 0 ¼ 0 which concludes the proof

of ‘RS ¼ 0.

Consequently, we have LvR
S ¼ DvR

S � ‘vR
S ¼ 0 for all v A p 0 ¼ TpM, thus

the linear map Lv : p ! p is a skew adjoint derivation of RS which means Lv A k.

But since Lv maps the tangent space p 0 into the normal space p 00 and vice versa,

Lv A q and L is a linear map between p 0 and q. r

Remark. Since the ‘-parallel translations preserve RS, they are given by

elements of G. Thus two tangent spaces of M are not only isomorphic Lie

triples, but they are even conjugate within G.

3. The submanifold equations.

Let S be an irreducible symmetric space and MHS a normal curved Lie

triple. By the Gauss equations and Lemma 2, we have for all v;w; x; y A p 0 ¼

TpM:

hRMðv;wÞx; yi� hRSðv;wÞx; yi ¼ �havxawyiþ havyawxi

¼ �hLvx;Lwyiþ hLvy;Lwxi

¼ hLwLvx; yi� hy;LvLwxi

¼ �h½Lv;Lw�x; yi:

We have RSðv;wÞ ¼ �½v;w� A k. Further, if the Lie triple p 0 is irreducible and of

higher rank, RM ¼ l � RSjp 0 by Theorem 1, hence

½Lv;Lw�x ¼ �RMðv;wÞxþ RSðv;wÞx ¼ ðl� 1Þ � ½v;w�x

for all v;w; x A p 0. If moreover k 0 acts e¤ectively on p 0, then we have for all

v;w A p 0

½Lv;Lw� ¼ �ð1� 1=lÞRMðv;wÞ ¼ ðl� 1Þ � ½v;w�:ðGÞ

Further, from the Ricci equations we obtain for all v;w A p 0 and x; h A p 00 ¼ p 0?
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hR?ðv;wÞx; hi� hRSðv;wÞx; hi ¼ hAhv;Axwi� hAhw;Axvi

¼ hLvh;Lwxi� hLvx;Lwhi

¼ �hh;LvLwxiþ hLwLvx; hi

¼ �h½Lv;Lw�x; hi

where R? denotes the curvature tensor of the normal bundle. Using ðGÞ we

obtain

R?ðv;wÞ ¼ RSðv;wÞ � ½Lv;Lw� ¼ �l � ½v;w� ¼ RMðv;wÞðRÞ

where every term is considered as an element of k 0 acting on p 00. Finally, the

Codazzi equation is the same as in Euclidean space,

ð‘uaÞðv;wÞ ¼ ð‘vaÞðu;wÞðC Þ

for all u; v;w A p 0; note that the curvature term ðRSðu; vÞwÞ? vanishes since p 0 is

a Lie triple.

This has a surprising consequence if l > 1 in ðGÞ (the other cases will be

treated in the next sections). Let f : MHS be a curved Lie triple such that the

corresponding Lie triple p 0 is normal, irreducible, and k 0 acts e¤ectively on p 0.

Let a be the second fundamental form of M and L the corresponding linear map

as above. Then we have ðGÞ; ðCÞ; ðRÞ. From these data we construct now a new

immersion into Euclidean space:

Lemma 3. There exists another isometric immersion ~ff : M ! p ¼ R
n such

that the normal bundles of f and ~ff can be identified by a parallel isometric vector

bundle isomorphism, and the second fundamental form of ~ff is ~aa ¼ ka with k2 ¼

l=ðl� 1Þ. All tangent spaces of ~ff are conjugate to p 0 under K.

Proof. If we put ~LL ¼ k � L, the Gauss equations ðGÞ yield RM ¼

�l=ðl� 1Þ½L;L� ¼ �½~LL; ~LL�. Further from the Ricci equation ðRÞ we also get

R? ¼ RM ¼ �½~LL; ~LL�. Using also ðC Þ we see that ðM;NM; ~aaÞ satisfies Eucli-

dean Gauss-Codazzi-Ricci equations. By the existence theorem for submanifolds,

there exists an isometric immersion ~ff : M ! R
n with normal bundle NM (up to

a parallel isometric isomorphism) and second fundamental form ~aa. It remains

to identify R
n with p such that all tangent spaces are congruent to p 0 under K .

Since TpM þNpM ¼ TpS (via the immersion f ) for every p A M, we have a Lie

triple product RS
p on TpMlNpM which on the other hand is identified with R

n

using the immersion ~ff . We have to show that this tensor field RS along ~ff is con-

stant. But the derivative on R
n splits as q ¼ ‘þ ~LL since ~LL is the second funda-

mental form of ~ff , thus qvR
S ¼ ‘vR

S þ ~LLv:R
S ¼ 0 for any v A TM (recall that ~LLv is

a multiple of Lv and thus a derivation of RS). Consequently RS is constant and
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defines a Lie triple product structure on R
n isomorphic to p, and each d ~ffpðTpMÞ

is a subtriple isomorphic to p 0. r

Remark. The preceding Lemma allows a new interpretation of L or rather
~LL. Let Q̂Q ¼ OðpÞ=ðOðp 0Þ �Oðp 00ÞÞ be the Grassmannian of all linear subspaces

isomorphic to p 0 in p. For any E A Q̂Q the tangent space TEQ̂Q can be viewed as

the space AðE;E?Þ of skew adjoint linear maps on p sending E to E? and vice

versa. Now from the immersion ~ff : M ! p we obtain a Gauss map g : M ! Q̂Q

with gðpÞ ¼ d ~ffpðTpMÞ for all p A M, and its di¤erential dgp : TpM ! TgðpÞQ̂Q ¼

Aðgð pÞ; gð pÞ?Þ is precisely the second fundamental form ~LL at p. But from

Lemma 3 we know that g takes values in the subset Q ¼ fAdðkÞðp 0Þ; k A Kg ¼

K=K 0
H Q̂Q which is a totally geodesic submanifold of Q̂Q; to see this we just ob-

serve that Q is preserved under the reflection at the subspace q 00 ¼ ðq 0Þ?, but this

reflection is the geodesic symmetry in the symmetric space Q̂Q. Hence ~LL is the

di¤erential of the Gauss map g : M ! Q. Later we will show that L : p 0 ! q is

a linear isometry under certain assumptions which implies that this map g is also

isometric.

4. A rigidity result for totally geodesic submanifolds.

Now we will discuss the case l ¼ 1 in the Gauss equation ðGÞ. This is

equivalent to RM ¼ RSjTM or in other words, M is isometric to the totally geo-

desic submanifold S 0
HS which is tangent to M. We will show that this is im-

possible:

Theorem 2. Let S ¼ G=K be a compact irreducible symmetric space with cor-

responding Cartan decomposition g ¼ kþ p and let p 0
H p be an irreducible higher

rank normal Lie triple corresponding to a totally geodesic submanifold S 0 ¼ exppðp
0Þ.

Then there is no substantial curved Lie triple MHS tangent to S 0 which is intrin-

sically isometric to S 0.

Proof. Suppose there is such a submanifold MHS. Then RM ¼ RSjTM
and by the Gauss equations ðGÞ we get ½Lv;Lw� ¼ 0 for all v;w A p 0 ¼ TpM. In

other words, the linear map L : p 0 ! q takes values in a flat aH q. The Lie

triple q corresponds to the symmetric space Q ¼ K=K 0 ¼ fAdðkÞp 0; k A Kg which

is a totally geodesic subspace of the Grassmannian Q̂Q of all linear subspaces of p

isomorphic to p 0 (cf. Remark in the preceding section). The flats of the Grass-

mannian are well known: A flat âaHTp 0Q̂Q is determined by two orthonormal

sets of vectors v1; . . . ; vm A p 0 and x1; . . . ; xm A p 00, where m is the minimum of the

dimensions of p 0 and p 00, and âa consists of all linear maps A A Aðp 0; p 00Þ such that

AðviÞ is a multiple of xi for each i ¼ 1; . . . ;m while A ¼ 0 on fv1; . . . ; vmg
?.

Since our flat aH q can be extended to such a flat âa, we have Lvivj ¼ lijxj for
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some lij A R, but from the symmetry Lvivj ¼ Lvjvi we see that Lvivj ¼ 0 for i0 j.

It follows that each Lvi A aH qH k has rank 2 as a linear map on p: It just maps

vi to a multiple of xi and vice versa and it is zero on fvi; xig?. By the subsequent

Lemma 4, this is impossible. Thus all Lvi are zero and M is totally geodesic, hence

not substantial, a contradiction! r

Lemma 4. Let g ¼ kþ p be a Cartan decomposition such that p is irreducible

and of higher rank. Then there is no A A k which has rank 2 as a linear endomor-

phism of p.

Proof. Suppose that A A k is of rank 2, i.e. its kernel V H p has codimen-

sion 2. Then the corresponding one-parameter subgroup kðtÞ ¼ exp tA acts by

rotations in the plane V?. For any x A pnV , the tangent space of the K-orbit,

TxðKxÞ, meets V? precisely in the line generated by Ax. Hence the normal space

Fx ¼ TxðKxÞ? intersects V in a hyperplane Hx ¼ Fx VV . If x is regular, i.e. not

contained in a root hyperplane, Fx is the flat through x and Hx consists of

singular points. In fact, for any y A Hx consider the normal vector x ¼ y� x A Fx.

Then the corresponding parallel normal field xðtÞ ¼ kðtÞx along the curve xðtÞ ¼
kðtÞx A Kx has constant end point map pxðxðtÞÞ ¼ xðtÞ þ xðtÞ ¼ kðtÞy ¼ y (for the

notation cf. [T] or [EH2]). Thus Hx HFx must be one of the root hyperplanes.

Likewise Hx 0 ¼ Fx 0 VV is a root hyperplane in the flat Fx 0 for any x 0 A KxnV .

Hence all Hx 0 for x 0 A Kx close to x are conjugate under K which in turn implies

that any orbit Ky with y A Hx is contained in the subspace V H p. But K acts

irreducibly on p, a contradiction! r

5. The second fundamental form.

Lemma 5. Let G be a compact Lie group and g ¼ kþ p its Lie algebra with a

Cartan decomposition. Let p 0
H p and qH k be Lie triples of equal dimension with

½q; q�H k 0 ¼ ½p 0; p 0�. Assume p 0 to be irreducible. Let L : p 0 ! q be linear with

½Lv;Lw� ¼ r � ½v;w� ð1Þ

for all v;w A p 0 and some constant r0 0. Then r > 0 and L 0 ¼ L=
ffiffiffi

r
p

is a K 0-
equivariant isometric Lie triple isomorphsm.

Proof. L must be injective by (1), hence it is a linear isomorphism by

the dimension assumption. We may assume r ¼ e :¼G1 by passing to L=
ffiffiffiffiffiffi

jrj
p

.

Choosing an AdðGÞ-invariant inner product on g we have hA; ½x; y�i ¼ hAx; yi

for all A A k and x; y A p. Thus for any A A k 0 and all v;w A p 0,

hAv;wi ¼ hA; ½v;w�i ¼ ehA; ½Lv;Lw�i ¼ ehALv;Lwi
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where A is considered as a linear map on p 0 and on q (we write Av and ALv in

place of ½A; v� and ½A;Lv�). Hence

LTAL ¼ eA ð2Þ

for all A A k 0. In particular we have Av ¼ 0 , ALv ¼ 0 which means that the

isotropy Lie algebras of v and Lv agree:

k 0v ¼ k 0Lv ð3Þ

for any v A p 0. Consequently, the principal orbits of K 0 on p 0 and q have

the same dimension. Thus also the maximal flat subspaces in p 0 and q have the

same dimension, being sections of the K 0-actions. But by (1), L maps a flat F 0

of p 0 into a flat F of q, thus inducing a linear isomorphism between the two flats.

From (3) we see that L also maps the singular hyperplanes (root hyperplanes) of

F 0 onto the singular hyperplanes of F . This implies that LjF 0 is a multiple of

an isometry (see Sublemma below). But since any two flats in p 0 are connected

by a finite chain of flats each of which intersects its successor in a nonzero sub-

space, this multiple must be the same on each flat, and the whole map L is a

multiple of an isometry, i.e. LLT ¼ m � I for some m > 0.

Now for any A;B A k we apply (2) to A, B and ½A;B� in place of A and

obtain

½A;B� ¼ ½LTAL;LTBL� ¼ m � LT ½A;B�L ¼ em � ½A;B�

which shows m ¼ 1 and e ¼ 1. Thus LT ¼ L�1 and L commutes with any A A k 0

by (2). Together with (1) this shows that L is an isometric isomorphism of Lie

triples. r

Sublemma. Let F 0;F be two k-dimensional Euclidean vector spaces with

root systems R 0
HF 0 and RHF such that R 0 is indecomposable. Let L : F 0 ! F

be a linear isomorphism such that L and L�1 map root hyperplanes onto root hyper-

planes. Then L is an isometry up to scaling.

Proof. We put R̂R 0 ¼ R � R 0 ¼ fl � r; l A R; r A R 0g and similar R̂R ¼ R � R.

Since L maps the root hyperplanes r? HF 0 (for all r A R 0) bijectively onto the

root hyperplanes in F , its inverse transposed map L 0 :¼ ðLTÞ�1
: F 0 ! F maps R̂R 0

onto R̂R. Consequently, for any 2-dimensional linear subspace (‘‘plane’’) E 0
HF 0

meeting R 0 we have L 0ðR̂R 0 VE 0Þ ¼ R̂RVE with E ¼ L 0ðE 0Þ. The unit vectors in

R̂R 0 VE 0 are the vertices of a regular 2n-gon with n A f1; 2; 3; 4; 6g, and the same is

true for the unit vectors of R̂RVE (with the same value of n). We then will call

E 0;E planes of type n. For nb 3 it follows easily that L 0jE 0 is a multiple of an

isometry. In fact, if n ¼ 3 or n ¼ 6, the set of unit vectors of R̂R 0 VE always

contains a triple a; b; aþ b, and after a suitable identification of E 0 and E we may
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assume that L 0ðaÞ ¼ t1a, L
0ðbÞ ¼ t2b and L 0ðaþ bÞ ¼ t3ðaþ bÞ for some t1; t2; t3 A

R. But by linearity we have also L 0ðaþ bÞ ¼ t1aþ t2b which shows t1 ¼ t2 ¼ t3.

If n ¼ 4, we have a triple a; b; ðaþ bÞ=
ffiffiffi

2
p

instead and a similar argument holds.

Since the root system R 0 does not split into two perpendicular subsets, any two

roots can be joined by a (finite) chain of roots ri with ri; riþ1 linearly indepen-

dent and hri; riþ1i0 0. Then the planes Ei ¼ Spanfri; riþ1g have typeb 3 and

Ei VEiþ1 0 0. Now L 0 is a multiple of an isometry on each Ei, but due to the

nontrivial intersection, this multiple must be the same for all i. Hence L 0 ¼
ðLTÞ�1 is an isometry up to scaling. Thus the same is true for L. r

6. Irreducible curved Lie triples of extrinsic symmetric type.

Theorem 3. Let S be a compact irreducible symmetric space and MHS be

a substantial curved Lie triple such that the corresponding Lie triple p 0 is normal,

irreducible and of higher rank. Suppose further that k 0 acts e¤ectively on p 0 and
that p 0 and q have equal dimension. Then M ¼ expoð ~MMÞ where ~MMH p ¼ ToS is

an extrinsic symmetric space.

Proof. By the Gauss equations ðGÞ, the second fundamental form L of

MHS satisfies ½Lv;Lw� ¼ ðl�1Þ½v;w�, and from Theorem 2 we have l01. Now

Lemma 5 shows that l> 1 and L is a constant multiple of a linear isometry. The

same holds for ~LL ¼ kL which is the di¤erential of the Gauss map g : M ! QH Q̂Q

associated to the immersion ~ff : M ! p (cf. Lemma 3 and the subsequent remark).

Thus g is a local isometry up to scaling. In particular, ~LL ¼ dg is parallel, sending

parallel vector field on M onto parallel vector fields on Q. So the second fun-

damental form ~aa : TMnTM ! NM is parallel and hence ~ff : M ! p is extrinsic

symmetric (cf. [F], [EH1]). Thus we may assume that ~ff ðMÞ ¼: ~MM ¼ AdðKÞq for

some q A p centralized by K 0 and with adðqÞ3 ¼ �b2 � adðqÞ for some b > 0.

We want to show that MHS is congruent to one of the immersions fs :
~MM ! S given by fsðxÞ ¼ expoðsxÞ with s > 0. By the subsequent Lemma 6 and

the following remark, the metrics of all Ms ¼ fsð ~MMÞ are proportional to that of
~MM with the factor ms ¼ sinðsbÞ=b, and fsð ~MMÞ is totally geodesic where ms takes

its maximum, i.e. for so ¼ p=2b. For s ¼ so we have RMs ¼ RSjTM . Making s

smaller we shrink the metric enlarging the curvature. Since l > 1, we find some

s < p=2b with RMs ¼ l � RSjTM ; in fact we have to choose s such that sinðsbÞ ¼
ms=mso ¼ 1=

ffiffiffi

l
p

. On the other hand, in Lemma 6 we will compute also the ratio

between the second fundamental forms of ~MM and M which is as=~aa ¼ cosðsbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2ðsbÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=l
p

¼ 1=k with k2 ¼ l=ðl� 1Þ as in Lemma 3. Thus

MHS and Ms HS have the same metric and second fundamental form (up to

parallel isometries of the normal bundles), thus they are the same up to an

isometry of S, by the congruence theorem for submanifolds (cf. [ET]). r
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If p 0
H p is of extrinsic symmetric type, i.e. the tangent space of an extrinsic

symmetric space in p, then p 0 is normal and k 0 acts e¤ectively on p 0. Thus we

obtain from our theorem:

Corollary. Let S be a compact irreducible symmetric space and MHS a

substantial curved Lie triple such that the corresponding Lie triple p 0 is irreducible

of rankb 2 and of extrinsic symmetric type. Then M ¼ expoð ~MMÞ where ~MMH p ¼

ToS is the (up to congruence and scaling unique) extrinsic symmetric space corre-

sponding to p 0.

Lemma 6. Let S ¼ G=K be a compact symmetric space and g ¼ kþ p the

corresponding Cartan decomposition. Suppose that p ¼ ToS contains an extrinsic

symmetric space ~MM ¼ AdðKÞq for some q A p with adðqÞ3 ¼ �b2 � adðqÞ. For

0 < s < p=b let fs : ~MM ! S, fsðxÞ ¼ expoðsxÞ and put Ms ¼ fsð ~MMÞ. Then fs is

a K-equivariant homothetic immersion with metric scaling factor sinðsbÞ=b.

Further, for any x A ~MM the normal space Nx
~MMHToS and NfsðxÞMs HTfsðxÞS are

mapped onto each other by parallel translation along the geodesic gxðsÞ ¼ expoðsxÞ

which defines a parallel isometric vector bundle isomorphism between N ~MM and

NMs. Using this identification we have as ¼ cosðsbÞ~aa for the second fundamental

forms ~aa of ~MM and as of Ms.

Proof. We have seen that adðqÞb acts trivially on p 00 þ k 0, and on p 0 þ q it

is a complex structure interchanging p 0 and q. For any v A Tq
~MM ¼ p 0 we have

ðdfsÞqv ¼ JvðsÞ where Jv is the Jacobi field along the geodesic gqðsÞ ¼ expoðsqÞ

with Jvð0Þ ¼ 0 and J 0
vð0Þ ¼ v. Up to parallel translation along gq, the Jacobi

field Jv satisfies the ODE J 00
v þ adðqÞ2Jv ¼ 0. Since adðqÞ2 ¼ �b2 � I on p 0, we

obtain JvðsÞ ¼ ðsinðbsÞ=bÞ � v. Hence fs is an isometry up to scaling by the factor

sinðsbÞ=b, and the tangent spaces Tq
~MM and TfsðqÞMs are parallel along gq.

Next consider a normal vector ~xx A Nq
~MM and let x A NfsðqÞMs its image

under parallel transport along gq. This parallel transport is done by the trans-

vection g ¼ expðsqÞ, hence x ¼ g~xx. For any A A q let ~xxðtÞ ¼ expðtAÞ~xx. This is a

normal vector field along the curve qðtÞ ¼ expðtAÞq in ~MM which is ‘-parallel since

ðd=dtÞ~xxðtÞjt¼0 ¼ A~xx A p 0 has zero normal component. Now consider the normal

vector field xðtÞ ¼ expðtAÞx along the curve fsðqðtÞÞ in Ms. In fact xðtÞ can also

be obtained by parallel translating ~xxðtÞ along the geodesic gqðtÞ. We want to com-

pute its derivative with respect to the Levi-Civita connection D in S. This is as-

sociated to the horizontal distribution on the principal bundle G ! S obtained

from the decomposition g ¼ kþ p. Using left translation by g�1 back to the base

point o we have

g�1 D

dt
xðtÞjt¼0 ¼

D

dt
ðg�1 expðtAÞg~xxÞt¼0 ¼ ðAdðg�1ÞAÞk

~xx

J.-H. Eschenburg562



where the subscript ð Þk denotes the k-component in the Cartan decomposition

g ¼ kþ p. But on the other hand,

Adðg�1ÞA ¼ Adðexpð�sqÞÞA ¼ e�sb�adðqÞ=bA ¼ cosðsbÞA�
sinðsbÞ

b
½q;A�;

hence ðAdðg�1ÞAÞk ¼ cosðsbÞA. It follows that g�1ðD=dtÞxðtÞjt¼0 ¼ cosðsbÞA~xx.

This is in p 0 again, hence ðD=dtÞxðtÞ has zero normal component, and its tangent

component (the Weingarten map) is proportional to that of ~xxðtÞ with the constant

factor cosðsbÞ. This shows that parallel normal vector fields on ~MM become par-

allel normal vector fields along Ms, using the identification of N ~MM and NMs by

parallel transport along radial geodesics, and for the second fundamental forms we

have as ¼ cosðsbÞa. r

Remark. In particular it follows that as ¼ 0 for sb ¼ p=2, hence Ms HS is

totally geodesic for s ¼ p=2b. In fact, f2s maps ~MM to an ‘‘antipodal’’ point o of

o which is also fixed by the group K , and Ms is an ‘‘equator’’.

7. Concluding remarks.

H. Naitoh ([N], p. 562) has given a classification of the possible tangent

spaces of normal curved Lie triples. The ones with higher rank which admit

substantial curved Lie triples are of extrinsic symmetric type. Using this classi-

fication, we get from Theorem 3 and its Corollary:

Theorem 4. Let S be a compact irreducible symmetric space. Then the sub-

stantial irreducible higher rank curved Lie triples MHS are precisely of the form

M ¼ expoð ~MMÞ where ~MMHToS is an extrinsic symmetric space.

Unfortunately, this theorem is not quite the end of the story since in some

irreducible symmetric spaces there are extrinsic symmetic spaces which are locally

reducible. E.g. for p ¼ R
n nR

n, corresponding to the Grassmannian of n-planes

in R
2n, the submanifold ~MM ¼ fvnw A p; jvj ¼ jwj ¼ 1gG ðS n�1 � S n�1Þ=ðGIÞ is

such an example.

The long classification of Naitoh was not used up to Theorem 4. In fact, in

the case where p 0 is irreducible of higher rank with dim p 0 ¼ dim q, our Theorem

3 implies Naitoh’s result. It would be most desirable to show directly that there

are no substantial higher rank normal curved Lie triples if dim p 0 < dim q (the other

case dim p 0 > dim q is excluded by the injectivity of L : p 0 ! q following from (1)).

If p is of higher rank but not normal, we conjecture that there are no substantial

curved Lie triples of this type at all.

If S is a symmetric space of noncompact type, then many of the arguments

are still valid. However, in the noncompact case Theorem 3 cannot hold as it
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stands since there are noncompact curved Lie triples analogous to horospheres in

real hyperbolic space. They are obtained as the limit for r ! y of submanifolds

Mr ¼ exp
gðrÞð ~MMrÞ where g is a unit speed geodesic in S and ~MMr HTgðrÞS is an ex-

trinsic symmetric space of radius r such that all Mr have the same tangent space

at the point p ¼ gð0Þ. Moreover, there are other examples which are analogous

to the remaining umbilic hypersurfaces in hyperbolic space. These examples have

been investigated recently by D. Osipova ([O]).

Remark added in proof. Recently it has been shown by a di¤erent method

that the assumption ‘‘irreducible and of higher rank’’ in Theorem 4 and in the

Corollary of Theorem 3 can be dropped provided that S is not constantly curved,

cf. [BENT].
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